
User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call
Studio Release 12.5(1)
First Published: 2020-01-31

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 1994–2020 Cisco Systems, Inc. All rights reserved.

www.cisco.com/go/trademarks
www.cisco.com/go/trademarks

Preface

Change History
This table lists changes made to this guide. Most recent changes appear at the top.

DateSeeChange

January 2020Initial Release of Document for Release 12.5(1)

Removed Context Service

About this Guide
This document describes the various components that can exist on Cisco Unified CVP VXML Server,
administering the VXML Server, and VXML Server logging.

Audience
This design guide is intended for the system architects, designers, engineers, and Cisco channel partners who
want to apply best design practices for the Cisco Unified Customer Voice Portal (CVP).

This document assumes that you are already familiar with basic contact center terms and concepts and with
the information presented in the Cisco Unified CCE SRND.

Related Documents

Planning your Unified CVP solution is an important part of the process in setting up Unified CVP. Read
Solution Design Guide for Cisco Unified Contact Center Enterprise before you configure Unified CVP
solution.

Note

Unified CVP provides the following documentation:

• Solution Design Guide for Cisco Unified Contact Center Enterprise

• Configuration Guide for Cisco Unified Customer Voice Portal

• Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio

• Installation and Upgrade Guide for Cisco Unified Customer Voice Portal

• Port Utilization Guide for Cisco Unified Contact Center Solutions

• Reporting Guide for Cisco Unified Customer Voice Portal

For additional information about Unified ICM, refer to theCisco web site listing Unified ICM documentation.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
iii

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Documentation Feedback
Provide your comments about this document to: mailto:contactcenterproducts_docfeedback@cisco.com.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
iv

Preface
Communications, Services, and Additional Information

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html
mailto:contactcenterproducts_docfeedback@cisco.com

C O N T E N T S

Preface iii

Change History iii

About this Guide iii

Audience iii

Related Documents iii

Communications, Services, and Additional Information iv

Documentation Feedback iv

Introduction 1C H A P T E R 1

Cisco Unified CVP VoiceXML Components 3C H A P T E R 2

Components 3

Variables 4

Global Data 4

Application Data 5

Session Data 5

Element Data 5

Component Accessibility 6

APIs 7

Configurable Elements 8

Standard Action and Decision Elements 8

Dynamic Element Configurations 9

Start / End of Call Actions 9

Event Handling 10

Say It Smart Plugins 11

Start and End of Application Actions 11

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
v

Loggers 12

On Error Notification 12

Unified CVP XML Decisions in Detail 13

<call_data> 15

<data> 16

<user_info> 16

<general_date_time> 17

<caller_activity> 17

<historical_data> 18

XML Decision Example1 19

XML Decision Example2 20

XML Decision Example3 21

VoiceXML Insert Elements 23

Insert Element Restrictions 24

Insert Element Inputs 24

Insert Element Outputs 27

Root Document 28

Example of Insert Elements 29

Administration 31C H A P T E R 3

Introduction to VXML Server Administration 31

JMX Management Interface 31

Administration Scripts 32

System Information Page 33

Administration Information 34

Application and System Status 34

VXML Server Information 35

VXML Gateway Adapter 37

Configuration Updates 38

VXML Server Configuration Options 39

Application Configuration Options 41

Administration Functions 42

Graceful Administration Activity 42

Applications Update 42

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
vi

Contents

Applications Suspension 44

Applications Addition 47

Applications Removal 47

Common Classes Update 49

Global and Application Data Function 49

Administrator Log Access 51

Administration Function Reference 51

VXML Server Metrics 52

User Management 57C H A P T E R 4

Deployment 57

Database Design 58

Applications 58

User Data 59

Historical Data 60

VXML Server Logging 63C H A P T E R 5

Loggers 63

Global Loggers 64

Global Call Logger 64

Global Error Logger 65

Global Administration History Logger 69

Application Loggers 69

Application Activity Logger 70

Application Error Logger 81

Application Administration History Logger 84

Application Debug Logger 85

Correlating Unified CVP Call Server Logs with VXML Server Logs 86

VXML Server Configuration 87C H A P T E R 6

Global Configuration File 87

Setup Options 87

JavaScript Utilities 91C H A P T E R 7

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
vii

Contents

JSONPath Expression 91

XPath Expression 91

Date Validation 92

Time Validation 93

Web Service Integration 95C H A P T E R 8

SOAP Service 95

Web Services Element 95

Rest Service 95

Rest_Client Element 95

Ignore Certificate Validation 96

Import Certificate in Call Studio for Debug Mode 96

Import Certificate in VXML Server 96

Create One-Way Communication Between VXML and REST Server 97

Create Two-Way Communication Between VXML and REST Server 97

XPath Expression 98

JSONPath Expression 99

Standalone Application Builder 101C H A P T E R 9

Standalone Application Builder Introduction 101

Script Execution 102

Script Output 102

Substitution Tag Reference 103A P P E N D I X A

Directory Structure 109A P P E N D I X B

Glossary of Terms ?

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
viii

Contents

C H A P T E R 1
Introduction

Welcome to Cisco Unified Customer Voice Portal (Unified CVP), the most robust platform for building
exciting, dynamic VoiceXML-based voice applications.

Unified CVP:

• Allows users to build complex voice applications without requiring extensive knowledge of Java and
VoiceXML.

• Includes an easy, graphical interface for building voice applications and simplifies the tasks of building
custom components that easily plug into the software’s modular architecture.

• Provides the fastest, most error-free process for building professional, dynamic voice applications.

This user guide introduces the process of building voice applications that will use the various components of
Unified CVP software. Its primary focus is to explain the necessary concepts to take advantage of the Cisco
Unified CVP VXML Server (VXML Server), while introducing the other components. This guide refers to
additional documentation to fully describe other components. If you are just getting started with Unified CVP
software you should read the first few chapters to understand the Unified CVP software environment and
some of the designs of the Unified CVP platform.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
1

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
2

Introduction

C H A P T E R 2
Cisco Unified CVP VoiceXML Components

Some VXML Server components require detailed description on how to use them properly, especially when
their functionality requires or is extended by programming. You might be able to create a voice application
entirely dependent on fixed data, but most dynamic applications require some programming.

The non-developer user needs to be aware of these components and the functions they serve. The application
designer needa to understand in what situations various components are required so that a comprehensive
specification can be given to a developer responsible for building these components.

This chapter describes these components in more detail, and the typical situations where they would be used.
It also describes the Unified CVP concepts used to develop and use the components. The Programming Guide
for Cisco Unified CVP VXML Server and Unified Call Studio describes the components that require
programming and describes the process of constructing and deploying them. The Programming Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio provides a comprehensive description of the
information that this chapter introduces.

• Components, on page 3
• Variables, on page 4
• APIs, on page 7
• Configurable Elements, on page 8
• Standard Action and Decision Elements, on page 8
• Dynamic Element Configurations, on page 9
• Start / End of Call Actions, on page 9
• Event Handling, on page 10
• Say It Smart Plugins, on page 11
• Start and End of Application Actions, on page 11
• Loggers, on page 12
• On Error Notification, on page 12
• Unified CVP XML Decisions in Detail, on page 13
• VoiceXML Insert Elements, on page 23

Components
The following components are described in this chapter:

• Built With Programming—These components require some programming effort.

• Call-Specific—These components are built to be used within individual calls.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
3

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

• CustomConfigurable Elements—Adevelopermight want to create their own reusable, configurable
elements to supplement the elements that Unified CVP provides.

• Standard Action and Decision Elements—For situations where unique, application-specific
functionality is needed, which does not require the flexibility and complexity of configurable
elements.

• Dynamic Element Configurations—For situations where the configuration for a configurable
element can only be determined at runtime.

• Start and End of Call Action—To perform tasks before each call begins and after each call ends.

• Hotevents—To specify the VoiceXML to execute when a certain VoiceXML event occurs.

• Say It Smart Plugins—To play back additional formatted data or to extend existing Say It Smart
behavior.

• VXML Server-Specific—These components are built to run on VXML Server as a whole and do not
apply to a specific call.

• Start and End of Application Actions—To perform tasks when a Unified CVP voice application
is loaded and shuts down.

• Loggers—Plug-ins designed to listen to events that occur within calls to an application and log or
report them.

• On Error Notification—To perform tasks if an error causes the phone call to end prematurely.

• Built Without Programming—These components do not require high-level programming effort to
construct.

• XML Decisions—Unified CVP provides an XML format for writing simple decisions without
programming. The exact XML format is detailed in this chapter.

• VoiceXML Insert Elements—This element is used in situations where the developer wants to
incorporate custom VoiceXML content into a Unified CVP application. This chapter provides
guidelines for building a VoiceXML insert element.

Variables
Unified CVP offers variables as a method for components to share data with each other, in these four forms:
global data, application data, session data and element data.

Global Data
A global data variable is globally accessible and modifiable from all calls to all applications. Global data is
given a single namespace within VXML Server that is shared across all calls to all applications. If a component
changes global data, that change is immediately available to all calls for all applications. Global data can hold
any data, including a Java object. The lifetime of global data is the lifetime of VXML Server. Global data is
reset if the application server is restarted or the VXML Server web application archive (WAR) is restarted.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
4

Cisco Unified CVP VoiceXML Components
Variables

Global data typically is used to store static information that needs to be available to all components, no matter
which application they reside in. For example, the holiday schedule of a company that applies to all applications
for that company.

Application Data
An application data variable is accessible and modifiable from all calls to a particular application. Application
data variables from one application cannot be seen by components in another application. Each application
is given its own namespace to store application data. If a component changes application data, that change is
immediately available to all other calls to the application. Application data can hold any data, including a Java
object. The lifetime of application data is the lifetime of the application. Application data would be reset if
the application were updated and would be deleted if the application were released.

Application data is typically used to store application-specific information that does not change on a per call
basis and is to be available to all calls (for example, the location of a database to use for the application).

Session Data
Session data variables are accessible and modifiable from a single call session. Session data variables in one
call cannot be accessed by components handling another call. Each session has its own session data namespace;
session data set by one component will overwrite existing session data that has the same name. Session data
can hold any data, including a Java data structure. The lifetime of session data is the lifetime of the session
or the call. When the call ends, the session data is deleted.

Any component accessed within a call session, including elements, can create, modify, and delete session
data. Session data can be created automatically by the system in two ways:

• If the voice browser passes additional arguments to VXML Server when the call is first received, these
additional arguments will be added as session data with the arguments’ name or value pairs translated
to the session data name and value (both as String types). For example, if the voice browser calls the
URL:
http://myserver.com/CVP/Server?audium_application=MyApp&SomeData=1234

This session will create session data named SomeData with a value of 1234 in every call session of the
application MyApp that starts through this URL.

• If a Unified CVP voice application performs an application transfer to another application and the
developer has chosen to pass data from the source application to the destination application, then this
data will appear as session data in the destination application (the data is renamed before it is passed to
the destination application). Refer to the Call Studio documentation for more information on application
transfers.

Element Data
Element data variables are accessible from a single call session and modifiable from a single element within
that call session. As the name suggests, element data can only be created by elements (excluding start and
end of call events, the global error handler, hotevents, and XML decisions). Dynamic configurations are
technically part of an element since they are responsible for configuring an element, so they can also create
element data. Only the element that created an element data variable can modify or delete it, though it can be
read by all other components. Due to the fact that the variable belongs to the element, the variable namespace
is contained within the element, meaning two elements can define element data with the same name without

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
5

Cisco Unified CVP VoiceXML Components
Application Data

interfering with each other. To uniquely identify an element data variable, both the name of the element and
the name of the variable must be used. Like session data, the lifetime of session data is the lifetime of the
session or the call. When the call ends, the element data is deleted.

Component Accessibility
The following table lists each component and its ability to get and set global, application, session, and element
data.

Element DataSession DataApplication
Data

Global Data

SetGetSetGetSetGetSetGetComponent

YesYesYesYesYesYesYesYesConfigurable Elements

YesYesYesYesYesYesYesYesStandard Elements

YesYesYesYesYesYesYesYesDynamic Configurations

YesYesYesYesYesYesYesYesStart and End of Call Actions

NoNoNoNoNoNoNoNoHotevents

NoNoNoNoNoNoNoNoSay It Smart Plugins

NoNoNoNoYesYesYesYesStart and End of Applications Actions

NoYesNoYesNoYesNoYesLoggers

NoNoNoYesNoNoNoNoOn Error Notification

NoNoNoNoNoNoNoNoXML Decisions

YesYesYesYesNoNoNoNoVoiceXML Insert Elements

Hotevents, which are VoiceXML code appearing in the root document, do not have access to any server-side
information.

Note

A Say It Smart plug-in’s purpose is to convert a value into a list of audio files, so it does not need to access
server-side information.

Note

A Logger's only responsibility is to report or log data and has access to all variables types but cannot set them.Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
6

Cisco Unified CVP VoiceXML Components
Component Accessibility

On Error Notification classes are given the session data that existed at the time the error occurred.Note

APIs
To facilitate the development of components requiring programming effort, Unified CVP provides two
application programming interfaces (APIs) for developers to use. The first is a Java API. The second API
involves the use of XML sent through HTTP, which allows components to be built using programming
languages other than Java. Some more complex and tightly integrated components can be built only through
the Java API, though in most other aspects, the two APIs are functionally identical. The APIs themselves and
the process of building components using either API is fully detailed in the Javadocs published with the
software and in the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio.
The two components that do not require the use of high-level programming, XML decisions, and VoiceXML
insert elements are fully explained in this document.

The APIs are used to interface with VXML Server in order to retrieve data or change information. The API
provided to each component has slightly different functionality reflecting each component’s unique abilities.
The following abilities are provided by the API that is common to most components used within a call flow:

• Getting call information such as the ANI, DNIS, call start time, application name, and so on.

• Getting or setting global data, application data, element data, or session data.

• Getting information about the application’s settings such as the default audio path, voice browser, and
so on.

• Setting the maintainer and default audio path. Changing the maintainer allowsmultiple people to maintain
different parts of a single application. Changing the default audio path allows an application to change
the persona or even language of the audio at any time during the call.

• Sending a custom event to all application loggers (see VXML Server Logging for more on logging with
VXML Server).

The following table shows which APIs can be used to construct the various components listed.

VoiceXML
Knowledge
Suggested

Build Using
XML-over-HTTP
API

Build with Java APIVXML Server Component

NoNoYesConfigurable Action and Decision
Elements

YesNoYesConfigurable Voice Elements

NoYesYesStandard Elements

NoYesYesDynamic Element Configurations

NoYesYesStart or End of Call Actions

YesNoYesHotevents

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
7

Cisco Unified CVP VoiceXML Components
APIs

NoNoYesSay It Smart Plugins

NoNoYesStart and End of Application Actions

NoNoYesLoggers

NoNoYesOn Error Notification

N/AN/AN/AXML Decisions

YesN/AN/AVoiceXML Insert Elements

Configurable Elements
Most of the elements in a typical Unified CVP application are prebuilt, reusable elements whose configurations
are customized by the application designer. Using a configurable element in a call flow requires no programming
or VoiceXML expertise, and because they can encapsulate a lot of functionality, the element greatly simplifies
and speeds up the application building process. VXML Server includes dozens of elements that perform
common tasks such as collecting a phone number or sending e-mail. A needmay exist, however, for an element
with functionality not available in the default installation. Additionally, while Unified CVP elements have
been designed with configurations that are as flexible as possible, there may be situations where a desired
configuration is not supported or is difficult to implement.

To address these issues, a developer can construct custom configurable elements that, once built, can be used
and reused. The developer can design the element to possess as large or as small a configuration as desired,
depending on how flexible it needs to be. Once deployed, custom elements appear in Builder for Call Studio
in the Element Pane and are configured in the same way as Unified CVP Elements.

Due to the level of integration with the Unified CVP software required, only the Java API provides the means
for building configurable elements. Using this API, configurable action, decision, and voice elements can be
built. Because voice elements are responsible for producing VoiceXML, they use an additional Java API, the
Voice Foundation Classes (VFCs). The VFCs are used to abstract the differences between the various voice
browsers supported by Unified CVP. The VFCs follow a design that parallels VoiceXML itself, and only a
developer familiar with VoiceXML and the process of a voice browser interpreting VoiceXML will be fully
suited to use the VFCs to build voice elements.

The Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes the
process of building configurable elements including detailing the VFC API for building voice elements.

Standard Action and Decision Elements
Unlike configurable action or decision elements, a standard action or decision element is designed more as a
one-off as they satisfy an application-specific purpose. As a result, standard action and decision elements do
not require configurations.

There are many situations where a programming effort is required to perform some task specific to an
application. Because the task is very specialized, preexisting reusable elements are too general to perform the
effort. There would not be an advantage to building a configurable element for this purpose because there is
little chance it would be needed anywhere but in this application. The developer would use a standard action
or decision element to perform just this task. If the task applies to multiple situations, the developer most
likely would put in the extra effort to construct a configurable, reusable element.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
8

Cisco Unified CVP VoiceXML Components
Configurable Elements

Unified CVP provides a means of defining standard decision elements without programming by writing an
XML document directly within Builder for Call Studio. Consider format should be investigated when you
want simple or moderately complex standard decision elements, and be able to revert to the programming
API if the built-in format proves to be insufficient. The XML format that the Builder for Call Studio user
interface produces for standard decision elements is described later in this chapter.

Dynamic Element Configurations
Each configurable voice, action, and decision element used in an application must have a configuration.
Usually, the configuration will be fixed and functions the same for every caller that visits it. In these situations,
the designer using Builder for Call Studio creates this configuration in the Configuration Pane. This
configuration is saved as an XML file when the application is deployed.

There are situations, when a configuration for an element depends on information known only at runtime; it
is considered to be dynamic. An example would be to configure the Unified CVP audio voice element to play
a greeting message depending on the time of the day. The application know only at runtime the exact calling
time and then what greeting message to play.

To produce dynamic configurations, programming is required. Dynamic element configurations are responsible
for taking a base configuration (a partial configuration created in the Builder for Call Studio), adding to it or
changing it depending on the application business logic, and returning the desired element configuration to
VXML Server.

Start / End of Call Actions
Unified CVP provides functions to execute some code when a phone call is received for a particular application
or when the call ends. The end of a call is defined as either a hang up by the caller, a hang up by the system,
a move from one Unified CVP application to another Unified CVP application, or other rarer ways for the
call to end such as a blind transfer or session timeout.

The purpose of the start of call action typically is to set up dynamic information that is used throughout the
call, for example, the current price of a stock or information about the caller identified by their ANI in some
situations. The end of call action typically is used to export information about the call to external systems,
perform call flow history traces, or execute other tasks that require information on what occurred within the
call.

The start of call action is given the special ability to change the voice browser of the call. This change applies
to the current call only, and allows for a truly dynamic application. By allowing the voice browser to change,
the application can be deployed on multiple voice browsers at once and use a simple DNIS check to output
VoiceXML compatible with the appropriate browser. This task can only be done in the start of call action
because the call technically has not started when this action occurs.

The end of call action is given the special ability to produce a final VoiceXML page to send to the browser.
Even though the caller is no longer connected to the browser by the time the end of call action is run, some
voice browsers will allow for the interpretation of a VoiceXML page sent back in response to a request
triggered by a disconnect or hang-up event. Typically this page will perform final logging tasks on the browser.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
9

Cisco Unified CVP VoiceXML Components
Dynamic Element Configurations

Event Handling
Event Handlers

Events and exceptions occurring in a Call Studio application can be handled by event handlers defined in the
applications. To configure Event Handler on an element, you must add an event handler to the element
configuration. The following events types are supported by Call Studio:

• VXML Event

• Custom Exception

• Local HotEvent

• Java Exception

Event Handlers can be placed at several levels in a call flow:

• Element Level

VXML Events and Java Exceptions encountered during the execution of an element can be caught at the
element level.

• Subflow Start Element Level

Event Handlers placed at Subflow Start element level will be active during the execution of that particular
sub flow. Subflow Start level event handlers can be used to handle events that are not handled at the
element level.

• Subflow Call Element Level

Event Handlers attached to the Subflow Call element can be used to handle events that are not handled
inside a sub flow.

• Start of Call Element Level

Event handlers attached to the Start of Call element act as global event handlers for the application. Any
event not handled at the levels described above can be handled at this level. All Hot Links defined in the
application act as event handlers at the Start of Call element level. Events escaped from attached event
handlers and Hot Events can be trapped by the Error element defined in the application.

Events generated inside a call flow will be propagated through the Subflow hierarchy until the Start of
Call element. Event handler at a lower level has precedence over the event handlers at a higher level.
Properties of the event trapped by the event handler can be extracted from the session variable
lastException.

In addition to VXML Event and Java Exception, event handlers can be configured for Custom Exception and
Local Hot Link at the levels described above. However, all event types are not applicable for all elements.
Refer to the Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for
more details.

Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
10

Cisco Unified CVP VoiceXML Components
Event Handling

http://www.cisco.com/c/en/us/support/customer-collaboration/unified-customer-voice-portal/products-programming-reference-guides-list.html

Say It Smart Plugins
In VXML Server, developers can create their own Say It Smart plugins. Similar to custom elements, Say it
Smart plugins are prebuilt Java classes that when deployed in the Builder for Call Studio can be used as a
new Say It Smart type. As with custom elements, the level of integration required with the Unified CVP
software restricts the creation of Say It Smart plugins to the Java API.

Custom Say It Smart plug-ins can be constructed to read back formatted data not handled by Unified CVP
Say It Smart plug-ins, such as spelling playback or reading the name of an airport from its three-digit code.
Plug-ins can also be created to extend the functionality of existing plug-ins, such as adding new output formats
to play the information in another language. For example, a plug-in can define a new output format for the
Unified CVP Date Say It Smart plug-in that reads back dates in Spanish.

Refer to the Programming Guide for Cisco Unified CVP VXML Server and Unified Call Studio for a full
description of the process of building custom Say It Smart plug-ins.

Start and End of Application Actions
Unified CVP provides functions to execute some code when an application is launched or shut down. A start
of application action is run when the VXML Server web application archive (WAR) starts up (which occurs
when the application server first starts up or the application server reloads the WAR), or the application is
updated. An end of application action is run when the application is updated, released, or the web application
is shut down (which occurs if the application server reloads or shuts down the web application or the application
server itself is shut down).

The start of application action typically sets up global data or application data that is accessed by components
within the call flow. Because global and application data’s lifetime is the lifetime of the application, and they
can contain Java objects, the start of the application action can set up persistent database connections or other
communications to external systems that remain connected while the application is running.

If an error occurs within the start of the application class, the application deployment will continue unchanged.
The designer can specify that an error in a particular start of application class stop the application deployment,
if the class performs mandatory tasks that are necessary for the application to run correctly.

Note

The end of application action cleans up any data, database connections, and so on, that are no longer needed
once the application is shut down.

The end of application action is called even when the application is updated because the update may have
changed the data that is needed by the application.

Note

Every application deployed onVXMLServer has the ability to define any number of start and end of application
actions that are executed in the order in which they appear in the application settings.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
11

Cisco Unified CVP VoiceXML Components
Say It Smart Plugins

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

Loggers
The act of logging information about callers to the system is performed by loggers. An application can reference
any number of loggers that listen for logging events that occur. These events range from events triggered by
a call, such as a caller entering an element or activating a hotlink to administration events such as an application
being updated to errors that may have been encountered. Loggers can take the information on these events
and use them as they want. Typically the logger stores that information somewhere such as a log file, database,
or reporting system.

VXML Server includes default loggers that store the information obtained from logging events to parseable
text log files. A logger might be required with functionality not available in the default installation or a logger
that takes the same data and stores it using a different method.

To address these issues, a developer can construct custom loggers that listen for logger events and report them
in their own way. The developer can design the logger to use a configuration to customize how the logger
functions, depending on how flexible it needs to be. Due to the level of integration with the Unified CVP
software required, only the Java API provides the method for building loggers.

Refer to VXML Server Logging in the section entitled Application Loggers for descriptions of the loggers
included with VXML Server. Refer to the Programming Guide for Cisco Unified CVP VXML Server and
Unified Call Studio for a description of the process of building custom loggers.

For additional information on Unified CVP VXML Server Logs, see Configuring Unified CVP Logging and
Event Notification in the Configuration and Administration Guide for Cisco Unified Customer Voice Portal.

On Error Notification
When errors occur on the VXML Server, the application-specific error voice element decides how to handle
the caller. If specified, the on error notification Java class can be configured to be activated when an error
occurs. The class is given information about the application and some basic call information to allow the
developer to specify the action accordingly. The developer can write this class to perform any function.

The most common purpose for the on error notification class is to perform a custom notification, which
indicates at runtime that an error occurred. This notificationmight involve paging an administrator or integrating
with a third-party trouble ticket and notification process. Since the notification usually involves an administrator
whose responsibility is the entire VXML Server, the Java class, once specified, applies to any error that
prematurely ends a call on any Unified CVP application.

This class is used for notification purposes; it does not allow the call to recover from the error.Note

There is no XML API equivalent for the on error notification; if done at all, it must be written in Java.Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
12

Cisco Unified CVP VoiceXML Components
Loggers

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_installation_and_configuration_guides_list.html

Unified CVP XML Decisions in Detail
Many commercial applications with decisions driven by business logic use an external rules engine to codify
the definition of rules. These rule engines help describe the definition of a rule and then manage the process
of making decisions based on the current criteria. VXMLServer bundles a rule engine in the standard installation
and provides an XML data format for defining decision elements within the framework of a voice application.
The XML format is simple enough for an application designer to enter within Builder for Call Studio without
requiring separate programming resources.

The main feature of a rule is one or more expressions. An expression is a statement that evaluates to a true or
false. In most cases, there are two parts (called terms) to an expression with an operator in between. The terms
are defined by VXML Server to represent all of the most common items necessary to base decisions on in a
voice application such as telephony data, element or session data, times and dates, caller activity, user
information, and so on. The operators depend on the data being compared. For example, numbers can be
compared for equality or greater than or less than while strings can be compared for equality or if it contains
something. One type of expression breaks this format: an exists expression that itself evaluates to a true or
false and does not need anything to compare it to.

Examples:

• Has this caller called before?

• Does the system have a social security number for the user?

Each of these conditions checks for the existence of something that is itself a complete expression.

One or more of these expressions are combined to yield one exit state of the decision element. Multiple
expressions can be combined using ands or ors, though not a combination. For example, if the ANI begins
with 212 OR if the ANI begins with 646 then return the exit state ‘Manhattan’.

If a combination of ands and ors is desired, multiple expressions that return the same exit state would be used.
For example, if the ANI begins with 212 and the user is a gold or platinum customer, then return the exit state
‘discount’ would not work as a single rule because the discount would be given to callers with a 212 area
code who are gold customers and all platinum customers (there is no way to set precedence).

This would have to be expressed as two rules with the same exit state:

1. If the ANI begins with 212 AND the user is a gold customer, return the exit state discount.

2. If the ANI begins with 212 AND the user is a platinum customer, return the exit state discount.

It is possible to define an exit state that returns when all other exit states fail to apply, called the default exit
state. When not specified, all possible cases must be caught by the defined rules. For example, if a rule checks
if a number is greater than 5, there should be another rule checking if the number is less than or equal to 5,
unless the default exit state is defined. One can even create a set of rules that start from being restrictive,
searching for only very specific matches, to progressively less restrictive since the first rule to be true will
yield an exit state and no more rules are tested.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
13

Cisco Unified CVP VoiceXML Components
Unified CVP XML Decisions in Detail

Figure 1: Example of Tags for Defining a Decision

The knowledge_base example in the preceding figure shows the main tags of the XML file format for defining
a decision. The elements in this XML document are:

• rule—This tag names the rule for the decision. There can only be one <rule> tag in the document. The
tag contains any number of exit states that make up the decision. The optional default_exit_state
attribute lists the exit state to return if no other exit states apply (essentially an else exit state).

• exit_state—This tag encapsulates the expressions that when true, return a particular exit state. The name
attribute must refer to the same value chosen when the decision element was defined in the Builder for
Call Studio. The conjugate attribute can be either and or or. If the exit state contains only one expression
the conjugate attribute is ignored. The content of the <exit_state> tag is the type of data to be compared,
each type containing different kinds of data. There can be any number of children to the <exit_state>
tag, each representing another expression linked with the conjugate.

• string—This tag represents an expression comparing strings. The operator attribute can be contains,
not_contains, ends_with, not_ends_with, equal, not_equal, starts_with, and not_starts_with. There can

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
14

Cisco Unified CVP VoiceXML Components
Unified CVP XML Decisions in Detail

be only two children to the <string> tag, representing the two terms of the expression. If there are fewer
than two, an error will occur. If more, the extra ones are ignored. The content can be tags representing
a constant string entered by the developer, data about the call, session and element data, user information,
date and time information, the activity of the caller, and historical activity of the user. These tags are
fully defined in the following sections.

• number—This tag represents an expression comparing numbers. The operator attribute can be equal,
not_equal, greater, greater_equal, less, and less_equal. There can be only two children to the <number>
tag, representing the two terms of the expression. If there are fewer than two, an error will occur. If more,
the extra ones will be ignored. The content can be tags representing a constant number entered by the
developer, data about the call, session and element data, user information, date and time information,
the activity of the caller, and historical activity of the user. These tags are fully defined in the following
sections.

• boolean—This tag represents an expression which evaluates to a boolean result, requiring only a single
term. If the check_existence attribute is yes, and the value attribute is true, it is checking if the data
defined by the child tag exists. If check_existence is yes, and value is false, it is checking if the data
defined by the child tag does not exist. If check_existence is no, the value attribute is used to compare
the data defined by the child tag with either true or false. True means the expression is true if the data
defined by the child tag evaluates to true. The child tags are a smaller subset of those allowed in <string>
and <number>: data about the call, session and element data, user information, or the activity of the caller
(each of these is fully defined in the following sections). When testing if the child tag’s value is true or
false, it must be able to evaluate to a Boolean value. If it cannot, the decision will act as if the rule did
not activate.

• constant_string / constant_number—These tags store string and number data in the value attribute.
The number can be any integer or floating-point number.

The number can also be treated as a string. For example, if 1234 starts with 12.Note

The following sections explain the contents of the individual tags found within the <string>, <number> and
<boolean> tags.

<call_data>
Figure 2: call_data Tag

The call_data Tag figure shows the term that represents information about the current call. The type attribute
can be ani, dnis, uui, iidigits, source, appname, duration, language, or encoding. The ANI, DNIS, UUI, and
IIDIGITS will be NA if it is not sent by the telephony provider. Source is the name of the application that
transferred to this application or null if this application was the first to be called. Duration is the duration of
the call up to this point in seconds.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
15

Cisco Unified CVP VoiceXML Components
<call_data>

<data>
Figure 3: data Tag

The <data> Tag figure shows the term that represents session or element data. The <session> tag refers to
session data with its name in the name attribute. The <element> tag refers to element data with the name of
the element in the name attribute and the name of the variable in the variable attribute.

<user_info>
Figure 4: user_info Tag

The <user_info Tag figure shows the term that represents user information.

If the application has not been configured to use the user management system, and the call was not associated
with a specific UID, using this term will cause an error.

Note

Only one piece of user information can be returned per tag. Refer to User Management for more details about
the user management system.

The possible user information to be compared is:

• demographic—This tag refers to the user’s demographic information. The type attribute can be name,
zipcode, birthday, gender, ssn, country, language, custom1, custom2, custom3, or custom4.

• ani_info—This tag refers to the various phone numbers associated with the user account. If the type
attribute is first, the first number in the list of numbers is returned. This is returned if there was only one
number associated with an account. If the attribute is num_diff the total number of different phone
numbers associated with the account is returned.

• um_diff

user_date_time—This tag refers to date information related to the user account. The type attribute
indicates which user-related date to access and the field attribute is used to choose which part of the

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
16

Cisco Unified CVP VoiceXML Components
<data>

date to return. Type can be last_modified (indicating the last time the account was modified), creation
(indicating the time the account was created), and last_call (indicating the last time the user called). Field
can be hour_of_day (which returns an integer from 0 to 23), minute (which returns an integer from 0 to
59), day_of_month (which returns an integer from 1 to 31), month (which returns an integer from 1 to
12), day_of_week (which returns an integer from 1 to 7 where 1 is Sunday), or year (which returns the
4 digit year).

• called_from_ani—This tag returns true if the caller has previously called from the current phone number,
false if not.

• account_info—This tag refers to the user’s account information. The type attribute can be pin,
account_number, or external_uid.

<general_date_time>
Figure 5: general_date_time Tag

The general_date_time> Tag figure shows the term that represents general date information. The type attribute
indicates which date to access and the field attribute is used to choose which part of the date to return. Type
can be current (indicating the current date/time) or call_start (indicating the time the call began). Field can
be hour_of_day (which returns an integer from 0 to 23), minute (which returns an integer from 0 to 59),
day_of_month (which returns an integer from 1 to 31), month (which returns an integer from 1 to 12),
day_of_week (which returns an integer from 1 to 7 where 1 is Sunday), or year (which returns the 4 digit
year).

<caller_activity>
Figure 6: caller_activity Tag

The <caller_activity> Tag figure shows the term that represents the activity of the caller in the current call.
The <nth_element> tag returns the nth element visited by the caller where the attribute n is the number (starting
at 1). The <nth_exit_state> tag returns the exit state of the nth element visited by the caller where the
attribute n is the number (starting at 1). The <times_elemvis> tag returns the number of times the caller visited
the element whose name is given in the element attribute. The <times_elemvis_exit> tag returns the number
of times the caller visited the element whose name is given in the attribute element, which returned an exit
state whose name is given in the exit_state attribute.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
17

Cisco Unified CVP VoiceXML Components
<general_date_time>

<historical_data>
Figure 7: <historical_data> Tag

The <historical_data> Tag figure shows the term that represents the historical activity of the user associated
with the call on the current application.

If the application has not been configured with a user management database, using this term will cause an
error. Refer to User Management for more details about the user management system.

Note

The type attribute determines what kind of value is returned. A value of num means that the value returned
is the number of calls matching the criteria defined by the children tags. A value of last_date_time means that
the value returned is the last date/time a call was received matching the criteria defined by the children tags.
A value of first_date_time returns the first date/time a call was received that matched the criteria.

The field attribute is used if the type attribute is first_date_time or last_date_time and indicates which part
of the date to compare. Field can be hour_of_day (which returns an integer from 0 to 23), minute (which
returns an integer from 0 to 59), day_of_month (which returns an integer from 1 to 31), month (which returns
an integer from 1 to 12), day_of_week (which returns an integer from 1 to 7 where 1 is Sunday), or year
(which returns the 4 digit year). The children tags are used to turn on various criteria to add to the search.

The different search criteria are:

• caller—If this tag appears, the search looks for calls made by the current caller only. If it does not appear,
it will search all calls made by all callers.

If the call was not associated with a specific UID, an error will occur if this tag
is used.

Note

• ani—If this tag appears, the search looks for calls made by the ANI specified in the value attribute. If
the value attribute is not included, the ANI of the current caller is used.

• start—If this tag appears, the search looks for calls whose start date/time are between two times specified
by successive <constant_date_time> children tags. The attributes of <constant_date_time> define
the specific date to use. The month attribute must be an integer from 1 to 12. The day_of_month attribute
must be an integer from 1 to 31. The year attribute must be a four digit integer. The hour_of_day attribute

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
18

Cisco Unified CVP VoiceXML Components
<historical_data>

must be an integer from 0 to 23. The minute attribute must be an integer from 0 to 59. The second
attribute must be an integer from 0 to 59.

• end—If this tag appears, the search looks for calls whose end date/time are between two times specified
by successive <constant_date_time> children tags. See <start> (the previous bullet) for the description
of the <constant_date_time> tag.

• flag—If this tag appears, the search looks for calls where a flag with the name given in the name attribute
was triggered.

XML Decision Example1
Figure 8: <historical_data> Tag

The <historical_data> Tag figure shows the term that represents the historical activity of the user associated
with the call on the current application.

If the application has not been configured with a user management database, using this term will cause an
error. Refer to User Management for more details about the user management system.

Note

The type attribute determines what kind of value is returned. A value of num means that the value returned
is the number of calls matching the criteria defined by the children tags. A value of last_date_time means that
the value returned is the last date/time a call was received matching the criteria defined by the children tags.
A value of first_date_time returns the first date/time a call was received that matched the criteria.

The field attribute is used if the type attribute is first_date_time or last_date_time and indicates which part
of the date to compare. Field can be hour_of_day (which returns an integer from 0 to 23), minute (which
returns an integer from 0 to 59), day_of_month (which returns an integer from 1 to 31), month (which returns
an integer from 1 to 12), day_of_week (which returns an integer from 1 to 7 where 1 is Sunday), or year
(which returns the 4 digit year). The children tags are used to turn on various criteria to add to the search.

The different search criteria are:

• caller—If this tag appears, the search looks for calls made by the current caller only. If it does not appear,
it will search all calls made by all callers.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
19

Cisco Unified CVP VoiceXML Components
XML Decision Example1

If the call was not associated with a specific UID, an error will occur if this tag
is used.

Note

• ani—If this tag appears, the search looks for calls made by the ANI specified in the value attribute. If
the value attribute is not included, the ANI of the current caller is used.

• start—If this tag appears, the search looks for calls whose start date/time are between two times specified
by successive <constant_date_time> children tags. The attributes of <constant_date_time> define
the specific date to use. The month attribute must be an integer from 1 to 12. The day_of_month attribute
must be an integer from 1 to 31. The year attribute must be a four digit integer. The hour_of_day attribute
must be an integer from 0 to 23. The minute attribute must be an integer from 0 to 59. The second
attribute must be an integer from 0 to 59.

• end—If this tag appears, the search looks for calls whose end date/time are between two times specified
by successive <constant_date_time> children tags. See <start> (the previous bullet) for the description
of the <constant_date_time> tag.

• flag—If this tag appears, the search looks for calls where a flag with the name given in the name attribute
was triggered.

XML Decision Example2
An application named Example2 randomly chooses two letters of the alphabet. The letters are chosen by an
action element named GetRandomLetter and stored in element data named letter1 and letter2.

A decision element named IsCallerAWinner would be needed which has three exit states:

• For a user whose name begins with either letter.

• For users whose name does not begin with the letters.

• For users whose name is not in the records (this could be an error or could prompt the application to ask
the user to register on the website).

Even if the application assumes that all users will have their names on file, it is advisable to add this third exit
state be sure. In this example, the default exit state is set to when the users do not match.

The rules of IsCallerAWinner decision element are:

Exit StateExpressionRule Number

is a winnerThe caller’s name begins with the value stored in the element
GetRandomLetter with the variable name letter1 or begins with the

1

value stored in the elementGetRandomLetterwith the variable name
letter2.

not a winnerThe caller’s name does not begin with the value stored in the element
GetRandomLetter with the variable name letter1 and does not begin

2

with the value stored in the element GetRandomLetter with the
variable name letter2.

no nameThe caller’s name does not exist.3

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
20

Cisco Unified CVP VoiceXML Components
XML Decision Example2

The Unified CVP decision element XML file is named IsCallerAWinner and will be saved in
%CVP_HOME%\VXMLServer\applications\Example2\data\misc.

The XML file content will be:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge_base>

<rule name="NameStartsWith" default_exit_state="not a winner">
<exit_state name="no name" conjugate="and">

<boolean value="false" check_existence="yes">
<user_info>

<demographic type="name"/>
</user_info>

</boolean>
</exit_state>
<exit_state name="is a winner" conjugate="or">

<string operator="starts_with">
<user_info>

<demographic type="name"/>
</user_info>
<data>

<element name="GetRandomLetter" variable="letter1"/>
</data>

</string>
<string operator="starts_with">

<user_info>
<demographic type="name"/>

</user_info>
<data>

<element name="GetRandomLetter" variable="letter2"/>
</data>

</string>
</exit_state>

</rule>
</knowledge_base>

The no name exit state is listed first. This is because before we try to analyze the user’s name, we have to first
know that it exists. We check if the name does not exist first and if it fails, it means that the name exists and
we can continue.

Note

The second exit state must check if the name begins with the first or second letter but the last exit state must
check if the name does not begin with the first and second letter.

Note

XML Decision Example3
An application named Example3 is designed to trigger a flag named account menu when a caller chooses to
manage their account. As of June 15, 2004, the menu options were changed for the account menu. We want
to tell people the options have changed, but only if know they have visited that part of the application before
June 15. If not, there is no reason to say anything because the caller is experiencing this for the first time. A
decision element is needed that distinguishes between those to play the changed audio to from those who
should encounter the menu normally. The rule must deal with the day, month, and the year, making sure that
callers from previous years and future years are handled correctly as well. Because the current state of the

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
21

Cisco Unified CVP VoiceXML Components
XML Decision Example3

XML format does not allow date comparisons, a way must be determined to make this restriction. The solution
is to use multiple rules which progressively get more restrictive in a process-of-elimination method. Because
all conditions are to be handled, the rule must include those who do not hear the changed message using the
same scheme (there is no need to use the default exit state).

The rules of account menu decision element are:

Exit StateExpressionRule
Number

play changedThe year the last time the caller triggered the flag account menu is earlier than
2004.

1

normalThe year the last time the caller triggered the flag account menu is later than
2004.

2

At this time, if the above two rules were not triggered, the caller triggered the flag
in the year 2004.

Note

play changedThe month of the year the last time the caller triggered the flag account menu
is less than 6.

3

normalThe month of the year the last time the caller triggered the flag account menu
is greater than 6

4

At this time, if the above two rules were not triggered, the caller triggered the flag
in June 2002.

Note

play changedThe day of the month the last time the caller triggered the flag account menu
is less than or equal to 15.

5

normalThe day of the month the last time the caller triggered the flag account menu
is greater than 15.

6

The Unified CVP decision element XML file is named DoesCallerNeedMenuChanges and will be saved in
%CVP_HOME%\VXMLServer\applications\Example3\data\misc.

The content of the XML file will be:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge_base>

<rule name="NewMessageTest">
<exit_state name="play changed" conjugate="and">

<number operator="less">
<historical_data type="last_date_time" field="year">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="2004"/>

</number>
</exit_state>
<exit_state name="normal" conjugate="and">

<number operator="greater ">
<historical_data type="last_date_time" field="year">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="2002"/>

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
22

Cisco Unified CVP VoiceXML Components
XML Decision Example3

</number>
</exit_state>
<exit_state name="play changed" conjugate="and">

<number operator="less">
<historical_data type="last_date_time" field="month">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="6"/>

</number>
</exit_state>
<exit_state name="normal" conjugate="and">

<number operator="greater">
<historical_data type="last_date_time" field="month">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="6"/>

</number>
</exit_state>
<exit_state name="play changed" conjugate="and">

<number operator="less_equal">
<historical_data type="last_date_time" field="day_of_month">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="15"/>

</number>
</exit_state>
<exit_state name="normal" conjugate="and">

<number operator="greater">
<historical_data type="last_date_time" field="month">

<caller/>
<flag name="account menu"/>

</historical_data>
<constant_number value="6"/>

</number>
</exit_state>

</rule>
</knowledge_base>

VoiceXML Insert Elements
There are certain situations in a voice application where a developer may want to include prewritten VoiceXML
into their Unified CVP application. The developer may want fine-level control over a specific voice function
at the VoiceXML tag level without getting involved with constructing a custom configurable element in Java.
Additionally, the developer may want to integrate VoiceXML content that has already be created and tested
into a Unified CVP application.

These situations are handled by a VoiceXML insert element.

• VoiceXML Insert Element—Acustom element built in VoiceXMLproviding direct control of lower-level
voice dialog at the price of decreased flexibility.

VoiceXML insert elements contain VoiceXML code that the developer makes available as the content of a
VoiceXML <subdialog>. The content can be in the form of static VoiceXML files, JSP templates, or even
dynamically generated by a separate application server. A framework is provided to allow seamless integration
of VoiceXML insert elements with the rest of the call flow.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
23

Cisco Unified CVP VoiceXML Components
VoiceXML Insert Elements

The use of VoiceXML insert elements can cause the following results:

• the loss of being able to seamlessly switch between different voice browsers

• some greater processing overhead involved with integration with the rest of the call flow

• the added complexity of dealing with VoiceXML itself rather than creating an application with easy-to-use
configurable elements

VoiceXML insert elements can have as many exit states as the developer requires, with a minimum of one.

Insert Element Restrictions
The following restrictions apply to a VoiceXML insert element. An insert element conforming to these
restrictions will be assured full integration with the Unified CVP application. These restrictions will be clarified
later.

• The insert element cannot define its own root document, a root document generated by VXML Server
must be used.

• The variables to return to VXML Server, including the exit state, must conform to a strict naming
convention.

• When using the <return> tag, Unified CVP-specified arguments must be returned along with the custom
variables.

Use a VoiceXML insert element only in a top-level subdialog. You cannot use a VoiceXML Insert element
in a nested subdialog.

Note

Insert Element Inputs
As with any element in the application, an insert element needs to be able to access information about the call
such as element and session data, call data (such as the ANI), and even information found in the user
management database if the application is configured to use one. Normally, this information is available in
the Java or XML API. Because an insert element is written in VoiceXML, this information must be made
available for the insert element to use from within the VoiceXML.

Unified CVP achieves this by creating VoiceXML variables in the root document containing all the desired
information. The variable names conform to a naming convention so that the Insert element developer can
refer to them appropriately. This is one reasonwhyUnified CVP requires the use of the VXMLServer-generated
root document.

In order to reduce the number of variables appearing in the root document, the application designer is given
the option of choosing which input groups are passed to the insert element. Additionally, the designer can
individually choose which element and session data to pass. By minimizing the inputs to only the data required
by the insert element, the overhead involved in using an Insert element is minimized.

These are the input types:

• Telephony—This information deals with telephony data. The inputs start with audium_telephony_.

• audium_telephony_ani—The phone number of the caller or NA if not sent.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
24

Cisco Unified CVP VoiceXML Components
Insert Element Restrictions

• audium_telephony_dnis—The DNIS or NA if not sent.

• audium_telephony_iidigits—The IIDIGITS or NA if not sent.

• audium_telephony_uui—The UUI or NA if not sent.

• audium_telephony_area_code—The area code of the caller’s phone number. Will not appear if
the ANI is NA.

• audium_telephony_exchange—The exchange. Will not appear if the ANI is NA.

• Call—This information deals with the call. The inputs start with audium_call_.

• audium_call_session_id—The session ID.

• audium_call_source—The name of the application which transferred to this one. Will not appear
if this application is the first application in the call.

• audium_call_start—The start time of the call in the format “DAYMNAMEMONTHHH:MM:SS
ZONE YEAR” where DAY is the abbreviated day of the week (for example, Wed), MNAME is
the abbreviated name of the month (for example, Jun), HH is the hour (in military time), MM is the
minute, SS is the seconds, ZONE is the time zone (for example, EDT), and YEAR is the four-digit
year.

• audium_call_application—The name of the current application.

• History—This information provides the history of elements visited so far in the call. The inputs start
with audium_history_.

• audium_history—This entire content of the element history (including exit states) is contained in
this variable. The format is [ELEMENT]:[EXITSTATE]|..|[ELEMENT]:[EXITSTATE] where
ELEMENT is the name of the element and EXITSTATE is the name of the exit state of this element.
The order of the element/exit state pairs is consistent with the order in which they were visited. This
will not appear if this insert element is the first element in the call.

• Data—This is the element and session data created so far in the call.

• audium_[ELEMENT]_[VARNAME]—The element variable where ELEMENT is the name of
the element and VARNAME is the name of the variable.

Both the element and variable names will have all spaces replaced with
underscores. There may be no instances of this input if no element variables exist
when this insert element is visited. For example, the variable
audium_MyElement_the_value is element data named he value from the element
MyElement.

Note

• audium_session_[VARNAME]—This is a session variable whose name is VARNAME.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
25

Cisco Unified CVP VoiceXML Components
Insert Element Inputs

The variable name will have all spaces replaced with underscores. The value is
expressed as a string even if the type is not a string (the toString() method of
the Java class is called). There may be no instances of this input if no session
variables exist when this insert element is visited.

Note

• User Data—This element information associated with the caller. It will only appear if the application
has associated the call with a UID and a user management database has been set up for this application.
The data will appear in the input exactly as in the database. The inputs start with user_.

• user_uid—The UID of the user.

• user_account_number—The account number of the user.

• user_account_pin—The PIN of the user.

• user_demographics_name—The name of the user.

• user_demographics_birthday—The birthday of the user.

• user_demographics_zip_code—The zip code of the user.

• user_demographics_gender—The gender of the user.

• user_demographics_social_security—The social security number of the user.

• user_demographics_country—The country of the user.

• user_demographics_language—The language of the user.

• user_demographics_custom1—The value of the first custom column.

• user_demographics_custom2—The value of the second custom column.

• user_demographics_custom3—The value of the third custom column.

• user_demographics_custom4—The value of the fourth custom column.

• user_account_external_uid—The external UID of the user.

• user_account_created—The date the account was created in the format. The value is in the format
“DAY MNAME MONTH HH:MM:SS ZONE YEAR”.

• user_account_modified—The date the last time the account was modified. The value is in the
format “DAY MNAME MONTH HH:MM:SS ZONE YEAR”.

• User ByANI—Historical information about the phone number of the caller with regards to this application.
It will only appear if a user management database has been set up for this application. The inputs start
with user_by_ani_.

• user_by_ani_num_calls—The number of calls made by this phone number.

• user_by_ani_last_call—The last call made by the phone number. Will not appear if there were no
calls made by this phone number in the past.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
26

Cisco Unified CVP VoiceXML Components
Insert Element Inputs

Insert Element Outputs
As with any element, VoiceXML insert elements can create element and session data, set the UID of the user
to associate with the call, send custom logging events, and can return one of a set of exit states. As with voice
elements, insert elements can have internal logging of caller activity and have global hotlinks and hotevents
activated while the caller is visiting the Insert element. All of these actions involve variable data set within
the Insert element and returned to VXML Server. These are crucial in order to properly integrate with the rest
of the elements in the application.

These are the return arguments:

• audium_exit_state - The exit state of this VoiceXML insert element. The value of this variable must be
exactly as chosen in the Builder for Call Studio when defining the insert element.

• element_log_[VARNAME] / element_nolog_[VARNAME] - These create new element data for this
VoiceXML insert element whose name is VARNAME and which either sends a logging event to log the
element data value or not, respectively. The data type will be assumed to be a string. The variable name
cannot include spaces.

• session_[VARNAME] - This creates a new session variable whose name is VARNAME. The data type
is assumed to be a string. The variable name cannot include spaces. If the variable name already exists,
the old value will be replaced with this one. If the old data type was not a string, the new data type will
be a string.

• custom_[NAME] - This sends a custom logging event whose contents is the action named NAME and
the value of the variable being the description.

• set_uid - This associates the UID passed to the call.

• audium_hotlink, audium_hotevent, audium_error, audium_action - These four Unified CVP variables
are created in the root document and must be passed along in the return namelist. The content of each
deals with the occurrence of any global hotlinks, hotevents, errors, or actions (for example, a hang-up)
while in this insert element. Because the subdialog has its own context and root document, this data has
to be explicitly passed for any of these events to be recognized by VXML Server. The developer should
not alter the contents of these variables.

• audium_vxmlLog - This variable contains the raw content for an interaction logging event. Adding to
the interaction log is not required; the audium_vxmlLog variable can be passed empty. In order for VXML
Server to parse the interaction data correctly, a special format is required for the content of the
audium_vxmlLog variable.

The format for interaction logging is:
|||ACTION$$$VALUE^^^ELAPSED

Where: ACTION is the name of the action.

The following bullets list the possible action names and the corresponding contents of VALUE:

• audio_group - Indicates that the caller heard an audio group play. VALUE is the name of the audio
group.

• inputmode - Reports how the caller entered their data, whether by voice or by DTMF key presses.
VALUE should be contents of the inputmode VoiceXML shadow variable.

• utterance - Reports the utterance as recorded by the speech recognition engine. VALUE should be
the contents of the utterance VoiceXML shadow variable.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
27

Cisco Unified CVP VoiceXML Components
Insert Element Outputs

• interpretation - Reports the interpretation as recorded by the speech recognition engine. VALUE
should be the contents of the interpretation VoiceXML shadow variable.

• confidence - Reports the confidence as recorded by the speech recognition engine. VALUE should
be the contents of the confidence VoiceXML shadow variable.

• nomatch - Indicates the caller entered the wrong information, incurring a nomatch event. VALUE
should be the count of the nomatch event.

• noinput - Indicates the caller entered nothing, incurring a noinput event. VALUE should be the
count of the noinput event.

• ELAPSED is the number of milliseconds since the VoiceXML page was entered. The root document
provides a JavaScript function named application.getElapsedTime(START_TIME) which returns the
number of milliseconds elapsed since the time specified in START_TIME.

The root document created by VXML Server for use in all VoiceXML insert elements contains a VoiceXML
variable named audium_element_start_time_millisecs that must be initialized with the time in order for
the elapsed time intervals to be calculated correctly. This variable need only be initialized once in the first
VoiceXML page of the insert element. All subsequent pages in the VoiceXML insert element must not initialize
the variable because VXML Server requires the elapsed time from the start of the element, not the page. In
VoiceXML, the line to appear must look like:
<assign name="audium_element_start_time_millisecs" expr="new Date().getTime()" />

For best results, this line should appear as early as possible in the first page, preferably in a <block> in the
first <form> of the page, certainly before any additional logging is done.

In VoiceXML, setting the value of an existing variable requires the <assign> tag. Because the expression
contains a JavaScript function, the expr attribute must be used. Additionally, in order to avoid overwriting
previous log information, the expression must append the new data to the existing content of the variable. For
example, to add to the interaction log the fact that the xyz audio group was played, the VoiceXML line would
look like:
<assign name="audium_vxmlLog" expr="audium_vxmlLog + '|||audio_group$$$xyz^^^'
+application.getElapsedTime(audium_element_start_time_millisecs)"/>

In another example, the utterance of a field named xyz is to be appended to the log. The VoiceXML would
look like:
<assign name="audium_vxmlLog" expr="audium_vxmlLog +'|||utterance$$$'+ xyz.$utterance +
'^^^' + application.getElapsedTime(audium_element_start_time_millisecs)"/>

See VXML Server Logging for more detail about Unified CVP logging.

Root Document
The subdialog context written by the developer must refer to a Unified CVP-generated root document. This
is essential for proper integration of the VoiceXML insert element with VXML Server. The root document
call must look like:
“/CVP/Server?audium_vxml_root=true&calling_into=APP&
namelist=element_log_value|RTRN1|RTRN2|…”

Where APP is the application name and RTRNX represents the names of all the element data, session data,
and custom log entries (delimited by ‘|’ characters) the insert element returns, using the same naming convention
described in the outputs section.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
28

Cisco Unified CVP VoiceXML Components
Root Document

The purpose for this requirement is related to how events are handled within the root document. The Unified
CVP-generated root document catches events such as the activation of a global hotlink or a hangup, which
then requires the call flow to leave the insert element. The insert element, however, may have created element
and session data or added custom content to the log. This information is stored in VoiceXML variables that
would be deleted once the subdialog context is exited. The root document needs to know which VoiceXML
variables to send along to VXML Server when one of these events is triggered so that it can store them
accordingly. In order to avoid problems that might occur if a global hotlink or hotevent was activated right
after the insert element began, the variables to be returned should be declared as near the start of the VoiceXML
insert element as possible, even if they are not assigned initial values.

The ability to use a standard ampersand in the root document URL instead of escaping it (as &) is voice
browser dependent. Most browsers will accept the escaped version so try that version first.

Note

If the insert element does not need to send back any data in the namelist parameter, only the
element_log_value variable need be included (the parameter should look like this:
“...namelist=element_log_value”).

Note

Example of Insert Elements
In the example, a block is used to log the playing of the initial_prompt audio group. After this action, some
inputs passed to it from VXML Server are played. Once played, it creates two element variables named var1
and var2 and a session variable named sessvar. After this action, it goes through a field that catches a number,
and when done saves the utterance to the activity log and returns the exit state less if the number is less than
5 and greater_equal otherwise. The <return> tag returns the exit state, log variable, the four variables from
the root document (error, hotlink, hotevent, and action), the two element data variables, the session data
variable and a custom log entry (the number captured).

Also note that these last four variables are also passed to the root document call in the <vxml> tag so that
events triggered within the insert element will correctly pass the data if it was captured by then.

The VoiceXML shown here may not function on all browsers without modification.Note

<?xml version="1.0"?>
<vxml version="2.0" application="/CVP/Server?audium_vxml_root=true&calling_into=MYAPP&
namelist=element_log_var1|element_nolog_var2|session_sessvar|custom_custlog">

<form id="testform">
<block>This is the initial prompt

<assign name="audium_element_start_time_millisecs" expr="new Date().getTime()"/>
<assign name="audium_vxmlLog" expr="'|||audio_group$$$initial_prompt^^^'

+application.getElapsedTime(audium_element_start_time_millisecs)"/>
</block>
<block>In the VoiceXML element.
The ani is <value expr="audium_telephony_ani"/>.
The element history is <value expr="audium_history"/>.
User by ani num calls is <value expr="user_by_ani_num_calls"/>.
Element data foo from element first <value expr="audium_first_foo"/>.
Session variable foo2 <value expr="audium_session_foo2"/>.

</block>

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
29

Cisco Unified CVP VoiceXML Components
Example of Insert Elements

<var name="element_log_var1" expr="'log me'"/>
<var name="element_nolog_var2" expr="'do not log me'"/>
<var name="session_sessvar" expr="'session_data_value'"/>
<field name="custom_custlog" type="number">
<property name="inputmodes" value="voice" />
<prompt>Say a number.</prompt>
<filled>
<assign name="audium_vxmlLog" expr="audium_vxmlLog + '|||utterance$$$' +

custom_custlog.$utterance + '^^^'
+application.getElapsedTime(audium_element_start_time_millisecs)"/>

<if cond=" custom_custlog < 5">
<assign name="audium_exit_state" expr="'less'"/>
<else/>
<assign name="audium_exit_state" expr="'greater_equal'"/>

</if>
<return namelist="audium_exit_state audium_vxmlLog audium_error audium_hotlink

audium_hotevent audium_action element_log_var1 element_nolog_var2 session_sessvar
custom_custlog" />

</filled>
</field>

</form>
</vxml>

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
30

Cisco Unified CVP VoiceXML Components
Example of Insert Elements

C H A P T E R 3
Administration

Administration is an essential feature of any enterprise system. Once started, a systemmust remain operational
for long periods of time with no downtime so it must provide ways for an administrator to manage it at runtime.
This applies to both changes and updates to the application as well as providing information concerning its
health. The more flexible and informative a system, the better an administrator will be able to ensure it runs
efficiently and detect any issues with the system quickly.

VXML Server has been designed to afford maximum flexibility for administrators to control how it runs and
to monitor vital statistics of its health. Administrators can add, remove and change applications deployed, are
able to get information on the system and the applications, and even change the behavior of the system or
components, without requiring a restart of VXML Server.

This chapter details the administration functions and statistics exposed by VXML Server and the methods by
which these functions can be accessed and executed.

• Introduction to VXML Server Administration, on page 31
• Administration Information, on page 34
• Configuration Updates, on page 38
• Administration Functions, on page 42
• VXML Server Metrics, on page 52

Introduction to VXML Server Administration
VXML Server exposes three methods for an administrator to control it and obtain information. Each method
is accessed differently and exposes different levels of functionality or information.

• The first method, and the most flexible, is the JMX-compatible management interface.

• The second method is through the use of administration scripts.

• The third method is using the system information web page.

The topics that follow discuss these three methods.

JMX Management Interface
JavaManagement Extensions (JMX) is a Java technology specifically designed for managing Java applications.
It is part of the standard Java Virtual Machine and defines a standard interface for clients and servers. An
application that to be managed by JMX will register MBeans to the JMX context. An MBean can be used to

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
31

expose information about the system that an administrator can fetch (for example, the total simultaneous calls
on the system). AnMBean can also be used to expose a function that an administrator can execute (for example,
to suspend an application). A client application communicates with the server through the JMX interface to
allow administrators access to the information and function that is exposed.

VXML Server, is a server application, exposes many informational MBeans for information regarding itself
as well as the applications deployed on it. It also exposes administrative MBeans for controlling important
administrator functions. It does this in a fully JMX-complaint manner so that any JMX-compatible client will
be able to interface with VXML Server to gain access to the information and functions. One such client is
JConsole, which is a client bundled with JDKs provided by Sun Microsystems and others. Some JVMs and
application servers provided by other companies may utilize alternative JMX-compatible clients that should
work as well.

It is also possible for a developer to create their own custom MBeans for exposing functions or information
that will then be viewed by a JMX-compatible client alongside the MBeans exposed by VXML Server. See
the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for more on
creating custom MBeans.

VXML Server is configured to be JMX enabled when using Tomcat. The JMX port number by default is
9696.

Once VXML Server is started, a JMX client can then be launched and configured to point to the machine on
which VXML Server runs, whether it be on the same machine or a remote one. Once connected, the client
provides a graphical interface for displaying the information and functions. The client will be able to display
information about the JVM itself and typically the Java application server will publish its own set of MBeans.
VXML Server information will be displayed where the MBeans are listed in its own domain. The domain is
typically rendered in a tree structure and will list global information and functions (that is, information having
to do with VXMLServer itself) as well as information on the deployed voice applications. Detailed explanations
of the individual MBeans are provided in the following sections.

To address security, JMX client consoles require the proper security certificates (if JMX security is enabled
on the VXML server) and the client attempts to connect to a remote server. Certificates are not required to
connect to a local VXML Server because the client already has access to the local system. For details on
securing communication and accessing secured communications, see the Configuring and Modifying Unified
CVP Security section in Configuration and Administration Guide for Cisco Unified Customer Voice Portal.

Of the available administration interfaces, the JMX interface for VXML Server provides the greatest
functionality and flexibility. It does, however, require the JVM to have JMX active and a JMX-compatible
client. It also has a higher risk and overhead due to this flexibility.

Administration Scripts
Most of the administration functions and some of the information about VXML Server are provided via
command-line scripts that can be executed by an administrator manually or an automated system directly.
The administrator scripts do not use the JMX interface described in the previous section and are functional
by default without requiring any configuration on the administrator’s part. The included scripts act as the
client. The scripts are provided in two forms: batch scripts for Microsoft Windows (ending in .bat) and shell
scripts for Unix (ending in .sh).

Scripts are provided to execute global functions (on VXML Server itself) or functions for individual
applications. The scripts used for global administrator functions are found in the admin directory of VXML
Server. The scripts used for individual application administration are located in the admin directory of each
application.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
32

Administration
Administration Scripts

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_installation_and_configuration_guides_list.html

The provided scripts are primarily used to expose VXML Server functions to administrators such as loading
a new application, updating an existing application, suspending VXMLServer, and so on. Some scripts provide
information, such as the number of active simultaneous calls on the server. This chapter describes in detail
all available scripts and their functionality.

Security is an important concern when it comes to administration functions that are accessed from the
command-line. Unified CVP sets up these precautions to allow only the appropriate people access to these
scripts:

• By providing scripts or batch files (as opposed to through a graphical or web interface), the administrator
must be logged into the machine in order to access them. Accessing these programs is as secure as the
remote login process (such as SSH) and the permissions given to these scripts or the entire admin folder.

• VXML Server will only accept commands from the local machine, so even scripts stored on one machine
cannot issue commands to an instance of VXML Server running on another machine. These two
precautions ensure that only authorized administrators can access these functions.

Because the global administration scripts are stored in a different location from application scripts, each
directory can be assigned different permissions. That way an administrator can be given access to the global
administration scripts while still allowing the application scripts to be accessed by voice application developers.

Every administration script can be configured to ask for confirmation before the action is taken, to prevent
the accidental execution of the script. By default the confirmations are on. They can be turned off by passing
the command-line argument noconfirm to the script. This action can be useful if the administration scripts are
executed by automated systems such as cron jobs.

While not as flexible as the JMX interface, administration scripts provide easy access to VXML Server
functions for both administrators and automated systems out of the box. The risk potential is similar to that
of the JXM interface although there is less overhead because JMX is not enabled.

System Information Page
The system information page provides basic information about VXMLServer including the license information,
the deployed gateway adapters and applications, the status of information on the application server on which
VXML Server is running, and some miscellaneous system and Java information such as the version and
memory usage. It does not provide the ability to execute any functions, it is meant to be a quick way to check
relevant information. It is also the easiest of the three methods to obtain information because all that is needed
is a web browser. The system information page can be seen by pointing a web browser to the URL:
http://[HOST][:PORT]/CVP/Info

Where:

• HOST is the host name of the machine on which VXML Server is installed.

• PORT is the port the application server is configured to listen on. The default port for HTTP is 7000.

The first time you access the server information page you must configure a username and password. After
you create the username and password you can log in and view the page.

The system information page is the easiest and safest way of obtaining administrative information, although
it is also the least flexible.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
33

Administration
System Information Page

Administration Information
Using the tools listed, an administrator can obtain a significant amount of information regarding VXML Server
and the applications that are deployed on it. This information aids the administrator in determining the health
of the system, detecting signs of issues that should be caught early, and debugging issues as they occur.

Much of the information made available by VXML Server can be found only through the JMX interface as
that is the strength of JMX. Some of the more important information is available by using scripts and some
of the static information is available through the system information page.

Application and System Status
VXMLServer provides functions for reporting the status of a specific voice application or all voice applications
running on the system. They are provided as functions to allow the administrator to query VXML Server to
get the latest information immediately.

The application status function reports the following information:

• Whether the application is running, suspended, or has been suspended before being slated for removal.

• Howmany active sessions are currently visiting the application. Active sessions are defined as the number
of callers that are interacting with the application at the time the status script is called.

• How many sessions are waiting to end. When an active caller ends their application visit, VXML Server
delays the closing of the corresponding session to allow the completion of the session accessed by the
final logger and end of call class actions. A session waiting to end does not take up a license port. The
amount of time a session remains open after a call ends is a VXML Server configuration option (see
VXML Server Configuration for more).

• Howmany open sessions are experiencing the most recent past version of the application. Open sessions
are the sum of active callers visiting the application and those sessions that are in the process of ending.
The reason open sessions are listed here is because both active and ending sessions do need access to
session information and an administrator would need to know when it is safe to disable any systems that
the old application configuration depends on. This information is helpful for an administrator when
performing an application update or suspension in order to determining when the executed function is
complete. See the following sections for more on updating and suspending applications.

• How many callers are on hold waiting to get into the application. A call that is received when the system
has used up all the allowed sessions defined in the license will hear a message asking them to stay on
the line. This call then checks if a license session has become available and then lets the call into the
application.

The VXML Server status function provides an easy-to-read report with the following information:

• If VXML Server itself has been suspended, this fact is listed first. See the following sections for more
on suspending VXML Server.

• The total number of concurrent active callers visiting applications on this instance of VXML Server,
how many concurrent sessions the license allows, the number of available ports (the license sessions
minus the active callers), and the number of callers on hold (which would only appear if the number of
current callers exceeds the number of license sessions).

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
34

Administration
Administration Information

This data is not available in case of a standalone deployment.Note

• How many active callers, sessions ending, and callers on hold for each application currently deployed
on the system. This data is the same as would be displayed by the application-specific status function.

No on hold column will appear unless there are callers on hold.Note

• Whether each application is running or suspended.

JMX Interface

To get an application’s status using the JMX interface, use a JMX client connected to the server to navigate
to the VoiceApplication/APPNAME/CommandMBean, where APPNAME is the name of the application to update.
The Operations tab of this MBean will list a function named status. Pressing Status button will display a
dialog box with the application status. To get the status of all applications using the JMX interface, navigate
to the Global/CommandMBean and click the function named status in the Operations tab. Pressing Status
button will display a dialog box with the status of each application deployed on VXML Server in a table.

Administration Scripts

The script for obtaining an application status is found in the admin folder of the application to be updated.
Windows users should use the script named status.bat andUnix users should use the script named status.sh.
The script for obtaining the status of all applications is found in the admin folder of VXML Server. Windows
users should use the script named status.bat and Unix users should use the script named status.sh. The
scripts do not take any parameters.

VXML Server Information
VXMLServer reports information about itself that is static so the administrator knows exactly what is installed.
The following information is reported:

• The exact name and version of VXML Server.

• The expiration date, number of ports, and the supported gateway adapters listed in the VXML Server
license.

The gateway adapter list is not a comprehensive list of the adapters installed on
VXML Server but is a list of the gateway adapters the license allows the system
to use.

Note

• A detail of the version numbers of all components included with VXML Server. This information can
be helpful for tracking changes made to individual components of the software installed at different times
and this detailed information will typically be requested by Cisco support representatives when a question
is raised about the software.

The components whose versions are displayed are:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
35

Administration
VXML Server Information

• The VXML Server web application archive (WAR) and the components residing within
%CVP_HOME%\VXMLServer\.

This version is different from the VXML Server product version as that is a
version for the whole system and this one is only for the WAR file.

Note

• The core VXML Server elements, Say It Smart plug-ins, and loggers (both application and global)
included with the software.

• The Gateway Adapters installed on the system.

JMX Interface

To obtain VXML Server information using the JMX interface, navigate to the InfoMBean. The attributes
tab displays all the information listed. To see all the gateway adapters supported in the license, you must open
the value for the LicensedGWAdapters attribute (in JConsole this is done by double-clicking the value). The
same procedure applies for obtaining the component versions by opening the value for theComponentVersions
attribute.

Administration Scripts

The only VXML Server information available by using a script is the versions of the components installed
on VXML Server, though the name and version of VXML Server is displayed when it initializes and the
license ports is always displayed using the global status script.

The script is found in the admin folder of VXML Server. Windows users should use the script named
getVersions.bat and Unix users should use the script named getVersions.sh. In order to report on the
version of the VXML Server web application archive (WAR), the script should be passed as an argument the
full path of the WAR location (for example, %CVP_HOME%\VXMLServer\Tomcat\webapps\).

System Information Page

The same information is displayed in the system information page at the top of the table. It will also provide
a list of the applications deployed on VXML Server as well as information on the application server, operating
system, and Java memory usage.

Server Status Checks

Many load balancers can be configured to periodically access a URL that is used to determine if a server is
running. These load balancers make a request to the URL, and if a response comes back within an acceptable
time period, they consider the server available to handle connections. To determine the health of VXML
Server, include the parameter probe=true in the request URL, using one of the following formats:
http://[DOMAIN][:PORT]/CVP/Server?probe=true

OR:
http://[DOMAIN][:PORT]/CVP/Server?application=[APPLICATION]&probe=true

The first URL format (without the application parameter) results in a simple HTML page with the following
text if the VXML Server is accessible and is not suspended:
The Cisco Unified CVP VXML Server is up and running

However, if it is suspended (using the suspendServer administrative script), it will respond with:
The Cisco Unified CVP VXML Server is running, however it has been suspended.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
36

Administration
VXML Server Information

This URL format has several optional parameters that may be used in conjunction with it:

• activeCalls=true

This optional parameter causes the response HTML to include information about howmany call sessions
are active on the VXML Server instance. This is formatted as illustrated in the following example:

running;activeCalls=12;

• onHoldCalls=true

This optional parameter causes the response HTML to include information about howmany call sessions
are in an on hold status on the VXML Server instance. This is formatted as illustrated in the following
example:

running;onHoldCalls=3;

• activeCalls=true&onHoldCalls=true

Specifying both of the optional parameters results in both data items being returned, as illustrated in the
following example:

running;activeCalls=77;onHoldCalls=0;

The second URL format (with the application parameter), results in a VoiceXML page which includes a
<submit> to the listed voice application. If that VoiceXML page is returned, then VXML Server is accessible.
This format is intended for use with load balancers that require the probe URL to match the URL through
which actual content is retrieved. This format cannot be used to obtain additional information (that is, active
and on-hold calls).

VXML Gateway Adapter
Gateway adapters are small plug-ins installed on VXML Server that provide compatibility with a particular
Voice Browser. Once installed, all Unified CVP voice elements (and all custom voice elements not using
browser-specific functionality) work on that Voice Browser.

Starting from Release 10.5 onwards VXML Server supports the following gateway adapters:

• Cisco DTMF: Generates the grammar for DTMF detection at Cisco Gateway.

• VXML 2.1 with Cisco DTMF: Generates the grammar for DTMF detection at Cisco Gateway using
VXML 2.1 tags.

• Nuance 10: Generates the grammar for Speech and DTMF detection on the Nuance 10 server.

• VXML 2.1 with Nuance 10: Generates the grammar for Speech and DTMF detection on the Nuance
10 server using VXML 2.1 tags

• Speech: Generates the grammar for Speech and DTMF detection on the SpeechWorks server.

• VXML 2.1 with Speech: Generates the grammar for Speech and DTMF detection on the SpeechWorks
server using VXML 2.1 tags

Nuance 10 or Speech adapter can process the grammars that are present on Nuance 10 or Speech server
respectively; however, Cisco DTMF adapter can process the grammars that are present locally on the Cisco
IOS gateway.

Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
37

Administration
VXML Gateway Adapter

The following table provides the gateway adapter mapping to be used, while migrating from older version of
Call Studio to Release 10.5(1) and onwards.

New adapters from Release 10.5 onwardsAdapters Prior to Release 10.5

Cisco DTMFCisco Unified CVP 4.1/7.0/8.0/8.5/9.0 with Cisco
DTMF

VXML 2.1 with Cisco DTMFCisco Unified CVP 4.1/7.0/8.0/8.5/9.0 VoiceXML
2.1 with Cisco DTMF

Nuance 10Cisco Unified CVP 4.1/7.0/8.0/8.5/9.0 with Nuance
8.5

VXML 2.1 with Nuance 10Cisco Unified CVP 4.1/7.0/8.0/8.5/9.0 VoiceXML
2.1 with Nuance 8.5

Nuance 10Cisco Unified CVP 4.1/7.0/8.0/8.5/9.0 with OSR 3

VXML 2.1 with Nuance 10Cisco Unified CVP 4.1/7.0/8.0/8.5/9.0 VoiceXML
2.1 with OSR 3/Nuance 9

SpeechCisco Unified CVP 4.1/7.0/8.0/8.5/9.0 with Speech

VXML 2.1 with SpeechCisco Unified CVP 4.1/7.0/8.0/8.5/9.0 VoiceXML
2.1 with Speech

Configuration Updates
When an administrator monitors a VXML Server installation, they want to be aware of any warning signs
that the system is overloaded. In these scenarios, it is advantageous if the administrator can alter a few settings
to better handle the given load without worrying about updating or suspending applications or shutting down
the Java application server. These chnages may enable a system to better handle spikes in call activity with
no adverse effects. To this end, VXML Server exposes some of its configuration options and allows an
administrator to change them at runtime. It also allows the administrator to change some application settings
values for deployed application.

It is important that the administrator be very careful when altering these configuration options at runtime as
improperly chosen values could make the system unstable and achieve the opposite effect than desired.

Note

The ability to change VXML Server configuration options and application settings is available only through
the JMX interface. The configuration options are exposed as attributes of anMBean, one for the VXML Server
configuration options and one for each application’s settings. Those attributes that allow their values to be
changed will have editable values.When a new value is given, it takes affect immediately with no confirmation
so it is important to ensure that the value entered is correct. There is some simple validation that takes place
by VXML Server and if the value entered is inappropriate (such as entering -1 where a positive integer is
required), the change will not take place and the original value will remain unchanged. The administrator will
know that their entry was accepted if the value does not revert back.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
38

Administration
Configuration Updates

It is very important that any changes made to these attributes are not persisted. The changes affect VXML
Server in memory and do not affect the XML files that hold these values. As a result, should the Java application
server or the VXML Server web application be restarted or for application-specific attributes the application
is updated, the attributes will revert back to the values specified in their respective XML files.

Note

VXML Server Configuration Options
To view the VXML Server configuration options using the JMX interface, navigate to the
Global/ConfigurationMBean.

There are five attributes listed.

• The first, named LoggerEventQueueSize, will show the current size of the queue that holds logger events
waiting to be sent to loggers and is not editable.

• The next three are related in that they control aspects of the logger thread pool.

• The final configuration option deals with a period of time VXML Server waits after a caller ends their
call before the call session is invalidated. All of these options affect the performance of the system and
are defined fully in VXML Server Configuration.

Use the following table to reference the JMX attribute name with the global_config.xml tag name.

Tag NameJMX Attribute Name

<maximum_thread_pool_size> in the <logger> tagLoggerMaximumThreadPoolSize

<minimum_thread_pool_size> in the <logger> tagLoggerMinimumThreadPoolSize

<keep_alive_time> in the <logger> tagLoggerThreadKeepAliveTime

<session_invalidation_delay>SessionInvalidationDelay

Tuning Logger Options

The most important indication of whether VXML Server is encountering issues with loggers is the
LoggerEventQueueSize attribute. A brief explanation of how VXML Server handles loggers is warranted (for
more details refer to VXML Server Logging). In order to prevent logging from holding up calls, all logging
is done in separate threads. The threads are managed within a thread pool, which has a maximum andminimum
value.When VXML Server starts up, the thread pool allocates the minimum number of threads. As calls begin
to be handled, they generate logger events, which are put into a queue of events.

The activation of a logger event also prompts VXML Server to request a thread from the pool and in that
thread have the appropriate logger handle the top most event in the queue. The length of time this thread
handles the event depends on the logger, but the event is typically handled in a very short period of time,
measured in milliseconds. However as call volume on the system increases, more threads are used
simultaneously to handle the increase in logger events added to the queue.

As more threads are needed, the thread pool grows until it reaches the maximum number of threads allowed.
At that point the queue would grow until threads become available. Threads that complete their work and
cannot find new logger events to handle because the queue is empty will be garbage collected after a certain
amount of time being idle (this is governed by the LoggerThreadKeepAliveTime option).

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
39

Administration
VXML Server Configuration Options

Under typical operation, the logger event queue size should not be a large number (one might see it set to 0
to 10 most of the time). There could be spikes where the queue grows quickly but with plenty of available
threads to handle the events, the queue size should shrink rapidly. The administrator should take note if the
queue size shows a high number, though should be very wary if this number seems to grow over time (minutes,
not seconds). A growing queue size is an indication that either the load on the system is too high for the thread
pool to handle (which is more likely the smaller the maximum thread pool size is set) or for some reason
loggers are taking longer to do their logging. In the latter case this could be due to a slow database connection,
overloaded disk IO or other reasons. Regardless of the cause, a growing queue is a warning sign that if the
call volume is not reduced, the Java application server is at risk of encountering memory issues and, in the
worst case, running out of memory.

It is for this reason that choosing an appropriate maximum thread pool size is important. While the temptation
to give the maximum number of threads a very high number this can also cause problems on the system as
severe as memory issues. Using too many threads could cause what is called thread starvation where the
system does not have enough threads to handle standard background processes and could exhibit unpredictable
inconsistent behavior and could also cause the Java application server to crash.

The JMX interface supports the ability to change the maximum and minimum thread pool size at runtime.
The administrator should only do this if they believed the change could avert an issue listed above. For example,
if the system is encountering a temporary spike in activity and the administrator sees the LoggerEventQueueSize
attribute report a growing number, then they can increase the maximum thread pool size to potentially allow
for a more rapid handling of the queued events. Once the queue shrinks to a manageable number the maximum
thread pool size can then be changed back to its original value.

The maximum number of threads set by default in VXML Server is sufficient to handle a very heavy load
without issues so the administrator is urged to use caution when changing these values.

Session Invalidation Delay Option

The session invalidation delay option is also an important value that an administrator could be tuned should
they see the need. A brief explanation of what this option does is warranted (for more details refer to VXML
Server Configuration). When a caller ends the call by either hanging up, going to another application, or the
application hangs up on the caller, VXML Server must perform some final clean up of the call session. This
is primarily for processing logging events that occurred when the call ended. Additionally, application
developers can configure their applications to execute code at the end of a call to perform their own clean up
operations. In sophisticated applications this could involve closing database connections or generating call
detail records. These end-of-call operations can take a non-trivial amount of time and may require access to
information about the call session, such as element or session data. As a result, VXML Server waits for a
preset period of time after a call ends before it invalidates the session, allowing all activities requiring additional
time to complete. This period of time is governed by the SessionInvalidationDelay attribute and is measured
in seconds.

It is important to understand the consequences of changing this value. If too low a time is given then there
could be situations where the system under load cannot handle the end of call tasks in the given time and the
global error log may see many errors containing the Java exception IllegalStateException which occurs
when attempting to access data from an invalidated call session. One has to understand that system resources
are limited and when it is under load what may have taken 100ms to complete could take longer and depending
on what it is that needs to be done, could take much longer.

The administrator should refrain from the temptation of making this number too large. This is because while
a call session is still valid but not representing a live call, all that information remains in memory. This may
not be much but could be significant depending on the amount of data stored in element and session data by
the application. Even though the session has not been invalidated, since the call has ended, VXML Server is
ready and will accept new calls, which will allocate additional memory. Under high load, the Java application
server could encounter memory issues if call sessions remain in memory for too long a period.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
40

Administration
VXML Server Configuration Options

The JMX interface supports the ability to change the session invalidation delay at runtime. The administrator
would increase this setting if IllegalStateException errors appear in the logs. They would lower the value
if the JVM memory usage stays close to the maximum after each garbage collection. Keep in mind that there
are many potential causes for JVM memory utilization to rise and is certainly not limited to this cause.

The default value of the session invalidation delay is sufficient to handle a heavy load without issues so the
administrator is urged to be cautious when changing this value.

Application Configuration Options
To view the configuration options of an application using the JMX interface, navigate to the
VoiceApplication/APPNAME/CommandMBean, where APPNAME is the name of the application. There are four
attributes listed:

• DefautAudioPath - Shows the audio path defining where the audio files are located (assuming the
application was designed to take advantage of it).

• GatewayAdapter - Shows the gateway adapter that the application is using and is not editable. It is for
informational purposes only.

• SessionTimeout - Shows the length of time, in seconds, of inactivity to consider a call session timed
out.

• SuspendedAudioFile - The path for the audio file to play to callers when calling into an application that
is suspended.

An administrator may choose to change the default audio path of an application at runtime should there be a
need to change the audio callers hear quickly. One use case would be if the server that hosts the audio files
is being restarted and the administrator wishes all audio to be fetched from a backup server.

The effectiveness of this change will be based on how consistently the application was designed to use the
default audio path and also if the application explicitly sets the default audio path itself, which would override
the value passed here.

Note

An administrator may choose to change the session timeout value at runtime as part of the process of debugging
a problem. Under normal circumstances no session should time out because the voice browser and VXML
Server should be in constant communication regarding when a call starts and ends. An administrator
experiencing some sessions timing out may choose to increase this attribute to see if it resolves the issue and
if not, should look into network issues. The administrator should be careful not to set this value too small a
number because there is a risk that a normal call could time out due to the caller visiting a particularly large
VoiceXML page or taking their time entering a long DTMF input. Too large a number will mean that sessions
that are no longer valid will remain in memory longer and the administrator would not be able to see which
sessions are timed out until the timeout period elapsed.

An administrator may choose to change the suspended audio file at runtime if the application needed to be
suspended due to a specific reason. For example, if a weather event required an application to be suspended,
the administrator could point the suspended audio message to a recording explaining why the application is
suspended rather then just pointing to a generic message. The administrator is taking advantage of the fact
that this change is not persisted since it is expected that the event that caused the application’s suspension is
temporary.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
41

Administration
Application Configuration Options

Administration Functions
VXML Server exposes several functions that allow an administrator to make both small and large changes to
the applications and VXML Server at runtime. They are divided into two categories: those that affect a specific
application and those that affect all applications running on VXML Server. An administrator can use the JMX
interface as well as administration scripts to execute these functions.

Each administrator function, when activated, prompts VXML Server to send a logger event reporting the
function and its result so that any loggers listening to these events can log the information. The logs will then
maintain a history of administration activity that can be analyzed later.

Administrator functions include the ability to add, update, and remove applications as well as suspend both
an application and VXML Server itself. This section describes all functions available.

Graceful Administration Activity
Administration functions are used primarily to alter an application, whether it be to update its contents or
suspend its activity. Whenever changes are made to a live system handling callers, a concern is how these
changes affect live callers. A robust, reliable system should strive for maximum uptime andminimal disruptions
of live calls, and VXML Server does this by implementing a process for managing changes.

In the process, existing callers continue to experience the application as it existed before the change, while
new callers experience the change. Only after all existing callers have naturally ended their calls will the
change apply to all live callers. At this time, VXML Server will perform any necessary cleanup required to
remove the old application configuration. In this manner, changes can be made to applications at any time;
the administrator does not need to worry about the impact of the change on live callers as the transition will
be handled.

Due to the interactive nature, when using administration scripts to perform graceful functions, the script will
display a count down of callers that are actively visiting the application as they end their calls. This is provided
because an aid to the administrator in determining how many callers are still experiencing the application
before the change. Command-line arguments passed to the scripts can turn off this countdown if desired.

When using the JMX interface or if the countdown is turned off in the administration script, the only way to
track the number of callers that are still experiencing the old configuration would be to get the system status.

Applications Update
Occasionally, an application will need to be updated. Possible changes can be small, such as renaming an
audio file or altering a TTS phrase, or large, such as adding another item to a menu and creating a new call
flow branch. They can involve simple configuration changes or may involve new or changed Java class files.
While most changes are implemented during development time, there is a requirement to support updating
an application at runtime.

The update functionality acts gracefully in that any callers on the system, at the time of update continue to
experience their calls as if the application had not been updated, while new callers experience the updated
voice application. In this manner, there is no downtime when a change is implemented for an application, the
callers are handled as expected.

VXML Server exposes an update function for every application deployed. This Server will update only that
application. It also has a function that updates all applications at once.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
42

Administration
Administration Functions

When updating individual voice applications note these guidelines:

• The update applies only to those resources controlled by VXML Server. These include the application
settings and call flow, element configurations, Unified CVP decision elements, and Java classes placed
in the java/application directory of the application. The following changes are not managed by VXML
Server and therefore will not be updated:

• Java classes placed anywhere else (including the common folder).

• XML content passed to VXML Server by using the XML API.

• The content of VoiceXML insert elements.

• Other applications that the updated application transfers to or visits as part of a subroutine.

• External back-end systems such as web services and databases (including the user management
database).

• Web servers hosting static content used by the application such as audio or grammar files.

When each of these resources become unavailable or change, all callers would be affected. For small
changes such as a revised audio file, this situation may be acceptable. For large-scale changes that span
multiple systems, this might cause problems such as callers who are visiting an application when the
update is made experiencing an error because a database is down.

For large changes, the application should be suspended and the changes made once all callers have left
the system (see the following section on suspending applications). Once the application is fully suspended,
the administrator is free to make the changes and when done, the application should be updated followed
by resuming it from its suspended state. This way, no caller will be in the system when the changes are
made. The only disadvantage to this approach is that it will make the application unavailable for a period
of time as opposed to a transparent change if the update feature alone is used. This may be a necessary
compromise considering the consequences.

• When the update occurs, the event created by VXML Server to send to any loggers that are listening will
reflect when the update function was executed, not when it completed.

• If an error occurs during the update process, for example, due to an incorrectly configured XML file, a
description of the error is displayed and sent to any loggers listening to the appropriate logger events and
the update is cancelled.

• If an updated VXML server application is transferred from OAMP to VXML Servers while calls are in
progress, the following message appears in the log:

%CVP_8_5_VXML-3-VXML_INTERNAL_ERROR:DatafeedMgr.handleActEvent()

java.lang.NullPointerException]

In this case, calls are not disconnected, but the related VXML events during the
update will not be sent to the reporting server.

Note

JMX Interface

To update an application using the JMX interface, use a JMX client connected to the server to navigate to the
VoiceApplication/<APPNAME>/CommandMBean, where APPNAME is the name of the application to update.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
43

Administration
Applications Update

TheOperations tab of this MBean will list a function named updateApplication. Pressing updateApplication
button will cause the application to be updated and the result of the update will be displayed in a dialog box.

The administrator should be aware that there is no confirmation when this function is called, the update happens
immediately once executed.

While the function returns immediately, the old application may still be active if there were calls visiting the
application at the time of the update. Only when all existing callers end will the old application configuration
be removed from memory. To determine when that occurs, use the status function.

Note

To update all applications at once using the JMX interface, navigate to the Global/CommandMBean and click
the function named updateAllApps in the operations tab. The results are displayed in a dialog box, listing each
application updated. As with the application-specific update, use the status function to determine if there are
callers experiencing old versions of the applications.

Administration Scripts

The scripts for updating an application are found in the admin folder of the application to be updated.Windows
users should use the script named updateApp.bat and Unix users should use the script named updateApp.sh.

The script will first ask for confirmation of the desired action to prevent accidental execution. To turn off the
confirmation, pass the parameter noconfirm. By default, the script does not return to the command prompt
until all pre-update callers are finished. Interrupting the countdown will not stop the update process, only the
visual countdown. To turn off the countdown, pass the parameter nocountdown. If the countdown is interrupted
or the script is passed with the nocountdown parameter then the only way to determine how many callers are
experiencing the old application is to execute the status script for the system, which displays this information.

The script to update all applications is found in the admin folder of VXML Server. Windows users should
use the script named updateAllApps.bat and Unix users should use the script named updateAllApps.sh.
The script behavior is the same as if the update script for each application deployed on VXML Server were
executed in series.

The updateAllApps script also displays a confirmation prompt, which can be turned off by passing the
noconfirm parameter. Unlike the updateApp script, the updateAllApps script does not display a countdown
of callers, it lists all the applications that are updated. The administrator would need to execute the status
function to determine how many callers are visiting the old versions of the applications.

Applications Suspension
There are many situations when an application needs to be temporarily suspended. There could be scheduled
maintenance to the network, the voice application could have an expiration date (say it runs a contest that
must end at a specific time), or the application is to be turned off while enterprise-wide improvements are
made. There may also be situations where all applications are to be put in suspension if modifications are
being made that affect all applications. In each of these situations, a caller would need to be played a
designer-specified message indicating that the application has been temporarily suspended, followed by a
hang-up. This is preferable to not answering or taking down the system, which would cause a cryptic outage
message to be played.

First, the application designer defines the suspended message in the Application Settings pane in Builder for
Call Studio. When the suspend order is given, VXML Server produces a VoiceXML page containing this
suspended audio message to all new calls followed by a hang-up. Because VXML Server allows all calls
currently on the system to finish normally when the command was issued, existing callers are unaware of any

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
44

Administration
Applications Suspension

changes. VXML Server will keep track of the active callers visiting the application and make that information
available for the administrator to access. Only when this number reaches 0 will it be safe for the administrator
to perform the system maintenance that required the suspension.

VXML Server exposes suspend and resume functions for every application deployed that acts on just that
particular application. It also exposes a function that will suspend VXML Server itself, which has the effect
of suspending all applications. A separate resume function resumes VXML Server that restores the previous
state of each application. So if an application was already suspended when VXML Server was suspended,
resuming VXML Server leaves the application in a suspended state.

There are a few items to note when suspending a voice application:

• Only when all existing callers have exited the system will the application be officially suspended.
Depending on the average length of calls to the voice application, this may take some time. The application
status will appear as suspended since new callers cannot enter the application, and they will hear the
suspended audio message.

• If changes were made to an application while it was suspended, the application should first be updated
before being resumed (see the previous section on the update administration function).

• The suspension applies only to those resources under the control of VXML Server. External resources
such as databases, other web servers hosting audio or grammar files, or servers hosting components
through XML documents over HTTP are accessed at runtime by VXML Server. If any of these resources
become unavailable while there are still presuspension callers on the system, those calls will encounter
errors that will interrupt their sessions. Any maintenance made to backend systems should be initiated
after the application status shows that all presuspended callers are finished with their calls.

• When the suspension occurs, the event created by VXML Server to send to any loggers that are listening
will reflect when the suspend function was executed, not when it completed.

• If an error occurs during suspension, a description of the error is displayed and sent to any loggers listening
to the appropriate logger events and the update is cancelled.

• Suspending a voice application still requires VXML Server (and the Java application server) to be running
in order to produce the VoiceXML page containing the suspended message. If the application server
itself requires a restart, there are four possible ways to continue to play the suspended message to callers.
Remember to execute the suspend function before any of these actions are taken as this is the prerequisite.

The solutions are listed in order of effectiveness and desirability:

• Load balancemultiple instances of VXMLServer—In a load-balanced environment, onemachine
can be shut down, restarted, or reconfigured while the rest continue serving new calls. Once removed
from the load-balance cluster, a machine will not receive new call requests. Eventually, all existing
callers will complete their sessions, leaving no calls on the machine removed from the cluster. That
machine can then be safely taken down without affecting new or existing callers.

• Use a web server as a proxy—In a smaller environment, a web server can be used as a proxy for
an application server so that when that application server becomes unreachable, the web server itself
can return a static VoiceXML page containing the suspended message to the voice browser. The
web server does not need to be on the same machine as the application server. Once the web server
is configured, VXML Server can be suspended to locate all existing callers, then the application
server can be taken down and the proxy server will take over producing the suspended message
VoiceXML page. The disadvantage of this approach is that the web server setup is done outside of
Unified CVP and if the suspended message changes, it needs to be changed in both the Builder for
Call Studio and the web server configuration.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
45

Administration
Applications Suspension

• Redirect the voice browser—The voice browser can be configured to point to another URL for
calls coming on the specific number. This can point to another machine running VXML Server or
even just a web server with a single static VoiceXML document playing the suspended message.
A separate file would be needed for each application. This is a manual process and requires another
machine with at least a web server (it can be on the same machine which would allow the Java
application server to be restarted but would not allow the machine itself to be restarted).

JMX Interface

To suspend an application using the JMX interface, use a JMX client connected to the server to navigate to
the VoiceApplication/APPNAME/CommandMBean, where APPNAME is the name of the application to be
suspended. The Operations tab of this MBean will list a function named suspendApplication. Pressing
suspendApplication button causes the application to be suspended and the result is displayed in a dialog box.
To resume the application, select the function named resumeApplication. The result is displayed in a dialog
box.

The administrator should be aware that there is no confirmationwhen these functions are called, the suspension
and resumption occurs immediately once executed.

While the suspend function returns immediately, the application may still be active if there were calls visiting
the application at the time of the suspension. Only when all existing callers end their calls will the application
be fully suspended and the administrator is safe to take down any resources that the application depends on.
To determine when all calls have ended, use the status function.

Note

To suspend VXML Server itself using the JMX interface, navigate to the Global/CommandMBean and click
the function named suspendVXMLServer in the operations tab. The results will be displayed in a dialog box.
As with the application-specific suspension, use the application-specific status function to determine if there
are callers still visiting the applications. Click the function named resumeVXMLServer to resume VXML
Server and restore the previous states of the applications.

Administration Scripts

The scripts for suspending and resuming applications are found in the admin folder of the application to be
suspended. Windows users should use the script named suspendApp.bat and Unix users should use the script
named suspendApp.sh. To resume the application, use the script named resumeApp.bat or resumeApp.sh.

It is possible to suspend all applications at once by accessing a script found in the admin folder of VXML
Server. Windows users should use the script named suspendServer.bat and Unix users should use the script
named suspendServer.sh. To restore all applications to their original status, use the script named
resumeServer.bat or resumeServer.sh.

These scripts do not resume all applications; they only restore the administrator-specified status of each
application. So if an application was already suspended when the server was suspended, resuming the server
leaves the application in a suspended state.

Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
46

Administration
Applications Suspension

Applications Addition
When VXML Server starts up, it will load all applications that have been deployed to its applications folder.
A new application that is created in Builder for Call Studio and deployed to a machine on which VXML
Server is already running cannot begin accepting calls until VXML Server loads the new application. To load
the application, execute the deploy application function. If the application is already deployed, executing this
function will do nothing. If multiple new applications are to be deployed together, one can execute the deploy
all applications function and all new applications will be deployed, and leave existing applications untouched.

JMX Interface

To deploy all new applications using the JMX interface, use a JMX client connected to the server to navigate
to the Global/CommandMBean and click the function named deployAllNewApps in the Operations tab.
Pressing deployAllNewApps button displays a dialog box with the status of each application’s deployment.

Alternatively, to deploy a single new application, first use the function named listAllNewApps in the operations
tab to get a list of new application names. Then use the deployNewApp function to deploy the desired application
by name.

Administration Scripts

The script for deploying a specific application is found in the admin folder of the application to be deployed.
Windows users should use the script named deployApp.bat and Unix users should use the script named
deployApp.sh. The script for deploying all new applications at once is found in the admin folder of VXML
Server. Windows users should use the script named deployAllNewApps.bat and Unix users should use the
script named deployAllNewApps.sh.

Applications Removal
VXML Server demonstrate two administrative functions to handle the removal of application from memory
at runtime. Determining which function to use will depend on the operating system and whether the application
being removed is actively handling calls.

The first method involves executing the release application function of the application to be removed. This
function prompts VXML Server to first suspend the application then remove it from memory when all the
active callers at the time the function was executed, have naturally ended their sessions. It suspends the
application first to prevent new callers from entering the application. Once all active callers are done visiting
the application the folder of the application can be deleted (or moved) from the VXML Server applications
folder. This function affects only a single application so if multiple applications are to be removed using this
method, the administrator would have to execute this function for each application.

On the Microsoft Windows operating system, a user attempting to delete an application folder after the
releaseApp function is called may be prevented from doing so by the operating system if the application
references Java application archive (JAR) files placed within the java/application/lib or java/util/lib
directories. This is due to the system keeping an open file handle for JAR files that will not be released until
a garbage collection event occurs. As a result, the administrator will have to wait until the garbage collector
activates before being able to delete the directory. The time to wait will be determined by how often garbage
collection is run. A rule of thumb is that a high load system or one with a small amount of memory will
encounter garbage collection often, a low volume system or one with a large amount of memory will take
longer.

Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
47

Administration
Applications Addition

The second method supports the ability to delete multiple applications at once. This time one must first delete
(or move) the folders holding the desired applications to be deleted. After which, the flushing of all old
applications function is executed and VXML Server will suspend and then remove from memory of all the
applications that it no longer finds in the applications folder. As with the other method, the application is
not removed from memory until all callers have ended their visits.

These issues can occur with the second method:

• If an application relies on files found within its folder at runtime, there may be problems with existing
callers reaching a point where these files are needed and they will not be found.

• This process may not work on Microsoft Windows because Windows will not allow the deletion of a
folder when resources within it are open. For example, the application loggers may have open log files
located within the application’s logs folder. This may work if no loggers are used or the only loggers
used are those that do not manage files stored in the logs folder.

JMX Interface

To delete an application using the JMX interface, use a JMX client connected to the server to navigate to the
VoiceApplication/<APPNAME>/CommandMBean, where APPNAME is the name of the application to update.
TheOperations tab of this MBean will list a function named releaseApplication. Pressing releaseApplication
button will cause the application to be suspended and then removed from memory when all active callers
visiting the application at the time the function was executed have completed.

The administrator should be aware that there is no confirmation when this function is called; the application
is suspended and removed from memory immediately once executed.

While the function returns immediately, the application will remain active if there were calls visiting the
application at the time of the release. Only when all existing callers end, the call will the application be removed
from memory. To determine if there are active callers, use the status function.

Note

To delete all applications whose folders have been removed from the applications folder of VXML Server
using the JMX interface, navigate to the Global/CommandMBean and click the function named
releaseAllOldApps in the operations tab. The results will be displayed in a dialog box, listing each application
deleted. As with the application-specific update, use the status function to determine when the callers finish
their visits to the applications.

Administration Scripts

The scripts for deleting an application are found in the admin folder of the application to be updated.Windows
users should use the script named releaseApp.bat and Unix users should use the script named releaseApp.sh.

The script first asks for confirmation of the desired action to prevent accidental execution. To turn off the
confirmation, pass the parameter noconfirm. By default, the script does not return to the command prompt
until all callers are finished with their calls. Interrupting the countdown will not stop the release process. To
turn off the countdown, pass the parameter nocountdown. If the countdown is interrupted or the script is passed
the nocountdown parameter, then the only way to determine how many callers are actively in the application
is to execute the status script for the system.

The script to release all applications whose folders have been removed from the applications folder of
VXML Server is found in the admin folder of VXML Server. Windows users should use the script named
flushAllOldApps.bat and Unix users should use the script named flushAllOldApps.sh. All applications
whose folders have been removed will be suspended and when their active calls have ended will be removed
from memory.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
48

Administration
Applications Removal

The flushAllOldApps script also displays a confirmation menu which can be disabled by passing it the
noconfirm parameter. Unlike the releaseApp script, the flushAllOldApps script does not display a countdown
of active callers, it will list all the applications that were deleted. The administrator would need to execute
the status function to determine how many callers are actively in the applications.

Common Classes Update
When performing an application update, all the data and Java classes related to an application will be reloaded.
Java classes placed in the common folder of VXML Server are not included in the application update. VXML
Server provides a separate administrative function to update the common folder.

There are a few items to note about this function:

• The update affects all applications that use classes in the common folder, so executing this function could
affect applications that have not changed. Therefore, take precaution when executing this function.

• The update affects all classes in the common folder, whether they were changed or not. This is usually
not a issue unless those classes contain information in them that reloading would reset (such as static
variables).

• Due to the fact that this function reloads classes that affect all applications, and those classes may
themselves prompt the loading of configuration files from each application that uses those classes, the
function may take some time to complete depending on the number of classes in the common folder and
the number and complexity of the deployed applications.

• Changes are immediate, and are not done. Because this potentially affects all applications, the administrator
must be aware of this.

JMX Interface

To update common classes using the JMX interface, use a JMX client connected to the server to navigate to
the Global/CommandMBean and click the function named updateCommonClasses in the operations tab. The
results will be displayed in a dialog box.

Administration Scripts

The script for updating common classes is found in the admin folder of VXML Server. Windows users should
use the script named updateCommonClasses.bat and Unix users should use the script named
updateCommonClasses.sh. The script will ask for confirmation of the desired action to prevent accidental
execution. To disable the confirmation, pass the parameter noconfirm.

Global and Application Data Function
Global data holds information that applications decide to share across other applications deployed on VXML
Server. Application data holds information that applications decide to share across all calls to the application.
The VXML Server JMX interface provides the ability for an administrator to view the contents of these
variables, change their values, and even create new variables.

This functionality provides an administrator direct access to live data that is being created on the system and
can provide them some control of how applications operate. This is only possible when the application designers
design that functionality into the applications. For example, an application designer for a utility company can
build their application to look for the existence of a global data variable reporting a power outage. The
administrator then creates the global data variable when a power outage occurs and automatically the
applications will start reporting the power outage to callers. The administrator can then delete the global data

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
49

Administration
Common Classes Update

variable to signify the power has been restored. While this same functionality could be achieved with a
database, this is a simpler approach to handle predictable situations without the need to use a database.

Global Data Access

To access global data using the JMX interface, navigate to the Global/DataMBean. The Attributes tab lists
all the global data variable names in an attribute named AllGlobalDataNames (the value may need to be
expanded in order to see all the global data names). TheOperations tab lists four functions that can be executed
by the administrator for global data:

• setGlobalData—This function allows the administrator to create a new global data variable. The function
requires the name of the variable and the value. Click setGlobalData button to set the global data and
the result will appear in a dialog box.

If there exists global data with the same name it will be overridden.Note

• removeGlobalData—This function allows the administrator to delete a global data variable. The function
takes one input: the name of the global data variable to delete. Click removeGlobalData button to remove
the global data and the result will appear in the dialog box.

• removeAllGlobalData—This function allows the administrator to delete all global data, whether it was
created by the administrator or applications. Click removeAllGlobalData button to remove all global
data and the result will appear in the dialog box.

Be careful when using this function because it can affect the performance of applications that rely on
global data.

• getGlobalData—This function allows the administrator to retrieve the value of a global data variable.
The function takes one input: the name of the global data variable to retrieve. Click getGlobalData
button to display a dialog box showing the value of the global data.

Application Data Access

To access application data using the JMX interface, navigate to the VoiceApplication/APPNAME/DataMBean,
where APPNAME is the name of the application whose application data is to be accessed. The Attributes tab lists
all the application data variable names in an attribute named AllApplicationDataNames (the value may need
to be expanded in order to see all the application data names). The Operations tab lists four functions that
can be executed by the administrator for application data:

• setApplicationData—This function allows the administrator to create a new application data variable.
The function takes two inputs, the first being the name of the variable and the second being the value.
Click setApplicationData button to set the application data and the result will appear in a dialog box.

If there is already application data with the same name it will be overridden.Note

• removeApplicationData—This function allows the administrator to delete a application data variable.
The function takes one input: the name of the application data variable to delete. Click
removeApplicationData button to remove the application data and the result will appear in the dialog
box.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
50

Administration
Global and Application Data Function

• removeAllApplicationData—This function allows the administrator to delete all application data,
whether it was created by the administrator or applications. Click removeAllApplicationData button
to remove all application data and the result will appear in the dialog box. Be careful with this function
as it could affect the performance of the application.

• getApplicationData—This function allows the administrator to retrieve the value of a application data
variable. The function takes one input: the name of the application data variable to retrieve. Click
getApplicationData button to display a dialog box with the value of the application data.

Administrator Log Access
VXML Server includes various default loggers, including administration history loggers that store a history
of the administration activity taken, such as when VXML Server started up, when an application was updated,
the results of the suspension of VXML Server, and so on. These logs, which are rotated daily, are useful to
an administrator as an audit history of administrator activity. As a convenience, the JMX interface exposes
methods for the administrator to access the contents of these logs instead of viewing the files in a text editor.

The application designer and administrator has the ability to define any loggers desired for the applications
as well as for VXML Server, including removal of the default administration history loggers. If this is done,
then these functions will return error messages that explain that the log files could not be found.

Note

To view an application’s administration history log using the JMX interface, use a JMX client connected to
the server to navigate to the VoiceApplication/<APPNAME>/CommandMBean, where APPNAME is the name of
the application to view. TheOperations tab of this MBean lists functions named retreiveAdminHistoryToday
and retreiveAdminHistoryAll. Clicking the first opens up a scrollable window listing the contents of the
administration history log file from the day the function is called. Clicking the second opens up a scrollable
window listing the contents of all administration history logs concatenated.

To view VXML Server administration history log using the JMX interface, navigate to the Global/Command
MBean. The operations tab of thisMBean list functions with the same name and functionality as the application
functions do except that the files accessed are for the global administration history.

Administration Function Reference
The following tables list all the administration functions provided by VXML Server and whether they are
available from the JMX interface and via script.

Application-Level Functions

DescriptionScriptJMXFunction

Suspends the application in which the function belongs.YesYesSuspend Application

Resumes the application in which the function belongs.YesYesResume Application

Prompts VXML Server to load the application in which
the function belongs (does nothing if the application is
already deployed).

YesNoDeploy Application

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
51

Administration
Administrator Log Access

Prompts VXML Server to reload into memory the
configuration of the application in which the function
belongs.

YesYesUpdate Application

Prompts VXML Server to remove from memory the
application in which the function belongs so that its
folder can be deleted.

YesYesRelease Application

VXML Server-Level Functions

DescriptionScriptJMXFunction

Suspends all applications deployed on VXML Server.YesYesSuspend Server

Restores the status of each application to the original
state at the time VXML Server was suspended.

YesYesResume Server

All applications deployed to VXML Server because the
last time the application server started up or the deploy

YesYesDeploy All New
Applications

all new applications function was called are now loaded
into memory and can handle calls.

Lists the names of all new voice applications so that their
names may be known to be deployed using Deploy New
Application.

YesYesList All New Applications

Loads and deploys the specified voice application.NoYesDeploy New Application

When called, all applications in VXML Server whose
folders were deleted are removed from memory.

YesYesFlushAll OldApplications

Prompts each application deployed on VXML Server to
load its configuration from scratch from the application
files.

YesYesUpdate All Applications

Reloads all classes deployed in the common directory of
VXML Server.

YesYesUpdate Common Classes

VXML Server Metrics
The more information administrators have, the better they will be able to determine the health of the system.
VXML Server provides a significant amount of information on various metrics to allow the administrator to
understand what is going on within the system. Provided with this information, the administrator will be able
to react quickly to situations that could degrade the stability of the system.

The information falls into three categories: aggregate information, information on peaks, and average
information. Aggregate information, such as the total number of calls handled, is helpful in determining how
much work VXML Server has done so far. Peak information, such as the maximum concurrent calls occurring
in the last 10 minutes, is very helpful in understanding how load is distributed on the system and can help the
administrator understand how the volume is changing. Average information, such as the average HTTP request
completion time, helps the administrator compare current metrics against historical averages.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
52

Administration
VXML Server Metrics

Themetrics maintained by VXML Server is available only through the JMX administration interface. To view
the metrics, navigate to the Global/MetricsMBean. The Operations tab lists 15 separate functions that the
administrator can call to obtain very specific information concerning how the system is running as well as
how it has performed in the past. Many of the functions take a time duration as an input. It will display
information of the specified period up to a maximum of 60 minutes.

The following list describes each function and the information it returns:

• totalCallsSinceStart—Returns the total cumulative number of calls handled by VXML Server since it
launched. This number will continually rise and only resets only when VXML Server or the Java
application server is restarted.

• maxConcurrentCallsInLast—Returns the most number of simultaneous callers that occurred in the
last Xminutes where X is entered by the administrator (maximum of 60 minutes) and when the maximum
was reached. This count is helpful in determining how close the call volume reached the license limit on
simultaneous callers. Knowing when the maximum value is reached can be very helpful in determining
if call volume is rising. For example, if the peak call volume for the last 10 minutes was achieved very
close to the present time, that would indicate that call volume is rising.

• avgConcurrentCallsInLast—Returns the average number of simultaneous callers encountered in the
last X minutes where X is entered by the administrator. This data is helpful in determining if a peak was
an isolated occurrence or a sign of a trend. For example if the maximum number of concurrent calls in
the last hour was 100 but the average is 10, then there is less to be alarmed about since the 100 peak did
not last long and can be attributed to a temporary spike. If the average were 90, then this would indicate
that the call volume is very steady.

• maxReqRespTimeInLast—Returns themaximum time, inmilliseconds, it tookVXMLServer to produce
an HTTP response in the last X minutes where X is entered by the administrator and when the maximum
was reached. A voice browser makes an HTTP request to VXML Server, which then must respond with
a VoiceXML page. A large response time is cause for concern because a slow performing system will
cause callers to think that the application has encountered errors. In extreme cases, this response time
might cause the voice browser to time out a request and end a call with an error.

• avgReqRespTimeInList—Returns the average time, in milliseconds, that it took to produce an HTTP
response in the last X minutes where X is entered by the administrator. This value gives the administrator
a good idea of how long it takes VXML Server to handle responses given the call volume. This value
could help the administrator decide if the system is overloaded and is beginning to affect the perception
of callers regarding the responsiveness of the application. It also establishes a baseline to compare with
the maximum response time. A maximum response time significantly higher than the average might be
an indication that there is a problem with an external resource accessed by a custom element such as a
database or web service and the few calls that visited that element suffered from bad performance.

This function can also help determine if the maximum response time was an isolated event or an indication
of a trend. For example if the maximum response time was 500 ms, which occurred near the present, the
average was 400 ms, the fact that the peak was 500 ms is not alarming because the average is so high.
In this situation, the administrator may choose to throttle down the calls being handled by the system to
bring the response times back down to more acceptable levels.

• timeoutCallsInLast—Returns the total number of calls that ended with a timeout in the last X minutes
where X is entered by the administrator. More specifically, this counts calls where the result action of
the end category is timeout. See section Application Activity Logger for more on the different results
and how ended values. Under normal circumstances a call should never time out. Many different types
of conditions can yield session timeouts on VXML Server and so knowing if there are timeouts in the
last period of time would tell the administrator how widespread these issues are.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
53

Administration
VXML Server Metrics

• failedCallsInLast—Returns the total number of calls that ended with an error in the last Xminutes where
X is entered by the administrator. More specifically, this counts calls where the result action of the end
category is error. See section Application Activity Logger for more on the different results and how
ended values. This helps the administrator determine how widespread a bug or other issue that caused a
call to end in an error is. For example, if the last 60 minutes yielded only one failed call, while the issue
should be investigated, it may not be a symptom of a larger more prevalent issue.

• timeoutCallsSinceStart—Returns the total number of calls that ended with a timeout since VXML
Server launched. More specifically, this counts calls where the result action of the end category is timeout.
See section Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of timed-out calls in the past X minutes because if the
numbers are close it might mean that the issue that is causing the timeouts is a recent occurrence. It also
gives an indication of the stability of the system and allows the administrator to calculate the percentage
of calls that had encountered timeouts.

• failedCallsSinceStart—Returns the total number of calls that ended with an error since VXML Server
launched. More specifically, this counts calls where the result action of the end category is error. See
section Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of failed calls in the past X minutes because if the
numbers are close it could mean that the issue that is causing the errors is a recent occurrence. It also
gives an indication of the stability of the system is and allows the administrator to calculate the percentage
of calls that had errors.

• maxLoggerEventQueueSizeInLast—Returns the largest the logger event queue received in the last X
minutes where X is entered by the administrator and when the maximumwas reached. For an explanation
of the logger queue, see the section titled VXML Server Configuration Options earlier in this chapter.
This value helps the administrator to understand, in an abstract way, howmuch VXML Server is logging.
While it is not unusual for this number to be large, the administrator can track a trend, and if this number
continually increases it might be an indication that the system cannot handle the logger event load and
might eventually result in memory problems. The timewhen themaximumwas reached can help indicate
if VXML Server is able to handle the incoming stream of logger events.

• maxLoggerThreadCountInLast—Returns the most simultaneous threads VXML Server was using to
handle loggers in the last Xminutes where X is entered by the administrator and when the maximum was
reached. For an explanation of the logger thread pool, see the section titled VXML Server Configuration
Options earlier in this chapter. This is another indication of whether VXML Server can keep up with the
stream of logger events because if the number is close to the maximum thread pool size it is an indication
that VXML Server has almost reached its limit in handling events. When the maximum was reached
helps determine if this is happening recently. When all of the threads in the pool are actively handling
logger events, the logger event queue will rise rapidly. So, if this value is at the maximum thread pool
size, then the maxLoggerEventQueueSizeInLast function will display rapidly increasing queue sizes.

• callTransferRate—Returns the percentage of calls that ended in a blind telephony transfer. More
specifically, this counts calls where the how action of the end category is call_transfer. This can help
the administrator determine what percentage of callers decided to speak to an agent rather than complete
the call in the automated voice application.

• callAbandonRate—Returns the percentage of calls that ended with the caller hanging up. More
specifically, this counts calls where the how action of the end category is hangup. See section Application
Activity Logger for more on the different results and how ended values. Despite the name, a caller hanging
up is not necessarily a bad situation because the caller might hang up right before the application hung
up on the caller and the end category would still be hangup. This value would therefore be a good
indication of how callers interact with the applications on the system.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
54

Administration
VXML Server Metrics

• callCompleteRate—Returns the percentage of calls that ended normally. More specifically, this counts
calls where the result action of the end category is normal. See section Application Activity Logger for
more on the different results and how ended values. This function does not count calls into a suspended
application, calls ending in an error or timeout, or calls ending due to an element manually invalidating
the session. It is expected that this percentage be close to 100 percent.

• averageCallDuration—Returns the average duration of all calls handled by VXML Server, in seconds.
This information helps the administrator determine if a particular call being analyzed represents a typical
call since a particularly long call might indicate a caller having trouble with the application and a short
call might indicate caller frustration with the application.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
55

Administration
VXML Server Metrics

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
56

Administration
VXML Server Metrics

C H A P T E R 4
User Management

VXML Server includes a user management system for basic personalization and user-activity tracking. The
primary reason for a user management system is to facilitate the customization of voice applications depending
on user preferences, demographics, and prior user activity. It is not meant to be a replacement for fully featured
commercial user management systems and can be used in conjunction with those systems. Additionally,
Unified CVP voice applications do not require the presence of a user management system, it is provided as
an aid to application designers.

While the bulk of the user management system is designed to track individual users, its most basic form can
prove useful for certain applications. This bulk help those applications that do not need to track individual
users, but still want to provide very simple personalization, such as playingWelcome back when a call is
received from a phone number that has called before. When turned on, the user management system
automatically keeps track of information based on the phone numbers of callers. This is available automatically;
the developer does to need to do any additional work.

The user management system is fully integrated into VXML Server. An API is included to provide two
different interfaces to the user management system. The first interface manages the user database, allowing
separate, external processes to populate, maintain, and query the system. The second interface is provided for
dynamic components of a voice application to allow runtime updates and queries to the system. This second
interface allows a voice application to perform tasks such as playing a customizedmessage to registered users,
making decisions based on user demographics or history, and even adding new users after the caller completes
a successful registration process. The API has both Java and XML versions. These APIs are fully detailed in
Programming Guide for Cisco Unified CVP VXML Server and Unified Call Studio.

• Deployment, on page 57
• Database Design, on page 58

Deployment
The user management system is basically a database accessed by VXML Server. Each hosted voice application
may refer to a separate user management database or may share databases if users are to be shared across
applications. The user management system can be activated by providing a JNDI name for the relational
database where the user data is to be stored. This activation is done in the settings pane for the application in
the Builder for Call Studio. Currently, the databases supported are MySQL and SQLServer.

The application server must be set up to manage connections to this database.Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
57

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

Once the database is set up, VXML Server automatically handles the process of creating the database tables.

Database Design
The following figure displays an ER diagram of the database tables comprising the user management system.
The following sections describe each table individually and its purpose.
Figure 9: Database ER Diagram

Applications
DescriptionTypeColumn

Automatically generated application ID.integer (primary key)app_id

The name of the application with the specified
application ID.

varchar(50)application_name

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
58

User Management
Database Design

User Data
The tables under this category are used to store information about the users in the system.

users

This table is the main user table. Each row contains the information for a single user. Both demographic and
account information are stored here. The table specification is as follows:

DescriptionTypeColumn

This is a user ID automatically generated by the system to
identify a particular user. Once a call is associated with a UID,

integer (primary key)uid

the system knows the caller’s identity. The user management
system relies on this UID throughout.

If an external user management system is used in conjunction
with this one, there must be a way to link a user on the Unified

varchar(50)external_uid

CVP systemwith one in the external system. This column stores
the ID for this user on the external system to provide that link.
Can be null if the Unified CVP user management system is used
exclusively.

This stores the time the user was added to the system. It will
always have a value.

datetimeaccount_created

This stores the time of the last update to this user in the system.
It will always have a value.

datetimeaccount_modified

Some voice applications identify users by account numbers. If
so, the account number should be stored here, otherwise, it can
be null.

varchar(50)account_number

If the voice application uses a PIN to verify the user, the PIN
is stored here. Null if no PIN is used or required.

varchar(20)pin

The user’s name. Can be null.varchar(50)name

The user’s birthday. Can be null.varchar(50)birthday

The user’s zip code. Can be null.varchar(10)zip_code

The user’s gender: male, female, or null if not stored.varchar(10)gender

The social security number of the user. Can be null.varchar(10)social_security

The user’s full country name. Can be null.varchar(50)country

The language the user speaks or prefers. This can be used to
provide audio content in different languages. Can be null.

varchar(50)language

These columns are provided to allow the developer to place
custom user-related data in the system. It can be used for such

varchar(200)custom1-custom4

data as e-mail addresses, financial account balances, proprietary
IDs, and so on. Can be null.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
59

User Management
User Data

user_phone

This table is an adjunct to the main user table. It is used to store the phone numbers associated with the user.
The reason this data is placed in a separate table is to allow an application to associate more than one phone
number with a user. For example, a voice application allowing a user to associate with their account both their
home and work numbers can automatically recognize who the caller is when calls are received from either
number, rather than requiring them to log in. If multiple phone numbers are not required or necessary, this
table can contain one entry per account or remain empty. Because there may be multiple rows in the system
with the same UID, there is no primary key to this table. The table specification is as follows:

DescriptionTypeColumn

A phone number to associate with this account.varchar(10)phone

The UID identifying the user.integer (foreign key)uid

users_by_ani

This table is used to track calls made from specific phone numbers (ANIs). This table is automatically updated
by VXML Server and need only be queried by the developer when information about a caller is desired. The
table contains information about the number of calls and the last call made from a phone number. This
information can be used to welcome a caller back to the application or warn that menu options have changed
since their last call even if the application itself is not set up to track individual users through logins. The table
specification is as follows:

DescriptionTypeColumn

The phone number of the caller.varchar(10)ani

The application the caller called into. This exists in case
multiple applications share a common user management
system.

integerapp_id

The number of calls received by this phone number to this
application.

integercall_count

The last time a call was received by this phone number to
this application.

datetimelast_call

Historical Data
The application ID of the
application called. If the user
management system is not
shared across multiple
applications, this ID would be
the same for all calls.

The ANI of the originating caller. Is NA if the ANI was
not sent by the telephony provider.

varchar(10)ani

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
60

User Management
Historical Data

The DNIS of the originating caller. Is NA if the DNIS was
not sent by the telephony provider.

varchar(10)dnis

The UUI of the originating caller. Is NA if the UUI was
not sent by the telephony provider.

varchar(100)uui

The IIDIGITS of the originating caller. Is NA if the
IIDIGITS was not sent by the telephony provider.

varchar(100)iidigits

The area code of the originating caller. Is null if the ANI
is NA.

varchar(10)area_code

The exchange of the originating caller. Is null if the ANI
is NA.

varchar(10)exchange

The UID of the caller if the call was associated with a user.
If not, it will appear as null.

integeruid

The date and time the visit to the application began. If no
other application can transfer to this one, this will be the
time the call was made.

datetimestart_time

The date and time the visit to the application ended. If this
application cannot transfer to any other application, this
will be the time the call ended in a hang-up or disconnect.

datetimeend_time

flags

This table contains records of the flags triggered by every call made to the system. Because flags are used to
indicate important parts of the voice application, knowing what areas of the voice application people visited
in the past can be very useful. The table specification is as follows:

DescriptionTypeColumns

This refers to the call ID of the call.integercall_id

This is the name of the flag that was triggered.varchar(100)flag_name

This is the date and time the flag was triggered.datetimeflag_time

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
61

User Management
Historical Data

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
62

User Management
Historical Data

C H A P T E R 5
VXML Server Logging

Logging plays an important part in voice application development, maintenance, and improvement. During
development, logs help identify and describe errors and problems with the system. Voice applications relying
heavily on speech recognition require frequent tuning in order to maximize recognition effectiveness. Voice
application design may also be changed often, taking into account the behaviors of callers over time. The
more information an application designer has about how callers interact with the voice application, the more
that can be done to modify the application to help callers perform their tasks faster and easier.

For example, a developer could determine the most popular part of the voice application and make that easier
to reach for callers. If a large proportion of callers ask for help in a certain part of the application, the prompt
might need to be rewritten to be clearer. After analyzing the declaration of various callers, the effectiveness
of grammars can be determined so that additional words or phrases can be added or removed. None of this is
possible without detailed logs of caller behavior. While each component of a complete VRU system, such as
the voice browser and speech recognition system provide their own logs, VXML Server provides logs that
combine all this information with the application logic. This chapter explains the details of logging on VXML
Server.

Because of the importance of logging, VXML Server has been designed to offer the maximum flexibility with
regards to what can be logged, how it is logged, and where it is logged. The logs generated by VXML Server
by default can be customized to fit the needs of a deployment. In addition, a Java API exists that allows
developers to create their own ways of handling logging for better integration with the deployed environment
or tailored specifically for special needs.

• Loggers, on page 63
• Global Loggers, on page 64
• Application Loggers, on page 69
• Correlating Unified CVP Call Server Logs with VXML Server Logs, on page 86

Loggers
VXML Server handles all logging activity through the use of loggers. Loggers are plug-ins to VXML Server
that listen for certain logging events and handle them in a custom manner, from storing the information in log
files, sending the information to a database, or even to interface with a reporting system. Any number of
loggers can be used, even multiple instances of the same logger. A logger may or may not require a
configuration that will allow the designer to customize how the logger performs.

VXML Server comes with several loggers that provide all necessary information in text log files. Some provide
configurations to allow for a level of customization in how the loggers perform. VXML Server exposes a Java
API to allow developers the flexibility of creating their own loggers to allow for even more customization.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
63

See the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for detailed
information on how to build custom loggers.

VXML Server communicates with loggers by triggering logging events that the loggers listen for and then
deal with. VXML Server activates loggers in a fully multithreaded environment to maximize performance.

Loggers are divided into two categories: global loggers and application loggers. Global loggers are activated
by logging events that apply to VXML Server as a whole and that is not directly related to any particular
application (for example, a record of all calls made to the VXML Server instance). Application loggers are
activated by logging events that apply to a particular application running on VXML Server (for example, a
call visiting an element). Each logger type is constructed using separate Java APIs and deals with a separate
list of possible logging events . Each logger type is also given a separate area to store logs, although a logger
may choose to ignore this area if it does not log to files.

Global Loggers
The global_config.xml file found in the conf directory of %CVP_HOME%\VXMLServer is used to define the
global loggers VXML Server is to use. The administrator can define any number of global loggers to be
simultaneously active, even multiple instances of the same logger class. This file also lists the names of the
configuration files for these loggers, if they are configurable. The configuration files must be placed in the
same conf directory as the global_config.xml file. The global_config.xml file and any configuration files
must be edited by hand, there is no interface for editing them. Refer to VXML Server Configuration for more
details about this file and how to define global loggers within it.

Global loggers are loaded by VXML Server when it starts up and remain in memory until it is shut down.
Any change made to the global_config.xml file is not loaded until VXML Server is restarted.

VXML Server provides the logs folder of %CVP_HOME%\VXMLServer for log file storage if the Global Loggers
require it. To keep each logger instance’s logs separate, a subfolder with the name of the logger instance is
created, and all logs generated by the logger instance are stored there.

By default, VXML Server utilizes three loggers to create text log files containing VXML Server-specific
information: a log that keeps track of calls made to the system, a log for tracking VXMLServer administration
activity, and an log that shows errors that occur on the VXML Server level (as opposed to the application
level). The global error logger requires a configuration that allows for detailed control over how the logger
operates.

The following sections describe these three prebuilt global loggers, their configurations (if any), and the
information stored in their logs.

Global Call Logger
The global call logger records a single line for every application visit handled by VXML Server into a text
call log. Most calls will begin and end in a single application so in that case a line in the call log is equivalent
to a physical phone call. For situations where one application performs an application transfer to another
application, a separate line will be added to the call log for each application visit despite the fact that they all
occur in the same physical call. Because each application visit is logged separately in each application’s own
log file, the call log provides a way to stitch together a call session that spans multiple applications.

The call log file names are in the format call_logYYYY-MM-DD.txt where YYYY, MM, and DD are the year,
month, and day when the call log was first created. By default, the log folder for is named GlobalCallLogger
(though the name is set in the global_config.xml file and can be changed by the administrator). Call log
files are rotated daily. The file is organized in a comma-delimited format with 6 columns:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
64

VXML Server Logging
Global Loggers

• CallID—This is a nonrepeating value generated by VXMLServer to uniquely identify calls. It is designed
to be unique even across machines, because the log files of multiple machines running the same
applications may be combined for analyses. The format of the session ID is IP.SECS.INCR where IP is
the IP address of the VXML Server instance on which the call originated, SECS is a large integer number
representing the time the application visit was made and INCR is an automatically incremented number
managed by VXML Server. Each part is delimited by dots and contains no spaces. For example:
192.168.1.100.1024931901079.1.

If a voice application uses a Subdialog Invoke element to transfer across multiple
VXML Server instances, the IP address included in the CallID is the IP address
of the instance the call started on. Because of this, it is possible that a CallID in
log files on one machine may contain an IP address for another machine. This
allows a physical call to be traced across multiple servers (from a logging
standpoint), even if Subdialog Invoke is used to transfer to between various voice
applications.

Note

• SessionID—The session ID is used to track a visit to a specific application. Therefore, with application
transfers, one call ID may be associated with multiple session IDs. For this reason, session IDs are
basically the call ID with the application name appended to the end. For example:
192.168.1.100.1024931901079.1.MyApp.

• callers—This integer represents the total number of callers interacting with the system at the time the
call was received (excluding the current call).

• order—A number indicating the order of each application visited in a call. The order begins at 1. This
column exists to report the order in which a caller visited each application should the data be imported
to a database.

• Application—The name of the application visited.

• Time—A timestamp of the application visit in the formatMM/DD/YYYY HH:MM:SS.MMM where the
hour is in 24-hour time andMMM represents a 3-digit millisecond value. This represents when the call
was received or the application transfer occurred.

Global Error Logger
TheGlobal Error Logger records errors that occur outside the realm of a particular application. Application-level
errors are logged by application-level loggers, which are described later in this chapter. Another type of error
that the Global Error Logger receives is an application-level error that encountered trouble with its logging.
In order to prevent the loss of the data, VXML Server activates a global logger event with the original
application error as a backup.

The error log file names are in the form error_logYYYY-MM-DD.txtwhere YYYY, MM, and DD are the year,
month, and day when the error log was first created. By default, the log folder is named GlobalErrorLogger
(though the name is set in the global_config.xml file and can be changed by the administrator). Global error
log files are rotated daily.

If no error occurred on a particular day, no error log is created.Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
65

VXML Server Logging
Global Error Logger

The file is organized in a comma-delimited format with 2 columns:

• Time—The time the error occurred.

• Description—The error description. One possible value can be max_ports, indicating the caller was put
on hold because all the Unified CVP license ports were taken. While the call was eventually handled
correctly, this is placed here as a notice that the license may not have enough Unified CVP ports to match
caller volume. Another value is bad_url:[URL], indicating that a request was made to VXML Server for
a URL that could not be recognized. This most likely will occur if the voice browser refers to an application
that does not exist. The last description is error, indicating that some other error occurred.

The global error log is not designed to be parsed, even though the columns are separated with commas. This
is because when the error log reports a Java-related error, it may include what is called a Java stack trace,
which contains multiple lines of output.

Note

The Global Error Logger utilizes a configuration to control how it logs certain types of errors and how often
the log files should be purged. The configuration is specified as an XML file created by the designer and
placed in the conf directory of %CVP_HOME%\VXMLServer.
Figure 10: Global Error Log Configuration

The Global Error Log Configuration diagram displays the format for the XML Global Error Logger
configuration file. The main tag for the configuration, configuration, has two attributes, name and version.
Name is expected to contain the logger instance name. The version is expected to include the version of the
configuration, which is currently 1.0. The subsequent sections describe the functionality of the various tags
in the configuration.

Global Error Logger Configuration: Log Details

The <log_details> tag controls which errors to log and what information to include about those errors. The
possible child tags are:

• <stacktraces>—Indicates that any Java errors that occur should also have their stack traces printed in
the log. The absence of this tag indicates not to include stack traces.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
66

VXML Server Logging
Global Error Logger

• <on_hold_calls>—Indicates that a call that was put on hold should be logged. The application_name
attribute can have the values true and false, true being to include the name of the application the caller
attempted to reach when being put on hold and false to not include the application name.

• <http_parameters>—Indicates that an error caused by an unrecognized URL (such as a request for an
application that does not exist) should include the HTTP parameters passed to the URL. This tag can be
helpful to know since it could help determine why the request was made. The length attribute provides
a limit, in a number of characters, to be included in the log. This prevents the log from being filled up
with too much parameter data.

The parameter data appears on one line, no matter how long.Note

• <http_headers>—Indicates that an error caused by an unrecognized URL (such as a request for an
application that does not exist) should include the HTTP headers passed to the URL. This can be helpful
to know since it could help determine why the request was made. The length attribute provides a limit,
in a number of characters, to be included in the log. This tag prevents the log from being filled up with
too much header data.

The header data appears on one line, no matter how long.Note

• <http_session_data>—Helps debug situations where the VXML Server receives HTTP requests that it
does not expect or understand. When this tag is used, the JSession ID (if known) and its association with
the VXML Server Call ID (if known) are displayed in the global error logger. This tag is helpful in
debugging bad_url errors. Bad_url errors are generally displayed when the VXML Server receives a
HTTP request that cannot be recognized. Use of this option increases the amount of memory used by
the VXML Server. Use this feature only for debugging situations.

Global Error Logger Configuration: File Purging

The Global Error Logger can be configured to automatically delete files that conform to certain criteria.
Properly configured, this allows an administrator to avoid having the system’s hard drive fill up with logs,
which would prevent new calls from being logged.

Note the following information about file purging:

• Because loggers are activated only when events occur in a call, the file-purging activity only takes place
when an error event occurs. As a result, a system that encounters no errors will not automatically delete
files until a new error occurs.

• When the Global Error Logger starts up for the first time, it applies the purging strategy on any files that
exist in the logger directory. Therefore, if an application server is shut down with files in the logger
directory and then restarted a long time later, these files might be deleted when the application server
starts up and the logger initializes.

• The Global Error Logger applies its purging strategy to any files found in its logger directory, including
non-error log files. Other files added to the logger folder after the application server has started could be
deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging will take place. The tag can contain one of the following child tags:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
67

VXML Server Logging
Global Error Logger

• file_age—The Global Error Logger will delete error log files older than X days, where X is an integer
greater than 0 specified in the older_than attribute.

• file_count—The Global Error Logger will delete error log files if the logger folder contains greater than
X files, where X is an integer greater than 0 specified in the greater_than attribute. When the files are
deleted, the oldest ones are deleted first until the folder reaches the desired file count.

Global Error Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger1">
<log_details>
<stacktraces/>
<http_parameters length="100"/>
<http_headers length="300"/>

</log_details>
<purge>
<file_age older_than="14"/>

</purge>
</configuration>

This configuration has the following features:

• Java stack traces will appear in the error logs.

Because stack traces span multiple lines, including stack traces may complicate
the process of importing the error logs into spreadsheets or databases. This is
rarely done for error logs.

Note

• If there is a bad URL error message, it will include 100 characters of the URL input parameters and 300
characters of the HTTP headers, all on one line in the log file.

• Nothing is logged for a call that is put on hold.

• When a new file is added to logger instance’s dedicated directory by the Global Error Logger, if the
directory contains files that are older than 14 days (2 weeks), the files will be deleted.

Error Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger2">
<log_details>
<on_hold_calls application_name="true"/>

</log_details>
<purge>
<file_count greater_than="100"/>

</purge>
</configuration>

This configuration has the following features:

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the error message
itself will appear in the error log without the stack trace.

• When a call is put on hold, that fact will be logged along with the application name that the caller was
attempting to visit.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
68

VXML Server Logging
Global Error Logger

• If there is a bad URL error message, only the URL itself will be logged without any HTTP parameters
or headers.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

Global Administration History Logger
The Global Administration History Logger records administration events that occur on VXML Server itself.
Application-level administration history is logged by application-level loggers, which are described later in
this chapter. These events are triggered by an administrator executing administration script (see Administration
for more on administering VXML Server).

The administration log file names begin with admin_historyYYYY-MM-DD.txt where YYYY, MM, and DD
are the year, month, and day when the administration log was first created. By default, the log folder is named
GlobalAdminLogger (though the name is set in the global_config.xml file and can be changed by the
administrator). Administration history log files are rotated daily.

If no administration activity occurred on a particular day, no administration history log will be created.Note

The file contains three columns: the time, what script was run, and its result, separated by commas. The result
is usually success and if not, contains the description of the error encountered. The possible values of the
result are:

• server_start—Listed when the VXML Server web application archive initializes. This occurs if the Java
application server on which VXML Server is installed starts up or the administrator of the application
server explicitly started up the VXML Server web application archive.

• server_stop—Listed when the VXML Server web application archive is stopped. This occurs if the Java
application server on which VXML Server is installed shuts down or the administrator of the application
server explicitly stops the VXML Server web application archive.

• deploy_all_new_apps—Listed when the deployAllNewApps script is run.

• flush_all_old_apps—Listed when the flushAllOldApps script is run.

• suspend_server—Listed when the suspendServer script is run.

• resume_server—Listed when the resumeServer script is run.

• update_common_classes—Listed when the updateCommonClasses script is run.

Running the status script does not trigger an administration event and thus does not update the history log.Note

Application Loggers
Application loggers are defined in the settings for that application. The application designer can choose any
number of application loggers they want to listen to events for a particular application, giving each instance
a name. A logger may or may not require a configuration that will allow the designer to customize how the

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
69

VXML Server Logging
Global Administration History Logger

logger performs. The configuration files must be placed in the data/application directory of the deployed
application.

Unique to application loggers is the ability for one to specify that all logging events for a call be passed to the
logger it in the order in which they occurred in the call. Some application loggers may even require this
functionality to be turned on as their functionality depends on the events arriving in order. The application
designer can choose to ensure this functionality is the case even for application loggers that do not explicitly
require it to have logs appear orderly. There is some performance degradation as a result of this functionality
so an application logger that does not require this should not enable it.

VXML Server provides the logs folder of a particular application for log file storage should the loggers
require it. To keep each application logger instance’s logs separate, a subfolder with the name of the instance
is created and all logs created by the logger instance are stored there.

By default, VXML Server includes four loggers that provide various application-specific information: an
activity logger that records caller behavior, an application administration history logger that records
administration activities, an error logger that lists errors that occur within calls to the application, and a debug
logger that provides additional information useful when creating and debugging a new application. The activity
logger and error logger require configurations that allow for detailed control over how the loggers operate.

The following sections describe these four prebuilt application loggers, their configurations (if any), and the
information stored in their logs.

Application Activity Logger
The Activity Logger is the main application logger included with VXML Server. It records into text log files
all of the activity taken by callers when they visit an application. It stores information about the call itself
such as its ANI, what elements the caller encountered and in what order, and even detailed actions such as
the values entered by the caller or the confidences of their declaration. The names of the log files created by
the Activity Logger begin with activity_log and are delimited for easy importing into spreadsheets and
databases. These logs have a fixed number of columns:

• SessionID—The session ID of the application visit as described in the VXML Server Call Log section.

• Time—A timestamp of the event in a readable format.

• [Element name]—The name of the current element the activity belongs to. Only functional elements
(voice elements, action elements, decision elements, and insert elements) can appear here. This column
would be empty if the activity does not apply to an element.

• Category—The category of the action:

• start—Information on new visits to the application.

• end—Information on how the application visit ended.

• element—Information on the element visited and how the element was exited. The element column
is empty for the start and end categories.

• interaction—Detailed information about what a caller did within a voice element.

• data—Element data to be logged.

• custom—Custom developer-specified data to log.

• Action—A keyword indicating the action taken. A list of actions is given in the following table.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
70

VXML Server Logging
Application Activity Logger

• Description—Some qualifier or description of the action.

The following table lists all of possible category and actions that can appear in the activity log and descriptions
on what they represent.

DescriptionActionCategory

newcall is used when the application visit is a new call. The description
is empty. source is used when another application transferred to this

newcall or sourcestart

application. The name of the application transferred from is listed in
the description.

The description is the ANI of the caller. NA if the ANI is not sent.anistart

The area code of the ANI. NA if the ANI is not sent.areacodestart

The exchange of the ANI. NA if the ANI is not sent.exchangestart

The description is the DNIS of the call. NA if the DNIS is not sent.dnisstart

The description is the IIDIGITS of the call. NA if the IIDIGITS is not
sent.

iidigitsstart

The description is the UUI of the call. NA if the UUI is not sent.uuistart

The application visit is associated with a user. The UID is listed in the
description.

uidstart

An HTTP parameter attached to the initial URL that starts a Unified
CVP application. The description lists the parameter name followed

parameterstart

by an “=” followed by the value. A separate line will appear for each
parameter passed.

An error occurred in the on-call start action (either a Java class or
XML-over-HTTP). The description is the error message.

errorstart

How the call ended. The description is either hangup to indicate the
caller hung up, disconnect to indicate the system hung up on the caller,

howend

application_transfer:APPNAME to indicate a transfer to another Unified
CVP application occurred (where APPNAME stands for the name of
the destination application), call_transfer to indicate a telephony blind
transfer occurred, or app_session_complete to indicate that the call
session ended by another means such as a timeout or the call being sent
to an VRU system outside of Unified CVP.

The description explains why the call ended. normal indicates the call
ended normally, suspended indicates the application is suspended, error

resultend

indicates an error occurred, timeout indicates that the VXML Server
session timed out, and invalidated indicates the application itself
invalidated the session.

The duration of the call, in seconds.durationend

An error occurred in the on call end action (either a Java class or
XML-over-HTTP). The description is the error message.

errorend

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
71

VXML Server Logging
Application Activity Logger

The element was entered. The description is empty. This is always the
first action for an element.

enterelement

A hotlink was activated while in the element. This can be either a global
or local hotlink. The description lists the hotlink name.

hotlinkelement

A hotevent was activated while in the element. The description lists
the hotevent name.

hoteventelement

An error occurred while in the element. The description lists the error
message.

errorelement

A flag was triggered. The description lists the flag name.flagelement

The element was exited. The description lists the exit state of the
element or is empty if a hotlink, hotevent or error occurred within the
element.

exitelement

An audio group was played to the caller. The description is the audio
group name.

audio_groupinteraction

How the caller entered data. The description can be dtmf or speech.inputmodeinteraction

The caller said something that was matched by the speech recognition
engine. The description lists the match it made of the utterance. This
action will always appear with the interpretation and confidence actions.

utteranceinteraction

In a grammar, each utterance is mapped to a certain interpretation value.
The description holds the interpretation value for the caller’s utterance.

interpretationinteraction

This action will always appear with the utterance and confidence
actions.

The confidence of the caller's matched utterance. This is a decimal
value from 0.0 to 1.0. DTMF entries will always have a confidence of

confidenceinteraction

1.0. This action will always appear with the utterance and interpretation
actions.

The caller said something that did not match anything in the grammar.nomatchinteraction

The caller did not say anything after a certain time period.noinputinteraction

When an element creates element data, one can specify if to log the
element data. Element data slated to be logged will appear here with
the element data name as the action and the value as the description.

[NAME]data

Anywhere the developer adds custom name/value information to the
log will have the name appear as the action and the value stored within
as the description.

[NAME]custom

Note the following guidelines about the Activity Logger:

• Due to its complexity, the Activity Logger requires that the enforce call event order option to be set for
the logger instance using it and will throw an error if it is not set.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
72

VXML Server Logging
Application Activity Logger

• When one Unified CVP application performs an application transfer to another application, the reported
timestamps of the end category of the source application and the start category of the destination
application could be imprecise when the source application ends with the playing of audio content. This
is due to the fact that voice browsers typically request VoiceXML pages in advance if the current page
contains only audio and a submit to the next page. In other words, the browser could be playing audio
to the caller while making a request for the next VoiceXML page. If that page were the last of an
application, the subsequent request would begin the process of entering the new application including
having the Activity Logger handle start and end of call logging for the two applications. It would then
report the end time for the source application as being before the time the caller actually experienced the
destination application by hearing its audio.

The Activity Logger utilizes a configuration to control the finer details of the information it stores in its log
files. The configuration controls five different aspects of the Activity Logger:

• Format of the files

• How much data to store in them

• How often to rotate the files

• How caching should work

• How often should log files be purged

This configuration is specified as an XML file created by the designer in Builder for Call Studio. The following
figure shows the format for the XML Activity Logger configuration file.
Figure 11: Activity Logger Configuration File Format

The main tag for the configuration, configuration, has two attributes, name and version. Name is expected to
contain the logger instance name although can be given any name desired. The version is expected to include

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
73

VXML Server Logging
Application Activity Logger

the version of the configuration, which is currently 1.0. The subsequent sections describe the functionality of
the various tags in the configuration.

Activity Logger Configuration: Format

The <format> tag allows for the modification of how the activity log files are formatted. All Activity Logger
configurations are required to define a format. The possible attributes are:

• delimiter—This required attribute defines the delimiter to use to separate columns on a line. Delimiters
can be any string value, though typically will be a comma or tab. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• remove_delimiter_from_content—When this required attribute is set to true, the Activity Logger
attempts to eliminate the delimiter from any content appearing in the logs to ensure that the log file can
be imported flawlessly. For example, if the delimiter is a comma and the configuration is set to remove
the delimiter, when it is to log the content This, is the description, it will appear in the log as This is the
description so that it does not affect the accuracy of the importing process. This extra step, though, does
incur a slight performance hit. This step will not be performed if this attribute is set to false.

• end_of_line—This optional attribute controls the delimiter used to separate lines. When this optional
attribute is set to true, the Activity Logger will separate lines appropriate to the operating system on
which VXML Server is running. Set the attribute to explicitly set the new line delimiter. Delimiters can
be any string value, though typically will be a white space character. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• date_format and date_granularity—These required attributes set how the second column of the activity
log references a date when the event occurred. The format and granularity are specified.

There are three possible values for the date_format attribute:

• standard—This is a standard readable date format in the formMM/DD/YYYYHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance is based on the
date_granularity attribute. For a date_granularity attribute set to minutes, just the hours and
minutes of the time will be displayed. For a granularity set to seconds, just the hours, minutes and
seconds will be displayed. For a granularity set to milliseconds, all components will be displayed.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
74

VXML Server Logging
Application Activity Logger

• minimal—This is a minimal time value that omits the date and is in the formHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance are based on the
date_granularity attribute. For a date_granularity attribute set to minutes, just the hours and
minutes will be displayed. For a granularity set to seconds, just the hours, minutes and seconds will
be displayed. For a granularity set to milliseconds, all components will be displayed.

• number—This displays a large integer number representing the full date and time as an elapsed
time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute set to minutes, the
number will be 8 digits in length (representing the number of minutes elapsed since that date). For
a granularity set to seconds, the number will be 10 digits in length (representing the number of
seconds elapsed since that date). For a granularity set to milliseconds, the number will be 13 digits
in length (representing the number of milliseconds elapsed since that date).

Activity Logger Configuration: Scope

The Activity Logger configuration provides the administrator the ability to control what is logged based on
their own needs. This configuration is done by defining logging levels and the events that each level contains.
During the debugging stage, for example, the logging level can be set to record all events and once in production,
the logging level can be set to record more important events.

The <scope> tag defines the logging level to use in the logging_level attribute. The child tag <definitions>
encapsulates all possible logging levels. All Activity Logger configurations are required to define a scope
with at least one logging level.

To define a logging level, a separate <level> tag is added within the <definitions> tag and given a name
in the name attribute. This tag will include a separate <event> tag for each event the logging level includes.
The id attribute defines the name of the event. The following table lists all possible event IDs and describes
when that event occurs.

At minimum, the start and end events are required for any logging level as these events are used by the Activity
Logger to maintain information about its log files and which calls are using them.

Note

Event DescriptionEvent ID

This event occurs when a new visit is made to the application (could be a new call
or visit using an application transfer). This event is required in all logging levels.

start

This event occurs when an application visit ends. This event is required in all
logging levels.

end

This event occurs when an element is entered. This applies to both standard and
configurable elements as well as VoiceXML Insert elements.

elementEnter

This event occurs when an element exits (either normally or due to something
occurring within it that took the call flow elsewhere).

elementExit

This event occurs when a flag element is visited by a caller.elementFlag

This event occurs when a voice element returns interaction logging content as a
result of caller activity within a VoiceXML page.

defaultInteraction

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
75

VXML Server Logging
Application Activity Logger

This event occurs when element data is created that has been configured to be
stored in the log.

elementData

This event occurs when custom content is to be added to the log, either by visiting
an element whose configuration specified content to add or by executing custom
code using either the Java or XML APIs that specifies to add to the log.

custom

This event occurs when a global or local hotlink that points to an exit state (as
opposed to throwing a VoiceXML event) is activated by the caller.

hotlink

This event occurs when a hotevent that has an exit state is activated in the call.hotevent

This event occurs when a warning is encountered.warning

This event occurs when VXML Server encounters an internal error (that is, an
error that does not originate from a custom component). This event will include
a stack trace.

systemError

This event occurs when a custom component created with the Unified CVP Java
API encounters an error. This event will include a stack trace.

javaApiError

This event occurs when a custom component created with the Unified CVP XML
API encounters an error. This event will not include a stack trace.

xmlApiError

This event occurs when an error event is received from the voice browser. This
event will not include a stack trace.

vxmlError

Activity Logger Configuration: File Rotation

In any system that stores information in log files, high volume can cause these files to become very large. The
goal is to have a strategy for creating new log files in order to avoid files that are too large. Additionally, file
rotation strategies can help separate the log files into more logical parts. The Activity Logger defines several
rotation strategies to choose from.

To ensure that the information for a single call is not split across multiple log files, the Activity Logger ensures
that all call information appears in the log that was active when the call was received. As a result, it is possible
for calls to be updating both pre- and post-rotation log files simultaneously.

Note

Each rotation strategy determines how the log files are named (though all activity log filenames begin with
activity_log). The <rotation> tag defines the rotation strategy to use by containing one of the following tags:

• <by_day>—Creates a new log file every X days where X is an integer value greater than 0 specified in
the every attribute. Typically this value is 1, meaning that every day at midnight, a new log file is created.
For low volume systems, the value can be given a larger value. For example, when set to 7, a new log
file is created once a week. The log files are named activity_logYYYY-MM-DD.txt where YYYY is the
year, MM is the month, and DD is the day that the file is created.

• <by_hour>—Creates a new log file every X hours where X is an integer value greater than 0 specified
in the every attribute. There is no upper bound on this value, so it can be greater than 24. The log files
are named activity_logYYYY-MM-DD-HH.txt where YYYY is the year, MM is the month, DD is the day,
and HH is the hour that the file is created.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
76

VXML Server Logging
Application Activity Logger

The hour is measured in 24-hour time (0 - 23).Note

In locales that use Daylight Saving Time (DST), calls that are placed after the
clock is turned back an hour will continue to be logged in the current log file for
the one a.m hour (the current log file). A new log file is not created when the
clock is turned back for DST for the one a.m hour.

Note

• <by_call>—Creates a separate log file for each call made to the application. The log files are named
activity_logYYYY-MM-DD-HH-SESSIONID.txt where YYYY is the year, MM is the month, DD is the
day, and HH is the hour that the file is created (in 24-hour time) and SESSIONID is the VXML Server
session ID (for example, activity_log2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt). The
session ID is included in the filename to ensure uniqueness of the files.

Care must be taken before using this log file rotation strategy on systems with
high load as this will create a very large number of files.

Note

• <by_size>—Creates a separate log file once the previous log file has reached Xmegabytes in size where
X is an integer value greater than 0 specified in the mb_limit attribute.

Due to the fact that multiple calls will be updating the same file and that the
Activity Logger will ensure that all data for a single call appear in the same log
file, the final log file may be slightly larger than the limit.

Note

The log files are named activity_logYYYY-MM-DD-HH-MM-SS.txtwhere YYYY is the year, the firstMM
is the month, DD is the day, HH is the hour (in 24-hour time), the secondMM is the minute, and SS is
the second that the file is created. The time information is included in the file name in order to ensure
uniqueness.

Activity Logger Configuration: Caching

The Activity Logger has the ability to use a memory cache to store information to log until either the cache
fills or the call ends. Using a cache has several advantages. The first is that it increases performance by waiting
until the end of the call to perform the file IO. Without a cache, the log file would be updated each time an
event occurred. Another advantage is that with caching on, the log file will be more readable by grouping the
activities belonging to a single phone call together. Without the cache, the events for all calls being handled
by every application running on VXML Server would be intermingled. While one can still sort the calls after
the log is imported to a spreadsheet or database, it is much more difficult to track a single call when simply
reading the log file without the cache. The one disadvantage of using a cache is that the log file is not updated
in real-time, only after a call has completed. If there is a desire to have the logs updated immediately after the
events occur, then caching should be left out of the configuration.

The <cache> tag has only one child tag: <per_call>, indicating that the cache’s lifetime is a single call to an
application. <per_call> defines two attributes: kb_limit, an integer value greater than 0 that defines the size
of the cache in kilobytes, and allocate that defines the cache allocation strategy.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
77

VXML Server Logging
Application Activity Logger

The attribute can be set to two values:

• once—The Activity Logger will allocate the full memory needed for the cache once and then fill it up
with logging information.When filled, the cache is flushed to the log file and the same section of memory
is cleared and then refilled.

• as_needed—The Activity Logger will allocate memory as events arrive in the call until the total amount
of memory has been allocated. When it is to be flushed, the memory is released and then the allocation
begins again.

The advantage of allocating the memory at once is that since a contiguous section of memory is being used,
the updating, maintenance, and flushing of that memory will be slightly faster. Additionally, with only one
area of memory per call fewer memory allocations take place, which can affect how often Java garbage
collection runs. A disadvantage is that the cache size needs to be chosen carefully. A cache incurs too small
performance hits as the cache fills up and is logged multiple times within a call. A cache means too large that
a large amount of memory is allocated and then never used, potentially starving the rest of the system. A good
cache size would be approximately the size of a log for a typical call to the application. Because the cache is
flushed at the end of a call, there is little reason to make the cache much larger.

The advantage to allocating the memory as needed is that this minimizes the memory used since only the
memory needed to store the information is used. The cache size is not as important, and making it larger will
not affect the overall memory usage as drastically as if the cache was allocated all at once because the memory
would not be allocated unless needed.

Configure the cache to be allocated once for performance and as needed if memory on the system is limited.

Activity Logger Configuration: File Purging

The Activity Logger can be configured to automatically delete files that conform to certain criteria. Properly
configured, this logger allow an administrator to avoid having the system’s hard drive fill up with logs, which
prevents new calls from being logged.

Note the following information about file purging:

• A logger has control only over the files appearing under the logger instance’s dedicated log folder and
cannot control those files managed by other logger instances. This logger even applies to multiple instances
of the same logger since each logger instance is given its own unique folder within the logs folder of
the application. Activity Logger file purging therefore applies only to those files appearing under the
logger instance’s folder.

• Because loggers are activated only when events occur in a call, the file-purging activity will only take
place when a call ends. As a result, a system that receives no calls at all will not automatically delete
files until a new call is received and completes.

• When the Activity Logger starts up for the first time, it will apply the purging strategy on any files that
exist in the logger directory. Therefore, if an application server is shut down with files in the logger
directory and then restarted a long time later, these files could be deleted when the application server
starts up and the logger initializes. This applies to any file appearing in the logger directory, not just
activity logs.

• The Activity Logger keeps information about the activity log files in memory and acts on that to determine
whether to delete them rather than by monitoring the remaining hard drive space on the system. This is
done to avoid having to do file IO to determine if a file is to be purged and so minimizes overhead
(although there still is overhead in deleting files). One consequence is that the logger keeps track only
of those files it is managing. The logger is unaware of any files added to the directory after the application
server initializes, so the purging strategy will affect those files only.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
78

VXML Server Logging
Application Activity Logger

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging takes place. The tag can contain one of the following child tags:

• file_age—The Activity Logger deletes activity log files older than X days, where X is an integer greater
than 0 specified in the older_than attribute.

• file_count—The Activity Logger deletes activity log files if the logger folder contains greater than X
files, where X is an integer greater than 0 specified in the greater_than attribute. When the files are
deleted, the oldest ones are deleted first until the folder reaches the desired file count.

Activity Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger1">

<format delimiter="\t" remove_delimiter_from_content="true" end_of_line="\n"
date_format="standard" date_granularity="milliseconds"/>

<scope logging_level="Complete">
<definitions>

<level name="Minimal">
<event id="start"/>
<event id="end"/>

</level>
<level name="Complete">

<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementExit"/>
<event id="elementFlag"/>
<event id="defaultInteraction"/>
<event id="elementData"/>
<event id="custom"/>
<event id="hotlink"/>
<event id="hotevent"/>
<event id="warning"/>

</level>
</definitions>

</scope>
<rotation>

<by_day every="2"/>
</rotation>
<cache>

<per_call kb_limit="10" allocate="once"/>
</cache>
<purge>

<file_age older_than="3"/>
</purge>

</configuration>

This configuration has the following features:

• The activity logs will be delimited with a tab (“\t”) and will have any tabs that appear in the content
removed.

• The activity logs will use a Unix-style new line character (“\n”) to delimit lines. As a result, these log
files would not appear orderly on Windows Notepad because it does not recognize these new line
characters.

• Dates in the activity logs will appear in the standard format with millisecond granularity. For example,
05/09/2006 15:45:02.654

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
79

VXML Server Logging
Application Activity Logger

• Two logging levels are defined:Minimal, which logs only when a caller entered and exited an application,
and Complete, which logs all events. The Complete logging level is the one that will be used.

• The activity log files will be rotated every two days, meaning each log file will contain two days worth
of calls before a new file is created.

• The cache is set to 10 K or 5000 characters and is allocated once at the start of a call.

• Files that are older than three days that appear in the logger instance’s dedicated directory will be purged.

Activity Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger2">

<format delimiter="," remove_delimiter_from_content="false" date_format="minimal"
date_granularity="minutes"/>

<scope logging_level="MyLoggingLevel">
<definitions>

<level name="MyLoggingLevel">
<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementFlag"/>
<event id="elementExit"/>

</level>
</definitions>

</scope>
<rotation>

<by_size mb_limit="100"/>
</rotation>

</configuration>

This configuration has the following features:

• The activity logs will be delimited with a comma and will not remove any commas that appear in the
content potentially complicating any importing of these logs into spreadsheets or databases.

• The activity logs will end each line with the character appropriate for the operating system on which it
is generated. If this system is running under Windows, the activity logs can be viewed in Notepad and
if this system is running under Unix, the activity logs can use the Unix end of line characters that would
not be recognized if opened by Windows Notepad.

• Dates in the activity logs will appear in the minimal format with minute granularity. For example, 15:45.

• Only one logging level is defined that logs when calls enter and exit an application, enter and exit an
element, and when a flag element is visited.

• A new activity log is created when the previous one has reached approximately 100MB in size, regardless
on whether the calls spanned weeks or hours.

• No logging cache is used, meaning that when a logging event occurs in a call, it is placed into the activity
log immediately. It allows for real-time logging but incurs a performance overhead in managing much
more IO operations.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
80

VXML Server Logging
Application Activity Logger

Application Error Logger
During the voice application development process, errors can be introduced by configuring elements incorrectly,
spelling mistakes in audio filenames, or by Java coding bugs. In each of these cases, errors occur while running
the application. While the Activity Logger does report errors, it is preferable to isolate errors in a separate file
so that they are easily found and addressed. Additionally, when reporting Java errors, a stack trace is desired.
The application Error Logger provides a place for these errors to appear. The error log file names are in the
form error_logYYYY-MM-DD.txt where YYYY, MM, and DD are the year, month, and day when the error
log was first created and is rotated daily.

The application Error Logger will report information on errors that are affiliated with the application in which
it is configured. It can even report errors encountered by other loggers in the same application only if the Error
Logger is listed before other loggers in the application. If another logger is loaded before the Error Logger,
any errors it encounters will be logged instead to the VXML Server Call Error Log. It is for this reason that
by default Builder for Call Studio puts the Error Logger at the top of the list of loggers to use for a new
application.

Note

Starting in Release 8.0(1), the application error log now reports on application timeout events. Previously,
timeout events were not located in the application activity logs.

The columns of the error log are:

• SessionID—The session ID of the application visit described in the VXML Server Call Log section.

• Time—The time the error occurred.

• Description—The error description including a Java stack trace if applicable.

The Error Logger utilizes a configuration to control two different aspects of the error logs: the format of the
files and how often should log files be purged. This configuration is specified as an XML file created by the
designer in Builder for Call Studio, as shown in the following figure.
Figure 12: Error Logger Configuration Format

The main tag for the configuration, configuration, has two attributes, name and version. Name is expected
to contain the logger instance name. The version is expected to include the version of the configuration,
which is currently 1.0. The subsequent sections describe the functionality of the various tags in the configuration.

Error Logger Configuration: Format

The <format> tag allows for the modification of how the error log files are formatted. All Error Logger
configurations are required to define a format. The possible attributes are:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
81

VXML Server Logging
Application Error Logger

• delimiter—This required attribute defines the delimiter to use to separate columns on a line. Delimiters
can be any string value, though typically will be a comma or tab. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• remove_delimiter_from_content—When this required attribute is set to true, the Activity Logger will
attempt to eliminate the delimiter from any content appearing in the logs to ensure that the log file can
be imported flawlessly. For example, if the delimiter is a comma and the configuration is set to remove
the delimiter, when it is to log the content This, is the description, it will appear in the log as This is the
description so as not to affect the accuracy of the importing process. This extra step, though, does incur
a slight performance hit. This step will not be performed if this attribute is set to false.

If the error log contains Java stack traces, the error logs might be difficult to
import as stack traces fill multiple lines (though their content will be cleaned of
the delimiter if desired).

Note

• date_format and date_granularity—These required attributes set how the second column of the activity
log references a date when the event occurred. The format and granularity are specified.

There are three possible values for the date_format attribute:

• standard—This is a standard readable date format in the formMM/DD/YYYYHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance is based on the
date_granularity attribute. For a date_granularity attribute set tominutes,only hours andminutes
of the time will be displayed. For a granularity set to seconds, only hours, minutes and seconds will
be displayed. For a granularity set to milliseconds, all components will be displayed.

• minimal—This is a minimal time value that omits the date and is in the formHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance are based on the
date_granularity attribute. For a date_granularity attribute set tominutes,only hours andminutes
will be displayed. For a granularity set to seconds, only hours, minutes and seconds will be displayed.
For a granularity set to milliseconds, all components will be displayed.

• number—This displays a large integer number representing the full date and time as an elapsed
time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute set to minutes, the
number will be 8 digits in length (representing the number of minutes elapsed since that date). For
a granularity set to seconds, the number will be 10 digits in length (representing the number of
seconds elapsed since that date). For a granularity set to milliseconds, the number will be 13 digits
in length (representing the number of milliseconds elapsed since that date).

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
82

VXML Server Logging
Application Error Logger

• print_stack_traces—This required attribute is set to either true or false and determines whether the
error log will contain Java stack traces. Stack traces are very useful to a developer in tracking down the
cause of a Java error. You must keep this option on.

Error Logger Configuration: File Purging

The Error Logger can be configured to automatically delete files that conform to certain criteria. Properly
configured, this allows an administrator to avoid having the system’s hard drive fill up with logs, which would
prevent new calls from being logged.

Note the following information about file purging:

• Becasue loggers are activated only when events occur in a call, the file purging activity will only take
place when an error event occurs. As a result, a system that encounters no errors will not automatically
delete files until a new error occurs.

• When the Error Logger starts up for the first time, it will apply the purging strategy on any files that exist
in the logger directory. Therefore, if an application server is shut down with files in the logger directory
and then restarted a long time later, these files can be deleted when the application server starts up and
the logger initializes.

• Unlike the Activity Logger, the Error Logger applies its purging strategy to any files found in its logger
directory, including non-error log files. If other files are added to the logger folder after the application
server has started, they might be deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging will take place. The tag can contain one of the following child tags:

• file_age—The Error Logger deletes error log files older than X days, where X is an integer greater than
0 specified in the older_than attribute.

• file_count—The Error Logger deletes error log files if the logger folder contains greater than X files,
where X is an integer greater than 0 specified in the greater_than attribute. When the files are deleted,
the oldest ones are deleted first until the folder reaches the desired file count.

Error Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger1">

<format delimiter="," remove_delimiter_from_content="true" date_format="standard"
date_granularity="seconds" print_stack_traces="true"/>

<purge>
<file_count greater_than="10"/>

</purge>
</configuration>

This configuration has the following features:

• The error logs will be delimited with a comma and will have any commas that appear in the content
removed.

• Dates in the error logs will appear in the standard format with seconds granularity. For example:
05/09/2006 15:45:02.

• Java stack traces will appear in the error logs.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
83

VXML Server Logging
Application Error Logger

Because stack traces span multiple lines, including stack traces may complicate
the process of importing the error logs into spreadsheets or databases. This process
is rarely done for error logs.

Note

• When a new file is added to logger instance’s dedicated directory by the Error Logger, if the directory
contains more than 10 files the oldest file will be deleted.

With a large application or a large number of applications, it is possible to fill all available disk space with
logs. For this reason, all applications have a default log retention set to 10 GB (100 logs). Customers should
review this setting as needed and modify it to suit their situation.

Note

Error Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger2">

<format delimiter="***" remove_delimiter_from_content="false" date_format="minimal"
date_granularity="seconds" print_stack_traces="false"/>
</configuration>

This configuration has the following features:

• The error logs will be delimited with the string “***” and will not attempt to remove that string from the
content.

The delimiter does not need to be limited to a single character and can be a
multicharacter string. Usually, a single character makes importing into
spreadsheets and databases straightforward.

Note

• Dates in the error logs will appear in the minimal format with seconds granularity. For example, 15:45:02.

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the error message
itself will appear in the error log without the stack trace.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

Application Administration History Logger
Whenever an application-specific administration script is run, a log file is updated with information on the
script that was run. The administration log filenames are in the form admin_historyYYYY-MM-DD.txt where
YYYY,MM, and DD are the year, month, and day when the administration history log was first created and is
rotated daily. The file contains three columns: the time the script was run, what script was run, and its result.
The result is usually success and if not contains the description of the error encountered.

The possible values are:

• server_start—Each application’s history log contains records of each time the application server starts.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
84

VXML Server Logging
Application Administration History Logger

• deploy_app—Listed when the deployApp script is run.

• suspend_app—Listed when the suspendApp script is run.

• resume_app—Listed when the resumeApp script is run.

• update_app—Listed when the updateApp script is run.

• release_app—Listed when the releaseApp script is run.

• update_common_classes—Listed when the global updateCommonClasses script is run. The reason this
global admin event is logged by the Application Administration History Logger is because elements that
appear in the common directory are reloaded by this command, causing those elements to reload their
application-specific configurations.

Running the status script does not update the history log. The Administration History Logger does not use
a configuration.

Application Debug Logger
At times when debugging an application, it is advantageous to see information concerning the HTTP requests
made by the voice browser and the corresponding HTTP responses of VXML Server. The Debug Logger
creates a single file per call that contains all HTTP requests and responses that occurred within that call session.
The log files are named debug_logYYYY-MM-DD-HH-SESSIONID.txt where YYYY is the year, MM is the
month, DD is the day, and HH is the hour (in 24-hour time) that the file is created and SESSIONID is the
VXMLServer session ID (for example, debug_log2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt).
The Session ID is included in the filename to ensure uniqueness of the files.

The debug log contains:

• A timestamp of when each HTTP request was received from the voice browser as well as when the
response was sent back by VXML Server.

• All headers of the HTTP request.

• All arguments passed with the HTTP request, whether they be set with GET or POST.

• The entire VoiceXML page returned in the HTTP response.

• We recommend that you use the Debug Logger only when performing debugging and not in a production
environment because it incurs overhead on the system in creating and managing file IO and replicating
the HTTP response, which must be generated once for the voice browser and once for each Debug Logger
instance.

The Debug Logger does not require the enforce call event order to be turned on,
however, without it there could be situations where under load the HTTP requests
and responses are out of order or mixed together in the file.

Note

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
85

VXML Server Logging
Application Debug Logger

Correlating Unified CVP Call Server Logs with VXML Server
Logs

Starting in Release 8.0(1), VXML Server (by default) receives callid (which contains the call GUID), _dnis,
and _ani as session variables in comprehensive mode even if the variables are not explicitly configured as
parameters in the ToExtVXML array. If the variables are configured in ToExtVXML then those values are
used. These variables are available to VXML applications as session variables and they are displayed in the
VXML server log.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
86

VXML Server Logging
Correlating Unified CVP Call Server Logs with VXML Server Logs

C H A P T E R 6
VXML Server Configuration

VXML Server can be configured to modify its function. This chapter explains all configuration options and
how to change them.

VXML Server uses default values for these configuration options and functions without modification.
Improperly chosen values can cause significant performance degradations and could even prevent VXML
Server from functioning correctly.

Only an experienced administrator should consider changing these options.Note

• Global Configuration File, on page 87
• Setup Options, on page 87

Global Configuration File
Themethod to edit the VXMLServer configuration is through an XML file named global_config.xml found
in the %CVP_HOME%\VXMLServer\conf directory. This file must be edited by hand; there is no graphical
interface.

This file is loaded by VXML Server when it is initialized and cached in memory. Loading the file is one of
the first tasks performed by VXML Server when it starts up because the configuration options affect how it
runs. Any changes to this file requires VXML Server to be restarted in order for the changes to take affect.

When performing an upgrade of VXML Server, the administrator will have to reimplement the configuration
changes.

Note

Setup Options
The following figure displays the DTD diagram of the global_config.xml file.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
87

Figure 13: Global Configuration Options

The elements in the XML document are:

• administration_port—This tag defines the port on which administration activity takes place and can
be any positive integer. By default, the port is set to 10100. See Administration for more on administration
activities.

• error_class—This tag defines the fully qualified Java class name of a class to execute when an error
occurs for notification purposes. By default no class is defined. See Programming Guide for Cisco Unified
CVP VXML Server and Unified Call Studio for more on how to write the On Error Notification class.

• default_browser—This tag defines the real name of the gateway adapter that should be used by default
when VXML Server needs to produce a VoiceXML page in a scenario where the current application is
unknown and therefore the gateway adapter for that application is unknown. One such scenario is an
error where the VXML Server session is unrecognized. The reason this exists is because some gateways
require the VoiceXML to be formatted in a specific way (such as requiring an XML namespace to appear
in the document) that if the VoiceXML page were produced in a different format would cause an error
on the gateway. An application lists its gateway in its settings and normally this is available to VXML
Server to produce the correct VoiceXML. However, in rare cases, an error occurs and VXML Server
does not have access to the session and the application that the call belonged to needs to know which
gateway to have the resulting VoiceXML page conform to. By default, if left blank in global_config.xml,
VXML Server will search through the directory of installed gateway adapters and use the first one it
finds.

• default_subdialog—This tag defines whether to treat a call that is not associated with an application
as if it were a VoiceXML subdialog and whose possible values are true and false. Some gateways
(such as Cisco gateways) call all VXML Server applications as VoiceXML subdialogs. VXML Server
must be aware of this because it determines how the VoiceXML it produces looks and if not produced
correctly would cause an error on the gateway. Typically, a call is made to an application which defines
in its settings whether to treat the application as a subdialog. However, in rare cases, an error occurs and
VXML Server does not have access to the session and the application that the call belonged to needs to
know whether to treat the call as a subdialog. By default, if left blank in global_config.xml, VXML
Server will consider a call to the application to not be a subdialog.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
88

VXML Server Configuration
Setup Options

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html

• session_invalidation_delay—This tag defines the amount of time in seconds that VXML Server will
wait for after a call session ends before actually invalidating that session (this can be any integer greater
than or equal to 0). This configuration option is necessary because there may be various activities taken
by loggers and end of call classes that require the session to remain alive to access data within it (such
as element or session data), and if the session was invalidated errors can occur when attempting to access
the data. If this value were too small (such as 0 seconds), many errors can occur for routine actions such
as logging at the end of a call. If this value was too high, too many sessions would remain in memory
for too long, potentially causing memory issues. We highly recommend keeping the default value of 30
seconds, or testing the system if this value changes.

• convert_old_apps—This tag defines whether to convert applications deployed from a version of Call
Studio that VXMLServer detects is old (possible values are true and false). By setting this configuration
option to true, a deployed application can be copied to the applications directory of VXML Server
without requiring the application to be redeployed from the latest version of Call Studio.

For new application settings, the converter will choose default values.Note

This converter is limited to converting the XML files that define an application
with regards to Call Studio and VXML Server and will not convert any other
files or Java classes for the application. By default this configuration option is
on.

Note

• logger—This tag acts as the parent tag for three additional tags that relate to loggers. The first two tags,
<minimum_thread_pool_size>, and <maximum_thread_pool_size> define the minimum and maximum
size of the thread pool that is used for handling logger threads. The minimum thread pool size value can
be any positive integer and the maximum thread pool size value can be any positive number as long as
it is greater than the minimum thread pool size value.

If the maximum number of logger threads is used, VXML Server will queue the
logger events to be used when a thread becomes available so the data will not be
lost. Because these values affect thread usage, we highly recommend that any
deviation from the default values (1 minimum / 500 maximum) be fully tested
for any complications. For example, if the maximum is set to a low value and the
system encounters high load, VXML Server might encounter a situation where
the queued logger events accumulate faster than the logger threads can handle
them, leading to a scenario where the application server runs out of memory. If
the maximum value is set too high and the system encounters high load, the
system on which VXML Server runs might run out of threads to allocate, which
can cause many other problems with the application server as well as the operating
system. Of all the VXMLServer configuration options, these two have the highest
potential for causing major problems if misused.

Note

The third child tag, <keep_alive_time> defines the amount of time in seconds that a thread should be
idle before it is removed from the thread pool. This tag allows for the thread pool size to decrease over
time as logger volume decreases. This value allows for optimum thread pool size based on the call volume.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
89

VXML Server Configuration
Setup Options

The default value is 30 seconds. We recommend not change drastically from the default becasue too high
a number will keep unnecessary resources around, and too low a number will reduce efficiency and defeat
the purpose of using a thread pool completely. Refer to VXML Server Logging for more on logging.

• debugger—This tag defines the RMI registry port for the Call Studio debugger. This configuration option
is used only by VXML Server implementations used by Call Studio for debugging purposes and should
not be used in a production environment. The default is 8099 and the value can be any positive integer.

• global_loggers—This tag defines the global loggers to use within VXML Server. Administrators can
add additional global loggers as well as change or remove the loggers listed by default: the global call,
admin, and error loggers. Each logger instance is defined by a separate child tag <logger_instance>.
The required name attribute gives the logger instance a name and must be unique. The required class

attribute gives the fully qualified Java class name that defines the global logger. The optional
configuration attribute gives the name of a configuration file for the global logger if needed. This
configuration file is expected to reside in the same %CVP_HOME%\VXMLServer\conf directory. Refer to
VXML Server Logging for more on logging and the Programming Guide for Cisco Unified CVP VXML
Server and Cisco Unified Call Studiofor more on creating custom loggers.

• ip_redirect—This tag enables a feature that redirects the gateway to point directly to the VXML server,
which circumvents any load balancers that may lie between the gateway and server. This tag uses a
VoiceXML goto with the explicit IP address of the server for the first VoiceXML page of a call. When
this feature is enabled, the VXML server uses a load balancer only for the first HTTP request of a call
session, but not for subsequent requests for the same call session. The tag, if used, takes a required
attribute activewhich can be true or false. It also takes an optional attribute, ip_to_use, which contains
the IP address to use for a redirect if you do not want to use the IP address returned by the default VXML
server.

This feature minimizes the effect of load-balancer related issues by using the load balancer only for the
first HTTP request of a call session. For example, if a loadbalancer fails, then a VXML Server may incur
many session timeouts. Because a load balancer failure affects all VXML servers that it handles, a
downward effect can quickly occur where sessions are stale and calls are placed on hold across all VXML
servers in the pool.

If this feature is enabled, you do not need to configure sticky cookies on the load
balancers.

Note

• license_depletion_probe_error—This tag defines the response to a probe when licenses have been
depleted. If this configuration is used, and the body of the tag is set to true, then an HTTP 500 error is
returned when licenses are depleted. This tag ensures that loadbalancers do not continue to send traffic
to the server. If this tag is not used, or the body of the tag is set to false, then a HTTP 200 response is
sent back to probes. This feature must only be used if the ip_redirect feature is set to active.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
90

VXML Server Configuration
Setup Options

C H A P T E R 7
JavaScript Utilities

• JSONPath Expression, on page 91
• XPath Expression, on page 91
• Date Validation, on page 92
• Time Validation, on page 93

JSONPath Expression
Cisco Unified Call Studio includes a new utility that allows you to use JSONPath expressions in JavaScript
to return the values from the JSON(JavaScript Object Notation).

To use this utility, include the following syntax as part of the JavaScript when you define the local variables:

importPackage(com.audium.server.cvpUtil);
JSONPathUtil.eval(String inputJSON , String expression);

Table 1: Syntax Parameter and Description

DescriptionParameter

This parameter imports the package to find the XPath
values.

importPackage(com.audium.server.cvpUtil)

This parameter returns the value from the JSON
document based on the JSONPath expression
provided.

JSONpathUtil.eval(String inputJSON , String
expression)

Sample Script of JSONPath function with REST element:

importPackage(com.audium.server.cvpUtil);
var inputJSON = {Data.Element.Rest_Client_01.response_body};
JSONPathUtil.eval(String inputJSON , String expression);

XPath Expression
Cisco Unified Call Studio includes a new utility that allows you to use XPath expressions in JavaScript to
return the values from the XML.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
91

To use this utility, include the following syntax as part of the JavaScript when you define the local variables:

importPackage(com.audium.server.cvpUtil);
XpathUtil.eval(String inputXML , String expression);

Table 2: Syntax Parameter and Description

DescriptionParameter

This parameter imports the package to find the XPath
values.

importPackage(com.audium.server.cvpUtil)

This parameter returns the value from the XML
document based on the XPath expression provided.

This function returns a Java Object, which
needs to be explicitly typecasted before it
can be used, for example, “var value =
String(XpathUtil.eval(xml,xpathsearch));”

Note

XpathUtil.eval(String inputXML, String expression)

Sample Script of XPath function with REST element:

importPackage(com.audium.server.cvpUtil);
var xml = {Data.Element.Rest_Client_01.response_body};
XpathUtil.eval(xml , "/Results/Row[age<30]/name");

Sample Script of XPath function with DB element:

importPackage(com.audium.server.cvpUtil);
var xml ={Data.Element.Database_01.xml_resultset};
XpathUtil.eval(xml , "/Results/customer");

Date Validation
Cisco Unified Call Studio includes a new utility that allows you to validate date in JavaScript on local variables.

To use this utility, include the following syntax as part of the JavaScript:

importPackage(com.audium.server.cvpUtil);
DateTimeUtil.isValidDate(String dateToValidate, String dateFormat);

Table 3: Syntax Parameter and Description

DescriptionParameter

This parameter imports the package to find the XPath
values.

importPackage(com.audium.server.cvpUtil)

This parameter verifies whether the date provided is
a valid format.

DateTimeUtil.isValidDate(String dateToValidate,
String dateFormat)

This parameter is the input date.String dateToValidate

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
92

JavaScript Utilities
Date Validation

DescriptionParameter

This parameter specifies the format in which the date
needs to be validated.

String dateFormat

If the input date is in the valid format, the return value
is 1.

If the input date is not in the valid format, the return
value is 0.

return value

The following date formats are supported in JavaScript:

• dd/MM/yyyy

• dd.MM.yyyy

• dd-MM-yyyy

• ddMMyyyy

The month must always be represented by the upper case letters MM.Note

For example:

importPackage(com.audium.server.cvpUtil);

DateTimeUtil.isValidDate("02/05/1990","dd/MM/yyyy");

Time Validation
Cisco Unified Call Studio includes a new utility that allows you to validate time in JavaScript on local variables.

To use this utility, include the following syntax as part of the JavaScript:

importPackage(com.audium.server.cvpUtil);
DateTimeUtil.isValidTime(String timeToValidate, String timeFormat);

Table 4: Syntax Parameter and Description

DescriptionParameter

This parameter imports the package to find the XPath
values.

importPackage(com.audium.server.cvpUtil)

This parameter verifies whether the time provided is
a valid format.

DateTimeUtil.isValidTime(String timeToValidate,
String timeFormat)

This is the input time that is validated.String timeToValidate

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
93

JavaScript Utilities
Time Validation

DescriptionParameter

This is the format in which the input time has to be
provided.

String timeFormat

If the input date is in the valid format, the return value
is 1.

If the input date is not in the valid format, the return
value is 0.

return value

The following time formats are supported in JavaScript:

• hh:mm:ss -24 hour format

• hh:mm:ss am -12 hour format

• hh:mm:ss pm -12 hour format

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
94

JavaScript Utilities
Time Validation

C H A P T E R 8
Web Service Integration

• SOAP Service, on page 95
• Rest Service, on page 95

SOAP Service

Web Services Element
Web services are a common way for any kind of application to communicate with externally hosted servers
to retrieve information or send notification events in a standard manner. Voice applications that access a web
service can use theWeb Services element.

• Web Services Element—A special action element used to interface with a web service.

The Web Services element is an action element so it has the same features as the action element: it does not
affect the call flow and has a single exit state. The Web Services element, however, has a more complex
configuration than a standard action element. Call Studio renders this configuration with its own special
interface.

One unique feature of the Web Services element is its ability to configure itself at design time. This is done
by loading a Web Services Description Language (WSDL) file. A WSDL file is an XML file that defines the
operations supported by the web services server. It is necessary in order to define the inputs required by the
service that must be entered by the designer and the outputs returned by the service that can then be stored
for use later in the application.

For much more detailed information about how to use the Web Services element, refer to the Call Studio
online help.

Rest Service

Rest_Client Element
Cisco Unified Call Studio 11.x and above includes the Rest_Client element. The Rest_Client element provides
a flexible interface in order to interact with REST endpoints. The communication between the REST client

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
95

and server is made completely secure using two-way Secure Sockets Layer (SSL). The Rest_Client element
permits users to send GET, POST, PUT, or DELETE requests to application servers.

Ignore Certificate Validation
REST uses the boolean flag Ignore Certificate Validation to validate the certificate. The flag can be set to
True or False. If the flag is set to False, the client checks for a valid server certificate in its keystore. If
the certificate is not found, an error message appears.

The Ignore Certificate Validation flag checks for the availability of a valid certificate in the following key
stores:

• Call Studio in debugmode:C:\Cisco\CallStudio\eclipse\jre\lib\security\cacerts

• Call Studio in VXML Server: C:\Cisco\CVP\jre\lib\security\cacerts

Before you validate, ensure that the required certificate is in the respective keystore.Note

Import Certificate in Call Studio for Debug Mode

Procedure

Step 1 Copy the REST server certificate file manually to the call studio machine.
Step 2 From the command prompt, navigate to C:\Cisco\CallStudio\eclipse\jre\bin.
Step 3 Run the following command to import the server certificate to the client keystore:

keytool.exe -importcert -file <path to REST server certificate> -keystore

c:\Cisco\CallStudio\eclipse\jre\lib\security\cacerts

Enter the keystore password. The default password is changeit.

The certificate is imported to the client keystore with the default alias namemykey and password changeit

Step 4 Run the following command to check whether the certificate is imported.
keytool.exe -list -keystore c:\Cisco\CallStudio\eclipse\jre\lib\security\cacerts.

Import Certificate in VXML Server

Procedure

Step 1 Copy the REST server certificate file manually to VXML server.
Step 2 From the command prompt, navigate to %CVP_HOME%\jre\bin.
Step 3 Run the following command to import the server certificate to the client keystore:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
96

Web Service Integration
Ignore Certificate Validation

keytool.exe -importcert -trustcacerts -file <path to REST server certificate> -alias <unique

alias name> -keystore %CVP_HOME%\jre\lib\security\cacerts

Enter the keystore password. The default password is changeit.
Step 4
Step 5 Run the following command to check whether the certificate is imported.

keytool.exe -list -keystore %CVP_HOME%\jre\lib\security\cacerts

Step 6 Restart the VXML Server after importing the certificate.

Create One-Way Communication Between VXML and REST Server
One-way secure communication imports the REST Server Certificate Authority (CA) certificate into the
VXML server trust store, if CA is not available by default.

Perform the following steps to import the REST Server CA certificate into the VXML server:

Procedure

Step 1 Use the Java key tool to export the CA certificate from the REST Server.
Step 2 Copy the exported CA certificate file from the REST Server to the VXML Server.

For example: <RESTServer_ca_cert>

Step 3 From the command prompt, run the following command to import the REST Server CA certificate into the
VXML truststore:
..\..\bin\keytool -importcert -keystore <path to the VXML Truststore> -alias <alias name>

-file <Path to RESTServer_ca_cert>

File path to VXML truststore: %CVP_HOME%\jre\lib\security\cacerts. The default password is
changeit.

For a self- signed certificate, export the ca_cert from the REST Server and the self-signed certificate.
Then, import this self-signed certificate in the VXML Server trust store.

Note

Step 4 Restart the Cisco Unified CVP VXML Server service running in VXML Server.

Do not import a server certificate signed with a standard CA to the VXML Server trust store, as it
contains standard CA details.

Note

Create Two-Way Communication Between VXML and REST Server
Two-Way secure communication between VXML and REST Server involves importing the VXML Server
CA certificate into the REST Server trust store.

Perform the following steps to import the VXML Server CA certificate on the REST Server:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
97

Web Service Integration
Create One-Way Communication Between VXML and REST Server

Procedure

Step 1 Retrieve the keystore password from the security.properties file on the VXML Server. Filepath
%CVP_HOME%\conf\security.properties

Step 2 Use the Java key tool to find the certificate and export the VXML Server CA certificate from the keystore.

File path to root: %CVP_HOME%\conf\security\.ormKeystore.

Use the list flag to check your keystore entries by running the following command:

%CVP_HOME%\jre\bin\keytool.exe -storetype JCEKS -keystore

%CVP_HOME%\conf\security\.ormKeystore -list

Run the following command to export the VXML Server certificate:

%CVP_HOME%\jre\bin\keytool.exe -export -v -keystore %CVP_HOME%\conf\security\.ormKeystore

-storetype JCEKS -alias vxml_root_certificate -file %CVP_HOME%\conf\security\<root>

Step 3 Copy the exported certificate file from the managed Cisco Unified CVP VXML Server to the REST Server.
Step 4 Use the following Java key tool command to import the certificate into the REST Server truststore

keytool -import -trustcacerts -keystore <Path to REST server Truststore> -alias <Alias_name>

vxml_root_certificate -file <path to VXMLca_cert_file >

• For a self-signed certificate, export the ca_cert from the VXML Server and import the ca_cert
to the REST Server truststore.

• For a VXML standard trusted CA, do not import the CA certificate on the REST Server
truststore.

Note

XPath Expression
Cisco Unified Call Studio includes a new utility that allows you to use XPath expressions in JavaScript to
return values from the XML. You can specify an XPath expression in the element setting. If the REST response
is an XML, then the nodes which are returned are available as element data. Based on the XML result from
the GET method, you can add XPath expression to get the value of a specific row.

For example, consider the following XML you get when you query WSM SNMP public:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<results>

<communities>
<community>

<name>Hello</name>
<snmpversion>V1</snmpversion>
<acceptfromanyhost>true</acceptfromanyhost>
<accessprivilege>readWrite</accessprivilege>
<servers>

<server>IP address</server>
</servers>

</community>
</communities>
<pageinfo>

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
98

Web Service Integration
XPath Expression

<resultsPerPage>25</resultsPerPage>
<startIndex>0</startIndex>
<totalResults>1</totalResults>

</pageinfo>
</results>

To get the value from one specific row, use the following XPath expression:
/results/communities/community/snmpversion.

The output of the expression is V1.

If you use the following XPath expression:/results/communities/community/name.

The output of the expression is Hello.

JSONPath Expression
Cisco Unified Call Studio includes a new utility that allows you to specify a JSONPath expression in the
element setting. The nodes which are returned are available as element data if the REST response is a JSON.

For example, consider the following REST response:

{"community":
{"name":"public","snmpversion":"V1","acceptfromanyhost":"true","accessprivilege":"readOnly","servers":{"server":"IP
address}}"
}

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
99

Web Service Integration
JSONPath Expression

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
100

Web Service Integration
JSONPath Expression

C H A P T E R 9
Standalone Application Builder

Normally a designer builds an application in Call Studio and then deploy to Call Services. Call Studio has
the ability to deploy an application locally as well as to a remote system via FTP. Deploying an application
becomes more difficult in an environment where many designers are working on a single application or when
the enterprise follows a strict deployment policy to the runtime servers. In the first scenario, multiple designers
are adding content to a source repository system and no single designer may have the full application in
necessary to perform the deployment and even if possible, would require coordination among all designers
involved. In the second scenario, the production environments do not allow direct access via FTP and require
an automated system to place new content on to those environments, providing the flexibility to control exactly
how and when the content is deployed. The desire is to extract the ability to create a Call Services application
from the Call Studio project without requiring a person to launch Call Studio and deploy.

Universal Edition provides a tool to support this requirement named the Standalone Application Builder. It
allows for the deployment of an application through a command-line interface. By exposing this as a
command-line tool, an administrator can integrate this tool into any process that has the ability to execute
scripts. For example, the administrator can configure a crontab to launch this utility every day with the latest
content checked into a source repository. Another example is to modify existing build and deploy Ant scripts
to deploy the application once all other components such as elements, grammars, etc. are assembled.

This chapter explains what the Standalone Application Builder does and how to use it.

• Standalone Application Builder Introduction, on page 101
• Script Execution, on page 102
• Script Output, on page 102

Standalone Application Builder Introduction
The Standalone Application Builder is a utility that deploys a Call Studio application project to a format that
is required by VXML Server. It is launched via a batch script named buildApp.bat located in the Call Studio
root directory. There is no license required to use this utility.

When launched, the Standalone Application Builder first validates the Call Studio project to ensure it is a
valid application, and if successful, deploys the VXML Server version of the application to the destination
folder. If there are validation errors, those errors are displayed in the output similar to validation errors that
are displayed in Call Studio. The tool only deploys a single application at a time. To deploy multiple
applications, the script can be called repeatedly pointing to different projects.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
101

Script Execution
The command-line usage of the Standalone Application Builder is as follows:
buildApp <project path> <deploy path> [-quiet <log file>] [-debug]

Where:

• <project path>—The directory in which the Call Studio project to convert resides. This path should
point to the location where Call Studio is configured to store application projects. By default, this path
is the workspace folder within the eclipse folder.

• <deploy path>—The directory to deploy the application to. If the Standalone Application Builder is
installed on the same machine as VXML Server, you can pass the applications directory of
%CVP_HOME%\VXMLServer so that the application is deployed directly to the VXML Server instance.
To make the application live, you only need to call the deployApp VXML Server administration script.

• -quiet <log file> - An optional parameter that is designed to pipe the output the script usually produces
into a text file whose name is passed as <log file>. This parameter is useful for scenarios where the
Standalone Application Builder is executed from an automated system that does not display data printed
to the console. By piping the data to a file, any results can be analyzed later.

• -debug—An optional parameter that produces additional output to use for debugging purposes should
the deployment fail. This option should not be used unless directed to by customer support.

Script Output
The following is how the output of the Standalone Application Builder will look for a successful deployment:
Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)
© 1999-2007 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.
Start: Tue Jan 1 11:47:56 EDT 2000
*** Loading project.
*** Validating project ‘MyApp’.
*** Building project ‘MyApp’.
*** Unloading project ‘MyApp’.
*** Done.
End: Tue Jan 1 11:47:58 EDT 2000

The following is the output for a deployment that encounters validation errors:
Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)
© 1999-2007 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.
Start: Tue Jan 1 11:47:56 EDT 2000
*** Loading project.
*** Validating project ‘MyApp’.
Error: Project is not valid. Aborting. See details below:
[Start Of Call] Exit States Error: Please connect all the exit states for this element.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
102

Standalone Application Builder
Script Execution

A P P E N D I X A
Substitution Tag Reference

The following table lists the contents of tags used for setting value substitution. To represent each of the data
values, the tag is rendered with braces containing the tag content listed and is case sensitive. The fragments
rendered bold represent values replaced by the application designer. Optional information is enclosed in
brackets ([]).

DescriptionTag Content

The ANI of the current call or NA if not sent.CallData.ANI

The DNIS of the current call or NA if not sent.CallData.DNIS

The UUI of the current call or NA if not sent.CallData.UUI

The IIDIGITS of the current call or NA if not sent.CallData.IIDIGITS

The name of the application that transferred to this one.CallData.SOURCE

The name of the current application.CallData.APP_NAME

The duration, in seconds, of the call up to this point.CallData.DURATION

The language for the application, up to this point in the
call.

CallData.LANGUAGE

The VoiceXML encoding for the application, up to this
point in the call.

CallData.ENCODING

The value of Session Data where VAR represents the name
of the session variable. The object stored there will be
represented as a string.

Data.Session.VAR

The value of Element Data where ELEMENT represents
the name of the element and VAR represents the name of
the element variable.

Data.Element.ELEMENT.VAR

The type of the last exception occurred.Data.Session.lastException.type

This is the exception code for the last exception occurred.Data.Session.lastException.code

The message of the last exception.Data.Session.lastException.message

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
103

This is the user-defined fields of the last exception.Data.Session.lastException.custom_field1,
custom_field2, and custom_field3

The name of a certain element visited in the call where N
represents the number for the nth element.

CallerActivity.NthElement.N

The name of a certain element’s exit state visited in the
call where N represents the number for the nth element.

CallerActivity.NthExitState.N

The number of times an element was visited in the call
where ELEMENT represents the name of the element.

CallerActivity.TimesElementVisited.ELEMENT

The number of times an element was visited in the call
with a particular exit state where ELEMENT is the name
of the element and EXIT_STATE is the exit state.

CallerActivity.imesElementVisitedExitState.
ELEMENT.EXIT_STATE

The current hour.GeneralDateTime.HourOfDay.CURRENT

The hour the call started.GeneralDateTime.HourOfDay.CALL_START

The current minute.GeneralDateTime.Minute.CURRENT

The minute the call started.GeneralDateTime.Minute.CALL_START

The current day of the month.GeneralDateTime.DayOfMonth.CURRENT

The day of the month the call started.GeneralDateTime.DayOfMonth.CALL_START

The current month.GeneralDateTime.Month.CURRENT

The month the call started.GeneralDateTime.Month.CALL_START

The current day of the week.GeneralDateTime.DayOfWeek.CURRENT

The day of the week the call started.GeneralDateTime.DayOfWeek.CALL_START

The current year.GeneralDateTime.Year.CURRENT

The year the call started.GeneralDateTime.Year.CALL_START

The following tags will cause an error if the User Management System is inactive. Additionally, these tags
relate to the current user and will cause an error unless the call is linked to a UID.

DescriptionTag

The name of the current user.UserInfo.Demographic.NAME

The zip code of the current user.UserInfo.Demographic.ZIP_CODE

The birthday of the current user.UserInfo.Demographic.BIRTHDAY

The gender of the current user.UserInfo.Demographic.GENDER

The social security number of the current user.UserInfo.Demographic.SSN

The country of the current user.UserInfo.Demographic.COUNTRY

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
104

Substitution Tag Reference
Substitution Tag Reference

The language of the current user.UserInfo.Demographic.LANGUAGE

The contents of the first custom column of the current
user.

UserInfo.Demographic.CUSTOM1

The contents of the second custom column of the current
user.

UserInfo.Demographic.CUSTOM2

The contents of the third custom column of the current
user.

UserInfo.Demographic.CUSTOM3

The contents of the fourth custom column of the current
user.

UserInfo.Demographic.CUSTOM4

The first phone number associated with the current user’s
account.

UserInfo.AniInfo.FIRST

The total number of different phone numbers associated
with the current user’s account.

UserInfo.AniInfo.NUM_DIFF

The hour of the last time the current user’s account was
modified.

UserInfo.UserDateTime.HourOfDay.
LAST_MODIFIED

The hour of the last time the current user’s account was
created.

UserInfo.UserDateTime.HourOfDay. CREATION

The hour of the last time the current user called.UserInfo.UserDateTime.HourOfDay.
LAST_CALL

The minute of the last time the current user’s account was
modified.

UserInfo.UserDateTime.Minute.
LAST_MODIFIED

The minute of the last time the current user’s account was
created.

UserInfo.UserDateTime.Minute.CREATION

The minute of the last time the current user called.UserInfo.UserDateTime.Minute. LAST_CALL

The day of the month of the last time the current user’s
account was modified.

UserInfo.UserDateTime.DayOfMonth.
LAST_MODIFIED

The day of the month of the last time the current user’s
account was created.

UserInfo.UserDateTime.DayOfMonth.
CREATION

The day of the month of the last time the current user
called.

UserInfo.UserDateTime.DayOfMonth.
LAST_CALL

The month of the last time the current user’s account was
modified.

UserInfo.UserDateTime.Month.
LAST_MODIFIED

The month of the last time the current user’s account was
created.

UserInfo.UserDateTime.Month.CREATION

The month of the last time the current user called.UserInfo.UserDateTime.Month.LAST_CALL

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
105

Substitution Tag Reference
Substitution Tag Reference

The day of the week of the last time the current user’s
account was modified.

UserInfo.UserDateTime.DayOfWeek.
LAST_MODIFIED

The day of the week of the last time the current user’s
account was created.

UserInfo.UserDateTime.DayOfWeek.
CREATION

The day of the week of the last time the current user
called.

UserInfo.UserDateTime.DayOfWeek.
LAST_CALL

The year of the last time the current user’s account was
modified.

UserInfo.UserDateTime.Year. LAST_MODIFIED

The year of the last time the current user’s account was
created.

UserInfo.UserDateTime.Year.CREATION

The year of the last time the current user called.UserInfo.UserDateTime.Year.LAST_CALL

Is true if the current user has made calls from the current
phone or false if not.

UserInfo.CalledFromAni

The PIN number of the current user’s account.UserInfo.AccountInfo.PIN

The account number of the current user’s account.UserInfo.AccountInfo.ACCOUNT_NUMBER

The external UID of the current user’s account.UserInfo.AccountInfo.EXTERNAL_UID

These tags relate to historical data. While still requiring the User Management System to be active, these do
not require a user to be associated with the call. The fragments rendered bold represent values replaced by
the application designer. Optional information is encapsulated in brackets ([]).

DescriptionTag Content

The hour of the last time a call was received from the current
phone number. Use ANI to get the last time a call was received
from another number where ANI is the number.

GeneralAniInfo.AniDateTime.HourOfDay.
LAST_CALL[.ANI]

Theminute of the last time a call was received from the current
phone number or ANI if specified.

GeneralAniInfo.AniDateTime.Minute.
LAST_CALL[.ANI]

The day of the month of the last time a call was received from
the current phone number or ANI if specified.

GeneralAniInfo.AniDateTime.DayOfMonth.
LAST_CALL[.ANI]

The month of the last time a call was received from the current
phone number or ANI if specified.

GeneralAniInfo.AniDateTime.Month.
LAST_CALL[.ANI]

The day of the week of the last time a call was received from
the current phone number or ANI if specified.

GeneralAniInfo.AniDateTime.DayOfWeek.
LAST_CALL[.ANI]

The year of the last time a call was received from the current
phone number or ANI if specified.

GeneralAniInfo.AniDateTime.Year.
LAST_CALL[.ANI]

The number of calls received from the current phone number
or ANI if specified.

GeneralAniInfo.AniNumCalls[.ANI]

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
106

Substitution Tag Reference
Substitution Tag Reference

• Each Date / Time tag evaluates to 0–23 when referring to the hour, 0-59 when referring to the minute,
1–12 when referring to the month, 1–31 when referring to the day of the month, 1–7 when referring to
the day of the week (where 1 is Sunday), and the year is represented as a four-digit number.

• If any data represented by the tag ends up as null, substitution renders it as an empty string. For example,
if a setting contained source{CallData.SOURCE} and there was no application that transferred to the
current application, the setting would be evaluated as source. In this case, a warning appears in the Error
Log for the application noting that a substitution value was null and was replaced with an empty string.

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
107

Substitution Tag Reference
Substitution Tag Reference

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
108

Substitution Tag Reference
Substitution Tag Reference

A P P E N D I X B
Directory Structure

The directory in which the installation is made (referred to as the INSTALLATION_PATH directory) contains
all the files necessary for the various components of Unified CVP software. The following table describes
what each folder in the INSTALLATION_PATH is used for. Each folder is described in detail in subsequent
sections.

DescriptionFolder

This directory contains the files required for VXMLServer to run, including
all voice applications.

VXMLServer

This directory contains Call Studio and Builder for Call StudioCallStudio

The application inside this folder is used to uninstall Unified CVP software.UninstallerData

The %CVP_HOME%\VXMLServer folder contains the following folders:

DescriptionFolder

This directory holds the scripts that perform administrator functions affecting
all applications on VXML Server.

admin

This directory holds copies of the application-level administration scripts. If
an application’s administration scripts require refreshing, the contents of this
folder can be copied to the applications\[APPNAME]\admin directory.

admin/appScripts

SNMP agent related files.agent

The voice applications built by Builder for Call Studio and hosted by VXML
Server are stored here. Each application has its own folder bearing the name
of the application.

applications

This directory holds the scripts that perform administrator functions affecting
only the application in which the scripts reside.

applications / [APPNAME] /
admin

This directory contains the application’s static data files required for VXML
Server to load the application.

applications / [APPNAME] /
data

This directory contains the settings and call flow of the application as well as
any configurations for application loggers.

applications / [APPNAME] /
data / application

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
109

This directory holds the static voice, action, and decision element
configurations created by Builder for Call Studio for this application.

applications / [APPNAME] /
data / configurations

Depending on the size of the voice application, this directory may end up with
many element configuration files.

This directory holds miscellaneous data files used by Unified CVP decision
elements or other proprietary files used by the developer.

applications / [APPNAME] /
data / misc

This directory contains all Java related classes or JAR files required for this
application only. No other application will have access to the Java classes in
this directory.

applications / [APPNAME] /
java

This directory contains all the classes used for this application only. Individual
Java classes go in the classes directory while complete JAR files go in the
lib directory.

applications / [APPNAME] /
java / application

This directory contains utility classes used by the classes in the application
directory. Any utility classes that refer to Unified CVP API classes must be

applications / [APPNAME] /
java / util

deployed here or in the application directory. Individual Java classes go in
the classes directory and JAR files go in the lib directory.

This directory contains the administrator, activity and error logs affiliated
with this application. Logs are rotated daily so this directory may eventually
contain many files.

applications / [APPNAME] /
logs

This folder contains the Java classes and JAR files shared across all voice
applications hosted on VXML Server. Individual Java classes go in the
classes directory and JAR files go in the lib directory.

common

This directory holds settings files used for VXML Server.conf

This folder contains Javadocs and third-party licenses for components used
by Unified CVP. Download Unified CVP documentation. After downloading,
you can place the documentation in the docs folder.

docs

The DTDs for all XML documents used throughout VXML Server are found
here. Many are referred to in XML documents, though others are provided
for reference.

dtds

This folder contains all the installed Gateway Adapters for VXML Server.
Each subfolder in this directory contains a separate Gateway Adapter.

gateways

The JAR files within this folder are necessary for administration scripts to
run. They are also used by the developer to compile custom Java code that
uses the Unified CVP API.

lib

The VXML Server license files are to be placed here.license

Logs affiliated with VXML Server are placed here.logs

Files required to support the JMX administration interface are found here.management

The %CVP_HOME%\CallStudio folder contains the following directories:

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
110

Directory Structure
Directory Structure

http://www.cisco.com/go/cvp

DescriptionFolder

This directory holds all the required files for Call Studio and Builder for
Call Studio.

eclipse

This folder contains descriptions of the installed features: Call Studio and
Builder for Call Studio. Features consist of a set of plug-ins providing
certain functionality.

eclipse\features

This folder contains the JRE used by Call Studio.eclipse\jre

This directory contains a set of plug-ins defining the functionality of Call
Studio.

eclipse\plugins

The voice applications built by Builder for Call Studio are stored here.
Each application has its own folder bearing the name of the application.

eclipse\workspace

A Call Studio internal system folder containing configuration and settings
files.

eclipse\workspace\.metadata

This directory contains the configuration files for the given voice
application. Those files are used by Builder for Call Studio to properly
render the call flow.

eclipse\workspace\ [PROJECT
NAME]\callflow

This folder holds all the resources that will be deployed along with the
given application. It can contain such components as custom Java classes
and libraries as well as custom data files.

eclipse\workspace\ [PROJECT
NAME]\deploy

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
111

Directory Structure
Directory Structure

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
112

Directory Structure
Directory Structure

I N D E X

A

Administration Scripts 32, 34, 35, 42, 44, 47, 49
adding applications 47
application and system status info 34
get basic VXML Server info 35
oveview 32
removing applications 47
suspending applications 44
update "common" classes, includes cautions 49
updating applications 42

administrator log access 51
Application Development 34, 41, 44, 49, 109

application status info types 34
configuration options, JMX Interface 41
directory structures 109
get and set global and application data 49
play "suspended" message during VXML Server restart 44
update "common" classes, cautions 49

averageCallDuration 52
avgConcurrentCallsInLast 52
avgReqRespTimeInList 52

C

callAbandonRate 52
callCompleteRate 52
callTransferRate 52

D

Data 49
get and set global and application data 49

DefautAudioPat, app config options defined 41
directory structure details 109

E

Examples 35
VXML Server status checks 35

F

failedCallsSinceStart 52

G

GatewayAdapter, app config options defined 41
getApplicationData 49
getGlobalData 49

J

JMX Interface 31, 34, 35, 38, 41, 42, 44, 47, 49, 51
adding applications 47
admin log access 51
application and system status info 34
application config options 41
basic VXML Server info, obtain 35
overview 31
removing applications 47
suspending applications 44
update "common" classes, includes cautions 49
updating applications 42
VXML Server runtime config options 38

L

LoggerEventQueueSize, described 39
LoggerMaximumThreadPoolSize, described 39
LoggerMinimumThreadPoolSize, described 39
Loggers 39, 51

admin log access 51
runtime option JMX attributes 39

LoggerThreadKeepAliveTime, described 39
Logging 39

tuning VXML Server runtime attributes 39

M

maxConcurrentCallsInLast 52
maxLoggerEventQueueSizeInLast 52
maxLoggerThreadCountInLast 52
maxReqRespTimeInLast 52

R

removeAllApplicationData 49
removeAllGlobalData 49

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
IN-1

removeApplicationData 49
removeGlobalData 49

S

scripts, 32
SessionInvalidationDelay, described 39
SessionTimeout, app config options defined 41
setApplicationData 49
setGlobalData 49
system information page 33, 35
system status info types for VXML Server 34

T

Tags 103
tables of tag contents for value substitutions 103

timeoutCallsInLast 52
timeoutCallsSinceStart 52
totalCallsSinceStart 52

V

VXML Server 31, 32, 33, 34, 35, 38, 39, 42, 44, 47, 49, 51, 52, 87
adding applications 47

VXML Server (continued)
admin log access 51
administration scripts, overview 32
administration, three methods 31
altering config at runtime, discussion and warnings 38
application and system status info 34
configuration options at runtime, described 39
configuration overview 87
configuration, altering during runtime, warnings 38
get/set global and application data 49
getting basic information about 35
graceful admin activity 42
JMX mgmt overview 31
logging, tuning runtime attributes 39
metrics listed with VXML functions 52
obtaining server metrics 52
reference to admin functions, table 51
removing applications 47
status checks 35
suspending applications 44
suspending apps, prerequsite 44
system information page 33, 35
update "common" classes, includes cautions 49
updating applications 42
ways to play "suspended" message during restart 44

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
IN-2

INDEX

	User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Release 12.5(1)
	Contents
	Preface
	Change History
	About this Guide
	Audience
	Related Documents
	Communications, Services, and Additional Information
	Documentation Feedback

	Introduction
	Cisco Unified CVP VoiceXML Components
	Components
	Variables
	Global Data
	Application Data
	Session Data
	Element Data
	Component Accessibility

	APIs
	Configurable Elements
	Standard Action and Decision Elements
	Dynamic Element Configurations
	Start / End of Call Actions
	Event Handling
	Say It Smart Plugins
	Start and End of Application Actions
	Loggers
	On Error Notification
	Unified CVP XML Decisions in Detail
	<call_data>
	<data>
	<user_info>
	<general_date_time>
	<caller_activity>
	<historical_data>
	XML Decision Example1
	XML Decision Example2
	XML Decision Example3

	VoiceXML Insert Elements
	Insert Element Restrictions
	Insert Element Inputs
	Insert Element Outputs
	Root Document
	Example of Insert Elements

	Administration
	Introduction to VXML Server Administration
	JMX Management Interface
	Administration Scripts
	System Information Page

	Administration Information
	Application and System Status
	VXML Server Information
	VXML Gateway Adapter

	Configuration Updates
	VXML Server Configuration Options
	Application Configuration Options

	Administration Functions
	Graceful Administration Activity
	Applications Update
	Applications Suspension
	Applications Addition
	Applications Removal
	Common Classes Update
	Global and Application Data Function
	Administrator Log Access
	Administration Function Reference

	VXML Server Metrics

	User Management
	Deployment
	Database Design
	Applications
	User Data
	Historical Data

	VXML Server Logging
	Loggers
	Global Loggers
	Global Call Logger
	Global Error Logger
	Global Administration History Logger

	Application Loggers
	Application Activity Logger
	Application Error Logger
	Application Administration History Logger
	Application Debug Logger

	Correlating Unified CVP Call Server Logs with VXML Server Logs

	VXML Server Configuration
	Global Configuration File
	Setup Options

	JavaScript Utilities
	JSONPath Expression
	XPath Expression
	Date Validation
	Time Validation

	Web Service Integration
	SOAP Service
	Web Services Element

	Rest Service
	Rest_Client Element
	Ignore Certificate Validation
	Import Certificate in Call Studio for Debug Mode
	Import Certificate in VXML Server
	Create One-Way Communication Between VXML and REST Server
	Create Two-Way Communication Between VXML and REST Server
	XPath Expression
	JSONPath Expression

	Standalone Application Builder
	Standalone Application Builder Introduction
	Script Execution
	Script Output

	Substitution Tag Reference
	Directory Structure
	Glossary of Terms
	INDEX

