
Cisco Unified JTAPI Developers Guide for Cisco Unified
Communications Manager, Release 14 and SUs
First Published: 2021-03-31

Last Modified: 2024-01-30

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2021–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Overview 1C H A P T E R 1

Cisco Unified Communications Manager Interfaces 1

Provisioning Interfaces 2

Administrative XML 2

Cisco Extension Mobility 2

Device Monitoring and Call Control Interfaces 2

Cisco TAPI and Media Driver 2

Cisco JTAPI 3

Cisco Web Dialer 3

Serviceability Interfaces 3

Serviceability XML 3

SNMP/MIBs 4

Routing Rules Interface 4

Cisco Connection Interface 4

JTAPI Overview 5

Cisco Unified JTAPI and Contact Centers 5

Cisco Unified JTAPI and Enterprises 5

Cisco Unified JTAPI Applications 6

Jtprefs Application 7

Cisco Unified JTAPI Concepts 7

CiscoObjectContainer Interface 8

JtapiPeer and Provider 8

Initialization 9

Shutdown 9

Provider.getTerminals() 9

Provider.getAddresses() 9

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
iii

Changes to the User Control List in the Directory 9

Address and Terminal Relationships 10

Unobserved Addresses and Terminals 11

Connections 11

Terminal Connections 11

Terminal and Address Restrictions 11

CiscoConnectionID 14

Threaded Callbacks 14

CiscoSynchronousObserver Interface 15

Querying Dynamic Objects 15

callChangeEvent() 15

CiscoConsultCall 15

CiscoTransferStartEv 16

Alarm Services 16

Software Requirements 16

Development Guidelines 16

New and Changed Information 19C H A P T E R 2

Cisco Unified Communications Manager Release 14SU3 19

Cisco Unified Communications Manager Release 14SU2 20

Cisco Unified Communications Manager Release 12.5(1) 20

Cisco Unified Communications Manager, Release 11.5(1) 20

Cisco Unified Communications Manager, Release 11.0(1) 21

Cisco Unified Communications Manager Release 10.5(2) 21

Cisco Unified Communications Manager Release 10.0(1) 21

Cisco Unified Communications Manager Release 9.0(1) 21

Cisco Unified Communications Manager Release 8.6(1) 22

Cisco Unified Communications Manager Release 8.5(1) 22

Cisco Unified Communications Manager Release 8.0(1) 22

Cisco Unified Communications Manager Release 7.1(3) 23

Cisco Unified Communications Manager Release 7.1(2) 23

Cisco Unified Communications Manager Release 7.0(1) 24

Cisco Unified Communications Manager Release 6.1 25

Cisco Unified Communications Manager Release 6.0 26

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
iv

Contents

Cisco Unified Communications Manager Release 5.1 26

Cisco Unified Communications Manager Release 5.0 27

Features Supported by Cisco Unified JTAPI 29C H A P T E R 3

Account Lockout 33

Agent Greeting 33

AES 256 Algorithm IDs 34

Alternate Script Support 35

API for Exposing Built-In-Bridge Status 35

Arabic and Hebrew Language Support 36

Auto Updater for Linux 36

AutoAccept Support for CTI Ports and Route Points 37

Autoupdate of API 38

Barge and Privacy Event Notification 40

Call Control Discovery 41

Call Forward 41

Call Forward Override 41

Call Park 42

Call Pickup 42

Call Recording for SIP or TLS Authenticated Calls 43

Call Select Status 43

Calling Party Display Name 44

Calling Party IP Address 44

Calling Party IP Address 45

Calling Party Normalization 46

CallFwdAll Key Press Notification 46

CallSelect and UnSelect Event Notification 47

Certificate Download API Enhancement 47

Changes in DeviceType Name Handling 47

Cisco MediaTerminal 48

Provisioning 48

Registration 49

Adding Observers 50

Accepting Calls 50

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
v

Contents

Cisco Unified Communications Manager Media Endpoint Model 51

Payload and Parameter Negotiation 51

Initialization 51

Payload Selection 52

Receive Channel Allocation 52

Starting Transmission and Reception 52

Stopping Transmission and Reception 53

Cisco Unified Communications Manager Server Failure 53

Cisco Unified IP 7931G Phone Interaction 54

Cisco Unified JTAPI Install Internationalization 55

Cisco VG248 and ATA 186 Analog Phone Gateways 55

CiscoJtapiExceptions 55

Errors 55

CiscoProvAuthenticationInfoEv 56

CiscoRTPHandle Interface on Cisco RTP Events 57

Cisco Terminal Filter and ButtonPressedEvents 57

CiscoTermRegistrationfailed Event 58

Errors 58

Cius Persistency 59

Clear Calls 60

Click to Conference 60

Cluster Abstraction 61

Command Line Invocation 62

Component Updater 62

Conference 63

Cisco Extensions 63

Conference Scenarios 64

Conference Events 65

Transfer and Conference Enhancement 65

Conference and Join 66

Conference Chaining 67

Consult Without Media 68

CTI Ports 69

CTI RoutePoints 69

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
vi

Contents

CTI Remote Device for JTAPI 69

Play Announcement 70

Verify Remote Destination Support 71

NuRD (Number Matching for Remote Destination) Support 71

Mobility Interaction Support 72

CTI RD Call Forward 72

CTI Video Support 73

Default CTI IP Addressing for Devices 75

DeleteCall 75

Device Recovery 75

Device Recovery for Phones 75

Device State Server 76

Direct Transfer Across Lines 77

Usage Guidelines 77

Event Flow Comparison and Sample Code 78

Directed Call Park 82

Directory Change Notification 83

Do Not Disturb 83

Do Not Disturb-Reject 84

Drop Any Party 85

Dynamic CTI Port Registration 86

E911 Teleworker 88

Enable or Disable Ringer 88

Encryption Enhancement 89

End to End Call Tracing 89

EnergyWise Deep Sleep Mode 90

Extension Mobility Cross Cluster 92

Extension Mobility Username Login 93

External Call Control 93

End to End Session ID for Calls 94

FIPS Compliance 95

Forced Authorization and Client Matter Codes 97

Supported Interfaces 97

Call.Connect() and Call.Consult() 98

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
vii

Contents

Call.transfer(String) and Connection.redirect() 99

RouteSession.selectRoute() 99

Forwarding on No Bandwidth and Unregistered DN 99

GetCallID in RTP Events 100

GetCallInfo 100

GetGlobalCallID 100

Hairpin Support 101

Half-Duplex Media Support 101

Hold Reversion 102

Hunt List 103

Hunt List Connected Number 104

Hunt Log Status 104

Intercom 105

Intercom Support for Extension Mobility 107

IPv6 Support 108

iSac Codec 109

Java Socket Connect Timeout 109

Join Across Lines 110

Join Across Lines (Only SCCP) 110

Join Across Lines or Connected Conference Across Lines 111

Usage Guidelines 111

Event Flow Comparison and Sample Code 111

Join Across Lines with Conference Enhancements (SCCP and SIP) 115

JRE 1.2 and JRE 1.3 Support Removal 116

JTAPI Version Information 117

Locale Infrastructure Development 117

Logical Partitioning 118

Media Termination at Route Point 118

Media Termination Extensions 121

Message Waiting Indicator Enhancement 121

Modifying Calling Number 122

Multi-fork Recording using CUBE Media Proxy Server 124

Multilevel Precedence and Preemption Support 124

Multiple Calls Per DN 124

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
viii

Contents

Native Queuing 124

Network Alerting 126

Network Events 127

New Error Code in CiscoTermRegistrationFailedEv 127

Noncontroller Adding of Parties to Conferences 128

Park DN Monitor 128

Park Monitoring and Assisted DPark Support 128

Park Reminder 130

Park Retrieval 130

Partition Support 131

Password Expiry 134

Persistent Connection 134

Play Zip Tone 136

Presentation Indicator for Calls 137

Privacy On Hold 138

Progress State Converted to Disconnect State 139

Q.Signaling (QSIG) Path Replacement 139

QoS Support 139

QoS Setup on Windows 2000 140

QoS Setup on Windows XP Server 2003 140

Quiet Clear 141

Receiving and Responding to Media Flow Events 141

Inbound Call Media Flow Event Diagram 142

Cisco Unified Communications Solutions RTP Implementation 143

Recording 143

Redirect 146

Redirect Set Original Called ID 147

Redirect to Device 148

Redundancy 149

Redundancy in CTI Managers 149

Invoking CTIManager Redundancy 149

CTIManager Failure 151

Heartbeats 151

Ringback on SIP 183 for Transferred Calls 152

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
ix

Contents

Routing 152

Cisco Route Session Implementation 153

Select Route Timer 153

Forwarding Timer 153

Route Session Extension 153

Caller Options Summary 154

Fault Tolerance When Using Route Points 154

Secure Conferencing 154

Secure Real-Time Protocol Key Material 155

Secured Monitoring and Recording 161

SelectRoute Interface Enhancement 162

selectRoute() with Calling Search Space and Feature Priority 163

Set MessageWaiting 163

Shared Line Support 164

Silent Monitoring 166

Single Sign-On 169

Single Step Transfer 170

SIP 3XX Redirection 171

SIP Phone Support 172

SIP REFER or REPLACE 175

SIP Trunk Early Offer 176

Star (*) 50 Update 179

Super Provider (Disable Device Validation) 179

Superprovider and Change Notification 180

Support for Cisco Unified IP Phone 6901 182

Support for Cisco Unified IP Phone 6900 Series 183

Support for 100+ Directory Numbers 184

Support for VMware 185

Swap or Cancel and Transfer or Conference Behavior 186

Terminal and Address Capability Settings 187

Terminal and Address Restrictions 188

SHA-512 Support for Digital Signatures 192

Transfer 192

CiscoTransferStartEv 192

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
x

Contents

CiscoTransferEndEv 193

Transfer Scenarios 193

Transfer and Conference Extensions 195

Transfer and DirectTransfer 195

Translation Pattern Support 196

Transport Layer Security (TLS) 197

Unicode Support 203

Unrestricted Unified CM 205

URI Dialing 206

Version Format Change 207

Verification Involving PSTN Reachability 207

Video Capabilities and Multi-Media Information 207

Exposing Multimedia Capability on CiscoTerminal 207

Exposing Changes in Multimedia Capability Via a New Provider Event 208

Exposing Multimedia Capability on a CiscoCall 208

Exposing Multimedia Streams Information on CiscoTerminal 208

Supported Features (Within the Same Cluster) 209

Supported Features (Across Clusters) 210

Limitations 210

Video On Hold Support 211

Voice MailBox Support 211

XSI Object Pass Through 212

CiscoTerminal Method 212

Authentication and Mechanism 213

Cisco Unified JTAPI Installation 215C H A P T E R 4

Overview 215

Required Software 216

Supported Platforms 216

Installing the Cisco Unified JTAPI Software 216

Installation Procedures 216

Linux Platforms 220

Verifying Linux Installation 221

Windows Platforms 222

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xi

Contents

Verifying Windows Installation 224

Linux and Windows Installation 224

Using Cisco Unified CM JTAPI 225

Program Group and Program Elements 225

Cisco Unified JTAPI Configuration Settings 225

JTAPI Tracing Tab 226

Log Destination Tab 227

Cisco Unified CM Tab 230

Advanced Tab 231

Security Tab 234

Language Tab 236

Managing the Cisco Unified CM JTAPI 238

Reinstalling, Upgrading or Downgrading the Cisco JTAPI 238

Uninstalling the Cisco JTAPI 238

Administering User Information for JTAPI Applications 239

Fields in the jtapi.ini File 239

Sample jtapi.ini File with Default Values 245

Cisco Unified JTAPI Extensions 247C H A P T E R 5

Class Hierarchy 251

CiscoAddressCallInfo 251

Declaration 251

Constructors 252

Fields 252

Methods 252

Inherited Methods 252

Related Documentation 252

CiscoG711MediaCapability 253

Declaration 253

Constructors 253

Fields 253

Inherited Fields 254

Methods 254

Inherited Methods 254

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xii

Contents

Related Documentation 254

CiscoG723MediaCapability 254

Declaration 254

Constructors 255

Fields 255

Inherited Fields 255

Methods 255

Inherited Methods 256

Related Documentation 256

CiscoG729MediaCapability 256

Declaration 256

Constructors 256

Fields 257

Inherited Fields 257

Methods 257

Inherited Methods 257

Related Documentation 257

CiscoGSMMediaCapability 257

Declaration 258

Constructors 258

Fields 258

Inherited Fields 258

Methods 258

Inherited Methods 259

Related Documentation 259

CiscoJtapiVersion 259

Declaration 259

Constructors 259

Fields 259

Methods 260

Inherited Methods 260

Related Documentation 260

CiscoMediaCapability 260

Declaration 261

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xiii

Contents

Subclasses 261

Constructors 261

Fields 261

Methods 262

Inherited Methods 262

Related Documentation 262

CiscoMultiMediaCapabilityInfo 262

Declaration 262

Fields 263

Methods 263

CiscoRegistrationException 263

Declaration 264

Implemented Interfaces 264

Constructors 264

Methods 264

Inherited Methods 264

Related Documentation 264

CiscoRTPParams 265

Declaration 265

Constructors 265

Fields 265

Methods 265

Inherited Methods 266

Related Documentation 266

CiscoUnregistrationException 266

Declaration 266

Implemented Interfaces 266

Constructors 266

Fields 267

Methods 267

Inherited Methods 267

Related Documentation 267

CiscoWideBandMediaCapability 267

Declaration 267

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xiv

Contents

Constructors 268

Fields 268

Inherited Fields 268

Methods 268

Inherited Methods 268

Related Documentation 268

Interface Hierarchy 269

CiscoAddrActivatedEv 275

Superinterfaces 276

Declaration 276

Fields 276

Inherited Fields 276

Methods 276

Inherited Methods 277

Related Documentation 277

Superinterfaces 277

Declaration 277

Fields 277

Inherited Fields 277

Methods 278

Inherited Methods 278

Related Documentation 279

CiscoAddrActivatedOnTerminalEv 279

Superinterfaces 279

Declaration 279

Fields 279

Inherited Fields 280

Methods 280

Inherited Methods 280

Related Documentation 281

CiscoAddrAddedToTerminalEv 281

Superinterfaces 281

Declaration 281

Fields 281

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xv

Contents

Inherited Fields 281

Methods 282

Inherited Methods 282

Related Documentation 282

CiscoAddrAutoAcceptStatusChangedEv 282

Superinterfaces 283

Declaration 283

Fields 283

Inherited Fields 283

Methods 284

Inherited Methods 284

Related Documentation 284

CiscoAddrCreatedEv 284

Superinterfaces 284

Declaration 285

Fields 285

Inherited Fields 285

Methods 285

Inherited Methods 286

Related Documentation 286

CiscoAddrMonitorTerminatedEv 286

Declaration 286

Methods 286

Related Documentation 287

CiscoAddress 287

Superinterfaces 288

Subinterfaces 288

Fields 288

Methods 289

Inherited Methods 301

Parameters 301

Related Documentation 301

CiscoAddressObserver 301

Superinterfaces 301

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xvi

Contents

Declaration 301

Fields 301

Methods 302

Inherited Methods 302

Related Documentation 302

CiscoAddrEv 302

Superinterfaces 302

Subinterfaces 302

Declaration 302

Fields 302

Inherited Fields 303

Methods 303

Inherited Methods 303

Related Documentation 303

CiscoAddrEvFilter 303

Fields 304

Methods 304

Inherited Methods 306

Parameters 306

Value Range 306

Related Documentation 306

CiscoAddrInServiceEv 306

Superinterfaces 306

Declaration 306

Fields 306

Inherited Fields 307

Methods 307

Inherited Methods 307

Related Documentation 307

CiscoAddrIntercomInfoChangedEv 308

Superinterfaces 308

Declaration 308

Fields 308

Inherited Fields 308

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xvii

Contents

Methods 309

Inherited Methods 309

Related Documentation 309

CiscoAddrIntercomInfoRestorationFailedEv 309

Superinterfaces 310

Declaration 310

Fields 310

Inherited Fields 310

Methods 310

Inherited Methods 311

Related Documentation 311

CiscoAddrPickupGroupChangedEv 311

Declaration 311

Methods 311

New Error Code 312

CiscoAddrOutOfServiceEv 312

Superinterfaces 312

Declaration 312

Fields 312

Inherited Fields 312

Methods 313

Inherited Methods 313

Related Documentation 314

CiscoAddrParkStatusEv 314

Declaration 314

Fields 314

Inherited Fields 315

Methods 315

Value Ranges 315

Related Documentation 315

CiscoAddrRecordingConfigChangedEv 316

Superinterfaces 316

Declaration 316

Fields 316

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xviii

Contents

Inherited Fields 316

Methods 317

Inherited Methods 317

Related Documentation 317

CiscoAddrRemovedEv 317

Superinterfaces 318

Declaration 318

Fields 318

Inherited Fields 318

Methods 318

Inherited Methods 319

Related Documentation 319

CiscoAddrRemovedFromTerminalEv 319

Superinterfaces 319

Declaration 319

Fields 320

Inherited Fields 320

Methods 320

Inherited Methods 320

Related Documentation 321

CiscoAddrRestrictedEv 321

Superinterfaces 321

Declaration 321

Fields 321

Inherited Fields 322

Methods 322

Inherited Methods 322

Related Documentation 323

CiscoAddrRestrictedOnTerminalEv 323

Superinterfaces 323

Declaration 323

Fields 323

Inherited Fields 323

Methods 324

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xix

Contents

Inherited Methods 324

Related Documentation 324

CiscoAddrVoiceMailPilotChangedEv 324

Superinterfaces 325

Declaration 325

Fields 325

Inherited Fields 325

Methods 325

Inherited Methods 326

Related Documentation 326

CiscoAnnouncementStartedEv 326

Declaration 326

Methods 326

CiscoAnnouncementEndedEv 326

Declaration 326

Methods 327

CiscoAnnouncementErrorEv 327

Declaration 327

Methods 327

CiscoBaseMediaTerminal 327

Declaration 328

Superinterfaces 328

Fields 328

Inherited Fields 328

Methods 328

Inherited Methods 329

Parameters 329

Data Types 329

Range of Values 329

CiscoCall 330

Superinterfaces 331

Subinterfaces 331

Declaration 331

Fields 331

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xx

Contents

Inherited Fields 333

Methods 334

Inherited Methods 337

Parameters 337

Conference Controller 337

Telephone Call Argument 337

Other Shared Participants 338

The Transfer Controller 340

The New Connection 340

Related Documentation 343

CiscoCallChangedEv 343

Superinterfaces 344

Declaration 344

Fields 344

Inherited Fields 344

Methods 346

Inherited Methods 346

Related Documentation 346

CiscoCallConsultCancelledEv 347

Superinterfaces 347

Declaration 347

Fields 347

Inherited Fields 347

Methods 347

Inherited Methods 347

Related Documentation 348

CiscoCallCtlConnOfferedEv 348

Superinterfaces 348

Declaration 348

Fields 348

Inherited Fields 348

Methods 349

Inherited Methods 349

Related Documentation 350

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxi

Contents

CiscoCallCtlTermConnHeldReversionEv 350

Superinterfaces 350

Declaration 350

Fields 351

Inherited Fields 351

Methods 351

Inherited Methods 352

Related Documentation 352

CiscoCallEv 352

Superinterfaces 353

Subinterfaces 353

Declaration 353

Fields 353

Inherited Fields 362

Methods 362

Related Documentation 363

CiscoCallFeatureCancelledEv 363

Declaration 363

Methods 363

Related Documentation 364

CiscoCallID 364

Superinterfaces 364

Declaration 364

Fields 364

Methods 364

Inherited Methods 365

Related Documentation 365

CiscoMediaCallSecurityIndicator 365

Declaration 365

Fields 365

Methods 365

Related Documentation 366

CiscoCallSecurityStatusChangedEv 366

Superinterfaces 366

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxii

Contents

Declaration 366

Fields 366

Inherited Fields 366

Methods 368

Inherited Methods 368

Related Documentation 369

CiscoConferenceChain 369

Declaration 369

Fields 369

Methods 369

Related Documentation 370

CiscoConferenceChainAddedEv 370

All Superinterfaces 370

Declaration 370

Fields 370

Inherited Fields 371

Methods 372

Inherited Methods 372

Related Documentation 373

CiscoConferenceChainRemovedEv 373

Superinterfaces 373

Declaration 373

Fields 373

Inherited Fields 374

Methods 375

Inherited Methods 375

Related Documentation 376

CiscoConferenceEndEv 376

Superinterfaces 376

Declaration 376

Fields 376

Inherited Fields 377

Methods 378

Inherited Methods 379

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxiii

Contents

Related Documentation 380

CiscoConferenceStartEv 380

Superinterfaces 380

Declaration 380

Fields 380

Inherited Fields 381

Methods 382

Inherited Methods 383

Related Documentation 384

CiscoConnection 384

All Superinterfaces 384

Declaration 384

Fields 385

Inherited Fields 386

Methods 386

Inherited Methods 396

Documentation 396

CiscoConnectionID 396

Superinterfaces 397

Declaration 397

Fields 397

Methods 397

Inherited Methods 397

Related Documentation 397

CiscoConnectionUniqueIDChangedEv 397

Declaration 398

Methods 398

Related Documentation 398

CiscoConsultCall 398

Superinterfaces 398

Declaration 398

Fields 398

Inherited Fields 399

Methods 399

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxiv

Contents

Inherited Methods 400

Related Documentation 401

CiscoConsultCallActiveEv 401

Superinterfaces 401

Declaration 401

Fields 401

Inherited Fields 402

Methods 403

Inherited Methods 404

Related Documentation 404

CiscoEv 405

Superinterfaces 405

Subinterfaces 405

Declaration 405

Fields 405

Inherited Fields 406

Methods 406

Inherited Methods 406

Related Documentation 406

CiscoFeatureReason 406

Declaration 407

Fields 407

Related Documentation 409

CiscoHuntConnection 409

Declaration 409

Methods 409

Related Documentation 409

CiscoIntercomAddress 409

Superinterfaces 410

Declaration 410

Fields 410

Inherited Fields 410

Methods 411

Inherited Methods 412

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxv

Contents

Related Documentation 413

CiscoIsacMediaCapability 413

Superinterfaces 413

Declaration 413

Constuctors 413

Fields 414

Inherited Fields 414

Methods 414

Inherited Methods 414

CiscoJtapiException 414

Declaration 416

Fields 416

Inherited Fields 428

Methods 428

Inherited Methods 429

Related Documentation 429

CiscoMediaStreamStartedEv 429

Declaration 429

Fields 429

Inherited Fields 429

Methods 429

Inherited Methods 429

CiscoMediaStreamEndedEv 430

Declaration 430

Fields 430

Inherited Fields 430

Methods 430

Inherited Methods 431

CiscoJtapiPeer 431

Superinterfaces 431

Declaration 431

Fields 431

Methods 431

Inherited Methods 432

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxvi

Contents

Related Documentation 432

CiscoJtapiPeerImpl 432

Declaration 432

Fields 432

Methods 432

CiscoJtapiProperties 433

Declaration 433

Fields 433

Methods 434

User/InstanceID Hash Table 439

Related Documentation 440

CiscoLocales 440

Declaration 440

Fields 440

Methods 442

Related Documentation 442

CiscoMasterKeyIndicator 442

Declaration 442

Methods 443

CiscoMediaConnectionMode 443

Declaration 443

Fields 443

Methods 443

Related Documentation 444

CiscoMediaEncryptionAlgorithmType 444

Superinterfaces 444

Fields 444

Related Documentation 444

CiscoMediaEncryptionKeyInfo 444

Declaration 445

Fields 445

Methods 445

Related Documentation 445

CiscoMediaOpenIPPortEv 445

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxvii

Contents

Declaration 446

Superinterfaces 446

Fields 446

Inherited Fields 446

Methods 447

Inherited Methods 447

CiscoMediaOpenLogicalChannelEv 447

Superinterfaces 448

Declaration 448

Fields 448

Inherited Fields 448

Methods 449

Inherited Methods 450

Related Documentation 450

CiscoMediaSecurityIndicator 451

Declaration 451

Fields 451

Related Documentation 451

CiscoMediaTerminal 452

Superinterfaces 452

Declaration 452

Fields 452

Inherited Fields 452

Methods 453

Inherited Methods 463

Related Documentation 463

CiscoMonitorInitiatorInfo 463

Declaration 464

Fields 464

Methods 464

Related Documentation 464

CiscoMonitorTargetInfo 464

Declaration 464

Fields 464

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxviii

Contents

Methods 465

Related Documentation 465

CiscoMultiForkingRecorderInfo 465

Declaration 465

Methods 466

CiscoMultiMediaCapabilityInfo 466

Declaration 466

Fields 467

Methods 467

CiscoMultiMediaConnectionMode 468

Declaration 468

Methods 468

CiscoMultiMediaEncryptionKeyInfo 468

Declaration 468

Methods 469

CiscoMultiMediaProperties 469

Declaration 469

Methods 469

CiscoMultiMediaStreamsInfoEv 470

Declaration 471

Methods 471

CiscoMultiMediaType 471

Declaration 471

Methods 471

CiscoObjectContainer 472

Subinterfaces 472

Declaration 472

Fields 472

Methods 472

Related Documentation 473

CiscoOutOfServiceEv 473

Superinterfaces 473

Subinterfaces 473

Declaration 473

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxix

Contents

Fields 473

Inherited Fields 474

Methods 474

Related Documentation 474

CiscoPartyInfo 474

Declaration 475

Fields 475

Methods 475

Related Documentation 476

CiscoPickupGroup 476

Declaration 476

Methods 477

Related Documentation 477

CiscoProvCallParkEv 477

Superinterfaces 477

Declaration 477

Fields 477

Inherited Fields 478

Methods 478

Inherited Methods 479

Related Documentation 479

CiscoProvEv 479

Superinterfaces 480

Subinterfaces 480

Declaration 480

Fields 480

Inherited Fields 480

Methods 481

Inherited Methods 481

CiscoProvFeatureEv 481

Superinterfaces 482

Subinterfaces 482

Declaration 482

Fields 482

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxx

Contents

Inherited Fields 482

Methods 483

Inherited Methods 483

Related Documentation 483

CiscoProvFeatureID 483

Declaration 484

Fields 484

Methods 485

Related Documentation 485

CiscoProvPickupCallAlertEv 485

Declaration 485

Methods 485

CiscoProvTerminalIPAddressChangedEv 486

Declaration 486

Fields 486

Methods 487

Related Documentation 487

CiscoProvTerminalMultiMediaCapabilityChangedEv 487

Declaration 487

Methods 487

CiscoProvTerminalRegisteredEv 488

Declaration 488

Fields 488

Methods 488

Related Documentation 488

CiscoProvTerminalUnRegisteredEv 489

Declaration 489

Fields 489

Methods 489

Related Documentation 489

CiscoProvider 490

Superinterfaces 490

Declaration 491

Fields 491

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxi

Contents

Inherited Fields 491

New Error Codes 491

Methods 492

Inherited Methods 502

Related Documentation 502

CiscoProviderCapabilities 502

Superinterfaces 502

Declaration 502

Methods 503

Inherited Methods 504

Related Documentation 504

CiscoProviderCapabilityChangedEv 504

Declaration 504

Fields 505

Methods 505

Related Documentation 506

CiscoProviderObserver 506

Superinterfaces 506

Declaration 507

Methods 507

Inherited Methods 507

Related Documentation 507

CiscoProvTerminalCapabilityChangedEv 507

Superinterfaces 507

Declaration 507

Fields 508

Inherited Fields 508

Methods 508

Inherited Methods 508

Related Documentation 509

CiscoProvTerminalRemoteDestinationChangedEv 509

Methods 509

CiscoRecorderInfo 509

Declaration 510

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxii

Contents

Fields 510

Methods 510

Range of Values 511

Related Documentation 511

CiscoRemoteDestinationInfo 511

Methods 511

CiscoRemoteTerminal 512

Declaration 512

Methods 512

Parameters 514

Data Type 515

New Error Codes 515

Sample Code 515

CiscoRestrictedEv 517

Superinterfaces 517

Subinterfaces 517

Declaration 517

Fields 517

Inherited Fields 518

Methods 518

Inherited Methods 518

Related Documentation 518

CiscoRouteAddress 519

Superinterfaces 519

Declaration 519

Fields 519

Inherited Fields 519

Methods 519

Inherited Methods 519

Related Documentation 520

CiscoRouteEvent 520

Superinterfaces 520

Declaration 520

Fields 520

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxiii

Contents

Inherited Fields 520

Methods 521

Inherited Methods 521

Related Documentation 521

CiscoRouteSession 521

Superinterfaces 522

Declaration 522

Fields 522

Inherited Fields 524

Methods 524

Inherited Methods 540

Related Documentation 540

CiscoRouteTerminal 540

Superinterfaces 541

Declaration 542

Fields 542

Inherited Fields 542

Methods 543

Inherited Methods 548

Related Documentation 549

CiscoRouteUsedEvent 549

Superinterfaces 549

Declaration 549

Fields 549

Methods 549

Inherited Methods 550

Related Documentation 550

CiscoRTPBitRate 550

Declaration 550

Fields 550

Methods 550

Related Documentation 551

CiscoRTPHandle 551

Declaration 551

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxiv

Contents

Fields 551

Methods 551

Related Documentation 551

CiscoRTPInputKeyEv 552

Superinterfaces 552

Declaration 552

Fields 552

Inherited Fields 552

Methods 553

Inherited Methods 553

Related Documentation 554

CiscoRTPInputProperties 554

Declaration 554

Fields 554

Methods 554

Related Documentation 555

CiscoRTPInputStartedEv 555

Superinterfaces 555

Declaration 555

Fields 556

Inherited Fields 556

Methods 556

Inherited Methods 557

Related Documentation 557

CiscoRTPInputStoppedEv 557

Superinterfaces 557

Declaration 557

Fields 557

Inherited Fields 558

Methods 558

Inherited Methods 559

Related Documentation 559

CiscoRTPOutputKeyEv 559

Superinterfaces 559

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxv

Contents

Declaration 559

Fields 559

Inherited Fields 560

Methods 560

Inherited Methods 561

Related Documentation 561

CiscoRTPOutputProperties 561

Declaration 561

Fields 561

Methods 562

Related Documentation 563

CiscoRTPOutputStartedEv 563

Superinterfaces 563

Declaration 563

Fields 563

Inherited Fields 563

Methods 564

Inherited Methods 564

Related Documentation 565

CiscoRTPOutputStoppedEv 565

Superinterfaces 565

Declaration 565

Fields 565

Inherited Fields 565

Methods 566

Inherited Methods 566

Related Documentation 566

CiscoRTPOutputKeyEv 567

Superinterfaces 567

Declaration 567

Fields 567

Inherited Fields 567

Methods 568

Inherited Methods 568

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxvi

Contents

Related Documentation 569

CiscoRTPOutputProperties 569

Declaration 569

Fields 569

Methods 569

Related Documentation 570

CiscoRTPOutputStartedEv 570

Superinterfaces 571

Declaration 571

Fields 571

Inherited Fields 571

Methods 572

Inherited Methods 572

Related Documentation 572

CiscoRTPOutputStoppedEv 573

Superinterfaces 573

Declaration 573

Fields 573

Inherited Fields 573

Methods 574

Inherited Methods 574

Related Documentation 574

CiscoRTPPayload 575

Declaration 575

Fields 575

Methods 576

Related Documentation 576

CiscoRTPProperties 576

Declaration 577

Methods 577

CiscoSynchronousObserver 578

Declaration 578

Fields 578

Methods 579

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxvii

Contents

Related Documentation 579

CiscoTermActivatedEv 579

Superinterfaces 579

Declaration 579

Fields 579

Inherited Fields 579

Methods 580

Inherited Methods 580

Related Documentation 580

CiscoTermButtonPressedEv 580

Superinterfaces 580

Declaration 581

Fields 581

Inherited Fields 581

Methods 582

Inherited Methods 582

Related Documentation 582

CiscoTermConnMonitoringEndEv 582

Superinterfaces 583

Declaration 583

Fields 583

Inherited Fields 583

Methods 583

Inherited Methods 584

Related Documentation 584

CiscoTermConnMonitoringStartEv 584

Superinterfaces 584

Declaration 584

Fields 584

Inherited Fields 585

Methods 585

Inherited Methods 585

Related Documentation 585

CiscoTermConnMonitorInitiatorInfoEv 585

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxviii

Contents

Superinterfaces 586

Declaration 586

Fields 586

Inherited Fields 586

Methods 586

Inherited Methods 587

Related Documentation 587

CiscoTermConnMonitorTargetInfoEv 587

Superinterfaces 587

Declaration 587

Fields 588

Inherited Fields 588

Methods 588

Inherited Methods 588

Related Documentation 588

CiscoTermConnPrivacyChangedEv 589

Declaration 589

Fields 589

Methods 589

Related Documentation 589

CiscoTermConnRecordingEndEv 589

Superinterfaces 590

Declaration 590

Fields 590

Inherited Fields 590

Methods 590

Inherited Methods 590

Related Documentation 591

CiscoTermConnRecordingStartEv 591

Superinterfaces 591

Declaration 591

Fields 591

Inherited Fields 591

Methods 591

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xxxix

Contents

Inherited Methods 591

Related Documentation 592

CiscoTermConnRecordingTargetInfoEv 592

Superinterfaces 592

Declaration 592

Fields 592

Inherited Fields 592

Methods 593

Related Documentation 593

CiscoTermConnRecordingFailedEv 593

Superinterfaces 593

Declaration 593

Fields 594

Inherited Fields 594

Methods 594

Inherited Methods 594

Related Documentation 594

CiscoTermConnSelectChangedEv 594

Superinterfaces 595

Declaration 595

Fields 595

Inherited Fields 595

Methods 595

Inherited Methods 595

Related Documentation 596

CiscoTermCreatedEv 596

Superinterfaces 596

Declaration 596

Fields 596

Inherited Fields 596

Methods 597

Inherited Methods 597

Related Documentation 597

CiscoTermDataEv 597

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xl

Contents

Superinterfaces 598

Declaration 598

Fields 598

Inherited Fields 598

Methods 598

Inherited Methods 599

Related Documentation 599

CiscoTermDeviceStateActiveEv 599

Superinterfaces 599

Declaration 599

Fields 599

Inherited Fields 600

Methods 600

Inherited Methods 600

Related Documentation 600

CiscoTermDeviceStateAlertingEv 600

Superinterfaces 601

Declaration 601

Fields 601

Inherited Fields 601

Methods 602

Inherited Methods 602

Related Documentation 602

CiscoTermDeviceStateHeldEv 602

Superinterfaces 602

Declaration 602

Fields 603

Inherited Fields 603

Methods 603

Inherited Methods 603

Related Documentation 604

CiscoTermDeviceStateIdleEv 604

Superinterfaces 604

Declaration 604

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xli

Contents

Fields 604

Inherited Fields 604

Methods 605

Inherited Methods 605

Related Documentation 605

CiscoTermDeviceStateWhisperEv 605

Superinterfaces 605

Declaration 606

Fields 606

Inherited Fields 606

Methods 606

Inherited Methods 606

Related Documentation 607

CiscoTermDNDOptionChangedEv 607

Superinterfaces 607

Fields 607

Methods 608

CiscoTermDNDStatusChangedEv 608

Superinterfaces 609

Declaration 609

Fields 609

Inherited Fields 609

Methods 610

Inherited Methods 610

Related Documentation 610

CiscoTermEv 610

Superinterfaces 610

Subinterfaces 610

Declaration 611

Fields 611

Inherited Fields 611

Methods 611

Inherited Methods 611

Related Documentation 612

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlii

Contents

CiscoTermEvFilter 612

Declaration 612

Fields 612

Methods 612

Related Documentation 615

CiscoTerminal 615

Superinterfaces 617

Subinterfaces 617

Declaration 617

Fields 617

Methods 619

Inherited Fields 631

Data Type 632

Related Documentation 633

CiscoTerminalConnection 634

Superinterfaces 634

Declaration 634

Fields 634

Inherited Fields 635

Parameters 635

New Error Codes 635

Methods 637

Inherited Methods 640

Related Documentation 640

CiscoTerminalObserver 641

Superinterfaces 641

Declaration 641

Fields 641

Methods 641

Inherited Methods 641

Related Documentation 641

CiscoTerminalProtocol 641

Superinterfaces 642

Fields 642

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xliii

Contents

Related Documentation 642

CiscoTermInServiceEv 642

Superinterfaces 643

Declaration 643

Fields 643

Inherited Fields 643

Methods 644

Inherited Methods 644

Related Documentation 644

CiscoTermOutOfServiceEv 645

Superinterfaces 645

Declaration 645

Fields 645

Inherited Fields 645

Methods 646

Inherited Methods 646

Related Documentation 646

CiscoTermRegistrationFailedEv 646

Superinterfaces 647

Declaration 647

Fields 647

Inherited Fields 648

Methods 649

Inherited Methods 649

Related Documentation 649

CiscoTermRemovedEv 649

Superinterfaces 649

Declaration 649

Fields 650

Inherited Fields 650

Methods 650

Inherited Methods 650

Related Documentation 651

CiscoTermRestrictedEv 651

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xliv

Contents

Superinterfaces 651

Declaration 651

Fields 651

Inherited Fields 651

Methods 652

Inherited Methods 652

Related Documentation 652

CiscoTermSnapshotCompletedEv 652

Superinterfaces 653

Declaration 653

Fields 653

Inherited Fields 653

Methods 653

Inherited Methods 654

Related Documentation 654

CiscoTermSnapshotEv 654

Superinterfaces 654

Declaration 654

Fields 655

Inherited Fields 655

Methods 655

Inherited Methods 655

Related Documentation 656

CiscoTone 656

Superinterfaces 656

Fields 656

CiscoToneChangedEv 657

Superinterfaces 657

Declaration 657

Fields 657

Inherited Fields 659

Methods 659

Inherited Methods 660

Related Documentation 660

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlv

Contents

CiscoTransferEndEv 660

Superinterfaces 660

Declaration 660

Fields 660

Inherited Fields 661

Methods 662

Inherited Methods 663

Related Documentation 663

CiscoTransferStartEv 663

Superinterfaces 664

Declaration 664

Fields 664

Inherited Fields 664

Methods 666

Inherited Methods 666

Related Documentation 667

CiscoUrlInfo 667

Declaration 667

Fields 667

Methods 668

Related Documentation 668

ComponentUpdater 668

Declaration 668

Methods 668

Related Documentation 669

ProviderPickupNotificationRegistrationClosedEv 669

Declaration 669

Methods 669

New Reason Code 670

Related Documentation 670

CiscoTermHuntLogStatusChangedEv 670

Declaration 670

Methods 670

CiscoProvConnToLeastPriorCtiServerEv 670

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlvi

Contents

CiscoProvFallbackToPrimNwCompltdEv 671

CiscoProvPrimNwReachableEv 672

Cisco Unified JTAPI Alarms and Services 673C H A P T E R 6

Alarm Class Hierarchy 674

AlarmManager 674

Declaration 675

Constructors 675

Methods 676

AlarmWriter 676

Declaration 676

All Known Implementing Classes 676

Member Summary 676

Methods 677

DefaultAlarm 678

Declaration 678

All Implemented Interfaces 678

Member Summary 678

Constructors 679

Methods 679

DefaultAlarmWriter 680

Declaration 680

All Implemented Interfaces 680

Member Summary 680

Constructors 681

Methods 682

ParameterList 684

Declaration 684

Member Summary 684

Constructors 685

Methods 685

Alarm Interface Hierarchy 686

Alarm 686

Declaration 687

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlvii

Contents

All Known Implementing Classes 687

Member Summary 687

Fields 689

Methods 690

AlarmWriter 691

Declaration 691

All Known Implementing Classes 691

Member Summary 691

Methods 692

Services Tracing Class Hierarchy 693

BaseTraceWriter 693

Declaration 693

All Implemented Interfaces 693

Direct Known Subclasses 693

Member Summary 694

Constructors 695

Methods 695

ConsoleTraceWriter 697

Declaration 697

All Implemented Interfaces 698

Member Summary 698

Constructors 698

Methods 699

LogFileTraceWriter 699

Declaration 701

All Implemented Interfaces 701

Member Summary 701

Fields 702

Constructors 703

Methods 704

OutputStreamTraceWriter 705

Declaration 706

All Implemented Interfaces 706

Member Summary 706

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlviii

Contents

Constructors 707

Methods 707

SyslogTraceWriter 708

Declaration 708

All Implemented Interfaces 708

Member Summary 708

Constructors 709

Methods 710

TraceManagerFactory 710

Declaration 710

Member Summary 710

Methods 711

Services Tracing Interface Hierarchy 712

Trace 712

Declaration 712

All Known Subinterfaces 713

Member Summary 713

Fields 715

Methods 717

ConditionalTrace 719

Declaration 719

All Superinterfaces 719

Member Summary 719

Methods 720

UnconditionalTrace 720

Declaration 720

All Superinterfaces 720

Member Summary 721

TraceManager 721

Declaration 722

Member Summary 722

Methods 723

TraceModule 725

Declaration 725

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
xlix

Contents

All Known Subinterfaces 725

Member Summary 726

Methods 726

TraceWriter 726

Declaration 726

All Known Subinterfaces 726

All Known Implementing Classes 726

Member Summary 727

Methods 727

TraceWriterManager 729

Declaration 729

All Superinterfaces 729

Member Summary 729

Methods 730

Tracing Implementation Class Hierarchy 730

TraceImpl 731

Declaration 731

All Implemented Interfaces 731

Methods 731

Inherited Methods 733

ConditionalTraceImpl 733

Declaration 733

All Implemented Interfaces 733

Methods 733

Inherited Methods 734

UnconditionalTraceImpl 734

Declaration 734

All Implemented Interfaces 735

Methods 735

Inherited Methods 735

TraceManagerImpl 735

Declaration 735

All Implemented Interfaces 735

Constructors 736

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
l

Contents

Methods 736

Deprecated 739

Inherited Methods 739

TraceWriterManagerImpl 739

Declaration 739

All Implemented Interfaces 739

Constructors 740

Methods 740

Cisco Unified JTAPI Examples 743C H A P T E R 7

MakeCall.java 743

Actor.java 745

Originator.java 749

Receiver.java 753

StopSignal.java 754

Trace.java 755

TraceWindow.java 756

Running makecall 757

Message Sequence Charts 759A P P E N D I X A

Agent Greeting 760

API for Exposing Built-in-Bridge Status 764

Backward Compatibility Enhancements 766

Barge and Privacy 780

Barge 781

CBarge 782

Privacy 783

Call Control Discovery 783

CallFwdAll Keys Press Notification 791

Call Recording for SIP or TLS Authenticated calls 794

CallSelect and UnSelect 795

Cius Persistency 796

Conference and Join 797

Join/Arbitrary Conference 797

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
li

Contents

Consult Conference 798

Join Across Lines with Enhancements 798

CTI Manager Redundancy Handling with Least Priority CTIManager Configured 803

CTI Manager Redundancy Handling with Least Priority CTI Server Set 804

CTI Remote Device 805

CTI Remote Device Use Cases Group 1 805

CTI Remote Device Use Cases Group 2 819

CTI Remote Device Use Cases Group 3 854

CTI Remote Device Use Cases Group 4 856

CTI Remote Device Use Cases Group 5 858

CTI Remote Device Use Cases Group 6 871

CTI RD Call Forward 874

CTI Video Support 883

Device and Line Restriction 890

Device State Server 893

Do Not Disturb 893

DND-R 897

Dynamic CTIPort Registration Per Call 899

E911 Teleworker 900

Encryption Enhancement 901

End to End Call Tracing 902

Hunt Log Status for Phone Devices 918

Energywise Deep Sleep Mode 921

External Call Control 927

Use Cases for BasicCall 927

Use Cases for Calls Going Through Translation Pattern with CEPN Info in Cc Signals 929

WildCard Routepoint Interaction (Behavior Change) 950

WildCard Routepoint Interaction (Original Behavior) 952

External Call Control Use Cases 954

Chaperone Use Cases 969

Extension Mobility Cross Cluster 976

End to End Session ID for Calls 979

Forced Authorization and Customer Matter Codes 989

Hairpin Support 996

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lii

Contents

Half Duplex Media 998

Hunt List 998

Hunt List Connected Number 1041

Intercom 1049

iSac Codec 1055

JTAPI Cisco Unified IP 7931G Phone Interaction 1060

Locale Infrastructure Development Scenarios 1082

Calling Party Normalization 1083

Click to Conference 1090

Call Pickup 1107

selectRoute() with Calling Search Space and Feature Priority 1122

Extension Mobility Login Username 1124

Calling Party IP Address 1125

CiscoJtapiProperties 1126

IPv6 Support 1127

Provider Open Scenario 1148

Calling Party IP Address Scenarios 1149

RTP Addresses 1150

CTI Port/Route Point Registration Scenarios 1152

Advance Test Cases 1154

Direct Transfer Across Lines Use Cases 1155

Connected Conference or Join Across Lines Use Cases - New Phones Behavior 1163

Enhanced MWI Use Cases 1164

Join Across Lines Enhancements 1165

Swap or Cancel and Transfer or Conference Behavior Change 1172

Drop Any Party Use Cases 1182

Park Monitoring Support 1204

Use Case 1: Park Monitoring States 1204

Use Case 2: Shared Line Scenario - Cisco Unified IP Phone Does Park 1207

Use Case 3: Shared Line Scenario - Cisco Unified IP Phone 7900 Series with SIP Does Park 1208

Use Case 4: Use Case for Snap Shot Scenario 1209

Use Case 5: Park DN Is Monitored 1212

Use Case 6: Query Number of Parked Calls 1212

Use Case 7: Filter Enabling or Disabling 1213

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
liii

Contents

Use Case 8: Filter Enabling or Disabling 1214

Use Case 9: Filter Enabling or Disabling 1214

Use Case 10: Filter Enabling or Disabling 1215

Additional Use Cases for Park Monitoring 1216

Use Cases Related to DPark 1229

Logical Partitioning Feature Use Cases 1231

Shared Lines 1233

Call Park Reversion with Shared Lines in Different Geographic Locations 1233

ComponentUpdater Enhancement Use Cases 1234

IPv6 Support 1234

Support for Cisco Unified IP Phone 6900 Series 1234

Terminal and Address Capability Settings Use Cases 1238

Media Termination at Route Point 1261

Mobility Interaction Support 1263

Modifying Calling Number 1269

AutoAccept for CTIPort and RoutePoint 1272

Silent Monitoring Use Cases 1272

Secured Monitoring Use Cases 1280

Native Queuing 1285

Queuing of Call 1286

Maximum In-Queue Timer Expires 1291

Maximum In-Queue Timer Expires with Destination as Another HP Whose Member E Is Free 1292

Maximum In-Queue Timer Expires with Destination as Another HP Whose Members Are Busy 1293

Queue Is Full 1296

When Disconnect Is Selected for Queue Full 1298

No Agents Are Logged In 1300

Caller Redirects While in Queue 1300

Caller (Observed) Conferences While in Queue 1302

Use Cases for NuRD (Number Matching for Remote Destination) 1305

Basic Calls Initiated From Remote Destination 1305

Basic Calls to Remote Destination 1308

CTIRD/RDP Interaction 1311

Multiple Calls 1321

Partition Support 1335

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
liv

Contents

Using getPartition() API 1335

Using getAddress (String Number String Partition) 1335

Park DN 1337

Partition Change 1338

JTAPI Partition Support 1339

Persistent Connection Use Cases 1341

Play Announcement 1354

Basic Play Announcement Use Cases 1355

Play Announcement Feature Interaction Use Cases 1382

Play Zip Tone 1388

QoS Support 1389

JTAPI QoS 1389

QSIG Path Replacement 1390

Recording Use Cases 1392

Recording IP Phones 1394

CTI Remote Devices Use Cases 1403

Feature Interaction: Recording Use Cases 1408

Recording Fail Event 1437

Secured Recording 1444

Redirect Set OriginalCalledID 1445

Redirect to a Device 1447

Verify Remote Destination Support 1450

Secure Conferencing 1453

Secure Connection Enhancements 1457

Secure Icon Enhancements 1457

Shared Line Support 1469

AddressInService/AddressOutofService Events 1469

Incoming Call to Shared Address 1470

Outgoing Call From Shared Address 1471

Shared Address Calling Itself 1472

Single Sign-On 1472

Single Step Transfer 1473

SIP REPLACE 1476

SIP REFER 1482

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lv

Contents

IN-Dialog REFER Scenario 1482

OutOfDialog Refer 1489

SIP 3XX Redirection 1491

SIP Support 1495

SIP Trunk Early Offer 1496

SRTP Key Material 1507

Super Provider Message Flow 1508

SuperProvider and Change Notification Enhancements Use Cases 1508

Support for Cisco Unified IP Phone 6901 1510

SHA Support for Digital Signatures 1533

TLS Security 1534

Transfer and Direct Transfer 1536

DirectTransfer/Arbitrary Transfer Scenario 1537

Direct Transfer/Arbitrary Transfer-Page 2 1538

Consult Transfer 1538

Unicode Support 1539

Unrestricted Unified CM 1539

Video Capabilities and Multi-Media Information 1540

Scenario One 1540

Scenario Two 1541

Scenario Three 1541

Scenario Four 1542

Scenario Five 1543

Scenario Six 1543

Scenario Seven 1544

Scenario Eight 1544

Scenario Nine 1547

Scenario Ten 1549

Scenario Eleven 1551

Scenario Twelve 1554

Scenario Thirteen 1558

Scenario Fourteen 1561

Scenario Fifteen 1564

Scenario Sixteen 1566

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lvi

Contents

Scenario Seventeen 1568

Scenario Eighteen 1570

Scenario Nineteen 1572

Scenario Twenty 1576

Video On Hold 1579

Verification Involving PSTN Reachability 1581

Whisper Coaching 1586

Cisco Unified JTAPI Classes and Interfaces 1603A P P E N D I X B

Cisco Unified JTAPI Version 1.2 Classes and Interfaces 1603

Core Package 1604

Call Center Package 1607

Call Center Capabilities Package 1609

Call Center Events Package 1610

Call Control Package 1612

Call Control Capabilities Package 1614

Call Control Events Package 1616

Capabilities Package 1617

Events Package 1618

Media Package 1619

Media Capabilities Package 1620

Media Events Package 1620

Unsupported Packages 1620

Cisco Unified JTAPI Extension Classes and Interfaces 1621

Cisco Unified JTAPI Extension Classes 1621

Cisco Unified JTAPI Extension Interfaces 1621

Cisco Trace Logging Classes and Interfaces 1626

Cisco Trace Logging Classes 1626

Cisco Trace Logging Interfaces 1627

Troubleshooting Cisco Unified JTAPI 1629A P P E N D I X C

CTI Error Codes 1629

CiscoEventIDs 1639

Provider Events 1639

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lvii

Contents

Terminal Events 1640

Address Events 1640

Call Events 1641

RTP Events 1642

TermConn Events 1642

Conn Events 1643

Reason Codes 1643

Cause Codes 1644

Additional Troubleshooting Information 1649

Viewing JTAPI Debug Output 1649

Log Files for JTAPI Client Installer 1650

Troubleshooting Tips for ISMP Installer 1650

Unable to Create Provider Directory Login Timeout 1651

Cisco Unified JTAPI Operations by Release 1653A P P E N D I X D

JTAPI Operations-by-Release 1653

CTI Supported Devices 1659A P P E N D I X E

CTI Supported Devices Table 1659

Constant Field Values 1665A P P E N D I X F

com.cisco.* 1665

CiscoAddrActivatedEv 1665

CiscoAddrActivatedOnTerminalEv 1665

CiscoAddrAddedToTerminalEv 1665

CiscoAddrAutoAcceptStatusChangedEv 1665

CiscoAddrCreatedEv 1666

CiscoAddress 1666

CiscoAddrInServiceEv 1667

CiscoAddrIntercomInfoChangedEv 1667

CiscoAddrIntercomInfoRestorationFailedEv 1667

CiscoAddrOutOfServiceEv 1667

CiscoAddrRecordingConfigChangedEv 1667

CiscoAddrRemovedEv 1667

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lviii

Contents

CiscoAddrRemovedFromTerminalEv 1667

CiscoAddrRestrictedEv 1668

CiscoAddrRestrictedOnTerminalEv 1668

CiscoCall 1668

CiscoCallChangedEv 1669

CiscoCallCtlTermConnHeldReversionEv 1669

CiscoCallEv 1669

CiscoCallSecurityStatusChangedEv 1674

CiscoConferenceChainAddedEv 1674

CiscoConferenceChainRemovedEv 1674

CiscoConferenceEndEv 1674

CiscoConferenceStartEv 1674

CiscoConnection 1674

CiscoConnectionUniqueIDChangedEv 1675

CiscoConsultCallActiveEv 1675

CiscoFeatureReason 1675

CiscoG711MediaCapability 1677

CiscoG723MediaCapability 1677

CiscoG729MediaCapability 1677

CiscoGSMMediaCapability 1677

CiscoJtapiException 1677

CiscoLocales 1685

CiscoMediaConnectionMode 1687

CiscoMediaEncryptionAlgorithmType 1687

CiscoMediaOpenLogicalChannelEv 1687

CiscoMediaSecurityIndicator 1687

CiscoOutOfServiceEv 1687

CiscoPartyInfo 1688

CiscoProvCallParkEv 1688

CiscoProvFeatureID 1689

CiscoProviderCapabilityChangedEv 1689

CiscoProvTerminalCapabilityChangedEv 1689

CiscoRemoteTerminal 1689

CiscoRestrictedEv 1689

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lix

Contents

CiscoRouteSession 1690

CiscoRouteTerminal 1690

CiscoRTPBitRate 1690

CiscoRTPInputKeyEv 1691

CiscoRTPInputStartedEv 1691

CiscoRTPInputStoppedEv 1691

CiscoRTPOutputKeyEv 1691

CiscoRTPOutputStartedEv 1691

CiscoRTPOutputStoppedEv 1691

CiscoRTPPayload 1691

CiscoTermActivatedEv 1692

CiscoTermButtonPressedEv 1692

CiscoTermConnMonitoringEndEv 1693

CiscoTermConnMonitoringStartEv 1693

CiscoTermConnMonitorInitiatorInfoEv 1694

CiscoTermConnMonitorTargetInfoEv 1694

CiscoTermConnPrivacyChangedEv 1694

CiscoTermConnRecordingEndEv 1694

CiscoTermConnRecordingStartEv 1694

CiscoTermConnRecordingTargetInfoEv 1694

CiscoTermConnSelectChangedEv 1694

CiscoTermCreatedEv 1695

CiscoTermDataEv 1695

CiscoTermDeviceStateActiveEv 1695

CiscoTermDeviceStateAlertingEv 1695

CiscoTermDeviceStateHeldEv 1695

CiscoTermDeviceStateIdleEv 1695

CiscoTermDeviceStateWhisperEv 1695

CiscoTermDNDOptionChangedEv 1696

CiscoTermDNDStatusChangedEv 1696

CiscoTerminal 1696

CiscoTerminalConnection 1699

CiscoTerminalProtocol 1699

CiscoTermInServiceEv 1699

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lx

Contents

CiscoTermOutOfServiceEv 1700

CiscoTermRegistrationFailedEv 1700

CiscoTermRemovedEv 1700

CiscoTermRestrictedEv 1700

CiscoTermSnapshotCompletedEv 1700

CiscoTermSnapshotEv 1701

CiscoTone 1701

CiscoToneChangedEv 1701

CiscoTransferEndEv 1701

CiscoTransferStartEv 1701

CiscoUrlInfo 1701

CiscoWideBandMediaCapability 1702

Alarm 1702

LogFileTraceWriter 1702

Trace 1703

Caveats 1705A P P E N D I X G

Caveats for All Releases 1705

Single Versus Multiple CallObserver Clarification 1706

SIP and SCCP Dialing Differences with Overlapping Directory Number Patterns 1706

Translation Pattern Support 1707

DT24+ Limitation with PRI NI2 Trunk 1707

Connection for Park Number Not Created 1708

Inconsistency Between SIP and SCCP Phone 1708

Failure to Route Calls Across Destinations 1708

Incorrect Return Value for getCallingAddress() 1708

Call Fails to Disconnect Held Shared Line 1709

Limitation with sendData() API on CiscoTerminal 1709

Limitation in Using ; (Semi-Colon) and = (Equal) in User ID and Password 1709

Connection to Unknown Address When Unparking a Conference Call 1709

CTI Redirect to Voice Mail Wont Work with QSIG 1710

CiscoAddress.getForwarding() Returns Correct Value Only for In-Service Addresses 1710

Unsupported CTI Events for SIP Phones 1710

Caveats for Release 9.1(1) 1710

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lxi

Contents

Connection for Park DN While UnPark 1711

Caveats for Release 8.6(1) 1712

Limitation While Using a Cisco Telepresense MCU 1712

Caveats for Release 8.5(1) 1712

Discouraged Use of JTAPIProperties.updateCertificate() 1712

Delete SecurityProperties Before Re-Use 1713

No ConnDisconnectedEv Event When Call Is Rejected 1713

Caveats for Release 8.0(1) 1714

Globalized Calling Party Number 1714

Conference Interaction with Chaperone Results in Unsupported Conference Chaining 1714

Wildcard Routepoint Interaction 1715

Inconsistent Address Type of ModifiedCalledAddress When a Call Is Made to a Hunt Pilot 1715

Caveats for Release 7.0.1 1715

Inconsistency in getModifiedCallingAddress() 1715

Conference Behavior for Selected and Active Calls 1715

Change in GlobalizedCallingParty Behavior 1716

Caveats for Release 6.0.1 1717

Call History Might Get Lost When AAR Routes Over QSIG Trunk 1717

Different Event Order If Consult Call Initiated on SIP Device 1717

Caveats for Release 5.0 1717

SRTP Support 1718

Partition Support 1718

TLS Security 1718

CiscoFeatureReason 1718

Unicode Issue in Calls Involving SIP Trunks 1718

Join Across Lines: Conference Two or More Addresses on Same Terminal 1719

JTAPI Exposes Incorrect Information with getCallingAddress() and getCalledAddress() 1720

Caveats for Release 4.1 1721

FAC-CMC 1721

setConferenceController 1721

Interval During DTMF Digits 1722

Shared Lines Support 1722

CP Requires Previous Calls on the Device to Be in Connected Call State 1722

CallInfo for Calls on QSIG Trunk 1722

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lxii

Contents

Caveats for 4.0 1722

Extra Connection with Wild Card DN 1723

CallInfo in Barge Scenario 1723

CallInfo Issues When Caller Redirects Call 1723

Translation Pattern and Presentation Indication Interaction 1723

Extra TermConnHeld Events 1723

Transfer and Conference Interaction 1723

Dropping a Call on Shared Lines 1724

Barge Call 1724

Null lastRedirectingAddress 1724

Devices Configured with Same CLI 1724

Current Called Address 1725

Deprecated API 1727A P P E N D I X H

Deprecated Interfaces 1727

Deprecated Fields 1727

Deprecated Methods 1728

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lxiii

Contents

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
lxiv

Contents

C H A P T E R 1
Overview

Cisco Unified Communications Manager (Unified CM) is the powerful call-processing component of the
Cisco Unified Communications Solution. It is a scalable, distributable, and highly available enterprise IP
telephony call-processing solution. Unified CM acts as the platform for collaborative communication and as
such supports a wide array of features. In order to provision, invoke the features, monitor, and control such
a powerful system, Unified CM supports different interface types.

This chapter gives an introduction to the different interfaces of Unified CM and describes the major concepts
with which you need to be familiar before creating Java TelephonyApplication Programming Interface (JTAPI)
applications for Cisco Unified Communications Manager systems.

For information about Cisco Unified Communications Manager features, see Features Supported by Cisco
Unified JTAPI, on page 29 Also see CTI Supported Devices, on page 1659 and Cisco Unified JTAPI Operations
by Release, on page 1653 for more information and CTI devices and supported features.

• Cisco Unified Communications Manager Interfaces, on page 1
• JTAPI Overview, on page 5
• Cisco Unified JTAPI Concepts, on page 7
• Threaded Callbacks, on page 14
• Alarm Services, on page 16
• Software Requirements, on page 16
• Development Guidelines, on page 16

Cisco Unified Communications Manager Interfaces
The interface types supported by Unified CM are divided into the following types:

• Provisioning Interfaces, on page 2

• Device Monitoring and Call Control Interfaces, on page 2

• Serviceability Interfaces, on page 3

• Routing Rules Interface, on page 4

• Cisco Unified Communications Manager Interfaces, on page 1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1

Provisioning Interfaces
The following are the provisioning interfaces of Unified CM:

• Administration XML

• Cisco Extension Mobility Service

Administrative XML
The Administration XML (AXL) API provides a mechanism for inserting, retrieving, updating and removing
data from the Unified CM configuration database using an eXtensible Markup Language (XML) Simple
Object Access Protocol (SOAP) interface. This allows a programmer to access Unified CM provisioning
services using XML and exchange data in XML form, instead of using a binary library or DLL. The AXL
methods, referred to as requests, are performed using a combination of HTTP and SOAP. SOAP is an XML
remote procedure call protocol. Users perform requests by sending XML data to the Unified CM Publisher
server. The publisher then returns the AXL response, which is also a SOAP message. For more information,
See the Administrative XML Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/axl/home.

Cisco Extension Mobility
The Cisco ExtensionMobility (ExtensionMobility) service, a feature of Unified CM, allows a device, usually
a Cisco Unified IP Phone, to temporarily embody a new device profile, including lines, speed dials, and
services. It enables users to temporarily access their individual Cisco Unified IP Phone configuration, such
as their line appearances, services, and speed dials, from other Cisco Unified IP Phones. The Extension
Mobility service works by downloading a new configuration file to the phone. Unified CM dynamically
generates this new configuration file based on information about the user who is logging in. You can use the
XML-based Extension Mobility service API with your applications, so they can take advantage of Extension
Mobility service functionality.

For more information, see the Extension Mobility API Tech Center on the Cisco Developer Network
https://developer.cisco.com/site/extension-mobility/develop-and-test/documentation/latest-version/
emapi-developer-guide.gsp.

Also, see Cisco Unified Communications Manager XML Developers Guide for relevant release of Unified
CM at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Device Monitoring and Call Control Interfaces
The following are the device monitoring and call control interfaces of Unified CM:

• Cisco TAPI and Media Driver

• Cisco JTAPI

• Cisco Web Dialer

Cisco TAPI and Media Driver
Unified CM exposes sophisticated call control of IP telephony devices and soft-clients via the Computer
Telephony TAPI interface. Cisco's Telephone Service Provider (TSP) and Media Driver interface enables

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
2

Overview
Provisioning Interfaces

http://developer.cisco.com/web/axl/home
https://developer.cisco.com/site/extension-mobility/develop-and-test/documentation/latest-version/emapi-developer-guide.gsp
https://developer.cisco.com/site/extension-mobility/develop-and-test/documentation/latest-version/emapi-developer-guide.gsp
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

custom applications to monitor telephony-enabled devices and call events, establish first- and third-party call
control, and interact with the media layer to terminate media, play announcements, record calls.

For more information, see the TAPI and Media Driver Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/tapi/home.

Also, see the Cisco Unified TAPI Developers Guide for Cisco Unified Communications Manager for relevant
release of Unified CM at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Cisco JTAPI
For more information, see the JTAPI Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/jtapi/home and JTAPI Overview, on page 5.

Cisco Web Dialer
The Web Dialer, which is installed on a Unified CM server, allows Cisco Unified IP Phone users to make
calls from web and desktop applications. For example, the Web Dialer uses hyperlinked telephone numbers
in a company directory to allow users to make calls from a web page by clicking the telephone number of the
person that they are trying to call. The two main components of Web Dialer comprise the Web Dialer Servlet
and the Redirector Servlet.

For more information, see the Web Dialer Tech Center on the Cisco Developer Network
https://developer.cisco.com/site/webdialer/develop-and-test/documentation/latest-version/.

For more information on CiscoWebDialer, see theCisco Unified Communications Manager XML Developers
Guide for relevant release of Unified CM at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Serviceability Interfaces
The following are the serviceability interfaces of Unified CM:

• Serviceability XML

• SNMP/MIBs

Serviceability XML
A collection of services and tools designed to monitor, diagnose, and address issues specific to Unified CM
serviceability XML interface:

• Provides platform, service and application performance counters to monitor the health of Unified CM
hardware and software

• Provides real-time device and CTI connection status to monitor the health of phones, devices, and
applications connected to Unified CM.

• Enables remote control (Start/Stop/Restart) of Unified CM services.

• Collects and packages Unified CM trace files and logs for troubleshooting and analysis.

• Provides applications with Call Detail Record files based on search criteria.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
3

Overview
Cisco JTAPI

http://developer.cisco.com/web/tapi/home
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
http://developer.cisco.com/web/jtapi/home
https://developer.cisco.com/site/webdialer/develop-and-test/documentation/latest-version/
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

• Provides management consoles with SNMP data specific to Unified CM hardware and software.

For more information, see the Serviceability XML Tech Center on the Cisco Developer Network
http://developer.cisco.com/web/sxml/home.

SNMP/MIBs
SNMP interface allows external applications to query and report various UCMgr entities. It provides information
on the connectivity of the Unified Communication Manager to other devices in the network, including syslog
information.

The MIBs supported by Unified CM includes:

• Cisco-CCM-MIB, CISCO-CDP-MIB, Cisco-syslog-MIB

• Standard Mibs like MIB II, SYSAPPL-MIB, HOST RESOURCES-MIB

• Vendor MIBs

For more information, see the SNMP/MIB Tech Center on the Cisco Developer Network
https://developer.cisco.com/site/sxml/.

Also, see the Cisco Unified Communications Manager XML Developers Guide for relevant release of Unified
CM at the following location:

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

Routing Rules Interface
Cisco Unified Communication Manager 8.0(1) and later supports the external call control (ECC) feature,
which enables an adjunct route server to make call-routing decisions for Cisco Unified Communications
Manager by using the Cisco Unified Routing Rules Interface.When you configure external call control, Cisco
Unified Communications Manager issues a route request that contains the calling party and called party
information to the adjunct route server. The adjunct route server receives the request, applies appropriate
business logic, and returns a route response that instructs Cisco Unified Communications Manager on how
the call should get routed, along with any additional call treatment that should get applied.

For more information, see the Routing Rules Interface Tech Center on the Cisco Developer Network
https://developer.cisco.com/site/curri/develop-and-test/documentation/latest-version/.

Cisco Connection Interface
This interface has the APIs that can be invoked on a connection object. Connections retain their references
to calls and addresses forever. A connection reference that is obtained from a call event can be used to obtain
the connection call (getCall()) and address (getAddress()).

The following are the cisco connection interfaces of Cisco Unified Communications Manager:

• Local Universal Unique Identifier of Party Associated with the Connection

• Local Universal Unique Identifier of Party Associated on the Other Side of the Call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
4

Overview
SNMP/MIBs

http://developer.cisco.com/web/sxml/home
https://developer.cisco.com/site/sxml/
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
https://developer.cisco.com/site/curri/develop-and-test/documentation/latest-version/

JTAPI Overview
Cisco Unified JTAPI serves as a programming interface standard developed by Sun Microsystems for use
with Java-based computer–telephony applications. Cisco JTAPI implements the Sun JTAPI 1.2 specification
with additional Cisco extensions. You use Cisco JTAPI to develop applications that:

• Control and observe Cisco Unified Communications Manager phones.

• Route calls by using Computer–Telephony Integration (CTI) ports and route points (virtual devices).

Basic telephony APIs that are supported comprises conference, transfer, connect, answer, and redirect APIs.

A package of JTAPI interfaces, located in the javax.telephony.* hierarchy, defines a programming model by
which Java applications interact with telephony resources. For more information about interfaces, see Cisco
Unified JTAPI Classes and Interfaces, on page 1603.

This section describes the following subjects:

• Cisco Unified JTAPI and Contact Centers, on page 5

• Cisco Unified JTAPI and Enterprises, on page 5

• Cisco Unified JTAPI Applications, on page 6

• Jtprefs Application, on page 7

Cisco Unified JTAPI and Contact Centers
Cisco Unified JTAPI gets used in a contact center to monitor device status and to issue routing instructions
to send calls to the right place at the right time, to start and stop recording instructions while retrieving call
statistics for analysis; and to screen-pop calls into CRM applications, automated scripting, and remote call
control.

Cisco Unified JTAPI and Enterprises
Cisco Unified JTAPI, used in an enterprise environment, combines user availability, location, and preferences
for a uniquely tailored environment for presence-based routing. For example, in a financial environment,
market data, business logic, and call control combine in a browser-based application to enable brokers and
analysts to respond to rapid changes in the global financial markets.

In a heathcare environment, call control, doctor/patient lookup, and emergency response team paging combine
in a browser-based console. Further, in a hospitality environment, caller data gets linked with POS systems
to automate room or restaurant reservations, dispatch taxis, and schedule wakeup calls.

The following figure shows a typical Cisco Unified Communications Manager and Cisco Unified JTAPI in
an enterprise configuration.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
5

Overview
JTAPI Overview

Figure 1: Cisco Unified Communications Manager and Cisco Unified JTAPI

Cisco Unified JTAPI Applications
A Cisco Unified JTAPI application can flow as follows:

• Obtain JTAPIPeerobject instance from JTAPIPeerFactory.

• Obtain a Provider by using the getProvider() API on JTAPIPeer.

• Obtain from the Provider, the Terminal and Address for use in your application.

• Determine capabilities of relevant objects.

• Add observers for the objects that application wants to monitor/control.

• Begin application flow (for example, begin calls).

The following example shows a basic JTAPI application.

public void getProvider ()
{
try
{
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
System.out.println ("Got peer "+peer);
Provider provider = peer.getProvider("cti-server;login = username;passwd =

pass");
System.out.println ("Got provider "+provider);
MyProviderObserver providerObserver = new MyProviderObserver ();
provider.addObserver(providerObserver);
while (outOfService)
{
Thread.sleep(500);

}
System.out.println ("Provider is now in service");

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
6

Overview
Cisco Unified JTAPI Applications

Address[] addresses = provider.getAddresses();
System.out.println ("Found "+ addresses.length +" addresses");
for(int i = 0; i< addresses.length; i++)
{
System.out.println(addresses[i]);

}
provider.shutdown();
catch (Exception e)
{
}

}

Jtprefs Application
The jtapi.ini file includes parameters that are required for configuring Cisco Unified JTAPI. Cisco Unified
JTAPI looks for this file in a Java classpath. The parameters get modified by using the Jtprefs application that
Cisco Unified JTAPI installs. The Jtprefs application sets only the parameters that it requires. This proves
beneficial because a single point of application administration exists, independent of jtapi.ini.

The jtapi.ini file contains default values, but client applications canmodify values without having to specifically
modify the jtapi.ini file. Different instances of client applications, however, can impose different settings for
these parameters. The com.cisco.jtapi.extensions package defines the CiscoJtapiProperties interface.

Applications obtain a CiscoJtapiProperties object from the CiscoJtapiPeer and make changes to the parameters
by using the accessor and mutator methods. These properties must get set and applied to all providers that are
derived from a CiscoJtapiPeer prior to the first getProvider () call on that peer.

Applications that run in non GUI based platform, in which jtprefs.ini cannot be invoked, can write a jtapi.ini
file and place it along with jtapi.jar.

See the following topics for more information:

• Administering User Information for JTAPI Applications, on page 239

• Fields in the jtapi.ini File, on page 239

Cisco Unified JTAPI Concepts
This section describes the following concepts:

• CiscoObjectContainer Interface, on page 8

• JtapiPeer and Provider, on page 8

• Address and Terminal Relationships, on page 10

• Connections, on page 11

• Terminal Connections, on page 11

• Terminal and Address Restrictions, on page 11

• CiscoConnectionID, on page 14

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
7

Overview
Jtprefs Application

CiscoObjectContainer Interface
The CiscoObjectContainer interface allows applications to associate an application-defined object to objects
that implement the interface. In Cisco Unified JTAPI, the following interfaces extend the CiscoObjectContainer
interface:

• CiscoJTAPIPeer

• CiscoProvider

• CiscoCall

• CiscoAddress

• CiscoTerminal

• CiscoConnection

• CiscoTerminalConnection

• CiscoConnectionID

• CiscoCallID

JtapiPeer and Provider
The Provider object, which gets created through the implementation of the JtapiPeer object, acts as the main
point of contact between applications and JTAPI implementations. The Provider object contains the entire
collection of call model objects, Addresses, Terminals, and Calls, which are controllable at any time by an
application.

The JTAPI Preferences (JTPREFS) application administers JtapiPeer.getServices(), which returns server
names.

The Provider entails two basic processes: initialization and shutdown.

Ensure that the following information is passed in the JtapiPeer.getProvider() method for applications to obtain
a CiscoProvider:

• Hostname or IP address for the Cisco Unified Communications Manager server

• Login of the user who is administered in the directory

• Password of the user that is specified

• (Optional) Application information (This parameter may comprise a string of any length.)

Applications must include enough descriptive information, so if the appinfo were logged in and an alarm
were to occur, administrators would know which application caused the alarm. Applications should not
include hostname or IP address where they reside, nor the time at which they were spawned. Also, ensure
that no “ = ” or “;” characters are included in the appinfo string because they delimit the getProvider ()
string. When the appinfo is not specified, you can use a generic and quasi-unique name
(JTAPI[XXXX]@hostname, where XXXX represents a random, four-digit number) instead.

The parameters get passed in key value pairs that are concatenated in a string as follows:

JtapiPeer.getProvider(“CTIManagerHostname;login = user;passwd = userpassword;appinfo = Cisco
Softphone”)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
8

Overview
CiscoObjectContainer Interface

Initialization
The JtapiPeer.getProvider() method returns a Provider object as soon as the TCP link, the initial handshake
with the Cisco Unified CommunicationsManager, and the device list enumeration are complete. The provider
now exists in the OUT_OF_SERVICE state. Cisco Unified JTAPI applications must wait for the provider to
go to the IN_SERVICE state before the controlled device list is valid. A ProvInServiceEv event gets delivered
to an object that is implementing the ProviderObserver interface.

Implementing only the CiscoProviderObserver does not do enough; the observer must also get added to the
provider with provider.addObserver(). Applications must wait for a notification that the Provider is in service.

Note

As a part of the QoS baselining effort in JTAPI, ProviderOpenCompletedEv provides the “DSCP value for
Applications” to JTAPI. JTAPI sets this DSCP value for its connection with CTI, and all JTAPI messages to
CTI will have this DSCP value as long as the Provider object exists.

Shutdown
When an application calls provider.shutdown(), JTAPI loses communications permanently with the Cisco
Unified Communications Manager, and a ProvShutdownEv event gets delivered to the application. The
application can assume that the Provider will not come up again, and the application must handle a complete
shutdown.

Provider.getTerminals()
This method returns an array of terminals that are created for the devices that are administered in the user
control list in the directory. Refer to the Cisco Unified Communications Manager Administration Guide to
administer the user control list.

Provider.getAddresses()
This method returns an array of addresses that are created from the lines that are assigned to the devices that
are administered in the user control list in the directory.

Changes to the User Control List in the Directory
If a device is added to the user control list after the JTAPI application starts, a CiscoTermCreatedEv, and the
respective CiscoAddrCreatedEv, gets generated and sent to observers that are implementing the
CiscoProviderObserver. In addition, applications can monitor the current registration state of the controlled
devices and dynamically track the availability of these devices. The events for an in-service Address or
Terminal get delivered to observers that are implementing the CiscoAddressObserver and the
CiscoTerminalObserver.

Implementing only the observers does not do enough; the observers must also get added by
address.addObserver() and, similarly, for the terminal by the terminal.addObserver() method.

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
9

Overview
Initialization

Before invoking the call.connect() method, add a CallObserver to the address or terminal that is originating
the call; otherwise, the method returns an exception.

Note

Address and Terminal Relationships
The Cisco Unified Communications system architecture includes three fundamental types of endpoints:

• Phones

• Virtual devices (media termination points and route points)

• Gateways

Of these endpoints, only phones and media termination points get used by using the Cisco Unified JTAPI
implementation.

Cisco Unified Communications Manager allows users to configure phones to have one or more lines, dialable
numbers, which multiple phones may share simultaneously, or lines can be configured for exclusive use by
only one phone at a time. Each line on a phone can terminate two calls simultaneously, one of which must be
on hold.

This operation acts in a similar way to the operation of the “call waiting” feature on home phones. Figure 2:
Phone Diagram, on page 10 shows two configurations: Peter and Mary share one phone line, 5001, while
Paul has his own phone line, 5002.

Figure 2: Phone Diagram

A unique name identifies all types of Cisco Unified Communications Manager endpoints. The phone Media
Access Control (MAC) address (such as, “SEP0010EB1014”) identifies it, and the system administrator can
assign any name to a media termination point, so long as its name is unique.

For each endpoint that a provider controls, the Cisco Unified JTAPI implementation uses the
administrator-assigned name to construct a corresponding terminal object. Terminal objects in turn have one
or more address objects, each of which corresponds to a line on the endpoint. Figure1-2 “Address and Terminal
Relationship” shows a graphical representation of the relationship between addresses and terminals.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
10

Overview
Address and Terminal Relationships

Figure 3: Address and Terminal Relationship

If two or more endpoints share a line (DN), the corresponding address object relates to more than one terminal
object.

Unobserved Addresses and Terminals
Cisco Unified JTAPI perceives calls only when a CallObserver attaches to the terminals and addresses of the
provider. This means that methods such as Provider.getCalls() or Address.getConnections() will return null,
even when calls exist at the address, unless a CallObserver attaches to the address. The system also requires
adding a CallObserver to the address or terminal that is originating a call via the Call.connect() method.

Connections
Connections retain their references to calls and addresses forever. So, you can always use a connection reference
that is obtained from a call event to obtain the connection call (getCall()) and address (getAddress()).

Terminal Connections
Terminal connections always retain their references to terminals and connections. So, you can always use a
terminal connection reference that is obtained from a call event to obtain the terminal connection terminal
(getTerminal()) and connection (getConnection()).

Terminal and Address Restrictions
Terminal and address restrictions prohibit applications from controlling andmonitoring a certain set of terminals
and addresses when the administrator configures them as restricted in Cisco Unified CommunicationsManager
Administration.

The administrator can configure a particular line on a device (address on a particular terminal) as restricted.
If a terminal is added into the restricted list in Cisco Unified Communications Manager Administration, all
addresses on that terminal also get marked as restricted in JTAPI. If an application comes up after the
configuration completes, it can perceive whether a particular terminal or address is restricted from checking
the interface CiscoTerminal.isRestricted() and CiscoAddress.isRestricted(Terminal). For shared lines,
applications can query the interface CiscoAddress.getRestrictedAddrTerminals(), which indicates whether
an address is restricted on any terminals.

If a line (address on a terminal) is added into the restricted list after an application comes up, the applications
will perceive CiscoAddrRestrictedEv. If the address has any observers, applications will recognize
CiscoAddrOutOfService. When a line is removed from the restricted list, applications will perceive
CiscoAddrActivatedEv. If an address has any observers, applications see CiscoAddrInServiceEv. Ifan
application tries to add observers on an address after it is restricted, a PlatformException gets thrown. However,
if any observers are added before the address is restricted, they will remain as is, but applications cannot get
any events on these observers unless the address is removed from the restricted list. Applications can also
choose to remove observers from an address.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
11

Overview
Unobserved Addresses and Terminals

If a device (terminal) is added to the restricted list after an application comes up, the application will see
CiscoTermRestrictedEv. If the terminal has any observers, the application will see CiscoTermOutOfService.
If a terminal is added to the restricted list, JTAPI also restricts all addresses that belong to that terminal and
applications will perceive CiscoAddrRestrictedEv. If a terminal is removed from the restricted list, applications
will perceive CiscoTermActivatedEv and CiscoAddrActivatedEv for the corresponding addresses. If an
application tries to add observers on a terminal after it is added to the restricted list, a PlatformException is
thrown. However, if any observers are added before the terminal is restricted, they will remain as is, but
applications cannot get any events on these observers unless the terminal is removed from the restricted list

If a shared line is added to the restricted list after an application comes up, the application will perceive
CiscoAddrRestrictedOnTerminalEv. If any address observers exist on the address, the applicationwill recognize
CiscoAddrOutOfServiceEv for that terminal. If all shared lines are added to the restricted list, when the last
one is added, applications will perceive CiscoAddrRestrictedEv. If a shared line is removed from the restricted
list after the application comes up, applications will perceive CiscoAddrActivatedOnTerminalEv. If any
observers exist on the address, the application will perceive CiscoAddrInServiceEv for that terminal. Ifall
shared lines in the control list are removed from the restricted list, applications will recognize
CiscoAddrActivatedEv when the last one is removed, and all addresses on terminals will receive InService
events.

If all shared lines in the control list are marked as restricted, and an application tries to add observers, a
platform exception gets thrown. If a few shared lines are in the restricted list, while others are not, when an
application adds an observer on the address only nonrestricted lines will go in service.

If any active calls are present when an address or terminal is added to the restricted list and reset, applications
will recognize connection and TerminalConnections get disconnected.

If no addresses or terminals are added to the restricted list, this feature remains backward compatible with
earlier versions of JTAPI: no new events get delivered to applications.

The following sections describe the interface changes for address and terminal restrictions.

CiscoTerminal

isRestricted()

Indicates whether a terminal is restricted. If the terminal is restricted, all associated
addresses on this terminal also get restricted. Returns true if the terminal is restricted;
returns false if it is not restricted.

boolean

CiscoAddress

getRestrictedAddrTerminals()

Returns an array of terminals on which this address is restricted. If none are restricted,
this method returns null.

In shared lines, a few lines on terminals may get restricted. This method returns all the
terminals on which this particular address is restricted. Applications cannot perceive
any call events for restricted lines. If a restricted line is involved in a call with any other
control device, an external connection gets created for the restricted line.

javax.telephony.Terminal[]

isRestricted(javax.telephony.Terminal terminal)

Returns true if any address on this terminal is restricted.Returns false if no addresses
on this terminal are restricted.

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
12

Overview
Terminal and Address Restrictions

public interface CiscoRestrictedEv extends CiscoProvEv {
public static final int ID = com.cisco.jtapi.CiscoEventID.CiscoRestrictedEv;

/**
* The following define the cause codes for restricted events
*/

public final static int CAUSE_USER_RESTRICTED = 1;

public final static int CAUSE_UNSUPPORTED_PROTOCOL = 2;

}

This represents the base class for restricted events and defines the cause codes for all restricted events.
CAUSE_USER_RESTRICTED indicates the terminal or address is marked as restricted.
CAUSE_UNSUPPORTED_PROTOCOL indicates that the device in the control list is using a protocol that
Cisco Unified JTAPI does not support. Existing Cisco Unified IP 7960 and 7940 phones that are running SIP
fall in this category.

CiscoAddrRestrictedEv

Public interface CiscoAddrRestrictedEv extends CiscoRestrictedEv. Applications will recognize this event
when a line or an associated device is designated as restricted from Cisco Unified Communications Manager
Administration. For restricted lines, the address will go out of service and will not come back in service until
it is activated again. If an address is restricted, addCallObserver and addObserver will throw an exception.
For shared lines, if a few shared lines are restricted, and others are not, no exception gets thrown, but restricted
shared lines will not receive any events. If all shared lines are restricted, an exception gets thrown when
observers are added. If an address is restricted after observers are added, applications will perceive
CiscoAddrOutOfServiceEv, and when the address is activated, the address will go in service.

CiscoAddrActivatedEv

Public interfaceCiscoAddrActivatedEv extends CiscoProvEv. Applications will perceive this event whenever
a line or an associated device is in the control list and is removed from the restricted list in the Cisco Unified
Communications Manager Administration. If any observers exist on the address, applications will perceive
CiscoAddrInServiceEv. If no observers exist, applications can try to add observers, and the address will go
in service.

CiscoAddrRestrictedOnTerminalEv

Public interface CiscoAddrRestrictedOnTerminalEv extends CiscoRestrictedEv. If a user has a shared
address in the control list, and if one of the lines is added into the restricted list, this event will get sent.
Interface getTerminal() returns the terminal on which the address is restricted. Interface getAddress() returns
the address that is restricted.

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoAddrActivatedOnTerminal

Public interface CiscoAddrActivatedOnTerminalEv extends CiscoProvEv. When a shared line or a device
that has a shared line is removed from the restricted list, this event will get sent. The interface getTerminal()
returns the terminal that is being added to the address. The interface getAddress() returns the address on which
the new terminal is added.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
13

Overview
Terminal and Address Restrictions

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoTermRestrictedEv

Public interface CiscoTermRestrictedEv extends CiscoRestrictedEv. Applications will perceive this event
when a device is added into restricted list from Cisco Unified Communications Manager Administration after
the application launches. Applications cannot perceive events for restricted terminals or addresses on those
terminals. If a terminal is restricted when it is in InService state, applications will get this event, and terminal
and corresponding addresses will move to the out-of-service state.

CiscoTermActivatedEv

Public interface CiscoTermActivatedEv extends CiscoRestrictedEv.

getTerminal()

Returns the terminal that is activated and is removed from the restricted list.

javax.telephony.Terminal

CiscoOutOfServiceEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

CiscoCallEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

CiscoConnectionID
The CiscoConnectionID object represents a unique object that is associated with each connection in Cisco
Unified JTAPI. Applications may use the object itself or the integer representation of the object.

Threaded Callbacks
The Cisco Unified JTAPI implementation design allows applications to invoke blocking JTAPI methods such
as Call.connect() and TerminalConnection.answer() from within their observer callbacks. This means that

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
14

Overview
CiscoConnectionID

applications do not get subjected to the restrictions that are imposed by the JTAPI 1.2 specification, which
cautions applications against using JTAPI methods from within observer callbacks.

CiscoSynchronousObserver Interface
The Cisco Unified JTAPI implementation allows applications to invoke blocking JTAPI methods, such as
Call.connect() and TerminalConnection.answer(), fromwithin observer callbacks. This means that applications
do not get subjected to the restrictions that the JTAPI 1.2 specification imposes, which cautions against using
JTAPI methods from within observer callbacks. Applications can selectively disable the queuing logic of the
Cisco Unified JTAPI implementation by implementing the CiscoSynchronousObserver interface on their
observer objects.

This asynchronous behavior does not adversely affect many applications. Applications that would benefit
from a coherent call model during observer callbacks can selectively disable the queuing logic of the Cisco
Unified JTAPI implementation. By implementing the CiscoSynchronousObserver interface on its observer
objects, an application declares deliver synchronous events to its observers. Events that are delivered to
synchronous observers will match the states of the call model objects that are queried fromwithin the observer
callback.

Objects that implement the CiscoSynchronousObserver interface may not invoke blocking JTAPI methods
fromwithin their event callbacks. The consequences of doing so are unpredictable, andmay include deadlocking
the JTAPI implementation. On the other hand, you may safely use the access or methods of any JTAPI object,
such as Call.getState() or Connection.getState(). Applications should avoid calling any interface that returns
an array such as Terminal.getAddresses() in synchronous callbacks.

Note

Querying Dynamic Objects
Beware of querying dynamic objects such as call objects. By the time you get an event, the object (such as,
call) may exist in a different state than the state that is indicated. For example, by the time you get a
CiscoTransferStartEV, the transferred call may have removed all its internal connections.

callChangeEvent()
When the callChangedEvent() method is called, the validity remains guaranteed for any references that are
contained in the event. For example, if the event contains a getConnection() method, the application can call
this method and get a valid connection reference. Likewise, a getCallingAddress() method guarantees to return
a valid Address object.

CiscoConsultCall
For the CiscoConsultCall interface, a reference to a consulting terminal connection gets retained forever. For
example, when a CiscoConsultCallActive event is processed, getConsultingTerminalConnection() guarantees
to return a valid terminal connection reference. Further, the terminal connection guarantees to provide access
to the consulting connection and thus the consulting call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
15

Overview
CiscoSynchronousObserver Interface

CiscoTransferStartEv
For the CiscoTransferStartEv, the references to the transferred call, transfer controller, and final call in the
event become valid when callChangedEvent() is called. However, getConnections() may or may not return
the connections on these calls.

Alarm Services
Part of the general serviceability framework for Cisco Unified Communications applications includes support
for sending alarms to a service. The com.cisco.services.alarm package defines the alarm components.

An alarm interface and framework support the sending of alarm notifications in XML over TCP to an Alarm
Service that is available on the network in a Cisco Unified JTAPI application. The alarm package includes
the following features:

• XML definition of alarms, resolved by a catalog in the alarm service

• A bounded rollover queue to buffer alarms at the sender

• Alarm sending on a separate thread to avoid blocking at the sending application

• A TCP-based reconnection scheme to the alarm service

The overall framework of the Cisco Unified JTAPI alarm system includes similarities to the existing JTAPI
tracing package. Applications must instantiate an AlarmManager for a particular facility code from which
alarm objects can be created. Part of the implementation includes DefaultAlarm and DefaultAlarmWriter
implementation classes.

Software Requirements
The following table lists the software requirements for JTAPI applications, JTPREFS, and sample code.

Required SoftwareApplication

Any JDK 1.6 compliant Java environmentJTAPI applications

Any JDK 1.6 compliant environment.JTPREFS

Any JDK 1.6 compliant Java environmentJTPREFS

Development Guidelines
Cisco maintains a policy of interface backward compatibility for at least one previous major release of Cisco
Unified Communications Manager (Cisco Unified CM). Cisco still requires Cisco Technology Developer
Program member applications to be retested and updated as necessary to maintain compatibility with each
new major release of Cisco Unified CM.

The following practices are recommended to all developers, including those in the Cisco Technology Developer
Program, to reduce the number and extent of any updates that may be necessary:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
16

Overview
CiscoTransferStartEv

• The order of events and/or messages may change. Developers should not depend on the order of events
or messages. For example, where a feature invocation involves two or more independent transactions,
the events or messages may be interleaved. Events related to the second transactionmay precedemessages
related to the first. Additionally, events or messages can be delayed due to situations beyond control of
the interface (for example, network or transport failures). Applications should be able to recover from
out of order events or messages, even when the order is required for protocol operation.

• The order of elements within the interface event or message may change, within the constraints of the
protocol specification. Developers must avoid unnecessary dependence on the order of elements to
interpret information.

• New interface events, methods, responses, headers, parameters, attributes, other elements, or new values
of existing elements, may be introduced. Developers must disregard or provide generic treatments where
necessary for any unknown elements or unknown values of known elements encountered.

• Previous interface events, methods, responses, headers, parameters, attributes, and other elements, will
remain, and will maintain their previous meaning and behavior to the extent possible and consistent with
the need to correct defects.

• Applications must not be dependent on interface behavior resulting from defects (behavior not consistent
with published interface specifications) since the behavior can change when defect is fixed.

• Use of deprecated methods, handlers, events, responses, headers, parameters, attributes, or other elements
must be removed from applications as soon as possible to avoid issues when those deprecated items are
removed from Cisco Unified CM.

• Application Developers must be aware that not all new features and new supported devices (for example,
phones) will be forward compatible. New features and devices may require application modifications to
be compatible and/or to make use of the new features/devices.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
17

Overview
Development Guidelines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
18

Overview
Development Guidelines

C H A P T E R 2
New and Changed Information

This chapter describes new and changed JTAPI information for this release of Cisco Unified Communications
Manager and features supported in the previous releases.

For more information, go to the Programming Guides website at
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

• Cisco Unified Communications Manager Release 14SU3, on page 19
• Cisco Unified Communications Manager Release 14SU2, on page 20
• Cisco Unified Communications Manager Release 12.5(1), on page 20
• Cisco Unified Communications Manager, Release 11.5(1), on page 20
• Cisco Unified Communications Manager, Release 11.0(1), on page 21
• Cisco Unified Communications Manager Release 10.5(2), on page 21
• Cisco Unified Communications Manager Release 10.0(1), on page 21
• Cisco Unified Communications Manager Release 9.0(1), on page 21
• Cisco Unified Communications Manager Release 8.6(1), on page 22
• Cisco Unified Communications Manager Release 8.5(1), on page 22
• Cisco Unified Communications Manager Release 8.0(1), on page 22
• Cisco Unified Communications Manager Release 7.1(3), on page 23
• Cisco Unified Communications Manager Release 7.1(2), on page 23
• Cisco Unified Communications Manager Release 7.0(1), on page 24
• Cisco Unified Communications Manager Release 6.1, on page 25
• Cisco Unified Communications Manager Release 6.0, on page 26
• Cisco Unified Communications Manager Release 5.1, on page 26
• Cisco Unified Communications Manager Release 5.0, on page 27

Cisco Unified Communications Manager Release 14SU3
This section contains information about the new and changed features for Unified Communications Manager
Release 14SU3:

• Invoking CTIManager Redundancy, on page 149

• CTIManager Failure, on page 151

• CiscoProvider, on page 490

• CiscoProvConnToLeastPriorCtiServerEv, on page 670

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
19

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

• CiscoProvPrimNwReachableEv, on page 672

• CiscoProvFallbackToPrimNwCompltdEv, on page 671

• CTI Manager Redundancy Handling with Least Priority CTIManager Configured, on page 803

• CTI Manager Redundancy Handling with Least Priority CTI Server Set, on page 804

• Cisco Unified JTAPI Extension Interfaces, on page 1621

Cisco Unified Communications Manager Release 14SU2
This section contains information about the new and changed features for Unified Communications Manager
Release 14SU2:

FIPS Compliance, on page 95

Cisco Unified Communications Manager Release 12.5(1)
This section contains information about the new and changed features for Cisco Unified Communications
Manager, Release 12.5(1):

• Call Recording for SIP or TLS Authenticated Calls, on page 43

• Multi-fork Recording using CUBE Media Proxy Server, on page 124

• Linux and Windows installation procedure is updated in Installing the Cisco Unified JTAPI Software
section.

Cisco Unified Communications Manager, Release 11.5(1)
This section contains information about the new and changed features for Cisco Unified Communications
Manager, Release 11.5(1):

• Hunt Log Status, on page 104

• End to End Session ID for Calls, on page 94

• Redirect to Device, on page 148

• SHA-512 Support for Digital Signatures, on page 192

Starting fromRelease 11.5(1)SU9 and any subsequent SU or ES releases in this release train, the Cisco JTAPI
Plugin follows installer less approach. You must have JRE installed on the system before the installation. The
installation runs in the command prompt and does not have a GUI. Also, the same will not be listed in the
software installed list of Windows Control Panel.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
20

New and Changed Information
Cisco Unified Communications Manager Release 14SU2

Cisco Spark Device has been added as a new device type for this release of Unified CommunicationsManager
and may appear in the user's control list. However, Cisco Spark Device is not a supported device for this
release of Cisco Unified JTAPI.

Note

Cisco Unified Communications Manager, Release 11.0(1)
This section contains information about the new and changed features for Cisco Unified Communications
Manager, Release 11.0(1).

• Default CTI IP Addressing for Devices, on page 75

• Ringback on SIP 183 for Transferred Calls, on page 152

Cisco Unified Communications Manager Release 10.5(2)
This section contains the new and changed features for Cisco Unified Communications Manager release
10.5(2):

• AES 256 Algorithm IDs, on page 34

Cisco Unified Communications Manager Release 10.0(1)
This section describes the new and changed features in Cisco Unified Communications Manager Release
10.0(1):

• CTI RD Call Forward, on page 72
• CTI Video Support, on page 73
• Encryption Enhancement, on page 89
• Mobility Interaction Support, on page 72
• NuRD (Number Matching for Remote Destination) Support, on page 71
• Play Announcement, on page 70
• Persistent Connection, on page 134
• SSO Cookie, on page 170
• Recording, on page 143
• Verify Remote Destination Support, on page 71
• Video Capabilities and Multi-Media Information, on page 207
• Video On Hold Support, on page 211

Cisco Unified Communications Manager Release 9.0(1)
This section describes the new and changed features in Cisco Unified Communications Manager release
9.0(1):

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
21

New and Changed Information
Cisco Unified Communications Manager, Release 11.0(1)

• Cius Persistency, on page 59

• CTI Remote Device for JTAPI, on page 69

• E911 Teleworker, on page 88

• Hunt List Connected Number, on page 104

• Native Queuing, on page 124

• URI Dialing, on page 206

Cisco Unified Communications Manager Release 8.6(1)
This section describes the new and changed features in Cisco Unified Communications Manager release
8.6(1):

• Account Lockout, on page 33

• EnergyWise Deep Sleep Mode, on page 90

• FIPS Compliance, on page 95

• Password Expiry, on page 134

• New JTAPI x64 client for 64-bit operating systems.

Cisco Unified Communications Manager Release 8.5(1)
This section describes the new and changed features in Cisco Unified Communications Manager release
8.5(1):

• Agent Greeting, on page 33

• API for Exposing Built-In-Bridge Status, on page 35

• Play Zip Tone, on page 136

• Single Sign-On, on page 169

• Support for VMware, on page 185

Cisco Unified Communications Manager Release 8.0(1)
This section describes the new and changed features in Cisco Unified Communications Manager release
8.0(1):

• Call Control Discovery, on page 41

• Call Pickup, on page 42

• CallFwdAll Key Press Notification, on page 46

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
22

New and Changed Information
Cisco Unified Communications Manager Release 8.6(1)

• End to End Call Tracing, on page 89

• Extension Mobility Cross Cluster, on page 92

• External Call Control, on page 93

• Hunt List, on page 103

• iSac Codec, on page 109

• Secured Monitoring and Recording, on page 161

• Support for Cisco Unified IP Phone 6901, on page 182

• Support for 100+ Directory Numbers, on page 184

• Support for VMware, on page 185

• Verification Involving PSTN Reachability, on page 207

Cisco Unified Communications Manager Release 7.1(3)
This section describes the new and changed features in Cisco Unified Communications Manager release
7.1(3):

• Terminal and Address Capability Settings, on page 187.

Cisco Unified Communications Manager Release 7.1(2)
This section describes the new and changed features in Cisco Unified Communications Manager release
7.1(2):

• Component Updater, on page 62

• Direct Transfer Across Lines, on page 77

• Drop Any Party, on page 85

• IPv6 Support, on page 108

• Join Across Lines or Connected Conference Across Lines, on page 111

• Logical Partitioning, on page 118

• Message Waiting Indicator Enhancement, on page 121

• Park Monitoring and Assisted DPark Support, on page 128

• Swap or Cancel and Transfer or Conference Behavior, on page 186

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
23

New and Changed Information
Cisco Unified Communications Manager Release 7.1(3)

Cisco Unified Communications Manager Release 7.0(1)
This section describes the new and changed features in Cisco Unified Communications Manager from release
6.1 to release 7.0(1) and Cisco Unified JTAPI enhancements. It has the following sections:

• Call Pickup, on page 42

• Calling Party Normalization, on page 46

• Click to Conference, on page 60

• Do Not Disturb-Reject, on page 84

• Extension Mobility Username Login, on page 93

• Java Socket Connect Timeout, on page 109

• Join Across Lines with Conference Enhancements (SCCP and SIP), on page 115

• Locale Infrastructure Development, on page 117

• selectRoute() with Calling Search Space and Feature Priority, on page 163

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
24

New and Changed Information
Cisco Unified Communications Manager Release 7.0(1)

Cisco Unified Communications Manager release 7.0(1) does not support the following IPv6 related methods:

canSupportIPv6()

setProviderOpenRetryAttempts (int retryAttempts)

getProviderOpenRetryAttempts()

getIPAddressingMode() (available on CiscoMediaTerminal and CiscoRouteTerminal interfaces)

register(java.net.InetAddress address, int port, CiscoMediaCapability [] capabilities, int[] algorithmIDs,
java.net.InetAddress address_v6, int activeAddressingMode)

register(CiscoMediaCapability [] capabilities, int[] int registration Type, int[] algorithmIDs, int
activeAddressingMode)

getTerminals() (available on new interface CiscoProviderTermCapabilityChangedEv)

getAddressingModeForMedia()

getCallingPartyIpAddr_v6() (available on CiscoCallCtlConnOfferedEv and CiscoRouteEvent interfaces)

CTIERR_IPADDRMODEMISMATCH

CTIERR_DYNREG_IPADDRMODE_MISMATCH

hasIPv6CapabilityChanged()

CiscoTerminal.IP_ADDRESSING_MODE_IPv4

CiscoTerminal.IP_ADDRESSING_MODE_IPv6

CiscoTerminal.IP_ADDRESSING_MODE_IPv4_v6

CiscoTerminal.IP_ADDRESSING_MODE_Unknown

CiscoTermRegistrationFailedEv.IP_ADDRESSING_MODE_MISMATCH

Note

For the features, Join Across Lines, Do Not Disturb-Reject, and Calling Party Normalization, each Cisco
JTAPI must be upgraded to a version that supports these features. Additionally, if you are upgrading from
release 5.1 and you use Join Across Lines, the Conference Chaining feature must not be enabled or used until
all applications are either upgraded to a version compatible with the new unified CM version. Also, you should
verify that the applications are not impacted by the Conference Chaining feature.

Note

Cisco Unified Communications Manager Release 6.1
This section describes the new and changed features in Cisco Unified Communications Manager from release
6.0 to release 6.1 and Cisco Unified JTAPI enhancements. It has the following sections:

• Certificate Download API Enhancement, on page 47

• Intercom Support for Extension Mobility, on page 107

• Join Across Lines, on page 110

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
25

New and Changed Information
Cisco Unified Communications Manager Release 6.1

Cisco Unified Communications Manager Release 6.0
This section describes the new and changed features in Cisco Unified Communications Manager, release 6.0
and Cisco Unified JTAPI enhancements. It has the following sections:

• Arabic and Hebrew Language Support, on page 36

• Calling Party IP Address, on page 44

• CiscoRTPHandle Interface on Cisco RTP Events, on page 57

• Cisco Unified IP 7931G Phone Interaction, on page 54

• Conference Chaining, on page 67

• Directed Call Park, on page 82

• Do Not Disturb, on page 83

• Forwarding on No Bandwidth and Unregistered DN, on page 99

• Hold Reversion, on page 102

• Intercom, on page 105

• Multilevel Precedence and Preemption Support, on page 124

• Noncontroller Adding of Parties to Conferences, on page 128

• Silent Monitoring, on page 166

• Secure Conferencing, on page 154

• Translation Pattern Support, on page 1707

• Version Format Change, on page 207

• Voice MailBox Support, on page 211

Cisco Unified Communications Manager Release 5.1
This section describes the new and changed features in Cisco Unified CommunicationsManager, from release
5.0 to release 5.1 and Cisco Unified JTAPI enhancements. It has the following sections:

• Call Forward Override, on page 41

• Join Across Lines (Only SCCP), on page 110

• New Error Code in CiscoTermRegistrationFailedEv, on page 127

• Star (*) 50 Update, on page 179

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
26

New and Changed Information
Cisco Unified Communications Manager Release 6.0

Cisco Unified Communications Manager Release 5.0
This section describes the new and changed features in Unified Communications Manager, from release 4.x
to release 5.0 and Cisco Unified JTAPI enhancements. It has the following:

• Auto Updater for Linux, on page 36

• Call Select Status, on page 43

• Command Line Invocation, on page 62

• Hairpin Support, on page 101

• Half-Duplex Media Support, on page 101

• JRE 1.2 and JRE 1.3 Support Removal, on page 116

• JTAPI Version Information, on page 117

• Network Alerting, on page 126

• Partition Support, on page 131

• QoS Support, on page 139

• Secure Real-Time Protocol Key Material, on page 155

• SIP 3XX Redirection, on page 171

• SIP REFER or REPLACE, on page 175

• SIP Phone Support, on page 172

• Superprovider and Change Notification, on page 180

• Terminal and Address Restrictions, on page 188

• Transport Layer Security (TLS), on page 197

• Unicode Support, on page 203

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
27

New and Changed Information
Cisco Unified Communications Manager Release 5.0

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
28

New and Changed Information
Cisco Unified Communications Manager Release 5.0

C H A P T E R 3
Features Supported by Cisco Unified JTAPI

This chapter describes features supported by the Cisco Unified JTAPI specification.

• Account Lockout, on page 33
• Agent Greeting, on page 33
• AES 256 Algorithm IDs, on page 34
• Alternate Script Support, on page 35
• API for Exposing Built-In-Bridge Status, on page 35
• Arabic and Hebrew Language Support, on page 36
• Auto Updater for Linux, on page 36
• AutoAccept Support for CTI Ports and Route Points, on page 37
• Autoupdate of API, on page 38
• Barge and Privacy Event Notification, on page 40
• Call Control Discovery, on page 41
• Call Forward, on page 41
• Call Forward Override, on page 41
• Call Park, on page 42
• Call Pickup, on page 42
• Call Recording for SIP or TLS Authenticated Calls, on page 43
• Call Select Status, on page 43
• Calling Party Display Name, on page 44
• Calling Party IP Address, on page 44
• Calling Party IP Address, on page 45
• Calling Party Normalization, on page 46
• CallFwdAll Key Press Notification, on page 46
• CallSelect and UnSelect Event Notification, on page 47
• Certificate Download API Enhancement, on page 47
• Changes in DeviceType Name Handling, on page 47
• Cisco MediaTerminal, on page 48
• Cisco Unified Communications Manager Media Endpoint Model, on page 51
• Cisco Unified Communications Manager Server Failure, on page 53
• Cisco Unified IP 7931G Phone Interaction, on page 54
• Cisco Unified JTAPI Install Internationalization, on page 55
• Cisco VG248 and ATA 186 Analog Phone Gateways, on page 55
• CiscoJtapiExceptions, on page 55

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
29

• CiscoProvAuthenticationInfoEv, on page 56
• CiscoRTPHandle Interface on Cisco RTP Events, on page 57
• Cisco Terminal Filter and ButtonPressedEvents, on page 57
• CiscoTermRegistrationfailed Event, on page 58
• Cius Persistency, on page 59
• Clear Calls, on page 60
• Click to Conference, on page 60
• Cluster Abstraction, on page 61
• Command Line Invocation, on page 62
• Component Updater, on page 62
• Conference, on page 63
• Conference and Join, on page 66
• Conference Chaining, on page 67
• Consult Without Media, on page 68
• CTI Ports, on page 69
• CTI RoutePoints, on page 69
• CTI Remote Device for JTAPI, on page 69
• CTI RD Call Forward, on page 72
• CTI Video Support, on page 73
• Default CTI IP Addressing for Devices, on page 75
• DeleteCall, on page 75
• Device Recovery, on page 75
• Device Recovery for Phones, on page 75
• Device State Server, on page 76
• Direct Transfer Across Lines, on page 77
• Directed Call Park, on page 82
• Directory Change Notification, on page 83
• Do Not Disturb, on page 83
• Do Not Disturb-Reject, on page 84
• Drop Any Party, on page 85
• Dynamic CTI Port Registration, on page 86
• E911 Teleworker, on page 88
• Enable or Disable Ringer, on page 88
• Encryption Enhancement, on page 89
• End to End Call Tracing, on page 89
• EnergyWise Deep Sleep Mode, on page 90
• Extension Mobility Cross Cluster, on page 92
• Extension Mobility Username Login, on page 93
• External Call Control, on page 93
• End to End Session ID for Calls, on page 94
• FIPS Compliance, on page 95
• Forced Authorization and Client Matter Codes, on page 97
• Forwarding on No Bandwidth and Unregistered DN, on page 99
• GetCallID in RTP Events, on page 100
• GetCallInfo, on page 100
• GetGlobalCallID, on page 100

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
30

Features Supported by Cisco Unified JTAPI

• Hairpin Support, on page 101
• Half-Duplex Media Support, on page 101
• Hold Reversion, on page 102
• Hunt List, on page 103
• Hunt List Connected Number, on page 104
• Hunt Log Status, on page 104
• Intercom, on page 105
• Intercom Support for Extension Mobility, on page 107
• IPv6 Support, on page 108
• iSac Codec, on page 109
• Java Socket Connect Timeout, on page 109
• Join Across Lines, on page 110
• Join Across Lines (Only SCCP), on page 110
• Join Across Lines with Conference Enhancements (SCCP and SIP), on page 115
• JRE 1.2 and JRE 1.3 Support Removal, on page 116
• JTAPI Version Information, on page 117
• Locale Infrastructure Development, on page 117
• Logical Partitioning, on page 118
• Media Termination at Route Point, on page 118
• Media Termination Extensions, on page 121
• Message Waiting Indicator Enhancement, on page 121
• Modifying Calling Number, on page 122
• Multi-fork Recording using CUBE Media Proxy Server, on page 124
• Multilevel Precedence and Preemption Support, on page 124
• Multiple Calls Per DN, on page 124
• Native Queuing, on page 124
• Network Alerting, on page 126
• Network Events, on page 127
• New Error Code in CiscoTermRegistrationFailedEv, on page 127
• Noncontroller Adding of Parties to Conferences, on page 128
• Park DN Monitor, on page 128
• Park Monitoring and Assisted DPark Support, on page 128
• Park Reminder, on page 130
• Park Retrieval, on page 130
• Partition Support, on page 131
• Password Expiry, on page 134
• Persistent Connection, on page 134
• Play Zip Tone, on page 136
• Presentation Indicator for Calls, on page 137
• Privacy On Hold, on page 138
• Progress State Converted to Disconnect State, on page 139
• Q.Signaling (QSIG) Path Replacement, on page 139
• QoS Support, on page 139
• Quiet Clear, on page 141
• Receiving and Responding to Media Flow Events, on page 141
• Recording, on page 143

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
31

Features Supported by Cisco Unified JTAPI

• Redirect, on page 146
• Redirect Set Original Called ID, on page 147
• Redirect to Device, on page 148
• Redundancy, on page 149
• Redundancy in CTI Managers, on page 149
• Ringback on SIP 183 for Transferred Calls, on page 152
• Routing, on page 152
• Secure Conferencing, on page 154
• Secure Real-Time Protocol Key Material, on page 155
• Secured Monitoring and Recording, on page 161
• SelectRoute Interface Enhancement, on page 162
• selectRoute() with Calling Search Space and Feature Priority, on page 163
• Set MessageWaiting, on page 163
• Shared Line Support, on page 164
• Silent Monitoring, on page 166
• Single Sign-On, on page 169
• Single Step Transfer, on page 170
• SIP 3XX Redirection, on page 171
• SIP Phone Support, on page 172
• SIP REFER or REPLACE, on page 175
• SIP Trunk Early Offer, on page 176
• Star (*) 50 Update, on page 179
• Super Provider (Disable Device Validation), on page 179
• Superprovider and Change Notification, on page 180
• Support for Cisco Unified IP Phone 6901, on page 182
• Support for Cisco Unified IP Phone 6900 Series, on page 183
• Support for 100+ Directory Numbers, on page 184
• Support for VMware, on page 185
• Swap or Cancel and Transfer or Conference Behavior, on page 186
• Terminal and Address Capability Settings, on page 187
• Terminal and Address Restrictions, on page 188
• SHA-512 Support for Digital Signatures, on page 192
• Transfer, on page 192
• Transfer and Conference Extensions, on page 195
• Transfer and DirectTransfer, on page 195
• Translation Pattern Support, on page 196
• Transport Layer Security (TLS), on page 197
• Unicode Support, on page 203
• Unrestricted Unified CM, on page 205
• URI Dialing, on page 206
• Version Format Change, on page 207
• Verification Involving PSTN Reachability, on page 207
• Video Capabilities and Multi-Media Information, on page 207
• Video On Hold Support, on page 211
• Voice MailBox Support, on page 211
• XSI Object Pass Through, on page 212

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
32

Features Supported by Cisco Unified JTAPI

Account Lockout
The administrator can use the CUCM Admin Panel to configure options for the account lockout.

To configure account lockout options, an administrator can perform either of the following:

1. Click the Locked by Administrator checkbox in the user credential page.

2. Set the number of login attempts, which signifies the number of failed logins due to invalid credentials.

3. Set the maximum idle time (in days) and if the user does not login for that many days, the account is
locked.

In case of account lockout, JTAPI delivers detailed exceptions without any warning messages. JTAPI does
not allow applications to modify any of these values, it only reports the information.

Interface Changes

CiscoJtapiExceptions, on page 55

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Agent Greeting
The Agent Greeting feature enables the JTAPI application to instruct the Cisco Unified Communications
Manager to automatically play a pre-recorded announcement following a successful media connection to the
agent device. The greeting helps to keep the agent sounding fresh as they do not have to repeat common
phrases on each call. Agent Greeting is audible for the agent and the customer.

Agent Greeting can be initiated from any phone with a Built-in-Bridge (BIB). A call is initiated from the BIB
to the DN specified in the request. Applications are responsible for answering this call and playing the media.

There are two types of calls:

• A basic call between the customer and agent.

• A secondary call, known as the Interactive Voice Response (IVR) call, which is created between an IVR
device and the BIB of the agent phone.

The application invokes the new Agent Greeting API on a call, which creates an IVR call. The application
then answers the call, and is responsible to play a recorded message.

The connection is not created for the agent on the IVR call, and as a result, the applications see the secondary
call only. The IVR call has only one connection to play the IVR message.

Regardless of whether or not the application observes the IVR device, the Agent Greeting media plays.
Observers on the agent receive an event to start the media. When the media finishes, the application must

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
33

Features Supported by Cisco Unified JTAPI
Account Lockout

disconnect the IVR or CTI port that streams the media. When the second call is disconnected, an event is sent
to observers on the agent and receives an event to end the media.

This feature is available only on phones that have BIBs. The majority of Cisco Unified IP Phones have BIBs,
but the feature may not be available in various older or lower-end phone models. Administrators must enable
the BIB for the device and configure it using the Cisco Unified Communications Manager Admin panel.

Whenever a request to addMediaStream is made, JTAPI blocks the request until the IVR device answers the
call or CTI responds with a timeout error. Due to this, the JTAPI thread that invoked the
addMediaStreamRequest cannot answer its own call, because it is blocked waiting for the request to finish.

Applications intending to use this feature must ensure that one of the following is applicable:

• The IVR DN is configured to auto-answer incoming calls

• A separate JTAPI thread or application is set up to answer on the IVR DN

Interface changes

See CiscoTerminalConnection, on page 634, CiscoFeatureReason, on page 406, CiscoJtapiException, on page
414, CiscoMediaStreamStartedEv, on page 429, CiscoMediaStreamEndedEv, on page 430

Message Sequences

See Agent Greeting, on page 760

Backward Compatibility

This feature is backward compatible.

• This is a new feature and has no impact on existing features.

• There are two new events for this feature, but they are only generated if the application observes the
addresses in which the feature is invoked.

• The odd call model for the IVR call, with only one connection, can have implications for applications
that look at the number of connections for any of their logic.

• Feature interaction is not supported on IVR calls.

For example, invoking features such as redirect and creating a conference from the IVR call are not
supported.

• The IVR call is intended to stream media. Applications invoke features on the IVR call at their own risk
and there are no event flows or call diagrams for any feature interaction on the IVR calls.

AES 256 Algorithm IDs
From release 10.5(2) CiscoUnified CommunicationsManager now supports the following encryption algorithm
IDs:

• CiscoMediaEncryptionAlgorithmType

• CiscoMediaEncryptionAlgorithmType.AES_128_COUNTER_80

• CiscoMediaEncryptionAlgorithmType.F8_128_COUNTER_32

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
34

Features Supported by Cisco Unified JTAPI
AES 256 Algorithm IDs

• CiscoMediaEncryptionAlgorithmType.F8_128_COUNTER_80

• CiscoMediaEncryptionAlgorithmType.AEAD_128_COUNTER

• CiscoMediaEncryptionAlgorithmType.AEAD_256_COUNTER

The CiscoMediaEncryptionAlgorithmType.AEAD_128_COUNTER and
CiscoMediaEncryptionAlgorithmType.AEAD_256_COUNTER will be negotiated only for a secure call
between two SIP endpoints.

CTI ports can register with any of the above algorithms, but will negotiate on AES_128_COUNTER_80 for
secure calls.

From Release 12.5(1)SU5 onwards, CTI ports can register with any of the above algorithms for secure calls.
For more information, see "Stronger Cipher Suites on CTI Ports" section in Security Guide for Cisco Unified
Communications Manager.

Note

Alternate Script Support
Certain IP phone types support an alternate language script other than the default script that corresponds to
the phone-configurable locale. For example, the Japanese phone locale has two written scripts. Some phone
types support only the default Katakana script, while other phones types support both the default script and
the alternate Kanji script. Because applications can send text information to the phone for display purposes,
they need to know what alternate script a phone supports, if any.

The new getAltScript() method provides alternate script information for an observed device. Currently there
is only one known alternate script: Kanji for the Japanese locale.

JTAPI provides a new method for CiscoTerminal to provide alternate script information.

getAltScript()

Only one alternate script, Kanji for the Japanese locale, is currently
supported. An empty string return value indicates there is no
alternate script configured or the terminal does not support an
alternate script.

java.lang.String

Backward Compatibility

The alternate script feature does not impact JTAPI backward compatibility.

API for Exposing Built-In-Bridge Status
JTAPI exposes the API, CiscoTerminal.isBuiltInBridgeEnabled() to let applications know if the BIB capability
is enabled on the terminal or not. Accordingly, the return value is true or false.

This API throws MethodNotSupportedException if it is invoked on a CiscoMediaTerminal or a
CiscoRouteTerminal as these devices do not support a BIB.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
35

Features Supported by Cisco Unified JTAPI
Alternate Script Support

https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-maintenance-guides-list.html

This API throws InvalidStateException if invoked on a terminal that is not registered with the Cisco Unified
Communications Manager.

Interface Changes

See CiscoTerminal, on page 615

Message Sequences

See API for Exposing Built-in-Bridge Status, on page 764

Backward Compatibility

This change is backward compatible and does not affect the existing applications.

Arabic and Hebrew Language Support
This version of the Cisco Unified JTAPI supports the Arabic and Hebrew languages, which users may select
during installation and in the Cisco Unified JTAPI Preferences user interface.

Backward Compatibility

This feature is backward compatible.

Auto Updater for Linux
In order to support this feature for Linux based JTAPI client machines, auto updater feature has the following
changes in its interface. The interface required that applications provide component name, provider IP address,
user name and password. Applications do not need to specify an URL for downloading the component. This
is done to avoid the issue with updater application in case URL changes between various releases of Cisco
Unified Communications Manager Administration.

A new API called “Replace()” is part of the component interface. This facilitates replacing of old component
with a newly downloaded component. The following section defines the operation of updater after the new
interface changes. The new updater will:

• Use the same API signature as the old one.

• Create a file newjtapi.jar in the current folder of application which is the new version of the jar file.

• Copy the current jtapi.jar to a file by name component.temp in the classpath specified.

• Replace the current jar file with the new jar file. At the end of this operation, the current jar file becomes
the component.temp and new jar file becomes jtapi.jar. Applications can still use old component interface
which take URL either by specifying the URL themselves or by querying the URL through the new
interface provided on CiscoProvider. The API required to get the URL information is present in the
Interface summary for this feature. This operation is supported for both Unix and Windows.

Backward compatibility

This feature is not backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
36

Features Supported by Cisco Unified JTAPI
Arabic and Hebrew Language Support

AutoAccept Support for CTI Ports and Route Points
This feature provides applications with the ability to enable or disable AutoAccept for the addresses on
CTIPorts and Route Points. When AutoAccept status changes for the address, Cisco Unified JTAPI provides
the event to inform the application for changes.

The maximum number of lines that are supported for route points equals 34.Note

The new interface setAutoAcceptStatus(), provided on the CiscoAddress object, allows the capability to set
AutoAccept to ON or OFF. Interface getAutoAcceptStatus(), also provided on the CiscoAddress object, allows
applications to query the current status of AutoAccept on the address.

When AutoAccept status changes for the address, applications get CiscoAddrAutoAcceptStatusChangedEv
on AddressObservers. This event includes the interface getTerminal(), which returns the terminal on which
the AutoAccept status gets changed, and the interface getAutoAcceptStatus(), which returns integers that
specify whether AutoAccept is ON or OFF. If an address observer is not added, the event does not get provided.

The following interfaces support AutoAccept on CTIPort and RoutePoint:

Cisco Address

• init

init getAutoAcceptStatus (javax.telephony.Terminal terminal)

Ciscoaddress.getAutoAccept(Terminal iterminal) returns an AutoAccept status of address on terminal.

• void

setAutoAcceptStatus (int autoAcceptStatus, javax.telephony.Terminal terminal)

This allows an application to enable AutoAccept for addresses on the CiscoMediaTerminal and or the
CiscoRouteTerminal.

CiscoAddrAutoAcceptStatusChangedEv

CiscoAddrAutoAcceptStatusChangedEv

Public interface: CiscoAddrAutoAcceptStatusChangedEv

Extends com.cisco.jtapi.exension.CiscoAddrEv

The CiscoAddrAutoAcceptStatusChangedEv event gets sent to applications whenever AutoAccept status for
the address on the terminal gets changed. If an address has multiple terminals, this event gets sent for the
address AutoAccept status on each individual terminal.

This event provides the following interface:

• init
getAutoAcceptStatus ()

CiscoAddrAutoAcceptStatusChangedEv.getAutoAcceptStatus returns the following value of AutoAccept
status of address on terminal CiscoAddress.AUTOACCEPT_OFF CiscoAddress.AUTOACCEPT_ON.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
37

Features Supported by Cisco Unified JTAPI
AutoAccept Support for CTI Ports and Route Points

• com.cisco.jtapi.extensions.CiscoTerminal
getTerminal ()

Returns the terminal at which this address AutoAccept status gets changed.

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for AutoAccept on CTIPort and RoutePoint, see Message Sequence Charts, on page 759

Autoupdate of API
Be aware that when the Cisco Unified Communications Manager is upgraded to a higher version, the APIs
may or may not be compatible with the new Cisco Unified Communications Manager version. Ensure that
the APIs are upgraded to a compatible version, so the applications work as expected. Because the APIs are
installed locally on the client server, the upgrade must take place on multiple machines. In the case of fewer
client applications, you can easily do this by connecting to the Cisco Unified Communications Manager
Administration and downloading and installing the Cisco Unified Communications Manager compatible
plug-in.

For multiple client applications, this feature provides a facility by which an application at startup can identify
itself to a web server via an HTTP request and receives a response with the version of the required JTAPI
API.

The application compares the version that is available on the server to the local version in the application
classpath and determines whether an upgrade is necessary. This allows applications to refresh the jtapi.jar
component to match the Cisco Unified Communications Manager and provides a way to centrally deploy the
jtapi.jar to which applications can auto update.

The API that is required to perform this functionality gets packaged in the form of an updater.jar. The jtapi.jar
and updater.jar get packaged with the standard manifest, which can be used to compare versions.

This feature does not update JTAPI Preferences, JTAPITestTools, Updater.jar and javadoc components. If
applications require these components, install JTAPI from the Cisco Unified CommunicationsManager plug-in
pages. Auto Update supports JTAPI Release 2.0 and later.

Note

Refer to Cisco Unified JTAPI Installation, on page 215 for more information.

The following new or changed interfaces exist for autoupdate of APIs:

Class com.cisco.services.updater.ComponentUpdater

queryLocalComponentVersion (java.lang.String componentName,

java.lang.String path)

Throws an IOException, IllegalArgumentException.

Component

queryServerComponentVersion (java.lang.String componentName,

java.lang.String urlString)

Throws an IOException, IllegalArgumentException, and sends an HTTP query to the
server to determine the remote server installed components version.

Component

Interface com.cisco.services.updater.Component

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
38

Features Supported by Cisco Unified JTAPI
Autoupdate of API

compareTo (Component otherComponent)int

fetchFromServer ()

Performs an HTTP fetch of the component from the server and writes to the local file
system with the file name temp.jar in the local directory.

Component

getBuildDescription ()

Returns the string 'Release' for a version of the form 'a.b(c.d) Release'.

java.lang.String

getBuildNumber ()

Returns 'd' for a version of the form a.b(c.d).

int

getLocation ()

The string form location of the component.

java.lang.String

getMajorVersion ()

Returns 'a' version for a version of the form a.b(c.d).

int

getMinorVersion ()

Returns 'b' version for a version of the form a.b(c.d).

int

getName ()

Returns the name of the component.

java.lang.String

getRevisionNumber ()

Returns 'c' for a version of the form a.b(c.d).

int

The Autoupdater feature in JTAPI also allows applications to download the latest version of JTAPI.JAR
directly from the Cisco Unified Communications Manager.

1. Updater creates a newjtapi.jar file in the current folder of the application, which represents the new version
of the jar file that was downloaded from the Cisco Unified Communications Manager.

2. Updater copies the current jtapi.jar to a file that is named component.temp in the classpath specified.

3. Updater replaces the current jtapi.jar file with the new jtapi.jar file.

At the end of this operation, the current jar file becomes component.temp and the new jar file becomes jtapi.jar.
This operation is supported for both Linux and Windows.

Example Usage of Autoupdater
Command Line : java com.cisco.services.updater.ComponentUpdater <server> <component name>
<login> <passwd>Component localComponent, downloadedComponent;
ComponentUpdater updater = new ComponentUpdater();
String localPath = updater.getLocalComponentPath(args[1]);
localComponent = updater.queryLocalComponentVersion("jtapi.jar", localPath);
localComponent.copyTo("component.temp");
String provString = args[0] + ";login = " + args[2] + ";passwd = " + args[3];

CiscoJtapiPeer peer = (CiscoJtapiPeer) (JtapiPeerFactory.getJtapiPeer(null));
CiscoJtapiProperties tempProp = ((CiscoJtapiPeerImpl) (peer)). getJtapiProperties();
tempProp.setLightWeightProvider(true);

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
39

Features Supported by Cisco Unified JTAPI
Autoupdate of API

Provider provider = peer.getProvider(provString);
String url = ((CiscoProvider) (provider)).getJTAPIURL(); provider.shutdown();
Component serverComponent = updater.queryServerComponentVersion("jtapi.jar", url);

downloadedComponent = serverComponent.fetchFromServer();
int retVal = downloadedComponent.replaces(localComponent);

The “replaces” API will replace the existing JTAPI version with the new version.

The updater will only update the JTAPI.JAR file and not the other sample applications and Cisco JTAPI
documentation that are bundled with the JTAPI plug-in. To get these other components, applications must
download the plug-in from the Cisco Unified Communications Manager and install it.

Note

Barge and Privacy Event Notification
The Barge Feature provides the ability for shared addresses to barge into an established call of address on
another terminal. This feature gets activated when an address TerminalConnection is in the passive state and
CallCtlTerminalConnection is in the bridged state. This version of Cisco Unified JTAPI only supports feature
activation manually on application-controlled terminals (IP phones). For this release, you cannot activate the
feature through an API.

The Privacy feature provides the ability to enable or disable other shared addresses to barge into call. When
privacy is enabled, other shared addresses cannot barge into a call and vice versa. Privacy represents a terminals
property. IP phones have a “Privacy” softkey and pressing it enables or disables the privacy. Privacy can be
dynamically enabled or disabled for the active calls on the terminal. When privacy is on for the call, the
TerminalConnection for the call appearances on the shared address appear in the “InUse” state. If privacy
status changes during the CallProgress, CiscoTermConnPrivacyChangedEvent gets delivered to the application.

Two types of barge feature functionalities exist in Cisco Unified Communications Manager: one uses built-in
conference bridge called “Barge, ” while another uses shared conference bridge resources called “CBarge”.
From the application point of view, no interface changes exists between Barge and CBarge; however, some
behavioral changes, which are described in the message flow diagram in Message Sequence Charts, on page
759 occur.

Barge, CBarge, and Privacy have these interfaces:

Interface CiscoTerminalConnection.getPrivacyStatus()

booleangetPrivacyStatus()

This interface returns the privacy status of a call on the terminal.

Interface CiscoTermConnPrivacyChangedEv

javax.telephony.TerminalConnectiongetTerminalConnection()

A new reason code, CiscoCall.CAUSE_BARGE gets added to CiscoCall for barge events.

JTAPI provides CallCtiCause as CiscoCall.CAUSE_BARGE when a SharedLine TerminalConnection or
CallCtiTerminalConnection goes to an active or talking state as a result of barge. This cause code also gets
provided in CallCtiEvents for dropping temporary calls that are created during the barge operation.

This cause code is not provided for the CBarge scenario.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
40

Features Supported by Cisco Unified JTAPI
Barge and Privacy Event Notification

For details on these interfaces, see Cisco Unified JTAPI Extensions, on page 247 To view the message flow
for barge, CBarge, and privacy, see Message Sequence Charts, on page 759.

Call Control Discovery
The Call Control Discovery (CCD) feature facilitates provisioning for inter-call agent communications. It
uses the Service Advertisement Framework (SAF) network service to advertise itself as a call control entity
and to discover other call control entities (Cisco Unified CommunicationsManagers or CMEs) on the network
so that it can dynamically adapt their routing behavior.

When a call is made between two devices on different clusters and the call is rejected with a cause code other
than unallocated , unassigned number and user busy, the CCD feature fails over the call to a PSTN network.
That is, the call is routed through a PSTN network instead of an IP network to reach the same destination.

JTAPI supports the SAF CCD feature. However, applications are not notified when a normal SAF call fails
over to a PSTN trunk.

JTAPI exposes a new reason CiscoFeatureReason.REASON_SAF_CCD_PSTN_FAILOVER for the new
connection created for the redirect or forward destination. This occurs when there is a redirect or forward
across the cluster through an SAF trunk and the call fails over to a PSTN trunk.

Interface Changes

See CiscoFeatureReason, on page 406

Message Sequences

See Call Control Discovery, on page 783

Backward Compatibility

This feature is backward compatible.

Call Forward
Cisco Unified JTAPI supports setting the Call Forward feature according to the JTAPI Specification. Cisco
Unified JTAPI implementation does not support all the forwarding characteristics but supports only the
FORWARD_ALL attribute for the Address. Applications can invoke setForwarding, getForwarding, and
cancelForwarding methods on a CallControlAddress object, but the CallControlForwarding instruction can
only be of type FORWARD_ALL.

Call Forward Override
This feature provides a mechanism to override the call forward all feature. If a user (CFA Initiator) sets CFA
to another user (CFA target), the CFA should be ignored if the CFA target calls the CFA initiator. This would
allow the CFA Target to reach the CFA Initiator for important calls.

The behavior of this CallManager feature is configurable via service parameter - CFADestinationOverride.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
41

Features Supported by Cisco Unified JTAPI
Call Control Discovery

Example: Alice has a phone with DN 1000 * Bob has a phone with DN 2000 * Daniel has a phone with DN
4000 * Alice does a CFA to 2000

CFA behavior * Bob calls Alice. Call goes to Alice and does not follow CFA back to himself. * Daniel calls
Alice. Call follows CFA to Bob. * Bob answers and transfers the call to Alice. Bob can do this because Alice
has her phone forwarded to Bob. There is no interface change to JTAPI layer with this feature. However
JTAPI applications could perceive a difference in behavior when CiscoAddress.setForward() API is invoked.
In scenario where CFA target calls the CFA initiator as described in example, call is not forwarded if feature
is enabled.

Backward Compatibility

JTAPI applications that were written for Release 5.0 should be backward compatible with Release 5.1. JTAPI
Client Upgrade Application does not require JTAPI Client upgrade to run or be backward compatible. JTAPI
Client upgrade is required only if new features are used.

Call Park
Cisco Unified JTAPI supports user interactions with Call Park and reports the appropriate events to the
applications. When a call is parked from an IP phone, the connection that belongs to the parking address
moves into Disconnected state, and the associated TerminalConnection moves into Dropped state. A new
connection in queued state for the park number gets created.

If an application is monitoring only the address that parked the call, all existing connections get Disconnected,
TerminalConnections get Dropped, and the call moves to Invalid state.

Call Pickup
Call Pickup enables devices to receive alerts within Call Pickup Groups and events, to act on these alerts by
invoking APIs that support variants of Call Pickup.

These APIs allow applications to gather information about existing Call Pickup groups, and register and
unregister for receiving pickup alerts for specific pickup groups.

JTAPI supports invoking Pickup, Group Pickup, Other Pickup, and Directed Call Pickup from applications.
In Cisco Unified Communications Manager releases prior to release 8.0(1), all these features except Other
Pickup were supported as observed events, but were not invoked.

Call Pickup is not supported on CTI route points.Note

Interface Changes

CiscoPickupGroup, on page 476, CiscoAddress, on page 287, CiscoTerminal, on page 615, CiscoProvider, on
page 490, CiscoProviderCapabilities, on page 502, CiscoProvPickupCallAlertEv, on page 485,
ProviderPickupNotificationRegistrationClosedEv, on page 669, CiscoAddrPickupGroupChangedEv, on page
311.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
42

Features Supported by Cisco Unified JTAPI
Call Park

Message Sequences

Call Pickup, on page 1107

Backward Compatibility

This feature is backward compatible.

Call Recording for SIP or TLS Authenticated Calls
Prior to 12.5(1) version, the phones which are authenticated (phone with Security profile having Device
Security Mode as Authenticated) were not allowed to make use of the Call Recording feature. Whereas,
Non–Secured phones or Secured/ Encrypted phones could use Call Recording feature with Non-Secured or
Secured recorders, respectively.With the release 12.5(1), Cisco Unified CM JTAPI interface has been enhanced
to allow recording in Authenticated Phones based on the value of the new service parameter Authenticated
Phone Recording.

The expectation is that the authenticated phones should also be allowed to make use of the Call Recording
feature. It depends on value set in the newly added service parameterAuthenticated Phone Recordingwhich
can be set to the following values:

• Allow Recording – Authenticated Phones can be allowed to record the calls.

• Do Not Allow Recording – Authenticated Phones cannot make use of Call Recording feature. This is
the default value for the service parameter. The behavior would be the same as that of the current behavior.

Backward Compatibility

This feature is backward compatible. JTAPI will support the current API’s.

Call Select Status
Cisco Unified JTAPI sends CiscoTermConnSelectChangedEv event whenever the call is selected either by
feature or by manually. Once application receives the event, application can use
TerminalConnection.getSelectStatus() to get proper call select status. There are three possible statuses by
calling TerminalConnection.getSelectStatus() as follows:

• CiscoTerminalConnection. CISCO_SELECTEDNONE: The select status means that the call is not
selected

• CiscoTerminalConnection. CISCO_SELECTEDLOCAL: The select status means that the call is selected
on the terminal connection

• CiscoTerminalConnection. CISCO_SELECTEDREMOTE: Passive TerminalConnection will get this
select status if the call is selected by it's shared line

Backward compatibility

This feature is not backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
43

Features Supported by Cisco Unified JTAPI
Call Recording for SIP or TLS Authenticated Calls

Calling Party Display Name
The CiscoCall interface provides methods to get name displays of the calling party and the called party in a
call. Applications can use getCurrentCallingPartyDisplayName() to get the display name of the calling party.

JTAPI applications can use the following interface to get the display names of the calling party and the called
party.

{..
..
/**
*This interface returns the display name of the called party in the call.
*It returns null if display name is unknown.
*/
public String getCurrentCalledPartyDisplayName();

/**
*This interface returns the display name of the calling party.
*It returns null if display name is unknown.
*/
public String getCurrentCallingPartyDisplayName();
}

The address objects store the display name internally, and the name gets updated when currentCallingAddress
and currentCalledAddress are updated. NULL returns if the call is not in the active state and if currentCalling
and currentCalled addresses of the call are not initialized.

The system does not support Call.getCurrentCalledAddress() and call.getCurrentCallingAddress() for conference
calls. Also, the system does not support call.getCurrentCalledPartyDisplayName() and
call.getCurrentCallingPartyDisplayName() for a conference call.

Note

Calling Party IP Address
Extensions to CallCtlConnOfferedEv and RouteEvent provide a method for retrieving the IP address of the
calling party. This feature provides the calling party IP address to the destination side of basic calls, consultation
calls for transfer and conference, and basic redirect and forwarding. The system does not support other scenarios
and feature interactions, including those where the calling party changes. This feature only supports IP phones
as calling party devices, although IP address of other calling devices may also be provided. See
CiscoCallCtlConnOfferedEv, on page 348 and CiscoRouteEvent, on page 520.

Backward compatibility

This feature is backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
44

Features Supported by Cisco Unified JTAPI
Calling Party Display Name

Calling Party IP Address
The Calling Party IP Address enhancement provides the calling party IP address to the destination side of
basic calls, consultation calls for transfer and conference, and basic redirect and forwarding. Only calling
party IP phones are supported, although IP address of other calling devices may also be provided.

Other feature interactions are not supported including those during which the calling party changes.Note

New Cisco extensions to the CallCtlConnOfferedEv and RouteEvent classes are created and expose a method
to obtain the calling party IP address. The new extensions are CiscoCallCtlConnOfferedEv and
CiscoRouteEvent. An empty returned value indicates that the calling party IP address is not available.

Basic Call scenario

JTAPI application monitors party B

Party A is an IP phone

A calls B

IP Address of A available to JTAPI application monitoring B consultation transfer scenario

JTAPI application monitors party C

Party B is an IP phone

A talks to B

B initiates a consultation transfer call to C

IP Address of B is available to JTAPI application monitoring party C

Consultation conference scenario

JTAPI application monitors party C

Party B is an IP phone

A talks to B

B initiates a consultation conference call to C

IP Address of B is available to JTAPI application monitoring party C

Redirect scenario

JTAPI application monitors party B and party C

Party A is an IP phone

A calls B

IP Address of A is available to JTAPI application monitoring party B

Party A redirects B to party C

Calling IP address is not available to JTAPI application monitoring party B

Calling IP address of B is provided to JTAPI application monitoring party C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
45

Features Supported by Cisco Unified JTAPI
Calling Party IP Address

Backward compatibility

This feature is backward compatible. Application must invoke a new API to query IP address of a call.

Calling Party Normalization
Calling Party Normalization (CPN) is an enhancement. This feature provides the option to transform or
normalize the incoming call number and convert into the E.164 format, which includes the (country code,
state code, and number type). The number type field identifies the subscriber, national, international, or
unknown. The number type is not supported in conference scenarios.

Interface changes

This feature introduces a new method in CiscoCall that is getGlobalizedCallingParty() and a new method in
CiscoPartyInfo that is getNumberType(). See CiscoCall, on page 330 and CiscoPartyInfo, on page 474 for more
information.

Message sequences

See Calling Party Normalization, on page 1083

Backward compatibility

This feature is backward compatible.

CallFwdAll Key Press Notification
This feature enables applications to know whether the call is a normal call or a temporary call, when the
CallFwdAll key is enabled.

JTAPI exposes this information through the API getCFwdAllKeyPressIndicator() which is exposed on the
CiscoCall interface. This API enables the application to know if the call is created due to pressing of CallFwdAll
softkey or not. The newly added getCFwdAllKeyPressIndicator()” could return following constants that are
also new:

• If it is pressed on a phone that is in on-hook state to set CallFwdAll, this API returns
CiscoCall.CFWD_ALL_SET.

• If it is pressed on a phone that is in on-hook state to clear the CallFwdAll, this API returns
CiscoCall.CFWD_ALL_CLEAR.

• If the call is made first and then the user presses CallFwdAll key when phone is in off-hook state, this
API returns CiscoCall.CFWD_ALL_NONE.

Interface changes

See CiscoCall, on page 330

Message Sequences

See CallFwdAll Keys Press Notification, on page 791

Backward Compatibility

This feature is backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
46

Features Supported by Cisco Unified JTAPI
Calling Party Normalization

CallSelect and UnSelect Event Notification
You can select or unselect call on a phone for doing DirectTransfer or join or any other feature operation.
When a SharedLine user selects a call, the RemoteInUse shares line TerminalConection will go passive, and
CallCtlTermiCallConnection goes in InUse state. When call is unselected, CallCtlTerminalConnection goes
into a bridged state. An application cannot invoke any API on Passive/InUse TerminalConnection.
CallProcessing also performs a Select/UnSelect operation during features (such as transfer/conference)
operation. Applications will also perceive these events if the applications monitor RemoteInUse terminal.

For example, if A and A' are SharedLine, and A selects the call, CallCtlTerminalConnection of A' goes into
a passive or InUse state. If A “UnSelects” the call, the CallCtlTerminalConneciton of A' goes into the passive
or bridged state.

To view the message flow for CallSelect or UnSelect, see Message Sequence Charts, on page 759

Certificate Download API Enhancement
Currently Cisco Unified JTAPI certificate download API has some security issues, to solve the problem, Cisco
provides new certificate download APIs. New APIs require applications to specify a certificate pass phrase
and the certificate pass phrase is used to encrypt Java key store where client/server certificates are stored.

Old certificate download APIs are deprecated, however, it will still remain for some time to avoid backward
compatibility issue for applications. Cisco highly recommends to migrate the application to new APIs.

Cisco Unified JTAPI also provides new API deleteCertificate() and deleteSecurityPropertyForInstance() that
can be used by application to delete certificates already installed. To change pass phrase for certificate java
key store, the application must delete the old certificate by using this API and upload new certificate.

JTAPIPreferences UI security tab enhancement provides two new buttons, one for DeleteCertificate and
another for Update Certificate. DeleteCertificate button allows users to delete the certificate for required
username/instanceID. Update Certificate button allows users to upload the certificate from CAPF server. If
certificate update is successful, certificate update box is updated to show Updated; authorization string and
certificate pass phrase are cleared. If certificate update operation fails, certificate box continues to show status
Not Updated status unless certificate was previously updated. User/Applications must provide certificate pass
phrase every time they try to update certificate, Cisco Unified JTAPI does not save certificate pass phrase for
security reason in any circumstances. Applications own the responsibility to secure the pass phrase and provide
it through API when needed.

Backward Compatibility

This feature is backward compatible.

Changes in DeviceType Name Handling
Currently, TSP hardcodes the DeviceTypeName depending on the DeviceType. When a new device type is
added, we have to manually add the new device type name to the list of supported devices. Because CTI does
not fetch and store the device type name in its cache, TSP cannot get this info from CTI. TSP needs to update
the device type name when a new device type is added without any manual intervention.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
47

Features Supported by Cisco Unified JTAPI
CallSelect and UnSelect Event Notification

In JTAPI, the changes have been made to ensure that QBE interface changes to handle the receive
devicetypename that is sent from CTI and is stored in the deviceInfo structure. It is not used anywhere in
JTAPI and will not be exposed to applications. Only the QBE interface changed as follows:

public DeviceRegisteredEvent (String ride, int deviceType, boolean
allowsRegistration, int deviceID, boolean loginAllowed, UnicodeString userID,
boolean controlled, int reasonInt, int registrationType, int unicodeEnabled,
int locale,

// added for deviceTypeName change
String devTypeName) {
public DeviceUnregisteredEvent (String deviceName, int deviceType, boolean
allowsRegistration, int deviceID, UnicodeString userID, boolean
controllableBool, int reasonInt , int locale,
//added for devtypename support
String devTypeName) {

Cisco MediaTerminal
In JTAPI, the terminal object represents the logical endpoint for a call and is presumed to be able to receive
and transmit data (digital encoded voice samples, for example). Thus, terminals in JTAPI represent Cisco
Unified IPPhones. Even though gateways terminate media, terminals do not represent them. The
CiscoMediaTerminals in particular represent a special kind of endpoint for which applications take responsibility
for media termination.

The following four steps associate with using CiscoMediaTerminals:

• Provisioning

• Registration

• Adding Observers

• Accepting Calls

Provisioning
Ensure CiscoMediaTerminals, which are analogous to physical terminals, get provisioned accordingly in
Cisco Unified Communications Manager, even though they do not represent actual hardware IP phones or
gateways. Just as IP phones must be added to Cisco Unified Communications Manager database by using the
Device Wizard, CiscoMediaTerminals get added the same way, so Cisco Unified Communications Manager
can associate the application endpoint with a directory number and other call control properties such as call
forwarding. No device type called CiscoMediaTerminal exists in the DeviceWizard. Instead, Cisco Unified
Communications Manager has one or more device types that support application registration—each of these
types get exposed as a CiscoMediaTerminal through JTAPI. Currently, only the device type CTI port represents
a CiscoMediaTerminal in JTAPI.

This procedure lists the steps for provisioning a CTI port for use as an application-controlled endpoint.

1. Within the Cisco Unified Communications Manager configuration windows, add a CTI port device from
the Device-Phone window by using the Device Wizard. The CTI port device name specifies the name of
the corresponding CiscoMediaTerminal in JTAPI.

2. Add the new CTI port device, by using the User-Global Directory window, to the list of devices that the
application controls by using the User window.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
48

Features Supported by Cisco Unified JTAPI
Cisco MediaTerminal

For more information, refer to the Cisco Unified Communications Manager Administration Guide.

Registration
After a media termination device is properly provisioned in Cisco Unified Communications Manager, the
application may obtain a reference to the corresponding CiscoMediaTerminal object by using either the
Provider.getTerminal() method or CiscoProvider.getMediaTerminal() method. The two methods differ in that
the CiscoProvider.getMediaTerminal() method only returns CiscoMediaTerminals, whereas
Provider.getTerminal() will return any terminal object that is associated with the provider, including those
representing physical IP phones.

Use the CiscoMediaTerminal.register() method to notify Cisco Unified Communications Manager of the
intent to terminate RTP streams of certain payload types. The CiscoMediaTermina.register() method takes
an IP address, a port number, and an array of CiscoMediaCapability objects that indicate the types of codecs
that the application supports as well as codec-specific parameters.

The IP address and port indicate the address where the application can receive media streams. The following
sample code demonstrates how to register a CiscoMediaTerminal and bind it to a local address, port number
1234:

CiscoMediaTerminal registerTerminal (Provider provider, String terminalName) {
final int PORT_NUMBER = 1234;
try {
CiscoMediaTerminal terminal = provider.getTerminal (terminalName);
CiscoMediaCapability [] caps = new CiscoMediaCapability [1];
caps[0] = CiscoMediaCapability.G711_64K_30_MILLISECONDS;
terminal.register (InetAddress.getLocalHost (), PORT_NUMBER, caps);
}
catch (Exception e) {
return null;

}
}

For this sample code to work, ensure the specified provider is IN_SERVICE. Further, be aware that this code
uses the constant CiscoMediaCapability.G711_64K_30_MILLISECONDS. This actually represents a static
reference to a CiscoG711MediaCapability object that specifies a 30-millisecond maximum RTP packet size.
The CiscoMediaCapability class predefines this and other common media formats.

To specify a media payload that is not listed in the CiscoMediaCapability class, two options exist. If the
desired payload type is a simple variation of one of the existing subclasses of CiscoMediaCapability, you
only need to construct a new instance of the subclass. For instance, if an application can support G.711 payloads
with a 60-millisecond maximum RTP packet size, it can construct the CiscoG711MediaCapability object
directly; including specifying 60 milliseconds in the constructor.

Alternatively, if no existing subclass of CiscoMediaCapability that matches the desired payload type exists,
construct an instance of the CiscoMediaCapability class directly. The maximum packet size, for example,
30-milliseconds, represents the only other parameter that may be specified when a CiscoMediaCapability is
constructed.

The following code illustrates registering a custom payload capability:

CiscoMediaTerminal registerTerminal (Provider provider, String terminalName) {
final int PORT_NUMBER = 1234;
try {
CiscoMediaTerminal terminal = provider.getTerminal (terminalName);
CiscoMediaCapability [] caps = new CiscoMediaCapability [1];

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
49

Features Supported by Cisco Unified JTAPI
Registration

caps[0] = new CiscoMediaCapability (
RTPPayload.G728,
30 // maximum packet size, in milliseconds
);

terminal.register (InetAddress.getLocalHost (), PORT_NUMBER, caps);
}
catch (Exception e) {
return null;

}
}

The payload type parameter that is used for constructing the CiscoMediaCapability object corresponds to the
payload field in the RTP header. The RTPPayload interface defines a number of well-known payload types
for this purpose.

Adding Observers
To receive events that indicate where and when to transmit and receive RTP data, place a
CiscoTerminalObserver on the CiscoMediaTerminal. The CiscoTerminalObserver extends the standard JTAPI
TerminalObserver interface without defining any new methods; it provides a marker interface that signals the
application interest in receiving RTP events.

Because this is a TerminalObserver, not a CallObserver, it must get added by using the Terminal.addObserver()
method, not the Terminal.addCallObserver() method.

Note

Additionally, add a CallControlCallObserver to the Address object that is associated with the
CiscoMediaTerminal. This guarantees that the application will get notified when calls are offered to the
CiscoMediaTerminal. Unlike regular IP phones, which automatically accept any offered call,
CiscoMediaTerminals accept, disconnect (reject), or redirect any call that is offered to it. Because the
CallCtlConnOfferedEv only gets presented to CallControlCallObservers that are placed on Address objects,
not Terminal objects, the application places its CallControlCallObserver in the correct place.

Be sure to implement the CallControlCallObserver interface, not just the CallObserver interface; the
CallCtlConnOfferedEv will not get delivered to observers that implement only the core CallObserver interface.

Note

Accepting Calls
When an inbound call arrives at the CiscoMediaTerminal address, it must be accepted by using the
CallControlConnection.accept() method before a terminal connection gets created. This process does not
apply for outbound calls —the connection will occur in the CallControlConnection.ESTABLISHED state as
soon as the call progresses beyond digit recognition. After the connection is accepted, answer the ringing
terminal connection to start media flow. Assuming that Cisco Unified Communications Manager can match
the capabilities that were registered with the capabilities of the calling endpoint, Cisco Unified Communications
Manager sends the Media Flow events, so the application can begin transmitting and receiving RTP data.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
50

Features Supported by Cisco Unified JTAPI
Adding Observers

Cisco Unified Communications Manager Media Endpoint Model
Endpoints represent the entities within the Cisco Unified Communications Solutions platform that terminate
media, such as IP telephones and gateways. A call from one endpoint to another results in media flowing
between the two endpoints. All endpoints in the Cisco Unified Communications Solutions platform transmit
voice data by using real-time protocol (RTP). The Cisco Unified Communications Solutions telephones and
gateways, for example, include built-in RTP stacks. Applications may also act as endpoints in a Cisco Unified
Communications Solutions system; that is, they may terminate media. Because all Cisco Unified
Communications Solutions endpoints use RTP, applications also must be able to transmit and receive RTP
packets.

Payload and Parameter Negotiation
In addition to bearer data and payload, each RTP packet contains a header that helps endpoints to determine
how to reassemble and decode a sequence of such packets into a media stream. RTP does not provide, however,
a means for endpoints to negotiate which payload type to use for a particular stream: for example, audio data
that is encoded by using the G.711 standard. Furthermore, RTP does not offer a means of negotiating unique
payload type parameters such as the sampling rate of the encoded data or the number of samples that are to
be transferred in each RTP packet. Instead, RTP usually gets used in conjunction with another protocol such
as H.323, which specifies its own method for endpoints to negotiate these parameters. All such negotiation
occurs prior to transmitting RTP packets between endpoints.

Cisco Unified Communications Manager, not the endpoints, has responsibility for selecting the payload and
encoding parameters for RTP streams. The following five steps that are involved in a typical bidirectional
audio telephone call apply:

• Initialization

• Payload Selection

• Receive Channel Allocation

• Starting Transmission and Reception

• Stopping Transmission and Reception

Initialization
Upon startup, each endpoint informs Cisco Unified Communications Manager of its media capabilities, that
is, G.711, G.723, G.729a, and so on. Startup for an IP phone, for example, occurs when the phone is first
turned on, or after it recontacts Cisco Unified Communications Manager after losing its former connection.
The endpoint cannot express a preference for one payload type versus another, but it can specify certain
parameters for each payload type, such as, packet size.

The capability list that the endpoint registers remains exclusive and immutable. If the endpoint specifies that
it can support both G.711 and G.723, it implicitly declares that it cannot support G.729a. Moreover, the
endpoint must disconnect from Cisco Unified Communications Manager and reinitialize to change the list of
capabilities that it supports.

JTAPI applications perform this step by registering a CiscoMediaTerminal with Cisco Unified Communications
Manager. The CiscoMediaTerminal.register() method allows applications to supply an array of media capability

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
51

Features Supported by Cisco Unified JTAPI
Cisco Unified Communications Manager Media Endpoint Model

objects for registration with Cisco Unified Communications Manager. This step informs Cisco Unified
Communications Manager that the application will act as the endpoint for all calls to or from a particular
directory number, as determined by the device configuration in the Cisco Unified Communications Manager
configuration.

Payload Selection
When a bidirectional media stream is about to be created between two endpoints, for instance, when a call is
answered at an endpoint, Cisco Unified CommunicationsManager selects an appropriate payload type (codec)
for the media stream. Cisco Unified Communications Manager compares the media capabilities of both
endpoints that are involved in the call and selects the appropriate common payload type and payload parameters
to use.

The basis for payload selection includes endpoint capabilities and location, although other criteria may get
added to this selection logic in the future. Endpoints do not get dynamically involved in selecting payload
types on a call-by-call basis.

Receive Channel Allocation
If Cisco Unified Communications Manager can find a common payload type for the RTP stream between the
two endpoints, it requests that each endpoint create a logical “receive channel”; that is, a unique IP address
and port at which the endpoint will receive RTP data for the call. Each endpoint returns an IP address and
port to Cisco Unified Communications Manager in response to this request.

Currently, only IP phones and gateways perform this step. Cisco Unified Communications Manager requires
JTAPI applications to specify a fixed IP address and port during initialization. Therefore, JTAPI applications
cannot terminate more than one media stream simultaneously for the same endpoint. Applications that want
to terminate multiple media streams must register multiple endpoints simultaneously.

If the endpoint does not respond to the open receive channel request quickly enough, Cisco Unified
Communications Manager disconnects the call. Because JTAPI applications always supply an IP address
when CiscoMediaTerminals are registered, calls to application-controlled endpoints do not get disconnected
for this reason. However, if Cisco Unified Communications Manager cannot find a common payload type
between the two endpoints that are involved in the call, Cisco Unified Communications Manager disconnects
the call.

Starting Transmission and Reception
After Cisco Unified Communications Manager receives channel information for both parties, it informs each
endpoint of the codec parameters that it selected for the RTP stream and the destination address for the other
endpoint. This information gets conveyed in two messages to each endpoint: a start transmission message and
a start reception message.

JTAPI applications receive the CiscoRTPOutputStartedEv and CiscoRTPInputStartedEv events that contain
all the codec parameters that are necessary for sending and receiving RTP data.

As a part of the QoS baselining effort in JTAPI, CiscoRTPOutputStartedEv provides the getPrecedenceValue()
API to applications. CTI presents this value, The DSCP for Audio Calls to JTAPI. Using this value, applications
can set the DSCP value for the media streams that they open.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
52

Features Supported by Cisco Unified JTAPI
Payload Selection

Stopping Transmission and Reception
When the RTP stream must get interrupted because of a feature such as hold or disconnect, Cisco Unified
Communications Manager requests that each endpoint stop its transmission and reception of RTP data. Just
as when the media flow is started, the stop transmission and stop reception messages get sent separately.

JTAPI applications receive the CiscoRTPOutputStoppedEv and CiscoRTPInputStoppedEv.

Cisco Unified Communications Manager Server Failure
If a Cisco Unified Communications Manager server fails, the associated devices re-home to the next Cisco
Unified Communications Manager server in the group. The prioritized list of Cisco Unified Communications
Managers in the device pool information configuration for each device defines this process.

Failure of a Cisco Unified Communications Manager server only results in a partial outage of devices in the
cluster. Those devices remain available following a successful Cisco Unified Communications Manager
failover and registration with a secondary Cisco Unified Communications Manager.

A device such as a Cisco Unified IPPhone 7960 fails over to a secondary Cisco Unified Communications
Manager server only when no active calls exist on that device. The failure of a Cisco Unified Communications
Manager server during a call results only in termination of observation of that device. The media path continues
to exist but without any further call control features.

Note

Cisco Unified JTAPI communicates this partial outage to applications by using CiscoAddrOutOfServiceEv
and CiscoTermOutOfServiceEv events. When the Cisco Unified Communications Manager fails over, the
device must successfully register to the secondary Cisco Unified CommunicationsManager before the device
is available to the JTAPI applications. Cisco Unified JTAPI will send the CiscoAddrInServiceEv and
CiscoTermInServiceEv events.

The Provider remains in service during this time. Devices on other Cisco Unified Communications Manager
servers remain available for call control. The events get sent on callbacks of the respective Address or Terminal
observer objects. CiscoAddrOutOfServiceEv and CiscoAddrInServiceEv events get sent to an object that is
implementing the AddressObserver and get added to an Address by using the addressChangedEvent() callback
object method. The CiscoTermOutOfServiceEv and CiscoTermInServiceEv events get sent to an object that
is implementing the TerminalObserver interface and get added to a Terminal that is using the
terminalChangedEvent() callback method.

If the devices are currently in a call, a CallObservationEnded message is sent on the CallObserver
callChangedEvent() callback, followed by the CiscoAddrOutOfServiceEv and CiscoTermOutOfServiceEv
messages.

Applications must monitor for and respond to the CiscoAddrOutOfServiceEv, CiscoTermOutOfServiceEv,
CiscoAddrInServiceEv, and CiscoTermInServiceEv events before the calling call control functions on the
address or terminal. Applications that do not support this action may encounter unexpected errors because
the applications do not know the exact state of the system.

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
53

Features Supported by Cisco Unified JTAPI
Stopping Transmission and Reception

Cisco Unified IP 7931G Phone Interaction
You can configure Cisco Unified IP 7931G phones in two modes:

• NoRollOver

• RollOver (across the same DN or across different DNs)

When Cisco Unified IP 7931G phones are configured in NoRollOver mode, they operate like regular phones
that are running SCCP, and in this mode transfers or conferences cannot occur across the different addresses.
JTAPI will support controlling and monitoring of a 7931G phone when it is configured in NoRollOver mode.

In RollOver mode, Cisco Unified IP 7931G phones support transfer or conference across different addresses.
In this mode, JTAPI does not allow controlling andmonitoring of a CiscoUnified IP 7931G phone. Applications
see such terminal/addresses as restricted. If a Cisco Unified IP 7931G phone is in the control list of an
application user and the phone configuration changes from NoRollOver to RollOver mode, JTAPI sends a
CiscoAddrRestrictedEv event for addresses on the Cisco Unified IP 7931G phone and sends a
CiscoTermRestrictedEv for terminals, with cause
CiscoRestrictedEv.CAUSE_UNSUPPORTED_DEVICE_CONFIGURATION.

However, if the phone configuration changes from RollOver to NoRollOver mode, JTAPI sends a
CiscoAddrActivatedEv event for addresses on the Cisco Unified IP 7931G phone and sends a
CiscoTermActivatedEv for terminals.

If a Cisco Unified IP 7931G phone that is configured in RollOver mode transfers or conferences to
JTAPI-controlled addresses, JTAPI applications do not recognize a common controller in the final and the
consult call. This would provide different behavior to the JTAPI application. Depending on how the JTAPI
application is processing information that is provided in events, applications may require changes to handle
JTAPI events for this transfer or conference scenario.

You can disable transfers and conferences across the line by configuring the Cisco Unified IP 7931G phone
to NoRollOver mode through the phone configuration window of Cisco Unified Communications Manager
Administration.

There are two new cause codes for the CiscoRestrictedEv interface. When the terminal or address is restricted
because a Cisco Unified IP 7931G phone is configured in RollOverMode, JTAPI sends CiscoAddrRestrictedEv
with cause CiscoRestrictedEv.UNSUPPORTED_DEVICE_CONFIGURATION. This release also introduces
a default cause code CAUSE_UNKNOWN, which applications should handle.

Backward Compatibility

This feature is backward compatible. You can disable this feature by configuring all Cisco Unified IP 7931G
phones in a cluster in NoRollOver mode or by not having any Cisco Unified IP 7931G phones in a Cisco
Unified Communications Manager cluster. If any phone in a Cisco Unified Communications Manager cluster
is configured with RollOver mode, it may cause changes to the behavior of JTAPI-controlled addresses and
terminals.

For more information, see CiscoRestrictedEv, on page 517.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
54

Features Supported by Cisco Unified JTAPI
Cisco Unified IP 7931G Phone Interaction

Cisco Unified JTAPI Install Internationalization
Cisco Unified JTAPI supports multiple languages for the JTAPI installation and user preference UI. When
JTAPI launches, you receive options for choosing languages for the installation. After choosing a language,
further installation instructions display in the chosen language. The first option always specifies English. If
certain phrases are missing in the locale language, the instructions default to English. See Cisco Unified JTAPI
Installation, on page 215 for more information.

Cisco VG248 and ATA 186 Analog Phone Gateways
Cisco Unified JTAPI supports control of analog phones that are connected to the Cisco VG248 and ATA 186
Analog Phone Gateways. By adding the Cisco VG248 and ATA 186 Analog Phone Gateways to the
user-controlled list, applications can control the devices.

Applications receive events for the devices in a way similar to other IP phones. Applications can also initiate
calls and invoke other features except answer Request through APIs. Make call works only when the device
goes physically off hook.

Applications cannot answer calls from APIs for the devices. If an application attempts to answer () on
TerminalConnection for the VG248 and ATA 186 Terminal, the system throws PlatformException with error
CiscoJtapiException.COMMAND_NOT_IMPLEMENTED_ON_DEVICE.To answer calls, youmustmanually
pick up the handset, and then you can invoke other call control features such as transfer, conference, blind
transfer, and park from the API.

CiscoJtapiExceptions
Cisco Unified JTAPI notifies the application of CTI-generated error codes. These codes return when an
exception or error occurs in the CTIManager. The CTI returned error code propagates to the application
separately. The application can extract the error code by invoking getErrorCode() method on the exception
object, can get CTI error code name by invoking getErrorName() method, and can get error description by
invoking method getErrorDescription().

Themethods getErrorName(int errorCode) and getErrorDescription (int errorCode) deprecate and get removed
in future releases. Cisco recommends that application users do not use these methods.

CiscoJtapiExceptions interface defines error codes in JTAPI.

When a PlatformException is thrown, it can be queried to get the error code, which can be compared to the
following.

Errors
Problem Error Message CTIERR_LOGIN_FAILED_PWD_EXPIRED_USER_CAN_RESET

Possible Cause This value is a static definition that identifies an error code as a login failure due to an
expired password. In addition, this error code lets the application know that the user can change their
password.

Solution Try resetting the password.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
55

Features Supported by Cisco Unified JTAPI
Cisco Unified JTAPI Install Internationalization

Problem Error Message CTIERR_LOGIN_FAILED_PWD_EXPIRED_USER_CANNOT_RESET

Possible Cause Explanation This value is a static definition that identifies an error code as a login failure
due to an expired password. In addition, this error code lets the application know that the user cannot
change their password, and that an administrator will have to reactivate the account.

Solution Contact the administrator to reactivate the account.

Problem Error Message CTIERR_LOGIN_FAILED_ACCOUNT_LOCKED

Possible Cause This value is a static definition that identifies an error code as a login failure due to the
user account being locked. This is a generic exception for the various types of account lockout. The
applications are not informed the reason for the account lockout.

Solution Contact the administrator to unlock the account.

Problem Error Message CTIERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING

Possible Cause This error code is returned when an application invokes a stopRecording() request and
passes a method of recording other than the method that was specified when the recording was started.

Problem Error Message CTIERR_INVALID_REMOTE_DESTINATION_NUMBER

Possible Cause This error code is returned when an invalid remote destination number is enterred.

Problem Error Message CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER

Possible Cause This error code is returned when the same remote destination number is entered twice.

Problem Error Message CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDED

Possible Cause This error code is returned when the number of remote destinations has exceeded the max
number limit.

Problem Error Message CTIERR_REMOTE_DEVICE_REQUEST_FAILED_ACTIVE_RD_NOT_SET

Possible Cause This error code is returned when the active remote destination is not set.

Problem Error Message CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE

Possible Cause This error code is returned when the enduser is not associated with the device.

Problem Error Message CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTEND

Possible Cause This error code is returned when the device registration failed due to the device already
being registered in non-extend mode.

Problem Error Message CTIERR_MEDIA_ALREADY_TERMINATED_EXTEND

Possible Cause This error code is returned when the device registration failed due to the device already
being registered in extend mode.

Problem Error Message CTIERR_INVALID_REMOTE_DESTINATION_NAME

Possible Cause This error code is returned when an invalid remote destination name is entered.

CiscoProvAuthenticationInfoEv
CiscoProvAuthenticationInfoEv code returns to notify the application that the password is about to expire or
has already expired. The application should have Provider Observer onto the Provider object to receive this
event.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
56

Features Supported by Cisco Unified JTAPI
CiscoProvAuthenticationInfoEv

If the application invokes a connection and it fails because of an expired password, it will receive a
PlatformException with a newly defined error code. For more information, see CiscoJtapiExceptions, on page
55.

In the case of a failover, the application will not explicitly request a connection, and will not receive a
PlatformException. As the provider will already have an observer, it will deliver a
CiscoProvAuthenticationInfoEv to it with getDaysUntilPasswordExpiry() =
CiscoProvAuthenticationInfoEv.PASSWORD_EXPIRED.

CiscoRTPHandle Interface on Cisco RTP Events
The following interfaces are enhanced to allow applications to get a CiscoRTPHandle from the events:

• CiscoRTPInputStartedEv, on page 555

• CiscoRTPInputStoppedEv, on page 557

• CiscoRTPOutputStartedEv, on page 563

• CiscoRTPOutputStoppedEv, on page 573

CiscoRTPHandle represents the callID of the call in Cisco Unified Communications Manager and stays the
same as long as the call is active on the terminal. At any particular terminal/address, although the call and the
associated GCID can change, CiscoRTPHandle will remain constant.

Cisco Terminal Filter and ButtonPressedEvents
Prior to the JTAPI 2.0 release, Cisco Unified JTAPI applications did not have direct control over terminal
events. Applications can now receive button pressed events by setting the appropriate filter in the terminal
observer. Applications no longer need to add call observer to get RTP events.

When setButtonPressedEv gets enabled by using CiscoTermEvFilter, applications receive
CiscoTermButtonPressedEv when a digit gets pressed on the phone.

The following new or changed interfaces exist for CiscoTerminal Filter and ButtonPressedEvents:

CiscoTerminal

setFilter (CiscoTermEvFilter terminalEvFilter)

Allows an application to have more control over the events thatget delivered to the
TerminalObserver.

void

CiscoTermEvFilter

getButtonPressedEnabled()

Gets the enable or disable status of the button-pressed events for the terminal. The
default value specifies disabled.

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
57

Features Supported by Cisco Unified JTAPI
CiscoRTPHandle Interface on Cisco RTP Events

getDeviceDataEnabled()

Gets the enable or disable status of the device data events for the terminal. The default
value specifies disabled.

boolean

getRTPEventsEnabled()

Gets the enable or disable status of the RTP events for the terminal. Thedefault value
specifies disabled.

boolean

setButtonPressedEnabled (boolean enabled)

Enables or disables the button pressed events for the terminal.

void

setDeviceDataEnabled (boolean enabled)

Enables or disables the device data status events for the terminal.

void

setRTPEventsEnabled (boolean enabled)

Enables or disables the RTP events for the terminal.

void

CiscoTermButtonPressedEv

getButtonPressed ()int

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for CiscoTerminal Filter and ButtonPressedEvents, see Message Sequence Charts, on page 759

CiscoTermRegistrationfailed Event
This event gets provided to the application when CiscoMediaTerminal or CiscoRouteTerminal registration
fails asynchronously. Usually when registration fails, the application gets a CiscoRegistrationFailedException;
however, it is possible that the registration request was successful, but the CTI rejected the registration. This
event is provided for the cases where the registration request is successful, but the registration gets rejected.
The application should have TerminalObserver to receive this event. Upon receipt of this event, the applications
should reregister with the new parameter, depending on the error code that is provided for this event.

The following list provides the errors that get returned and the actions to take, by the application, to resolve
them.

Errors
Problem Error Message CiscoTermRegistrationFailedEv.MEDIA_CAPABILITY_MISMATCH

Possible Cause Registration cannot get done because the terminal is already registered. Do the second
registration with the same media capability.

Solution Try re-registering with the same capability.

ProblemErrorMessageCiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_NONE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
58

Features Supported by Cisco Unified JTAPI
CiscoTermRegistrationfailed Event

Possible Cause Registration cannot get done because the terminal is already registered with media
termination type 'none'.

Solution Try re-registering with media termination type 'none'.

Problem Error Message
CiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_STATIC

Possible Cause Registration cannot get done because the terminal is already registered with static media
termination. For static registration, the second registration is not allowed.

Solution Wait until the terminal UnRegisters.

Problem Error Message
CiscoTermRegistrationFailedEv.MEDIA_ALREADY_TERMINATED_DYNAMIC

Possible Cause Registration cannot get done because the terminal is already registered with dynamic
media termination.

Solution Try re-registering with dynamic media termination.

Problem Error Message CiscoTermRegistrationFailedEv.OWNER_NOT_ALIVE

Possible Cause When trying to register the terminal, registration gets in a race condition.

Solution Try re-registering the terminal.

The following interface is defined for this event:
int getErrorCode () //

Returns the errorCode for this exception

No changes exist in the message flow.

Cius Persistency
Wireless devices introduced by Cisco, for example the Cisco Cius, have the capability to move betweenWiFi
networks and still retain their registration to a single CiscoUCM. However, due to the change in the network
the IP address of the device might undergo a change.To indicate this change in IP address of wireless devices
like Cius, Cisco JTAPI will expose a new interface to applications with the 9.0.1 release.

The new provider event - CiscoProvTerminalIPAddressChangedEv, will indicate that the IP address of the
terminal has changed. Applications may choose to ignore this new event if they do not plan to support a Cius
device.

On receiving this event, applications can query for the changed IP address of the terminal using the methods
exposed in the new event or on the CiscoTerminal. This interface will also expose the IP addressing mode of
the terminal, based on which IPv4/IPv6 address of the terminal can be queried.

Sample Code

public synchronized void providerChangedEvent(ProvEv[] eventList)
{
try
{
for (int i = 0; i < eventList.length; i++)
{

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
59

Features Supported by Cisco Unified JTAPI
Cius Persistency

case (eventList[i].getID())){
switch:

CiscoProvTerminalIPAddressChangedEv.ID:
Terminal term = eventList[i]

.getTerminal();
int ipAddrMode = eventList[i].getIPAddressingMode();
InetAddr ipV4Addr = null;
InetAddr ipV6Addr = null;
if(ipAddrMode = CiscoTerminal.IP_ADDRESSING_MODE_IPv4)
{
ipV4Addr = eventList[i].getIPv4Address();

}
else if(ipAddrMode = CiscoTerminal.IP_ADDRESSING_MODE_IPv6)
{
ipV6Addr = eventList[i].getIPV6Address();

}
System.out.println(" TerminalName = " + term.getName() +

" ipAddressing Mode = " + ipAddrMode +
" IPv4 Address = " + ipV4Addr +
" IPv6 Address = " + ipV6Address);

}
}
catch (exception e)
{
…

}
}

Interface Changes

See CiscoProvTerminalIPAddressChangedEv, on page 486 for more information.

Message Sequences

See Cius Persistency, on page 796.

Backward Compatibility

This feature is backward compatible.

Clear Calls
Cisco Unified JTAPI applications can clear phantom calls without dropping active calls. The CiscoAddress
provides a clearCallConnections message to allow applications to clear the calls when no active calls exist
on the Cisco Unified Communications Manager (formerly Cisco Unified Call Manager).

Click to Conference
Click to conference feature provides interfaces on SIP trunk for applications such as Instant Messenger (IM)
to add parties to a conference. Users can add other parties to a conference or remove parties by using such
applications. When click to conference is used to add a party to conference, a call is offered to the target
address. Only one connection for target address is created on this initial call. This call then gets added to
conference which results in a new callID for the call on the target address and connections for other addresses
in the call are created on the new call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
60

Features Supported by Cisco Unified JTAPI
Clear Calls

This section describes the interface changes in Cisco Unified JTAPI to handle the interactions when an address
is added to a conference by using click to conference feature.When click to conference feature is used, consult
call does not occur and Cisco Unified JTAPI applications do not receive CiscoConferenceStartEv or
CiscoConferenceEndEv.

The feature can be disabled by turning off the “ENABLE CLICK TO CONFERENCE” CallManager service
parameter.

Interface Changes

CiscoFeatureReason, on page 406

Message Sequences

Click to Conference, on page 1090

Backward Compatibility

This feature is backward compatible. No change in Cisco Unified JTAPI applications when this feature is not
configured or used.

Cluster Abstraction
The CTIManager provides a virtual representation of all the Cisco Unified Communications Managers in a
cluster. Cisco Unified JTAPI applications communicate with the CTIManager instead of with a specific Cisco
Unified Communications Managers. The CTIManager also maintains connection between Cisco Unified
Communications Managers in a cluster. This allows a provider to represent any devices in the cluster under
the CTIManager. Figure 4: Single-Box Configuration with JTAPI, Cisco Unified Communications Manager,
and CTIManager in One Box, on page 61 illustrates “Figure 4: Single-Box Configuration with JTAPI, Cisco
Unified Communications Manager, and CTIManager in One Box, on page 61.” Figure 5: Redundant Cisco
Unified Communications Manager and CTIManagers with JTAPI Deployed as a Separate Client, on page 62
illustrates “Figure 5: Redundant Cisco Unified Communications Manager and CTIManagers with JTAPI
Deployed as a Separate Client, on page 62.”

For more details about the cluster administration and device pool settings, refer to the Cisco Unified
Communications Manager help information.

Figure 4: Single-Box Configuration with JTAPI, Cisco Unified Communications Manager, and CTIManager in One Box

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
61

Features Supported by Cisco Unified JTAPI
Cluster Abstraction

Figure 5: Redundant Cisco Unified Communications Manager and CTIManagers with JTAPI Deployed as a Separate Client

In previous releases of Cisco Unified CommunicationsManager, applications that are running on Cisco Unified
JTAPI could only control or monitor devices that are registered under a single Cisco Unified Communications
Manager. If a Cisco Unified Communications Manager server went down, the connection between the Cisco
Unified Communications Manager server and JTAPI would terminate and the Provider would shut down.

Note

Command Line Invocation
This mode helps to install JTAPI in systems that do not have GUI support (for example, a Linux account).
The entire installation procedure is guided by a character input based menu, where the user is asked to provide
a series of inputs, based on the install time conditions. This mode also provides all the other options provided
by the GUI based installer.

Component Updater
The Component Updater interface is enhanced to allow applications to specify the location of updater log.
Currently the updater log is created in the same directory as the application. This enhancement allows
applications to specify the trace location.

Interface Changes

See ComponentUpdater, on page 668

Message Sequences

See ComponentUpdater Enhancement Use Cases, on page 1234

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
62

Features Supported by Cisco Unified JTAPI
Command Line Invocation

Backward Compatibility

This feature is backward compatible.

Conference
When you conference two calls together, JTAPI specifies that all the parties from one call be moved to the
other call. The call whose parties are moved away and that subsequently becomes invalid gets identified as
the “merged” or “consult” call. The call to which the merged parties move gets identified as the “final” call
hereafter. When parties move from the merged call to the final call, the application receives events that indicate
that all parties dropped from the merged call and events that indicate that the parties reappeared on the final
call.

To correlate the newly created connection objects with the old connection objects, use the
CiscoConection.getConnectionID() method to obtain CiscoConnectionID objects for all old connections and
all new connections.Matching connections will have identical CiscoConnectionID objects when you compare
them by using the CiscoConnectionID.equals() method.

Conference support exists for the following methods:

• javax.telephony.callcontrol.CallControlCall.conference(Call)

• javax.telephony.callcontrol.CallControlCall.getConferenceController()

• javax.telephony.callcontrol.CallControlCall.getConferenceEnable()

• javax.telephony.callcontrol.CallControlCall.setConferenceController(TerminalConnection)

• javax.telephony.callcontrol.CallControlCall.setConferenceEnable(boolean)

As of Cisco Unified Communications Manager Release 8.6, Cisco TelePresence MCU conference bridges
are supported through JTAPI/TSP. From a JTAPI/TSP perspective, this conference bridge behaves in the
same way as other supported conference bridges.

Note

Cisco Extensions
Cisco Unified JTAPI implementation provides two extra events that signal the Start and End of Conference:
CiscoConferenceStartEv and CiscoConferenceEndEv. These events get sent when Conference initiates and
when it completes. They give handles to the final call, the merged conference (consult) call, and the two
controlling TerminalConnections (in HELD and TALKING state).

CiscoConferenceStartEv

This event gets sent when call1.conference(call2) is invoked or if the Conference button is pressed for the
second time on an IPphone. The ConferenceStartEv signifies the start of the merging process. A sequence of
merging events that are reflected by the Conference process in Cisco Unified Communications Manager
follows.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
63

Features Supported by Cisco Unified JTAPI
Conference

CiscoConferenceEndEv

This event gets sent at the end of the merge process after a ConferenceStartEv is sent. It signifies the completion
of the merge of the Consult (or Merged) call into the Final Conference Call. The Merged call specifies an
INVALID state, and an ObservationEndedEv gets sent for the call observer.

CiscoCall.setConferenceEnable()

The Cisco Unified JTAPI implementation uses the CiscoCall.setConferenceEnable() and the
CiscoCall.setTransferEnable() methods to control whether the consult call will be initiated via the conference
or the transfer feature. If none of the features is enabled explicitly, transfer gets used by default.

Conference Scenarios
The following scenarios describe the two typical types of conference that can be invoked.

Consult Conference; B as the Conference Controller

The following sequence of steps typically describes this scenario:

• A calls B (Call 1).

• B answers.

• B Consults C (Call 2).

setConferenceEnable()

call2.consult(tc, C)

• C answers.

• B Completes Conference.

Call1.conference(Call2)

You must invoke the conference() method on the original call to complete a conference after a consultation.
Invoking conference in the consult call object throws an exception.

Note

Arbitrary Conference; B as the Conference Controller

The following sequence of steps typically describe this scenario:

• A calls B (Call 1).

• B answers.

• B places the call on hold.

• B calls C (Call 2).

• C answers.

• B Completes Conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
64

Features Supported by Cisco Unified JTAPI
Conference Scenarios

Call1.conference(Call2) or

Call2.conference(Call1)

Conference Events
This table provides the sequence of Core, Call control, and Cisco Extension events when
Call1.Conference(Call2) is called:

Table 1: Sequence of Events

FieldsEventCallMeta Event Cause

consultCall = Call2finalCall =
Call1conference Controller =
TermConnB

CiscoConferenceStartEvCall1META_UNKNOWN

CallCtlTermConnTalkingEv BCall1META_CALL_MERGING

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv C
TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv C

Call1META_CALL_MERGING

TermConnDroppedEv B
CallCtlTermConnDroppedEvB
ConnDisconnectedEv B
CallCtlConnDisconnectedEv B

Call2META_CALL_MERGING

consultCall = Call2finalCall =
Call1conferenceController =
TermConnB

TermConnDroppedEv C
CallCtlTermConnDroppedEvC
ConnDisconnectedEv C
CallCtlConnDisconnectedEv C
CallInvalidEv C

Call2META_CALL_MERGING

CallObservationEndedEvCall2META_UNKNOWN

CiscoConferenceEndEvCall1META_UNKNOWN

Transfer and Conference Enhancement
All parties who are involved in the call transfer get sent CiscoTransferStartEv and CiscoTransferEndEv. All
parties who are involved in the call conference get sent CiscoConferenceStartEv and CiscoConferenceEndEv.
A call transfer still generates two events—the dropping of a connection to the first call and the creation of a
connection to the second call. Cisco Unified Communications ManagerRelease3.1 changed this order of
events. Connections first get created in the final call and then get dropped in the consult call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
65

Features Supported by Cisco Unified JTAPI
Conference Events

In Cisco Unified CommunicationsManagerRelease3.0, not all parties who are involved in the transfer of calls
received these events

Note

Applications should not rely on the order of events between CiscoTransferStartEv and CiscoTransferEndEv
or between CiscoConferenceStartEv and CiscoConferenceEndEv for transferring and conferencing when
porting applications from Cisco Unified Communications ManagerRelease3.0 to 3.1.

Note

Conference and Join
The Conference Feature provides the ability to conference more than two people into a single call. Events at
CTI layer change, and Cisco Unified JTAPI gets enhanced to support the new CTI events.

Join Feature provides the ability to join multiple calls into one single conference call. This functionality now
supports multiple calls. Applications need to pass an array of calls to be conferenced together.

The following new or changed interfaces exist for conference and joining of multiple calls into one conference
call:

• The following interface allows Join to conference multiple calls into one conference call:
Call.Conference(Call[] otherCalls)

A precondition requires that all the otherCalls must have controller as one leg of
the call.

Note

• The following new or modified interfaces exist in CiscoConferenceStartEv:

• TerminalConnection getHeldConferenceController()—This interface proves useful only for the
arbitrary conferencing of two calls and returns only one of the held calls.

• TerminalConnection[] getHeldConferenceControllers()—This interface gets all of the held calls
when multiple calls are joined.

• TerminalConnection getTalkingConferenceController()—This interface returns the talking conference
controller; however, if no talking conference controller exists when all the calls that are being joined
into conference are held, this interface returns null.

• Call getConferencedCall()—This interface returns only one of the many calls that are going to join
into a conference and may not have any meaning for a join conference when more than two calls
exist.

• New interface in CiscoConferenceEnded event Boolean isSuccess():

This interface returns true or false depending on whether conference is successful or failed. Application
can use interface to find whether conference is successful. The following events get defined as conference
failure:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
66

Features Supported by Cisco Unified JTAPI
Conference and Join

• If the application issues the request Call.conference(otherCalls[]), this conferencewould be considered
failed if one or more than one calls could join into conference. Applications can use the interface
getFailedCalls() to find the failed call.

• If no conference bridge is available and the conference could not complete at all, the application
can use getFailedCalls() to get a list of calls that could not join the conference.

• A party that was being conferenced dropped out before conference could complete.

• An interface on the CiscoConferenceEnded event (Call[] getFailedCalls()) gets all the calls that failed
to join the conference when the conference fails.

The following new or changed behaviors exist for Conference:

• No hold or unHold message such as applications see when an arbitrary conference occurs.

• An arbitrary conference does not require, as a precondition, that any calls be in a talking state; however,
all the otherCalls must have a controller as one leg of the call.

• Applications can conference two or more held calls into a conference call. In finalCall, the controller
automatically gets retrieved to a talking state.

• Always include an active call in the request Call.Conference(otherCalls). If an active call is not included
in the conference request, the request fails.

• If no active call exists at the controller, the Call.Conference(otherCalls) request remains successful;
however, if one active call exists, it the request must include it.

• If the application does not have an active TerminalConnection that is passed as an argument, Call.consult()
throws a PreConditionException/InvalidArgumentException.

• If the controller does not have an active TerminalConnection, Call.Conference()/Call.Conference(Call[])
throws a PreconditionException/InvalidArgumentException.

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for conference and join, see Message Sequence Charts, on page 759

Conference Chaining
The conference chaining feature lets applications join two separate conference calls together. JTAPI applications
see chained conference calls that are represented as two separate calls. When conference calls are chained,
JTAPI creates a new connection for the conference chain and provides the CiscoConferenceChainAddedEv
event on CallCtlCallObserver. When the conference chain is removed from the call, JTAPI disconnects the
conference chain connection and provides the CiscoConferenceChainRemovedEv event on CallCtlCallObserver.
From CiscoConferenceChainAdded/RemovedEv, applications can obtain CiscoConferenceChain, which
provides a link for all the conference chain connections.

The following figure shows parties A, B, and C in conference call GC1 and parties C, D, and E in conference
call GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
67

Features Supported by Cisco Unified JTAPI
Conference Chaining

Figure 6: Calls Prior to Chaining

After the conference chain is created, the calls will look like the following figure.

Figure 7: Calls After Chaining

Applications may get all the participants of a chained conference from the CiscoChainedConference object,
which provides conference chain connections from all the conference calls that are chained together. By
browsing through the connections list, applications can get a list of all the chained conference calls; however,
applications must have at least one participant of each conference that is observed.

For any conference scenario that involves chaining conferences or adding parties to a chained conference call,
JTAPI will not provide ConferenceStarted/Ended event.

Note

For more information, see the following topics:

• CiscoCall, on page 330 (for the getConferenceChain() interface)

• CiscoConferenceChain, on page 369

• CiscoConferenceChainAddedEv, on page 370

• CiscoConferenceChainRemovedEv, on page 373

Consult Without Media
Applications can inform Cisco Unified Communications Manager that a consultation call for a transfer is
being placed without establishing the media path. The system does not require establishing the media path
for the intermediate call, if the consultation call is being placed to determine whether an agent is available
before the actual transfer. The consultWithoutMedia method as defined in the CiscoConsultCall interface
creates a consultation call without establishing the media path.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
68

Features Supported by Cisco Unified JTAPI
Consult Without Media

The system allows only transferring of the consultation call; it does not allow the call to be in conference.Note

CTI Ports
CTI Ports that are registered by an application include a mechanism similar to phone devices. When the Cisco
Unified Communications Manager that is handling signaling for a CTIPort fails, the CTIManager recovers
its services according to the device pool administration for this device. On a CTIManager failure, Cisco Unified
JTAPI reregisters the CTI Port after it connects to the backup CTIManager. The CiscoAddrOutOfServiceEv
and CiscoTermOutOfServiceEv events and the corresponding in-service events get sent after recovery of the
CTI Port.

The application controls media streaming for these devices, and streaming continues even when the port is
out of service. The application has responsibility to ensure that new calls do not get presented to the device
until it is ready to accept them.

CTI RoutePoints
On a Cisco Unified Communications Manager server failure, the CTIManager recovers the device from the
Cisco Unified Communications Manager server group as defined in the device pool administration for the
CTI RoutePoint.When the primary Cisco Unified CommunicationsManager server recovers, the CTIManager
attempts to recover the device on its primary Cisco Unified CommunicationsManager. This re-homing happens
when no more calls exist on the device (similar to physical devices).

On a CTIManager failure, Cisco Unified JTAPI recovers the device on the backup CTIManager. The application
receives notification of the availability of a device with the CiscoAddrOutOfServiceEv and
CiscoAddrInServiceEv events.

CTI Remote Device for JTAPI
Changes in personal device preferences and an increasing number of mobile and remote workers necessitates
a more flexible Unified Communications solution that extends UC features with a Bring Your Own Device
philosophy. Extend and Connect addresses this change.

Extend and Connect is a feature that allows administrators to rapidly deploy Unified Communications (UC)
Computer Telephony Integration (CTI) applications which interoperate with any endpoint. Extend and Connect
lets users leverage the benefits of UC applications from any location using any device. This feature allows
interoperability between newer UC solutions and legacy systems, so customers can migrate over time as
existing hardware is deprecated.

For more information, please refer to theCisco Unified Communications Manager Features & Services guide.

Interface Changes

See CiscoRemoteDestinationInfo, on page 511, CiscoProvTerminalRemoteDestinationChangedEv, on page
509, CiscoProvider, on page 490, CiscoTerminalProtocol, on page 641.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
69

Features Supported by Cisco Unified JTAPI
CTI Ports

Message Sequences

See CTI Remote Device, on page 805.

Backward Compatibility

This feature is backward compatible.

Play Announcement
Play Announcement allows a specified preconfigured announcement to be played or streamed to a remote
destination. Only announcements that are uploaded to the Cisco Unified Communications Manager can be
played. All announcement requirements and limitations are applicable to Play Announcement. As part of this
feature, new JTAPI APIs, events, and error codes are added.

Only CTI Remote Devices with a persistent call support play announcement. Play announcement is not
supported on IP phones or CTI ports. Cisco recommends that the persistent call plays an announcement when
answered. Announcements can be played on persistent calls even without customer calls. However, if there
are customer calls incoming to the remote device, announcements are played only when that call is not in a
connected state. Multiple announcements cannot be played at the same time. No features (transfer, conference,
hold) can be performed on the announcement call.

The following are required for the application to play the announcement: at least one remote destination must
be configured, the active remote destination must be set, and a persistent call must be created.

JTAPI supports a new API, CiscoCall.startAnnouncement(), which allows applications to start to play an
announcement. This API creates an announcement call. This newly created announcement call counts toward
both the busy trigger and maximum calls limit. JTAPI APIs such as Provider.getCalls(),
Address.getConnections(), and Terminal.getTerminalConnections() return information for the announcement
call.

No new APIs are added to disconnect/drop the announcement calls. Use Existing Call.drop() and
Connection.disconnect() JTAPI APIs to disconnect the announcement calls. In addition to the APIs that
explicitly end the announcement call, the announcement call is also automatically disconnected after the
announcement is complete. Any state change in the announcement call stops the announcement, and also
disconnect the announcement call. For example, if there is an incoming customer call in ringing state and the
announcement is still being played, after the customer call is answered, the announcement call is disconnected.

As a part of this feature, new JTAPI events are introduced. The CiscoAnnouncementStartedEv is a new JTAPI
event that is delivered to applications, notifying applications when the play announcement starts. To notify
applications when the play announcement has ended, another new JTAPI event, the
CiscoAnnouncementEndedEv, is delivered to apps. If during any time, an error occurs during play
announcement, a new JTAPI event delivers that information to apps as well: CiscoAnnouncementErrorEv.

Some of the new JTAPI error codes that are introduced as part of this feature include:

• CiscoJtapiException.CTIERR_NO_PERSISTENT_CALL_EXISTS: This error codes indicates that no
persistent call exists.

• iscoJtapiException.CTIERR_ANNOUNCEMENT_ALREADY_IN_PROGRESS: This error code
indicates that there is already an announcement in progress.

• CiscoJtapiException.CTIERR_ERROR_PLAYING_ANNOUNCEMENT: This error code indicates that
there is an error in playing the announcement.

• CiscoJtapiException.CTIERR_PLAY_ANNOUNCEMENT_FAILED: This error code indicates that
play announcement failed.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
70

Features Supported by Cisco Unified JTAPI
Play Announcement

Interface Changes

• CiscoAddress, on page 287
• CiscoAnnouncementStartedEv, on page 326
• CiscoAnnouncementEndedEv, on page 326
• CiscoAnnouncementErrorEv, on page 327
• CiscoFeatureReason, on page 406

Message Sequences

See Play Announcement, on page 1354.

Backward Compatibility

This feature is backward compatible and existing applications are not affected by its introduction.

Verify Remote Destination Support
In Cisco Unified Communications Manager 10.0(1), the existing
CiscoRemoteTerminal.addRemoteDestionation(), CiscoRemoteTerminal.updateRemoteDestination(), and
CiscoRemoteTerminal.updateRemoteDestinationNumber() APIs are enhanced to allow validation of the
remote destination. As part of this feature, when an application attempts to add or update a remote destination
using JTAPI API, Cisco JTAPI validates the remote destination to determine whether the destination is
reachable. If the destination is not reachable, the add or update remote destination request returns an error of
CiscoJtapiException.CTIERR_EXTEND_AND_CONNECT_DESTINATION_NOT_REACHABLE. The
remote destination is then not updated in the database. A sucessful update is possible only if the remote
destination is reachable, and the database is then updated with the remote destination number. The verification
of the remote destination in the update applies only when the JTAPI API is invoked. Adding or updating the
remote destination information through the ccmadmin page does not result in the verification of the remote
destination. No new APIs are added as part of this feature. A new error is introduced.

Interface Changes

CiscoJtapiException, on page 414

Message Sequences

Verify Remote Destination Support, on page 1450

Backward Compatibility

This feature is backward compatible and existing applications are not affected by this enhancement.

NuRD (Number Matching for Remote Destination) Support
Starting in Cisco Unified CommunicationsManager 10.0(1), the existing “Cisco Extend and Connect” feature
is enhanced to include number matching for remote destination support. When users make a direct call to a
number that is configured as a remote destination for CTI Remote Device (CTI RD), and if that remote
destination is active, the call is offered on the CTI Remote Device and extended to the remote destination.
From the application, the current called party is the CTI RD. If the active remote destination is not set, when
users call a remote destination number, the call will be a direct call between the caller and the remote destination.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
71

Features Supported by Cisco Unified JTAPI
Verify Remote Destination Support

The same situation applies to a call from a remote destination to an enterprise dial number. If the remote
destination is active, the CTI RD is initiating the call to the enterprise dial number. If the active remote
destination is not set, calls from a remote destination to an enterprise dial number are direct calls between the
remote destination and the enterprise dial number.

For those calls from and to a remote destination number, all existing features that are allowed on CTI RD are
available.

Interface Changes

There are no interface changes for this feature.

Usage Cases

Use Cases for NuRD (Number Matching for Remote Destination), on page 1305

Backward Compatibility

This feature may change existing expected behavior in direct calls to and from remote destination numbers.
Applications that do not leverage this NuRD feature keep the clusterwide service parameter “Reroute Remote
Destination Calls to Enterprise Number” set to False. Enabling the parameter enables the NuRD features. This
parameter is set to False by default.

Mobility Interaction Support
Starting in Cisco Unified CommunicationsManager 10.0(1), the existing “Cisco Extend and Connect” feature
is extended to include mobility interaction. Users can now specify remote destinations that are shared between
the CTI Remote Device (CTI RD) and the Remote Destination Profile (RDP). When both the CTI RD and
the RDP are configured for the same user, and if the application is active (active rd is set), CTI RDwill process
the call first and then offer the call to the RDP. If the application is not active, the RDP processes the call first
and does not offer the call to the CTI RD. When only CTI RD is configured for a user, the existing "Cisco
Extend and Connect" feature behavior with remote destinations remains unchanged. When only RDP is
configured for a user, there is no application support because the devices are not CTI controllable.

Interface Changes

There are no interface changes for this feature.

Usage Cases

Mobility Interaction Support, on page 1263

Backward Compatibility

This feature is backward compatible and existing applications are not affected by the enhancement.

CTI RD Call Forward
Beginning in Release 10.0(1), CTI RD Call Forward provides applications with the ability to control when
incoming calls are forwarded to all configured Remote Destinations on the CTI Remote Device, when no
active remote destination is set.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
72

Features Supported by Cisco Unified JTAPI
Mobility Interaction Support

A new check box Route calls to all remote destinations when client is not connected, is added to the Cisco
Unified Communications Manager device page. The check box determines whether calls are routed to all
remote destinations when active remote destination is not set.

When the check box, Route calls to all remote destinations when client is not connected is enabled, and
Active Remote Destination is not set, the call is routed to all remote destinations. If this check box is disabled,
and Active Remote Destination is not set, the call will be disconnected with User_Busy error.

In scenarios where Active Remote Destination is set, the call will be always routed to the Active Remote
Destination even if the check box Route calls to all remote destinations when client is not connected is
selected.

Interface Changes

There are no interface changes for this feature.

Use Cases

CTI RD Call Forward, on page 874

Backward Compatibility

Applications should enable the check boxRoute calls to all remote destinations when client is not connected
to maintain the old behavior.

CTI Video Support
The CTI Video Support feature allows the JTAPI Application to detect the multimedia capabilities of Line
Devices; such as receiving video, sending video and both receiving and sending video. Cisco JTAPI provides
the applications with the ability to expose the video capabilities of a terminal through the enhancement CTI
Video Support. CTI applications can differentiate a video-enabled device from a non video-enabled device,
and, a video call from an audio only call.

Cisco JTAPI provides a new API, getCiscoMultiMediaCapabilityInfo() on the CiscoTerminal to expose the
multimedia capabilities of the device. Cisco JTAPI exposes the multimedia capabilities of the terminal after
the device is in registered state. The multimedia capabilities of the terminal include:

• video capability (either none or video enabled),

• telepresence interoperability (either none or telepresence interoperability enabled on the device), and,

• screen count (to know the number of screens available on device).

The multimedia capabilities are exposed on a new interface CiscoMultiMediaCapabilityInfo, which has the
following APIs to expose these capabilities.

• getVideoCapability(),

• getTelepresenceInfo(), and,

• getScreenCount().

The following APIs on the CiscoCall are used by the application to determine the calling party or called party
multimedia capability prior to media setup.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
73

Features Supported by Cisco Unified JTAPI
CTI Video Support

• getCallingTerminalMultiMediaCapabilityInfo()—of the calling party in a call

• getCalledTerminalMultiMediaCapabilityInfo()—of the called party in a call

When the video capability of the terminal changes, a new Cisco JTAPI event,
CiscoProvTerminalMultiMediaCapabilityChangedEv, notifies the application. This event is a JTAPI provider
event, and is delivered when the application adds a Provider Observer. The terminal must be in registered
state, to receive this event. Plugging in or plugging out the Cisco camera will not affect the video capability
status, therefore, the event will not be triggered. However, you can modify the video capability using the
Cisco UCM Administration Interface > Device Configuration page.

The initial video capability API on CiscoTerminal is not supported for CTI Route Points and CTI Ports;
however, they can receive the video information of the calling party.

Note

The following devices supports the CTI Video feature:

• 89xx (SIP only)

• 99xx

• E20

• EX60/90

• CTS 500

• CTS 500-32

• Jabber(CSF)

• CTI RoutePoint

• CTI Port

Interface Changes

See the following sections for interface changes:

• CiscoCall, on page 330

• CiscoMultiMediaCapabilityInfo, on page 466

• CiscoProvTerminalMultiMediaCapabilityChangedEv, on page 487

• CiscoTerminal, on page 615

Message Sequences

See CTI Video Support, on page 883.

Backward Compatibility

This feature is backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
74

Features Supported by Cisco Unified JTAPI
CTI Video Support

Default CTI IP Addressing for Devices
A new CTIManager service parameter, IP Addressing Mode for Devices, has been added that allows you
to configure the default CTI IP addressingmode for a device that does not have an associated CommonDevice
Configuration.

When an application invokes the CiscoTerminal.getIPAddressingMode() method for a device that does not
have a Common Device Configuration, JTAPI returns the value of the service parameter. The default setting
for the new service parameter is IPv4 and IPv6. JTAPI communicates the value via
CiscoTerminal.IP_ADDRESSING_MODE_IPV4_V6.

For an individual CTI device, if that device has an associated CommonDevice Configuration, the IP Addressing
Mode setting in the Common Device Configuration overrides the value of the IP Addressing Mode for
Devices service parameter.

Note

DeleteCall
DeleteCall interface provides applications with the ability to delete a call that was created by using the
createCall interface. This method accepts a call and throws an InvalidStateException if a provider is not in
service or if the call is not in the IDLE state. DeleteCall moves the call to the INVALID state.

The following interface gets added to CiscoProvider:

{ public void deleteCall(Call call) throws InvalidStateException;
}

Applications can use this interface to delete the call that was created by using createCall interface. This method
accepts a call and throws an InvalidStateException if the provider is not in service or if the call is not in the
IDLE state. DeleteCall moves the call to the INVALID state.

To successfully delete a call, the application creates the call by using createCall, and the call should be in the
IDLE state.

Device Recovery
Cisco Unified JTAPI supports automatic device recovery.

Device Recovery for Phones
For devices such as the Cisco Unified IPPhone 7960, the re-homing feature represents part of the device
firmware. On a primary Cisco Unified Communications Manager failure, the phone attempts to connect to
the backup Cisco Unified Communications Manager when it is no longer on a call. This transition gets
communicated to applications in the form of out-of-service and in-service events described in CTIManager
Failure, on page 151.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
75

Features Supported by Cisco Unified JTAPI
Default CTI IP Addressing for Devices

For virtual devices with no firmware such as CTI Ports and CTI RoutePoints, the CTIManager or Cisco
Unified JTAPI performs the failover.

Device State Server
The Device State server provides the cumulative state of all the addresses on a terminal. These events are
delivered as TerminalEvent. Applications need to add TerminalObserver to get these events.

The states follow:

• IDLE—If no calls exist on any of the addresses on the terminal, consider the DeviceState as IDLE, and
Cisco Unified JTAPI sends CiscoTermDeviceStateIdleEv to applications.

• ACTIVE—If any addresses on the terminal have an outgoing call (in CTI State Dialtone, Dialing,
Proceeding, Ringback, or Connected) or an incoming call (in CTI State Connected), the consider
DeviceState as ACTIVE, and Cisco Unified JTAPI sends CiscoTermDeviceStateActiveEv to the
application.

• ALERTING—If address on the terminal has an outgoing call (in CTI State Dialtone, Dialing, Proceeding,
Ringback, or Connected) or an incoming call (in CTI State Connected) and at least one of the addresses
on the terminal has an unanswered incoming call (in CTI State Offering, Accepted, or Tinging), the
DeviceState is ALERTING, and Cisco Unified JTAPI sends CiscoTermDeviceStateAlertingEv to the
application.

• HELD—If all the calls on any of the address on the terminal are held (in CTI State OnHold), the
DeviceState is HELD and Cisco Unified JTAPI sends CiscoTermDeviceStateHeldEv to the application.

New Events

• CiscoTermDeviceDeviceStateIdleEv

• CiscoTermDeviceStateActiveEv

• CiscoTermDeviceStateAlertingEv

• CiscoTermDeviceStateHeldEv

New and Changed Interfaces

public int getDeviceState() returns the device state of the terminal.

The following new interfaces on CiscoTermEvFilter set and get the device state:

setDevideStateActiveEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceStateActiveEv filter.The default value is
disable.

void

setDeviceStateAlertingEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceAlertingEv filter.Thedefault value is disable.

void

setDeviceStateHeldEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceHeldEv filter.Thedefault value is disable.

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
76

Features Supported by Cisco Unified JTAPI
Device State Server

setDeviceStateIdleEvFilter(boolean filterValue)

Enables and disables the CiscoTermDeviceIdleEv filter. Thedefault value is disable.

void

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateActiveEv filter status.

boolean

getDeviceStateAlertingEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

getDeviceStateActiveEvFilter()

Gets the CiscoTermDeviceStateAlertingEv filter status.

boolean

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247

Direct Transfer Across Lines
The Direct Transfer Across Lines feature allows support for connected transfer across lines. It allows two
calls on different addresses of the same terminal to be transferred though the Transfer softkey on the phone
or by using the transfer() API that is provided by Cisco Unified JTAPI. When a transfer is performed across
lines, the JTAPI application behavior changes, as applications do not see a common controller address in final
and consult calls. There is no change in the API and the same events are delivered whether calls are transferred
on the same address (regular transfer) or across addresses (direct transfer across lines). This feature is supported
on all supported phones, including CTI port, SCCP devices and SIP devices.

If an observer is not added to either of the two addresses from which the direct transfer is being attempted
from the JTAPI API, then Cisco Unified JTAPI throws PlatformException with this error: Transfer controller
is not set and could not find a suitable TerminalConnection.

Usage Guidelines
The points below indicate how applications must use the Direct Transfer Across Lines feature:

• Applications must add Call Observer on the both the lines across which they try a direct transfer.

• Earlier, applications were recommended to check if both the calls have a common address and if that
address is on the same Terminal. For Direct Transaction Across Lines, it is not required to check this, if
the address is common between two calls across which direct transaction is invoked. It must be ensured
that both the calls should each have an address which exists in a common terminal.

• Cisco Unified JTAPI reports the same set of events, as it does currently, for transferring of a call on same
address. Applications are not required do anything with these calls after invoking Transfer() until receiving
CiscoTransferEndEv.

• As transfer is done across addresses, applications do not get a common controller in CiscoTransferStartEv
and should upgrade the application logic.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
77

Features Supported by Cisco Unified JTAPI
Direct Transfer Across Lines

Event Flow Comparison and Sample Code
The following table provides details of the event flow.

Table 2: Event Flow Comparison and Sample Code for Transfer Invocation

Transfer Across LinesTransfer on Same Lines

Setup

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Feature Invocation

A calls B1 [GC1 = GolbalCallID1]

GC1: Connection A->Conn1

GC1: Connection B1->Conn2

B2 calls C [GC2 = GolbalCallID2]

GG2: Connection B2->Conn3

GC2: Connection C->Conn4

GC1.transfer(GC2);

A calls B1 [GC1 = GolbalCallID1]

GC1: Connection A1-> Conn1

GC1: Connection B1->Conn2

B1 calls C [GC2 = GolbalCallID2]

GG2: Connection B1-> Conn3

GC2: Connection C->Conn4

GC1.transfer(GC2);

Events Delivered to Application (assuming all parties are observed)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
78

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Transfer Across LinesTransfer on Same Lines

GC1:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Address B1)

CiscoTransferEndEv

GC2:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B2)

CallCtlTermConnDroppedEv for T2(Addresss B2)

ConnDisconnectedEv for B2

CallCtlConnDisconnectedEv for B2

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoTransferEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B2 on
Terminal T2

Note

GC1:

CiscoTransferStartEv

[getTransferControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Address B1)

CiscoTransferEndEv

GC2:

CiscoTransferStartEv

[getTransfeControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Addresss B1)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoTransferEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B1 on
Terminal T2

Note

In connected Transfer Across Lines scenario, apart from events mentioned, applications can see another
temporary call GC3 going active(CallActiveEv) and GC3 goes idle (CallInvalidEv) immediately after the
transfer is completed

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
79

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Transfer on Same Lines Sample Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoTransferStartEv)
{
CiscoTransferStartEv ev =
(CiscoTransferStartEv)event;

processTransfer(ev);
}

}
processTransfer(CiscoTransferStartEv ev){
CiscoAddress commonAddr =
ev.getTransferControllerAddress();

CiscoCall GC2 = ev.getTransferringCall();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection droppedConn1 =
findConnection(GC1, controllerAddr);

CiscoConnection droppedConn2 =
findConnection(GC2, controllerAddr);

//Additional App logic to clear connections.
}
Connection findConnection(CiscoCall GCx, CiscoAddress addr){
CiscoConnection[] conns = GCx.getConnections();
for (i = 0; i<conns.length; i++)
{
if conns[i]
.getAddress().equals(addr) {
return conns[i];

}
}

}

Application logic is based on common transferControllerAddress and works fine in this case, because
commonAddr is there in both final and consult call

Note

Transfer Across Lines Sample Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoTransferStartEv)
{
CiscoTransferStartEv ev =
(CiscoTransferStartEv)event;

processTransfer(ev);
}

}
processTransfer(CiscoTransferStartEv ev){
String termName = ev.getControllerTerminalName();

CiscoCall GC2 = ev.getTransferringCall();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection droppedConn1 = findConnection(GC1, termName);

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
80

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

CiscoConnection droppedConn2 = findConnection(GC2, termName);
//Additional App logic to clear connections.

}
Connection findConnection(CiscoCall GCx, String termName){
CiscoConnection[] conns = GCx.getConnections();
for (i = 0; i<conns.length; i++)
{
CiscoTerminalConnection[] termConns =
conns[i].getTerminalConnections();

for(j = 0; j<termConns.length; j++)
{
if(termConns[j].getTerminal().getName.equals(termName)

&& termConns[i].getState() ! =
TerminalConnection.PASSIVE)

{
return termConns[i].getConnection();

}
}

}
}

There is no common address for controllers in final and consult call, but the controller TerminalName is same
for both the controller Addreses. So, application should rely on CommonTerminalName to find out the
connections, terminal connections and controllers.

Note

Interface Changes

See CiscoTransferStartEv, on page 663

Message Sequences

See Direct Transfer Across Lines Use Cases, on page 1155

Backward Compatibility

This feature is backward compatible. To provide backward compatibility for applications, a new permission
to devices that allow connected transfer across lines has been added, along with a new standard role and a
standard user group for this permission. Applications can control these devices only if this new role Standard
Supports Connected Xfer/Conf is associated to the application user. Applications will be able to control these
devices only if this new role "Standard CTI Allow Control of Phones supporting Connected Xfer/Conf" is
associated to the application user. So, by default these devices are listed as restricted, assuming that the
application uses JTAPI 7.1.2 or higher and only if application upgrades to handle this feature and associates
the new permission can it control these devices. If the application uses an older JTAPI client the devices are
not restricted but if the application tries to observe these devices (which supports this feature to be invoked
manually), JTAPI throws an exception and marks these devices as restricted from there on.

However, the application can invoke DirectTransfer Across Lines from existing JTAPI transfer() API on any
type of phone and there is no restriction on this behavior as applications are expected to issue this request
only if they support this feature. Also, a FarEnd point performing a Direct/Connected Transfer Across Lines
is uncontrolled and can cause problems to applications. This means that JTAPI always reports events for
Direct Transfer Across Lines for all the phones.

Be aware that any old JTAPI application will not have any BWC issues if it is run in an environment where
Direct Transfer Across Lines is not invoked (either on phones or through JTAPI API). However, applications
changes are required if this this feature is used in such a setup.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
81

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Cisco assumes that two or more applications do not control or observe the same terminal or address
simultaneously. If they do, all instances of this application make changes to support this feature or coordinate
to avoid any problem. Otherwise, application behavior may be unforeseen. For example, if App1 and App2
are two applications controlling or observing the same terminal or address and App1makes changes to support
this feature then App2 is also expected make changes to support the feature. Else, invocation of this feature
by App1 on common devices can break App2.

As, the feature is designed to provide an enhanced user experience, Cisco strongly recommends that all Cisco
Unified JTAPI applications should evaluate and support this feature and upgrade if necessary with the code
logic to handle both the old and new behavior.

Directed Call Park
This feature allows the user to park a call by transferring the call to a user-selected park code.

Examples

A calls B; B transfers the call to a parked DN. On completion of the transfer, the A to B call is parked at the
specified parked DN. A will receive MOH (if configured). When C unparks the call (by dialing the prefix
code and park code), A and C connect.

If A calls the parked DN directly, A connects to the parked DN, and the systemmarks this parked DN as busy.
A stays connected to this parked DN until park reversion.

If C does not unpark the call at the parked DN, the call park reverses to the DN that parked the call (B), and
A and B connect again. B can again try to d-Park to another parked DN. When park reversion occurs, Cisco
Unified Communications Manager JTAPI passes a new reason code to the application.

CTI sends the parked number to Cisco Unified Communications Manager JTAPI in the form “Park Number:
(<Prefix Code>)<DPark DN>”. Cisco Unified Communications Manager JTAPI parses this and exposes both
Prefix Code and DPark DN to applications.

When a call is unparked, the parked party and unparking party both receive a CPIC event with the reason
given by CTI, and the parked party connects to the unparking party.

When party A calls a dPark DN and party B also calls the same dPark DN, the system can connect either A
or B to the dPark DN, and the other party is disconnected.

Cisco Unified Communications Manager JTAPI Support

Cisco Unified Communications Manager JTAPI supports this feature. When the system transfers a call to a
directed call park DN (dparked), the application sees a connection created for directed call park DN, and the
call control connection state is CallControlConnection.QUEUED. The system delivers CiscoTransferstart and
end events. An application can use the new interface on CiscoConnection to get the prefix code needed to
unpark the call.

Performance and Scalability

This feature provides the same performance impact as the existing transfer feature.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
82

Features Supported by Cisco Unified JTAPI
Directed Call Park

Directory Change Notification
Applications require notification asynchronously of device additions or deletions from the user control list
and device deletions from the Cisco Unified Communications Manager database. Applications also receive
notification about line changes to a device. This notification gets sent to Cisco Unified JTAPI and propagates
to applications with CiscoAddrCreatedEv, CiscoAddrRemovedEv, CiscoTermCreatedEv, and
CiscoTermRemovedEv on the AddressObserver and TerminalObservers, respectively.

Ensure that the device is registered for CTIPorts and CTIRoutePoints to receive the line change notification.Note

Do Not Disturb
Do-Not-Disturb (DND) gives phone users the ability to go into the DND state on the phone when they are
away from their phones or do not want to answer the incoming calls. The DND softkey enables and disables
this feature.

From the user windows, users can configure the following settings for DND:

• DND Option-Ringer off

• DND Incoming Call Alert-beep only/flash only/disable

• DND Timer-value between 0-120 minutes. It specifies a “period in minutes to remind the user that DND
is active”.

• DND status-on/off

The Application can only enable or disable the DND status.Note

• The Application can set the DND status by invoking a new interface on CiscoTerminal.

• JTAPI will also query the application about any change in the DND status when DND status is set by
phone, Cisco Unified Communications Manager Administration, or application.

• The application must enable the filter in CiscoTermEvFilter to receive the preceding notification.

• The application can also query for the DND status through a new interface on CiscoTerminal.

• The application can also query for the DND option through a new interface on CiscoTerminal.

This feature applies to phones and CTI ports. It does not apply to Route points.Note

In the case of emergency calls (made by a CER application) landing on an application that has DND enabled,
the system overrides the DND settings and presents the call to the application. A new parameter, FeaturePriority,
in the redirect() and selectRoute() APIs on CiscoCall, CiscoConnection, and CiscoRouteSession, respectively,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
83

Features Supported by Cisco Unified JTAPI
Directory Change Notification

makes this possible. The CER application that initiates the emergency call sets FeaturePriority as
FeaturePriority_Emergency. The application sets the feature priority only for emergency calls. In the case of
normal calls, applications either do not set the feature priority at all or set it to FeaturePriority_Normal.
Applications do not set FeaturePriority_Emergency in case of normal calls. When initiating feature calls such
as intercom, applications must specify FEATUREPRIORITY_URGENT.

The connect() API on CiscoCall does not support the FeaturePriority parameter.Note

The application receives an exception if it tries to perform a getDNDStatus(), setDNDStatus(), or
getDNDOption() before the device is in service.

A Post condition is added to DND to handle a DB update failure or device out-of-service situations if they
occur after the setDNDStatus() request is sent. If a DB update failure or device out-of-service condition occurs
after the setDNDStatus() request is sent, setDNDStatus() delivers a CiscoTermDNDStatusChangedEv to the
application. If this event is not received, a post-condition time-out occurs, and the following exception is
thrown: could not meet post conditions of setDNDStatus().

Backward Compatibility

This feature is backward compatible. Applications recognize new events if this feature is configured. You
can filter the new events through the TerminalEventFilter interface (CiscoTermEvFilter). By default, this
filter is disabled and the system does not deliver the new events.

For additional information, see the following topics:

• CiscoTerminal, on page 615

• CiscoTermDNDStatusChangedEv, on page 608

• CiscoTermEvFilter, on page 612

• CiscoCall, on page 330

• CiscoConnection, on page 384

• CiscoRouteSession, on page 521

• CiscoTermInServiceEv, on page 642

Do Not Disturb-Reject
Do Not Disturb–Reject (DND–R) is an enhancement to the existing DND feature. Cisco Unified
Communications Manager and JTAPI previously supported only the Ringer off DND. The user can reject
calls with DND–Reject. You can set DND–R from the phone configuration window or the phone profile
configuration window in Cisco Unified Communications Manager Administration.

When DND–R is enabled, the call is not presented to the terminal that has Call Reject enabled. There is no
audible or visual indication of incoming calls on that end point. To enable DND–R, set the DND Status as
true and the DND option to Call Reject.

FeaturePriority overrides DND. It can have any of the following values:

• 1: Normal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
84

Features Supported by Cisco Unified JTAPI
Do Not Disturb-Reject

• 2: Urgent

• 3: Emergency

This release introduces FeaturePriority in connect() API on CiscoCall. FeaturePriority in selectRoute() and
redirect() API is already supported in prior releases. When feature priority as EMERGENCY is specified in
connect() API, and the destination terminal has DND–R enabled, the call still rings at the destination terminal
and overrides the DND–R settings.

When a terminal has DND–R enabled and receives an intercom call, DND–R settings are overridden and call
presents. This is because feature priority is always 2 (URGENT) for intercom calls.

In non- shared line scenario where A calls B and Terminal B has DND–R enabled, CallCtlConnFailedEv with
cause USER_BUSY is delivered on A. Users would see the same behavior if DND–R is enabled on all the
terminals that have shared DNs.

In the case of shared lines when at least one of the terminal does not have DND–R enabled and a call is placed
to the shared line, Cisco Unified JTAPI delivers TermConnPassiveEv and CallCtlTermConnInUseEv for the
terminals that have DND–R enabled (assuming the call was made with NORMAL feature priority).
TermConnPassiveEv and CallCtlTermConnBridgedEv is delivered if DND–R is disabled on the terminal
during a call.

A new event CiscoTermDNDOptionChangedEv will be sent to the terminal observer whenever the DND
option changes on the phone window or Common Phone Profile window in Cisco Unified Communications
Manager Administration.

Default DND option is Ringer–off and Route points do not support DND.

Interface Changes

CiscoTermDNDStatusChangedEv, on page 608; CiscoCall, on page 330; CiscoTermEvFilter, on page 612

Message Sequences

DND-R, on page 897

Backward Compatibility

This feature is backward compatible. Application will receive new events if this feature is configured. The
new events are filtered through TerminalEventFilter interface (CiscoTermEvFilter). By default filter is disabled
and the new events are not delivered.

Drop Any Party
This feature provides the capability to drop any participants from a conference call. Cisco Unified JTAPI
allows applications to drop participants from conference using the existing interface Connection.disconnect()
even if the application is not observing the address for the connection. Previously, applications could only
disconnect connections for which Address is an observed Address.

Feature behavior varies based on the settings for the Cisco Unified CommunicationsManager service parameter
Advanced Ad Hoc Conference Enabled. If this service parameter is set to False, applications can drop
connections for an unobserved address in a conference call only if the application observes the conference
controller's address. If this parameter is set to True, applications can drop connections without any restriction.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
85

Features Supported by Cisco Unified JTAPI
Drop Any Party

Cisco Unified JTAPI provides an interface on CiscoConnection to get an array of CiscoPartyInfo objects for
the connection. CiscoPartyInfo is used to disconnect participants from a conference using a new interface,
disconnect(), provided on CiscoConnection. A normal line has only one CiscoPartyInfo on its connection,
but a shared line has one CiscoPartyInfo for each line in the shared line. This enables applications to selectively
disconnect a shared line participant if more than one shared line participants are in the conference call. Since
shared line participants have only one connection, if the application uses the existing Connection.disconnect()
API, it drops all the shared line participants.

Cisco Unified JTAPI provides an interface setDropAnyPartyEnabled() on CiscoJtapiProperties to enable or
disable this feature and by default, it is enabled. Alternatively, applications can have the JTAPI ini parameter
dropAnyPartyEnabled = 0 in jtapi.ini file to disable Drop Any Party feature and dropAnyPartyEnable = 1 to
enable this feature. If dropAnyPartyEnable parameter is not present in jtapi.ini file, the feature is enabled by
default.

Cisco Unified JTAPI also provides an interface, isConferenceCall(), on CiscoCall to determine if a call is a
conference call. This simple method returns a Boolean.

Interface Changes

See CiscoCall, on page 330 and CiscoConnection, on page 384

Message Sequences

See Drop Any Party Use Cases, on page 1182

Backward Compatibility

This feature is backward compatible.

Dynamic CTI Port Registration
This feature lets applications provide an IP address (ipAddress) and port number (portNumber) for each call
or whenever media is established. To use this feature, applicationsmust register the media terminal by supplying
media capabilities. When a call is answered at this media terminal, CiscoMediaOpenLogicalChannelEv is
sent to applications. This event gets sent whenever media is established. Applications must react to this event
and specify the IP address and port number where media gets established.

A CiscoMediaTerminal represents a special kind of CiscoTerminal that allows applications to terminate RTP
media streams. Unlike a CiscoTerminal, a CiscoMediaTerminal does not represent a physical telephony
endpoint, which is observable and controllable in a third-party manner. Instead, a CiscoMediaTerminal
represents a logical telephony endpoint, which may be associated with any application that terminates media.
Such applications include voice messaging systems, interactive voice response (IVR), and softphones.

Only CTIPorts appear as CiscoMediaTerminals through Cisco Unified JTAPI.Note

Terminating media comprises a two-step process. To terminate media for a particular terminal, an application
adds an observer that implements the CiscoTerminalObserver interface by using the Terminal.addObserver
method. Finally, the application registers its IP address and port number to which the terminal incoming RTP
streams get directed by using the CiscoMediaTerminal.register method.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
86

Features Supported by Cisco Unified JTAPI
Dynamic CTI Port Registration

To register the ipAddress and portNumber dynamically on a per-call basis, applications must register by only
providing capabilities that they support. Applications must react to CiscoMediaOpenLogicalChannelEv that
gets sent whenever media is established. If any features are performed before applications react to
CiscoMediaOpenLogicalChannelEv, the features may fail.

If the applications do not respond to this event during the time that is specified in the Media Exchange Timer
in the Cisco Unified Communications Manager Administration windows, the call may fail.

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for Dynamic CTIPort Registration Per Call, see Message Sequence Charts, on page 759

The ChangeRTPDefaults interface is not supported on CiscoMediaTerminal.Note

The following new or changed interfaces exist for Dynamic CTIPort Registration Per Call:

Interface CiscoMediaOpenLogicalChannelEv Extends CiscoTermEv

getpacketSize()

Returns the packet size of the far end in milliseconds.

int

getPayLoadType()

Returns the payload format of the far end, one of the following constants:

int

getCiscoRTPHandle ()

Returns the CiscoTerminalConnection object on which applications must invoke the setRTPParams
request.

CiscoRTPHandle

Interface CiscoRTPHandle

getHandle()

Returns an integer representation of this object, currently the Cisco Unified Communications
Manager CallLeg ID.

int

CiscoProvider

getCall (CiscoRTPHandle rtpHandle)

Returns the call object with the rtpHandle that is associated with a specific terminal. If no
callobserver gets added to the terminal at the time when the applications receive CiscoRTPHandle
in CallOpenLogicalChannelEv, CiscoCall may be null.

CiscoCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
87

Features Supported by Cisco Unified JTAPI
Dynamic CTI Port Registration

E911 Teleworker
The main purpose of this feature was intended to provide Location awareness for teleworkers and off premise
users so that they can make emergency calls from off premises. The API's can also be used by all applications
in a generic way as described below.

Primarily this feature adds two JTAPI API methods (selectRoute & redirect) that are overloaded to add an
additional XML parmater to the list of their exisiting parameters. Any application can use these overloaded
selectRoute() and redirect() methods to pass XML data to the call receiving side. The format of the XML data
that can be passed is seen below:

<data>
<item>

<type>contact</type>
<operation>append</operation>
<protocol>SIP</protocol>
<value>;+sip.instance = "<urn:uuid = *guid*>"</value>

</item>
</data>

When an application sends XML data using one of the above API, CTI parses the data and extracts the text
from the 'value' node in the XML and passes it on to CCM. CCM will then append this text to the outgoing
SIP Invite message 'contact:' header. Once the end points like the SIP trunk or the SIP phone receives it, they
can extract that data from the contact header and process it. Currently only SIP protocol's contact header field
data is the only one supported but this can be expanded to include others headers fields and other protocols
in future releases.

In the current release of CUCM only the following values for the XML nodes are supported: type: contact,
operation: append, protocol: SIP. The value node in the above xml format is the one that carries the required
application data to the end point.

The new parameter is a double byte array for overloaded selectRoute () Method to accommodate xml data
for each selected routes and single byte array for the redirect () method. The parameter takes either a XML
format String or a NULL value.

Interface Changes

CiscoRouteSession, on page 521, CiscoConnection, on page 384

Message Sequence

E911 Teleworker, on page 900

Backward Compatibility

This is a new feature and will be backward compatible

Enable or Disable Ringer
The CiscoAddress extension allows applications to set the status of the ringer for all lines on a device. No
events generate when the ringer setting gets changed from the administration windows or anywhere else.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
88

Features Supported by Cisco Unified JTAPI
E911 Teleworker

Encryption Enhancement
Unified Communications Manager Release 10.0(1) adds support for public key encryption which is more
secure than the former symmetric key method. All JTAPI clients must be upgraded to the latest version bundled
with Unified Communications Manager Release 10.0(1) to leverage this security enhancement. The JTAPI
client is available under the “Applications-Plugins” menu from CCMAdministration.

The service parameter “Require Public key encryption” has been added. This parameter determines the
encryption method required by Unified Communications Manager when authenticating CTI applications.
When set to True, Unified Communications Manager requires CTI applications to authenticate using public
key encryption; available in JTAPI client version 10 or later. When set to False (default), Unified
Communications Manager allows CTI applications to authenticate by using either symmetric key or public
key encryption. CTI applications must upgrade JTAPI/TSP client plugins to version 10.0(1) or later to
authenticate when using public key encryption.

Although there are no interface changes for this enhancement, Cisco recommends that applications update
CiscoJTAPI libraries to take advantage of this security enhancement.

No changes are required in the application layer. Applications need to update the Cisco JTAPI to the 10.x
version to leverage the new security enhancement.

Note

Cisco recommends that applications upgrade their Cisco JTAPI versions and set this service parameter to
true. In future releases this service parameter will be deprecated.

Note

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Encryption Enhancement, on page 901.

Backward Compatibility

To maintain backward compatibility, a new CTI Manager service parameter is introduced:

“Require Public Key Encryption.”

End to End Call Tracing
This feature enables the application to track any call uniquely. JTAPI associates a uniqueID with every
Connection object. The same ID is exposed to the application through a new API getUniqueID(Terminal
term) on the interface CiscoConnection. This uniqueID is only available for connection of observed addresses.

When a connection is created, the application can receive the uniqueID and write it in the Call Details Record.
For Shared Line scenarios, each shared line has a uniqueID, which can be retrieved by passing the corresponding

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
89

Features Supported by Cisco Unified JTAPI
Encryption Enhancement

Terminal to getUniqueID API. UniqueID may or may not be the same for different shared lines depending
on the scenario. The application can query the uniqueID corresponding to each shared line on receiving
TermConnActiveEv for that shared line Terminal.

Whenever the uniqueID changes, JTAPI delivers CiscoConnectionUniqueIDChangedEv to the call observer
of the application.

As of Release 8.0(1), there is no supporting use case where JTAPI delivers
CiscoConnectionUniqueIDChangedEv event to the application.

Note

Interface Changes

CiscoConnection, on page 384, CiscoConnectionUniqueIDChangedEv, on page 397.

Message Sequences

End to End Call Tracing, on page 902

Backward Compatibility

This feature is backward compatible.

EnergyWise Deep Sleep Mode
This feature allows the phone to participate in an EnergyWise enabled system. The phone reports its power
usage to a EnergyWise compliant switch to allow the tracking and control of power within the customer
premise. The phone provides alternate reduced power modes including an extremely low, off mode. The Cisco
Unified Communications Manager administrator configures and exclusively manages the phones power state
through vendor specific configuration on the Cisco Unified CM Admin pages.

When the phone turns off power after negotiation with an EnergyWise switch, it unregisters from Cisco
Unified CM and enters Deep Sleep/PowerSavePlus mode. Phones automatically re-register back with the
Cisco Unified CM once the Deep Sleep mode configured PowerON time is reached.

However, you can press the ‘select’ key on the Cisco Unified IP Phones Series 9900 and 6900 while in Deep
Sleep/PowerSavePlus mode to wake up the phone, these phones automatically power on and re-register back
with the Cisco Unified CM. However, for Cisco Unified IP Phones 7900 Series phones, you can neither power
on nor re-register back with the Cisco Unified CM during Deep Sleep/PowerSavePlus mode unless the
‘PowerON’ time is reached. You can configure Deep Sleep mode on the Device page of the Cisco Unified
CM. Configure Deep Sleep mode for the phones at least 10 minutes before the actual power off time to allow
the information to synchronize between the switch and the phone.

The Power off idle timer enables only in the case when there is physical interaction on the phone. For example
if there is a call on the EnergyWise configured phone during the deep sleep time and the user tries to disconnect
the call from the application, then the power off idle timer defaults to 10 minutes but if the user disconnects
the call manually from the phone, then the power off idle timer takes the value configured on the Cisco Unified
CM device page.

When a terminal unregisters from Cisco Unified CM, JTAPI exposes CiscoProvTerminalUnRegisteredEV
event to application with a new reason “CiscoProvterminal
UnRegisteredEV.ENERGYWISE_POWER_SAVE_PLUS”.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
90

Features Supported by Cisco Unified JTAPI
EnergyWise Deep Sleep Mode

JTAPI sends CiscoTermOutOfServiceEv event to the application with the cause
“CiscoOutOfServiceEv.CAUSE_ENERGYWISE_POWER_SAVE_PLUS” when a terminal goes out of
service due to Deep Sleep mode configured.

JTAPI sends CiscoAddrOutOfServiceEv event to application with a new cause
“CiscoOutOfServiceEv.CAUSE_ENERGYWISE_POWER_SAVE_PLUS” when an address goes out of
service due to Deep Sleep mode configured.

Interface Changes

public interface CiscoProvTerminalUnRegisteredEv

When a terminal unregisters from the Cisco Unified CM because of Deep Sleep mode, JTAPI sends
CiscoProvTerminalUnregisteredEv to the application with the reason
“ENERGYWISE_POWER_SAVE_PLUS”.

Field Summary

ENERGYWISE_POWER_SAVE_PLUSpublic static final int

Reason Codes

ENERGYWISE_POWER_SAVE_PLUS

Sample Code:public class MyTermObserver implements ProviderObserver {

public void providerChangedEvent (ProvEv[] evlist) {
for(int i = 0; evlist ! = null && i < evlist.length; i++){

…
…
If (evlisth[i] instanceof CiscoProvTerminalUnregisteredEv){
CiscoProvTerminalUnregisteredEv ev = (CiscoProvTerminalUnregisteredEv)evlist[i];
if(ev.getReason() = =
CiscoProvTerminalUnregisteredEv.ENERGYWISE_POWER_SAVE_MODE){
System.out.println(“Terminal Unregistered from CUCM because of deep
with the reason as ENERGYWISE_POWER_SAVE_PLUS
”);
}

public interface CiscoOutOfServiceEv

When a terminal/address unregisters from the Cisco Unified CM because of deep sleep mode, Jtapi delivers
CiscoTermOutOfServiceEv and CiscoAddrOutOfServiceEv to the application with this new cause
“CAUSE_ENERGYWISE_POWER_SAVE_PLUS”.

Field Summary

CAUSE_ENERGYWISE_POWER_SAVE_PLUSpublic static final int

Cause Code

CAUSE_ENERGYWISE_POWER_SAVE_PLUS

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
91

Features Supported by Cisco Unified JTAPI
EnergyWise Deep Sleep Mode

Message Sequences

Energywise Deep Sleep Mode, on page 921

Backwards Compatibility

This feature is backward compatible.

Extension Mobility Cross Cluster
This feature allows users to log in to an IP phone registered to a cluster with user profiles configured with
another cluster. The Extension Mobility feature allows a user to log in to an IP phone to appear as user's desk
phone temporarily, subject to the administrative policy. After logging on to an IP phone, the user can receive
incoming calls normally routed to the user's desk phone and retain the personalized configuration, such as
speed dials, services links and other user-specific properties.

Currently, Extension Mobility service is limited to a single Cisco Unified Communications Manager (Cisco
Unified Communications Manager) cluster. A user provisioned in one cluster today cannot log in to an IP
phone of another cluster with the Extension Mobility feature, even though both clusters may belong to the
same enterprise. This limitation is overcome with the introduction of this new feature, which allows the user
provisioned in one cluster to log in to an IP phone of another cluster.

With the existing behavior, when a user logs in to a terminal with a user ID that matches the user ID used by
Cisco Unified Communications Manager JTAPI application, the terminal is treated as part of the control list
and application is able to add call observer on the terminal and/or address.

As part this feature support, Extension Mobility profiles can be added to the user's control list via the Cisco
Unified Communications Manager Admin pages. When a user uses Extension Mobily to log into a device
using a profile in the control list, JTAPI delivers CiscoAddrCreatedEv and CiscoTermCreatedEv, and
application can add call observer to control the terminal or address.

JTAPI exposes getCiscoCause () API on all provider events. For provider events associated with non-Extension
Mobility login or logout scenarios, the cause delivered will be CiscoProvEv.NORMAL. For provider events
associated with Extension Mobility login or logout scenario, the cause may be any of the below depending
on the type of Extension Mobility login or logout:

CiscoProvEv.CAUSE_EM_LOGIN CiscoProvEv.CAUSE_EM_LOGOUT
CiscoProvEv.CAUSE_EM_LOGIN_PROFILE_ADD CiscoProvEv.CAUSE_EM_LOGOUT_PROFILE_REMOVE

Interface changes explain more about each of these causes.

The following is a complete set of provider events that have API getCiscoCause():

CiscoAddrActivatedEvCiscoAddrActivatedOnTerminalEv
CiscoProvFeatureEv
CiscoProvTerminalCapabilityChangedEv
CiscoAddrRestrictedEv
CiscoTermActivatedEv
CiscoTermRestrictedEv
CiscoAddrCreatedEv
CiscoTermCreatedEv
CiscoAddrRemovedEv
CiscoTermRemovedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
92

Features Supported by Cisco Unified JTAPI
Extension Mobility Cross Cluster

CiscoAddrAddedToTerminalEv
CiscoAddrRemovedFromTerminalEv.

JTAPI exposes getLoginType () on CiscoTerminal to indicate if the terminal is part of the Home or Visiting
cluster when a user does an Extension Mobility login or logout. Accordingly, return value will be
CiscoTerminal.NO_LOGIN, CiscoTerminal.NATIVE_LOGIN or CiscoTerminal.VISITOR_LOGIN.

Home Cluster is the Cisco Unified Communications Manager cluster from which the traveling EMCC user
starts. This is the user's home cluster where the user profile resides.

Visiting Cluster is the Cisco Unified CommunicationsManager cluster which the traveling EMCC user visits.
This is also the cluster that owns the phone at which the user does Extension Mobility login.

Interface Changes

CiscoProvEv, on page 479, CiscoTerminal, on page 615

Message Sequences

Extension Mobility Cross Cluster, on page 976

Backward Compatibility

This feature is backward compatible.

Extension Mobility Username Login
The Extension Mobility Login Username enables applications to get the Extension Mobility login username
from the API provided on CiscoTerminal.

Interface Changes

CiscoTerminal, on page 615

Message Sequences

Extension Mobility Login Username, on page 1124

External Call Control
External Call Control enables Cisco Unified CallManager (Cisco Unified CommunicationsManager) to route
calls based on enterprise policies and presence-based routing rules of individual users. When call intercept is
enabled, Cisco Unified Communications Manager queries the designated web services hosting the enterprise
policies or user rules and routes the calls following the routing decisions returned.

Starting from Release 8.0(1), JTAPI supports wildcard routepoins, as well as translation patterns.

Interface Changes

CiscoCall, on page 330, CiscoConnection, on page 384, CiscoAddress, on page 287

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
93

Features Supported by Cisco Unified JTAPI
Extension Mobility Username Login

Message Sequences

External Call Control, on page 927

Backward Compatibility

This feature is backward compatable. Existing applications will not be impacted by the changes for this feature.
There are, however, implications and limitations to applications regardingWildcard Routepoints as they exist
today, which are being addressed by adding a service parameter, described below. Applications that do not
use Wildcard Route Points will be completely unaffected by this development.

The first is that an application controlling wildcard routepoints used to get three JTAPI connections on a call.
One with the caller, the second with the dialed Directory Number and the third with the wildcard routepoint
that JTAPI is observing. The third connection has been removed with this feature.

The second backward compatability issue is with the various called party fields during aWildcard Routepoint
scenario. Before implementation of this feature, CiscoCall.getCalledAddress() and
CiscoCall.getCurrentCalledAddress() both returned the actual dialed Directory Number, and it was not possibl
eto retrieve the Wildcard Directory Number. After this fix, both CiscoCall.getCalledAddress() and
CiscoCall.getCurrentCalledAddress() return the Wildcard Directory Number, while
CiscoCall.getModifiedCalledAddress() returns the actual dialed Directory Number. This is a fix for an issue
that built an errorenous call model in JTAPI, but it may cause applications using this feature in this way to
break.

Both these issues have been addressed by adding a new service parameter at the CTI layer, known as Use
WildCard pattern in CTI Call Info. This service parameter is set to OFF by default and continues the existing
behavior. If an application wants to take advantage of the new information provided to it regarding Wildcard
Routepoints, the service parameter must be changed to ON. This service parameter applies only when wild
card Route Point is the called party. You must note that there are use cases for this feature that provide details
of the Wildcard Routepoint scenario with the service parameter set to both ON and OFF, but the use case
where it is set to OFF is currently not supported, shows the call flow as it exists today.

End to End Session ID for Calls
Cisco Unified Communications Manager generates a unique session identifier for each leg in a call. This
feature enables the application to track a call end to end uniquely with a Session ID.

Cisco JTAPI exposes the following new methods for applications to get unique session identifiers for each
connection in a call:

• CiscoConnection.getLocalUUID(TerminalConnection)
• CiscoConnection.getPeerUUID(TerminalConnection)

The methods accept a TerminalConnection object associated to that connection as a parameter, and return a
String representing the UUIDs of the local and peer participant in a given CiscoConnection respectively. If a
null object is passed as a parameter, the methods will return the UUID of the active TerminalConnection in
the CiscoConnection.

The SessionID is acquired by merging the localUUID and the peerUUID in the following format:
device=<localUUID>;remote=<peerUUID>;

The Session ID is generated within Cisco Unified Communication Manager for non-SIP devices. SIP devices
generate their own Session IDs and publish them in the SIP INVITEmessage to Cisco Unified Communication
Manager. This information is visible to the application through the respective interface.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
94

Features Supported by Cisco Unified JTAPI
End to End Session ID for Calls

The Local Universal Unique Identifer (localUUID) for a CiscoConnection in a CiscoCall is generated in the
peerUUID on the other side in the CiscoCall and vice versa.

This relation is assured for a basic two party call and is retained through the following features:

• Redirect

• Call Forward

• Transfer

• Hold/Resume

If the Cisco call is shared between multiple devices, the CiscoConnection.getPeerUUID(null) on the calling
side will return the UUID of any of the available terminals while the CiscoConnection on the called side is
in CiscoConnection.ALERTING state. Once the call is answered CiscoConnection.getPeerUUID(null) on the
calling side will return the uuid of the active TerminalConnection.

Interface Changes

CiscoConnection, on page 384.

Message Sequences

End to End Session ID for Calls, on page 979

Backward Compatibility

This feature is backward compatible.

FIPS Compliance
This feature allows Unified Communications Manager to operate in Federal Information Processing Standard
(FIPS) mode. FIPS specifies a minimum security level for cryptographic functions, limitations on how data
is stored, and which algorithms are allowed to be used to encrypt sensitive information. These strictly defined
requirements are important to government agencies, hospitals, and other customers who would be interested
in a higher level of security.

To enable FIPS Compliance, Unified Communications Manager applications must request this mode when
they download certificates with JTAPI and open a provider. When operating in FIPS, Unified Communications
Manager experiences minimal performance loss, but this loss should only be witnessed during the certificate
downloads and when you open a JTAPI provider. FIPS should not affect anything once the application is
running.

Starting from release 8.6(1), JTAPI can be configured as FIPS Compliant.

Important Notes

In FIPS, there are two distinct “cryptographic entities”: The JTAPI application and the CUCM server machine
(or cluster). The FIPS compliance of one does not, in any way, affect the other. Setting JTAPI to run in FIPS
compliance encrypts the client-side certificates with a FIPS-compliant algorithm, and connect using only
approved SSL/TLS algorithms. It will not make the CUCM server or cluster secure or FIPS compliant.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
95

Features Supported by Cisco Unified JTAPI
FIPS Compliance

Likewise, having the CUCMoperate in FIPSmode will not make JTAPI store certificates with FIPS-compliant
algorithms. They are distinct items, separated by a”cryptographic boundary.”

Also, even if JTAPI operates in FIPS-compliant mode, your application may not. Your applications must
handle cryptographic information and other sensitive data with special attention in order to be FIPS-compliant.

As mentioned earlier, applications that need to use FIPS compliance must not only explicitly request it, but
also download cryptographic libraries and modify their classpath variables to include them.

Until Unified Communications Manager release 12.5(1), JTAPI used RSA libraries for FIPS-compliant
operations. With release 12.5(1) and later, JTAPI on Windows uses RSA libraries, while on Linux it uses
CiscoJ libraries.

As of Unified CommunicationsManager release 14SU2, JTAPI usesBCFIPS libraries for all security-related
operations. If configured to operate in FIPs mode, JTAPI moves BCFIPS libraries to approved only mode to
enforce FIPS compliance.

The libraries are detailed below:

The RSA libraries are:

“jcmFIPS.jar” “cryptojcommon.jar”, “ cryptojce.jar” and “sslj.jar”, are FIPS-compliant libraries from RSA,
Inc.

The CiscoJ libraries are:

The CiscoJ libraries are “CiscoJCEProvider.jar”, “log4j-1.2.17.jar”, “slf4j-api-1.7.24.jar”,
“slf4j-log4j12-1.7.24.jar”, “slf4j-simple-1.7.24.jar”, “bcpkix-jdk15on-154.jar”, and “bcprov-jdk15on-154.jar”.

From release 12.5(1)SU5 on this train and up to 14SU1, “bcpkix-jdk15on.jar” and “bcprov-jdk15on.jar” are
used instead of “bcpkix-jdk15on-154.jar” and “bcprov-jdk15on-154.jar” respectively.

Note

The BCFIPS libraries are:

“bc-fips.jar”, “bcpkix-fips.jar”, “bctls-fips.jar”.

These libraries contain special implementations of several key cryptographic functions that replace the older
implementation in jtapi.jar.

In case your application contains a lib folder where third-party libraries are stored, your classpath should look
like the following.

• For the JTAPI plugin using RSA libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/jcmFIPS.jar;./libs/cryptojcommon.jar;./libs/cryptojce.jar;./libs/sslj.jar;./libs/jtapi.jar

• For the JTAPI plugin using CiscoJ libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/CiscoJCEProvider.jar;./libs/CiscoJUtils.jar;./libs/CiscoJCEJNI.so;./libs/libssl.so;

./libs/libssl.so.1.0.1;./libs/log4j-1.2.17.jar;./libs/libciscosafec.so;./libs/libciscosafec.so.4;

./libs/libciscosafec.so.4.0.1;./libs/libcrypto.so;./libs/libcrypto.so.1.0.1;

./libs/slf4j-api-1.7.24.jar;./libs/slf4j-log4j12-1.7.24.jar;./libs/slf4j-simple-1.7.24.jar;

./libs/bcpkix-jdk15on.jar;./libs/bcprov-jdk15on.jar;./libs/jtapi.jar

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
96

Features Supported by Cisco Unified JTAPI
FIPS Compliance

• For the JTAPI plugin using BCFIPS libraries (please refer above for library usage info as per the Unified
Communications Manager release):

./libs/bc-fips.jar;./libs/bcpkix-fips.jar;./libs/bctls-fips.jar;./libs/jtapi.jar

Even with the classpath set this way, the JTAPI security code works the same way it does now unless the
application specifically requests to run in FIPS mode.

To request that JTAPI run in a FIPS-compliant mode, applicationsmust use some of the newmethods introduced
as part of this feature development and specify the new “fipsCompliant” parameter as True. For more
information, see the following “Interface Changes” section.

Interface Changes

CiscoJtapiPeerImpl, on page 432, CiscoProvider, on page 490, and CiscoJtapiProperties, on page 433

Message Sequences

No impact.

Backward Compatibility

This feature is backward compatible. JTAPI, including secure providers, runs exactly as they do today, if the
application does not specify that theywish to run in FIPS-compliant mode. This choice is deliberate; applications
unaffected by FIPS compliance do not interact with FIPS compliance. No changes are required on the
applications’ part.

Applications that want to operate in a FIPS-compliant mode has to explicitly request it when downloading
certificates with JTAPI, and when opening a provider. In addition, applications are required to download
supplementary cryptographic libraries (jar files) from the CUCM server, andmodify their classpath accordingly
to include them before the jtapi.jar library.

Forced Authorization and Client Matter Codes
Forced Authorization Codes (FACs) force the user to enter a valid authorization code prior to extending calls
to specified classes of dialed numbers (DN), such as external, toll, or international calls. Authorization
information is written to the Cisco Unified Communications Manager CDR database.

ClientMatter Codes (CMCs) let the user enter a code before extending a call. Customers can use ClientMatter
Codes for assigning accounting or billing codes to calls that are placed, and Client Matter Code information
is written to the Cisco Unified Communications Manager CDR database.

Supported Interfaces
Cisco Unified JTAPI supports FAC and CMC in the following interfaces:

• Call.Connect()

• Call.Consult()

• Call.Transfer(String)

• Connection.redirect()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
97

Features Supported by Cisco Unified JTAPI
Forced Authorization and Client Matter Codes

• RouteSession.selectRoute()

Call.Connect() and Call.Consult()
When an application initiates a call with one of these interfaces to a DN that requires an FAC, CMC, or both
codes, CiscoToneChangedEv is delivered on a CallObserver that also contains which code or codes are required
for the DN. The getCiscoCause() interface returns CiscoCallEV.CAUSE_FAC_CMC for this even if it is
delivered because of FAC_CMC feature. The getTone() interface returns CiscoTone.ZIPZIP to indicate that
a ZIPZIP tone played.

Upon receiving the CiscoToneChangedEv, applications need to enter the appropriate code or codes by using
the connection.addToAddress interface with a # terminating string. Digits either can be entered one at a time
within the interdigit timer value (T302 timer) for each digit including the # terminating character, or all the
digits, including the # termination character, can be entered within the T302 timer value that is configured in
Cisco Unified Communications Manager Administration.

When FAC and CMC Are Both Required

For a DN that requires both codes, the first event is always applies for the FAC, and the second code applies
for the CMC, but the application can send both codes, separated by a pound sign (#), in the same request. The
second event remains optional, based on what the application sends in the first request.

The application can send both codes at the same time, but both codes must end with #. as shown in the following
example:

connection.addToAddress(“1234#678#”)

where 1234 represents the FAC and 678 specifies the CMC.

In this case, the application does not receive a second CiscoToneChanged.

The first CiscoToneChangesEv will have getWhichCodeRequired() =
CiscoToneChanged.FAC_CMC_REQUIRED, and getCause() = CiscoCallEv.CAUSE_FAC_CMC.

In response, one of the following cases can occur:

• The application sends FAC and CMC in the same connection.addToAddres(code1#code2#) request. In
this case, no second CiscoToneChangedEv gets sent to the application.

• The application sends only a FAC code in connection.addToAddress(code#1). In this case, the application
receives a second CiscoToneChangedEv with getWhichCodeRequired() =
CiscoToneChangedEv.CMC_REQUIRED.

• The application sends only part of the first code or the complete first code and incomplete second code
(if the code is not terminated with #, it remains is incomplete and the system waits for the T302 timer to
expire and tries to validate the code). If the code is incomplete, a second CiscoToneChangedEv tone gets
generated with getWhichCodeRequired() = CiscoToneChangedEv.CMC_REQUIRED and getCause()
= CiscoCallEv.CAUSE_FAC_CMC.

PostCondition Timer

The PostCondition timer resets each time that the connection.addToAddress interface is invoked to send code.
FAC and CMC must have the terminal # [for example, Connection.assToAddress(“1234#”), where 1234 is
the FAC]. The system waits for the T302 timer to expire, then extends the call if all codes have been entered.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
98

Features Supported by Cisco Unified JTAPI
Call.Connect() and Call.Consult()

If all codes have not been entered, the system plays reorder tone. In this case, the application could receive
PlatformException with postConditionTimeout even if the call is extended. To avoid this, the application
needs to increase the postcondition timeout by using JTAPI Preferences.

If the application uses call.connect() or call.consult() to initiate a call, but the FAC or CMC (including #) is
not entered from a Cisco Unified IP Phone within the postcondition timeout limit, the request could get a
platformException with postCondition timeout, but the call may actually get extended. To avoid this, the
application needs to increase the postcondition timeout by using JTAPI preferences.

Shared Lines

If the initiating party is a shared line, applications need to use setRequestController to set active
terminalConnection before passing additional digits by using the connection.addToAddress interface.

Invalid or Missing Codes

If a code is invalid or no code is entered before the T302 timer expires, the call gets rejected with callCtlCause
cause code as CiscoCallEv.CAUSE_FAC-CMC.

Call.transfer(String) and Connection.redirect()
Two additional string parameters (facCode, cmcCode) are added to these interfaces to support FAC and CMC.
The default value for these codes represent null values.

No CiscoToneChangedEv gets delivered for these requests for DNs that require codes. A call that is
conditionally redirected to a DN, a FAC, a CMC, or both, does not get rejected but remains connected if either
code is incorrect.

RouteSession.selectRoute()
Two additional arrays of string parameters (facCode, cmcCode) support FAC and CMC. For each routeselect
element, applications can specify the code for the DN. Applications need to specify null values for DNs that
do not require any codes. The default values for the codes are null values.

If one routeselected element does not contain the correct code, the next element in the arrays gets tried. If all
of them fail, reRouteEvent gets sent to the application.

The system does not support forwarding to a DN that requires an FAC or CMC code. The application can set
the forward number to these DNs by using the Address API, but calls forwarded to these numbers are rejected.

Note

Forwarding on No Bandwidth and Unregistered DN
This feature enhances the forwarding logic to handle the No Bandwidth & Unregistered DN cases:

• No Bandwidth: When a call cannot be delivered to a remote destination due to no bandwidth, the system
reroutes the call to the AARDestinationMask or voice mail. The user makes these configuration changes
from the directory number window of the Cisco Unified Communications Manager GUI.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
99

Features Supported by Cisco Unified JTAPI
Call.transfer(String) and Connection.redirect()

• Unregistered DN: When a call is placed to an unregistered DN, the system delivers the call to a DN that
is configured for Call Forward on No Answer (CFNA).

When a call is forwarded due to Call Forward No Bandwidth (CFNB) to another cluster destination over a
trunk/gateway that is using QSIG, call history might get lost. For example, if Phone A calls Phone B, which
is in a low bandwidth location, with CFNB set to forward calls to Phone C, which is in a different cluster, and
the QSIG protocol is used for this intercluster forwarding, then the original called party and the last redirecting
party might not get passed to the destination party.

GetCallID in RTP Events
GetCallID provides an interface on RTP events to access any call information, such as calling party or called
party, so applications can link RTP events with the calls.

The callLegID that is received in the RTP events from CTIManager gets used to determine the ICCNCall on
the client side. This call passes on to the JTAPI layer, and the CiscoCall gets determined, from which
CiscoCallID is obtained. This information gets used to construct the RTP events that are delivered to the
application.

The following interface gets added to CiscoRTPInputStoppedEv, CiscoRTPInputStartedEv,
CiscoRTPOutputStoppedEv, and CiscoRTPOutputStartedEv:

{ public CiscoCallID getCallID();

}

GetCallInfo
GetCallInfo interface on address provides applications with the ability to query CallInfo on an address. A
query returns the CiscoAddressCallInfo object, which contains information about the number of active or
held calls, maximum number of active or held calls, and the call object for current calls on the address. This
interface also specifies what calls are at a specific address at a specific time.

Use the following interface to get information about calls that are present at the terminal:

{ public CiscoAddressCallInfo getAddressCallInfo(Terminal iterminal);}

GetGlobalCallID
GetGlobalCallID provides an interface on the CiscoCallID to get the nodeID and the Global Call ID (GCID)
of the call; this exposes the GCID information that is available in the internal call object.

The following methods get added to the CiscoCallID interface:

{ /**
* returns the callmanager nodeID of the call
*/

public int getCallManagerID();

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
100

Features Supported by Cisco Unified JTAPI
GetCallID in RTP Events

/**
* returns the GlobalCallID of the call
*/

public int getGlobalCallID ();
}

}

Hairpin Support
A hairpin call happens when the call leaves one cluster to some other device across the gateway, then comes
back to a device in the same cluster. The GCID for the call coming back into the cluster would differ from
the GCID that originally initiated the call, even though both are in the same cluster. In previous releases, if
JTAPI controlled both parties, there were two connections: one for CiscoAddress.Internal and the other for
CiscoAddress.External.

JTAPI supports hairpin calls when an application monitors both ends of the hairpin call. Previously, only one
end of the hairpin call could be monitored because the address was represented only as a DN.

In the current release, if two addresses exist with the same DN but one is within the same cluster and the other
is across the gateway, JTAPI creates a separate address object for the external DN, and only one connection
is returned for an address, based on its type. This process avoids hairpin issues, as in previous releases when
the address was represented only as a DN and when an application retrieved connections for the address it
used to get two connections.

Since fixing these issues could have caused compatibility issues with previous releases, a generic solution for
these issues was developed in this release. Calls that involve an external party with the same DN as the
monitored local party are now properly supported; however, no new interface is added for this feature.

Backward Compatibility

This feature is not backward compatible.

Half-Duplex Media Support
Currently JTAPI media events CiscoRTPInputStarted, CiscoRTPOutputStarted, CiscoRTPInputStopped and
CiscoRTPOutputStopped do not indicate whether media is half duplex (receive only / transmit only) or full
duplex (both receive and transmit).

This enhancement adds the capability to provide this information in a JTAPI media event. JTAPI provides
an interface on the above media events to query whether media is half duplex or full duplex.

The half duplex media support feature does not impact JTAPI backward compatibility.

A new interface getMediaConnectionMode() is added to Cisco Unified JTAPI RTP events. This interface will
return the following values depending on the media:

• CiscoMediaConnectionMode.NONE

• CiscoMediaConnectionMode.RECEIVE_ONLY

• CiscoMediaConnectionMode.TRANSMIT_ONLY

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
101

Features Supported by Cisco Unified JTAPI
Hairpin Support

• CiscoMediConnectionMode.TRANSMIT_AND_RECEIVE.

CiscoRTPInputStarted/StoppedEv should only return RECEIVE_ONLY and TRANSMIT_AND_RECEIVE.
The interface should not return NONE or TRANSMIT_ONLY. Ifthat happens, applications should ignore
the event or log an error.

CiscoRTPOutputStarted/StoppedEv should only returnTRANSMIT_ONLYandTRANSMIT_AND_RECEIVE.
The interface should not return values NONE or RECEIVE_ONLY. Ifthat happens, applications should ignore
the event or log an error.

CiscoMediaOpenLogicalChannedEv should only returnRECEIVE_ONLYandTRANSMIT_AND_RECEIVE.
The interface should not return values NONE or TRANSMIT_ONLY. Ifthat happens, applications should
ignore the event or log an error.

public interface CiscoRTPInputStartedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPOutputStartedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPInputStoppedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

public interface CiscoRTPOutputStoppedEv

getMediaConnectionMode()

Returns CiscoMediaConnectionMode

int

Hold Reversion
The Hold Reversion feature provides applications with a notification when Cisco Unified Communications
Manager notifies an address about the presence of a held call, when the call has been ONHOLD for a certain
amount of time. Applications receive this notification as the CiscoCallCtlTermConnHeldReversionEv call
control terminal connection event on their call observers on the particular address that has put the call ONHOLD.
This notification is provided only once for the applications for the held call.

The event is sent only to the terminal connection of the terminal where the call was put on hold. If the address
represents a shared line address, other terminal connections of the shared line address will not receive the
event.

To receive this event, applications must add a call observer to the address. The cause for this event will be
CAUSE_NORMAL. If the call observer is added after the hold reversion timer has expired and the notification

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
102

Features Supported by Cisco Unified JTAPI
Hold Reversion

has already been sent to the phone, applications will receive CiscoCallCtlTermConnHeldReversionEv with
cause CAUSE_SNAPSHOT.

For more information, see CiscoCallCtlTermConnHeldReversionEv, on page 350.

Hunt List
This feature enables the JTAPI application to observe addresses and terminals that are HuntList LineGroup
members. Calls can arrive at these addresses either by another address calling it directly or through HuntPilot.
When a call is made to HuntPilot, JTAPI creates a CiscoHuntConnection to represent HuntPilot and provides
a Call Model that gives applications the information that the call is routed through HuntPilot. When a call is
routed through HuntPilot and is connected to LineGroup Member, JTAPI call has three connections, two
regular connections for calling and called addresses, and one CiscoConnection to HuntPilot through which
that call was routed.

HuntPilot is not an observable address. The address representing Hunt Pilot is created when a call is made to
a Hunt Pilot and is removed when the call is over. Applications cannot receive the Hunt Pilot address from
the provider by using the getAddress() method.

In normal Hunt List calls, there are three connections, Calling, Hunt Pilot, and Hunt Member. When a call is
made to the Hunt Pilot Directory Number, the call is offered to one of its members depending on the algorithm.
The initial state of the call is Offering at the member. If members are not observed, the connection to Hunt
Pilot goes through the normal states as CallCtrlConnection or Connection. If members are observed, connection
to member goes to Offering state and the connection to Hunt Pilot goes to Established state. Applications
must use the states of the observed party to track the state of the call.

call.getCurrentCalledParty() for a call to Hunt Pilot returns an address of type CiscoAddress.HUNT_PILOT.
If the Hunt List member is the called address and is not observed by the application, connection to the member
is created only when the call is answered.

CiscoHuntConnection extends CallControlConnection and can get into states that a call control connection
could transition to expect for the network states.

Hunt pilots are represented by CiscoAddress objects and getType () would return CiscoAddress.HUNT_PILOT.

Only addresses returned for Cisocall.getCurrentCalledAddres () and CiscoCall.getCurrentCallingAddress ()
will have CiscoAddress.HUNT_PILOT type.

When calls to hunt pilot are involved in transfer or conference operations CiscoTransferStartEv,
CiscoTransferEndEv, CiscoConferenceStartEv and CicsoConferenceEndEv are not delivered. Applications
should use CiscoCallChangedEv to identify surviving call.

If consult calls or final call have CiscoHuntConnection, the application should not expect Transfer or Conference
start and end events.

When configured in broadcast mode, all Hunt List members ring simulatenously. In JTAPI, call connections
and terminal connections for Hunt List members are created only for members observed by the application.

Applications must enable this feature using the setHuntListFeatureEnabled (boolean) on CiscoJtapiProperties.
This feature is disabled by default and applications are encouraged to adapt to the above call model and enable
the feature using setHuntListFeatureEnabled () API. Observing a hunt list member without enabling the feature
using setHuntListFeatureEnabled () is not a supported configuration and if observed, results in inconsistent
call model and events. setHuntListFeatureEnabled() is introduced to enable applications that are currently
using unsupported call scenarios with Hunt List to migrate to a supported model without breaking the existing
functionality.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
103

Features Supported by Cisco Unified JTAPI
Hunt List

Applications can also enable this feature by adding, HuntListEnabled = 1, to jtapi.ini file and restarting the
application.

Interface Changes

CiscoHuntConnection, on page 409, CiscoConnection, on page 384, CiscoAddress, on page 287,
CiscoJtapiProperties, on page 433

Message Sequences

Hunt List, on page 998

Backward Compatibility

This feature is backward compatible.

Hunt List Connected Number
In Cisco Unified CM 9.0, the support for hunt pilots is enhanced to expose the connected number as the
modifiedCalledAddress in a call involving a hunt pilot.

With this enhancement, when a user calls a hunt pilot and the call is answered by the hunt member L1,
call.getModifiedAddress() returns the address of the member L1, whereas call.getCurrentCalledAddress()
returns the address of hunt pilot. Before the call is answered, both these values will return the address of hunt
pilot.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Hunt List Connected Number, on page 1041

Backward Compatibility

This feature is backward compatible. To enable this feature, a new Hunt Pilot configuration, "Display Line
Group Member DN as Connected Party" is introduced. Application may choose to enable or disable feature
based on their requirements. By default, this feature is disabled.

Hunt Log Status
With this feature, the Cisco JTAPI interface includes the ability of a terminal to sign in and sign out of the
hunt group through CTI applications. Previously, this functionality was only available from Cisco Unified
CM Administration interface.

Once a terminal is logged into a hunt group, it is able to receive calls which are offered on the line group
where the line of terminal is associated.

Cisco Terminal is enhanced with two new methods:

• CiscoTerminal.getHuntLogStatus()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
104

Features Supported by Cisco Unified JTAPI
Hunt List Connected Number

• CiscoTerminal.setHuntLogStatus()

These two new methods are used to get and set the value of huntLogStatus and the three new constants
CiscoTerminal.DEVICE_HUNT_LOGGED_IN, CiscoTerminal. DEVICE_HUNT_LOGGED_OUT and
CiscoTerminal. DEVICE_HUNT_NOT_APPLICABLE. The value is
CiscoTerminal.DEVICE_HUNT_LOGGED_IN by default for any terminal that has the ability to log in to
the hunt group.

A new interface, CiscoTermHuntLogStatusChangedEv, is introduced for applications to be notified with the
event CiscoTermHuntLogStatusChangedEv when the value of hunt log status is changed and the filter is set.

CiscoTermEvFilter is enhanced with two new methods: CiscoTermEvFilter.
setHuntLogStatusChangedEvFilter(boolean filterValue) and
CiscoTermEvFilter.getHuntLogStatusChangedEvFilter() to set and get the value of filter, if the application
wants to be notified by the event CiscoTermHuntLogStatusChangedEv the filter should be set to true. The
value of filter is false by default.

The above methods are invoked only on devices which have observers added on it and the terminal object is
in service.

Note

Interface Changes

CiscoTermHuntLogStatusChangedEv, on page 670

CiscoTerminal, on page 615

CiscoTermEvFilter, on page 612

Message Sequences

Hunt Log Status for Phone Devices, on page 918

Backward Compatibility

This feature is backward compatible.

Intercom
The Intercom feature allows one user to call another user and have the call answered automatically with
one-way media from the caller to the called party, regardless of whether the called party is busy or idle. The
called user can press the talk back softkey (unmarked key) on their phone display, or the called user can invoke
the join() JTAPI API, that is provided on TerminalConnection, to start talking to the caller. Only a specially
configured intercom address on the phone can initiate an intercom call. Cisco Unified JTAPI creates a new
type of address object named CiscoIntercomAddress for intercom addresses that are configured on the phone.
The application can get all the CiscoIntercomAddresses that are present in the provider domain by calling the
interface getIntercomAddresses () on CiscoProvider.

An intercom call can be initiated from the Cisco Unified JTAPI interface by calling the
CiscoIntercomAddress.ConnectIntercom () interface. The application provides an intercom target DN for this
interface. If the intercom target DN is preconfigured or preset by the application, the application can get the

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
105

Features Supported by Cisco Unified JTAPI
Intercom

target DN by calling the CiscoIntercomAddress.getTargetDN() interface; otherwise, the application must
provide a valid intercom target for the call to be successful.

An intercom call is autoanswered at the intercom target; Cisco Unified JTAPI will move
TerminalConnection/CallCtlTerminalConnection at the intercom target to the Passive/Bridged state. The
application can invoke a join () interface on the TerminalConnection of the intercom target to initiate talk
back. If join () is successful, the TerminalConnection/CallCtlTerminalConnection of the intercom target will
move to an Active/Talking state. For an intercom call, Cisco Unified JTAPI only supports the following
interfaces:

• Call.drop ()

• Connection.disconnect ()

• CallCtlTerminalConnection.join ()

The application cannot perform any feature operations on an intercom call. Cisco Unified JTAPI will throw
an exception if the application invokes redirect, consult, transfer, conference, or park for a Connection on a
CiscoIntercomAddress. The application will also receive an exception if it tries to invoke setForwarding (),
getForwarding (), cancelForwarding (), unPark (), setRingerStatus (), setMessageWaiting (), getMessageWaiting
(), setAutoAcceptStatus (), or getAutoAcceptStatus () on CiscoIntercomAddress.

Applications can get the value of a configured intercom target DN and the label on a CiscoIntercomAddress
from the provided API. Cisco Unified JTAPI provides two types of APIs: one to return the default and another
to return the current value set for the intercom target. The default value is the intercom target DN and label
that are preconfigured through Cisco Unified Communications Manager Administration. The current value
is the interim target DN and label that the application sets. If the application has not set any value, the current
value remains the same as the default value. Applications can invoke the API setIntercomTarget () on
CiscoIntercomAddress to set the intercom target DN, label, and unicode label. Only one application can set
the intercom target, label, and unicode label for an intercom address. If two applications try to set the value,
the first succeeds, and the second receives an exception. When a intercom target DN and label changes, Cisco
Unified JTAPI provides a CiscoAddressIntercomInfoChangedEv to the AddressObserver that is added to
CiscoIntercomAddress. If the application has set an intercom target DN and label, and a JTAPI or CTI failover
or failback occurs, JTAPI or CTI will restore the previously set value of the intercom target DN, label, and
unicode label. If the JTAPI or CTI cannot restore the intercom target DN, label, or unicode label, Cisco Unified
JTAPI provides a CiscoAddrIntercomInfoRestorationFailedEv to the AddressObserver on
CiscoIntercomAddress. In the case of an application failure, or if for any reason the application goes down,
the target DN, label, and unicode label will reset to the default. JTAPI provides the interface resetIntercomTarget
() on the CiscoIntercomAddress to reset the intercom target.

Auto-answer always stays enabled for CiscoIntercomAddress. The application can invoke the method
getAutoAnswerEnabled () on CiscoAddress to get the auto-answer capability of an address.

For an intercom target that is connected with one-way media to the Intercom initiator, the device state would
be set to CiscoTermDeviceStateWhisper. This is a new device state for the terminal object. In this state, the
terminal can initiate a new call or receive a new incoming call. If the application enables a filter to receive
this device state, the application receives CiscoTermDeviceStateWhisperEv. The application can enable a
filter by calling setDeviceStateWhisperEvFilter() on CiscoTermEvFilter. The DeviceStates
DEVICESTATE_ACTIVE, DEVICESTATE_HELD, and DEVICESTATE_ALERTING all override
DEVICESTATE_WHISPER; if one call exists in active, held, or alerting state, and another in whisper, the
DeviceState will be DEVICESTATE_ACTIVE, DEVICESTATE_HELD, or DEVICESTATE_ALERTING,
respectively.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
106

Features Supported by Cisco Unified JTAPI
Intercom

The Cisco Unified JTAPI implements the javax.telephony.TerminalConnection interface join() to let the
intercom target talk back to the initiator. The system implements this interface for CiscoIntercomAddresses
only. If applications invoke this interface for regular shared lines in a passive or bridged state, JTAPI throws
a MethodNotImplimented exception.

Note

This feature is backward compatible if the application-controlled devices (terminals) do not have intercom
lines configured on them. Applications can disable the intercom feature by not having an intercom line
configured on the application-controlled devices (terminals).

Tip

For detailed information about these interface changes, see the following topics:

• CiscoHuntConnection, on page 409

• CiscoAddrIntercomInfoRestorationFailedEv, on page 309

• Related Documentation, on page 287

• CiscoCall, on page 330

• CiscoProvider, on page 490

• CiscoTermEvFilter, on page 612

• CiscoTerminal, on page 615

• CiscoTerminalConnection, on page 634

• CiscoTermDeviceStateWhisperEv, on page 605

Intercom Support for Extension Mobility
In Release 6.0(1) of Cisco Unified CommunicationManager, support for intercom feature was added. Intercom
feature requires destination to be auto-answered with one-way audio; therefore, no shared addresses can be
configured for intercom. When user logs in by using Extension Mobility (EM) profile, it is possible to end
up with shared address for intercom; so, currently extension mobility is not supported with intercom. Due to
the wide use of extension mobility, this CIA is addressing the need to support intercom for extension mobility
while still maintaining the single destination nonsharable nature of intercom addresses.

This feature requires intercom addresses to be configured with default terminal, and allows configuring of
intercom address on EM profile. When EM user logs in to a terminal with EM profile that is configured with
an intercom address, intercom address is available only if default terminal of intercom address is same as
terminal where user has logged in. If an intercom address is configured on terminal but default terminal for
intercom address is not that terminal, intercom address does not appear on terminal. If this terminal is configured
in the control list of Cisco Unified JTAPI application, JTAPI does not create intercom address in the provider
domain. From Cisco Unified JTAPI point of view, there is no new interface or changes to support this feature.
However, this feature introduces some transitional scenarios where intercom functionality may not work on
intercom addresses. See the use cases.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
107

Features Supported by Cisco Unified JTAPI
Intercom Support for Extension Mobility

Backward Compatibility

This feature is backward compatible.

IPv6 Support
This feature provides support for IPv6 addresses and CiscoUnified JTAPI is enhanced to support IPv6
connectivity to CTIManager. It enables Cisco Unified JTAPI applications to see the IPv6 address as the calling
party address if the IPv6 support feature is enabled and if the Calling Party is using an IPv6-enabled phone.
This feature support the following functions:

• Cisco Unified JTAPI exposes new API canSupportIPv6() on the CiscoProviderCapabilities Interface to
indicate whether Cisco Unified Communications Manager configuration is supporting IPv6.

• Cisco Unified JTAPI closes the media or route terminal if there is mismatch between what has been
previously registered and what is currently configured. CiscoTermRegistrationFailedEv and the new
reason code IP_ADDRESSING_MODE_MISMATCH are then sent as per this scenario.

• The IPAddress capability of the Terminal is exposed byAPI getIPAddressingMode() on the CiscoTerminal
Interface. The IP Address capability is available on CiscoTerminal/CiscoMediaTerminal and
CiscoRouteTerminal.

• The IPv6 calling party IP address is provided through the Cisco extensions of CallCtlConnOfferedEv
and RouteEvent in an InetAddress object as well as the IPv4 address for IPv4-enabled devices.

The RTP Address in CiscoRTPOutputStartedEv and CiscoRTPInputStartedEv also has an IPv6 address in
case the observed device is an IPv6 device. That is, the API getLocalAddress() on CiscoRTPInputProperties
and the API getRemoteAddress() on CiscoRTPOutputProperties can now return an IPv6 format IP Address.
The API returns an InetAddress object, and applications can verify that it is an instance of Inet4Address or
Inet6Address to determine if it is an IPv4 or IPv6 format IP Address.

Applications must reset the devices after their IP Addressing Mode is changed, otherwise there might be
ambiguity in the expected results.

From Release 7.1, Cisco Unified JTAPI provides getIPAddressingMode() API on CiscoTerminal. The
getIPAddressingMode() API for CTI Ports and Route Points are also supported from this release.

Cisco Unified JTAPI extends the same API on CiscoTerminal and it returns the configured IP addressing
mode of the IP phone on the Cisco Unified Communications Manager Admin pages. If the user modifies the
IP Addressing mode from the Cisco Unified Communications Manager Admin pages after the device is
registered, the device must be reset. The updated value from Cisco Unified JTAPI is exposed only after the
IP phone is reset. If the configured IP Addressing mode supports both IPv4 and IPv6 addresses, the phone
may be registered with either of these addresses or with both. This depends on conditions such as network
type and Cisco Unified Communications Manager support for IPv6. So, if the IP Addressing mode mode
supports both IPv4 and IPv6 addresses, getIPAddressingMode() on CiscoTerminal returns
CiscoTerminal.IP_ADDRESSING_MODE_IPV4_V6.

Interface Changes

See CiscoTerminal, on page 615

Message Sequences

See IPv6 Support, on page 1127 and IPv6 Support, on page 1234

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
108

Features Supported by Cisco Unified JTAPI
IPv6 Support

Backward Compatibility

This feature is backward compatible.

iSac Codec
This enhancement provides support for iSac codec and enables the application to register CiscoMediaTerminal
or CiscoRouteTerminal with iSac codec capability. For this codec, frame size and bit rate are variable and
determined dynamically. Applications do not set these values.

The bit rate and packetSize that are exposed on interface CiscoRTPInputProperties and
CiscoRTPOutputProperties will not be a constant for this codec, so application logic should not rely on these
values if codec (payloadType) is iSac.

Interface Changes

See CiscoIsacMediaCapability, on page 413

Message Sequences

iSac Codec, on page 1055

Backward Compatibility

This feature is backward compatible.

Java Socket Connect Timeout
The Java Socket Connect Timeout enhancement enables the configuration of a timeout in seconds by using
the Cisco Unified JTAPI specification and prevents connection delays to the CTIManager when the primary
CTI Manager. The default is 15 seconds.

If the default of 15 seconds is unacceptable to the application, the default JAVA API of zero (0) sets the
behavior to the normal JAVA Socket Connect API.

The values range from 5 through 180 seconds. Zero defaults to Java behavior of the socket connect without
any time-out for connection.

Interface Changes

See CiscoJtapiProperties, on page 433.

Message Sequences

See CiscoJtapiProperties, on page 1126.

Backward Compatibility

This feature is backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
109

Features Supported by Cisco Unified JTAPI
iSac Codec

Join Across Lines
In this version, this feature allows applications to conference two calls that are on different addresses of the
same terminal. It will also let applications add participants to a conference using a noncontroller. Join across
lines is not supported on CTI-supported phones that run SIP.

You can disable join across lines feature by turning off Join Across Lines Policy service parameter, while
you can disable Conference Chaining and feature to allow noncontroller adding participant to conference by
disabling the “Advanced AdHoc Conference Enabled” and “Non-linear AdHoc Conference Linking Enabled”
service parameters.

Join Across Lines is supported only on phones that run SCCP.Note

Interface Changes

There are no interface changes for this feature. Applications can use the current conference interfaces to
conference calls on different addresses on the same terminal.

Backward Compatibility

This feature is backward compatible.

Join Across Lines (Only SCCP)
The Join Across Lines feature allows support for conference across lines. It allows two or more calls on
different addresses of the same terminal to be joined though the join softkey on the phone or conference()
API that JTAPI provides. The behavior to JTAPI applications change, as applications do not perceive a
common controller in final and consult calls.

There is no change in the API and the same events are delivered whether calls are conferenced on the same
address (regular conference) or across addresses (Join across lines).When join across lines feature is performed
CiscoConferenceStartEv/EndEv will be provided to all addresses on the controller terminal that have consult
or final calls that are being joined together into one conference.

In CiscoConferenceStartEv, the conferenceControllerAddress will always be the primary controller address.
Application can now set the controller via the setConferenceController() API. If application does not specify
this, then JTAPI itself would find a suitable controller for the conference. Cisco recommends that applications
set the controller address when Join Across Lines feature is invoked.

If observer is not added on the controller address, applications may see null values for either the talking or
held terminal connection values in the CiscoConferenceStartEv. Before this release, when application tried a
conference across lines, the request failed at the JTAPI layer itself. With this release, the conference() API
implementation enhances all requests to pass through after finding suitable terminal connections of the final
and consult calls. JTAPI relies on the common terminal of the addresses involved in the call to find suitable
terminal connections. Multiple conference across address is also supported when more than two calls need to
be joined. SIP devices in 5.1.2 release do not support this feature. JTAPI throws exception
(ILLEGAL_HANDLE) if this feature is requested on a SIP device.

There are no interface changes for this feature. Behavior changes with respect to events provided to applications.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
110

Features Supported by Cisco Unified JTAPI
Join Across Lines

Backward Compatibility

This feature is backward compatible, as there are no changes in the behavior of conference when this feature
is not enabled. You can enable or disable this feature on a per-device basis. If the Join Across Lines setting
on the device is set to Default, the system-wide CallManager service parameter Join Across Lines Policy
setting is used. If this feature is enabled and application does a join across lines, there is a difference in behavior
as stated.

JTAPI applications written for Release 5.1 should be backward compatible with JTAPI that was released with
Release 5.1.2. Consider a JTAPI client upgrade only if new features are used.

Join Across Lines or Connected Conference Across Lines
User experience is enhanced in this release by introducing Cisco Unified IP Phone models that fall outside
the purview of existing Join Across Lines service parameter. For these phones this feature is always enabled,
without any service parameter to turn it off. For a detailed feature description, information about interface
changes, and use cases, see Join Across Lines with Conference Enhancements (SCCP and SIP), on page 115.

Usage Guidelines
The points below indicate how applications must use the Direct Transfer Across Lines feature:

• Applications must add Call Observer on the both the lines across which they try join across lines or
connected conference.

• Earlier, applications were recommended to check if both the calls have a common address and if that
common address is on the same Terminal. For Join Across Lines, it is not required to check if the address
is comoomon between two calls across which direct conference is invoked. It must be ensured that both
the calls should each have an address that exists in common terminal.

• Cisco Unified JTAPI reports the same set of events, as it does currently, for conferencing of calls on the
same address. Applications are not required do anything with these calls after invoking Conference()
until receiving CiscoConferenceEndEv.

• As conference is done across addresses, applications do not get a common controller in
CiscoConferenceStartEv and should upgrade the application logic. See Event Flow Comparison and
Sample Code, on page 111 for details.

Event Flow Comparison and Sample Code
The following table provides details of the event flow also sample code.

Table 3: Event Flow Comparison and Sample Code for Conference Invocation

Join Across LinesJoin on Same Lines

Setup

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Address A on Terminal T1

Address B1, B2 on Terminal T2

Address C on Terminal T3

Feature Invokation

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
111

Features Supported by Cisco Unified JTAPI
Join Across Lines or Connected Conference Across Lines

Join Across LinesJoin on Same Lines

A calls B1[GC1 = GolbalCallID1]

GC1: Connection A1 Conn1

GC1: Connection B1 Conn2

B2 calls C[G = GolbalCallID2]

GG2: Connection B2 Conn3

GC2: Connection C Conn4

GC1.conference(GC2)

A calls B1[GC1 = GolbalCallID1]

GC1: Connection A1 Conn1

GC1: Connection B1 Conn2

B1 calls C[GC2 = GolbalCallID2]

GG2: Connection B1 Conn3

GC2: Connection C Conn4

GC1.conference(GC2)

Events Delivered to Application (assuming all parties are observed)

GC1:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

CiscoConferenceEndEv

GC2:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B2)

CallCtlTermConnDroppedEv for T2(Addresss B2)

ConnDisconnectedEv for B2

CallCtlConnDisconnectedEv for B2

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoConferenceEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B2 on
Terminal T2

Note

GC1:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

ConnCreatedEv for C

ConnConnectedEv for C

CallCtlConnEstablishedEv for C

TermConnCreatedEv for T3(Address C)

CiscoConferenceEndEv

GC2:

CiscoConferenceStartEv

[getConferenceControllerAddress() returns B1]

TermConnDroppedEv for T2(Address B1)

CallCtlTermConnDroppedEv for T2(Addresss B1)

ConnDisconnectedEv for B1

CallCtlConnDisconnectedEv for B1

TermConnDroppedEv for T3(Address C)

ConnDisconnectedEv for C

CallCtlConnDisconnectedEv for C

CallCtlTermConnDroppedEv for T3(Address C)

CiscoConferenceEndEv

CallInvalidEv

CallObservationEndedEv

GC2 - Disconnect events are for Address B1 on
Terminal T2

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
112

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Join Across LinesJoin on Same Lines

There is no common address for controllers in final
and consult call, but the controller TerminalName
is same for both the controller addresses. So,
application should rely on CommonTerminalName
to find out the connections, terminal connections
and controllers.

NoteApplication logic is based on common
transferControllerAddress and works fine in this
case, because commonAddr is present in both final
and consult call

Note

In connected Conference Across Lines scenario, apart from the events mentioned, applications can see another
temporary call GC3 going active(CallActiveEv) and GC3 goes idle (CallInvalidEv) immediately after the
conference is completed.

Note

Join on Same Lines Sample Application Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoConferenceStartEv)
{
CiscoConferenceStartEv ev =
(CiscoConferenceStartEv)event;

processConference(ev);
}

}
processConference(CiscoConferenceStartEv ev){
CiscoAddress controllerAddr =
ev.getConferenceControllerAddress();

CiscoCall[] consultCalls = ev.getConferenedCalls();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection[] movedConns[] =
findConnections(consultCalls, controllerAddr);

//Additional App logic to clear connections.
}
Connection[] findConnections(CiscoCall[] calls, CiscoAddress addr){
ArrayList connList = new ArrayList();
for(x = 0; x < calls.length; x++)
{
CiscoConnection[] conns =
calls[x].getConnections();

for (i = 0; i<conns.length; i++)
{
if conns[i]
.getAddress().equals(addr) {
connList.add(conns[i]);

}
}

}
return connList.toArray(Connection[] conns);

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
113

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

Join Across Lines Sample Application Code

Handle(CiscoCallEv event)
{
…..
…..
if (event instanceOf CiscoConferenceStartEv)
{
CiscoConferenceEv ev =
(CiscoConferenceStartEv)event;

processConference(ev);
}

}
processConference(CiscoConferenceStartEv ev){
String controllerTermName =
ev.getControllerTerminalName();

CiscoCall[] consultCalls = ev.getConferenedCalls();
CiscoCall GC1 = ev.getFinalCall();
CiscoConnection[] movedConns = findConnections(consultCalls,

controllerTermName);

//Additional App logic to clear connections.
}
Connection[] findConnections(CiscoCall calls, String termName){
ArrayList connList = new ArrayList();
for(x = 0; x < calls.length; x++)
{
CiscoConnection[] conns = calls[x].getConnections();
for (i = 0; i<conns.length; i++)
{
CiscoTerminalConnection[] termConns =
conns[i].getTerminalConnections();

for(j = 0; j<termConns.length; j++)
{
if(termConns[j].getTerminal().getName.equals(termName)

&& termConns[i].getState() ! =
TerminalConnection.PASSIVE)

{
connList.add(conns[i]);

}
}

}
}
return connList.toArray(Connection[] conns);

}

Interface Changes

See CiscoConferenceStartEv, on page 380

Message Sequences

See Connected Conference or Join Across Lines Use Cases - New Phones Behavior , on page 1163

Backward Compatibility

This feature is backward compatible.

This feature cannot be turned off for certain devices and Cisco Unified JTAPI always reports events for Join
Across Lines for these phones. However, to provide backward compatibility for applications, a new permission
to allow controlling these devices and to allow connected conference across lines has been added. A new

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
114

Features Supported by Cisco Unified JTAPI
Event Flow Comparison and Sample Code

standard role Standard CTI Allow Control of Phones supporting Connected Xfer and conf and a standard user
group are also added. Applications can control these devices only if this new role is associated to the application
user, assuming that application is using JTAPI client 7.1.2 or higher. So, by default these devices are listed
as Restricted. The application must upgrade to handle this feature and associate the new permission to control
these devices. If the application uses an older JTAPI client the devices are not restricted but if the application
tries to observe these devices (which supports this feature to be invoked manually), JTAPI throws an exception
and marks these devices as restricted from there on.

Cisco assumes that two or more applications do not control or observe the same terminal or address
simultaneously. If they do, all instances of this application make changes to support this feature or coordinate
to avoid any problem. Otherwise, application behavior may be unforeseen. For example, if App1 and App2
are two applications controlling or observing the same terminal or address and App1makes changes to support
this feature then App2 is also expected make changes to support the feature. Else, invocation of this feature
by App1 on common devices can break App2.

As, the feature is designed to provide an enhanced user experience, Cisco strongly recommends that all Cisco
Unified JTAPI applications should evaluate and support this feature and upgrade if necessary with the code
logic to handle both the old and new behavior.

Join Across Lines with Conference Enhancements (SCCP and
SIP)

Join Across Lines feature supports on CTI-supported SIP phones and SCCP phones. The enhancements are:

• Applications can conference two calls in which each conference is on a different address but on the same
terminal.

• Add participants to a conference using a non-controller.

You can disable Join Across Lines by turning off the Join Across Lines Policy service parameter. Conference
Chaining and the feature that allows Non-Controller adding participant to conference can be disabled by
disabling the Advanced Ad Hoc Conference Enabled and Non-linear Ad Hoc Conference Linking Enabled
service parameters.

Note

The following behavior occurs when an application issues a conference request, but selected and active calls
are not part of the conference request. It also applies for user-selected calls that are not part of the conference
request, but become part of the resulting conference:

• The Active Call on a Terminal is always added to the resulting conference when conference is invoked
on a call on any address on that terminal. Consider that B1 and B2 addresses exist on the same terminal,
then:

• A --> B1- GC1

• C --> B1- GC2

• D --> B2- GC3 (active call)

The application invokes GC1.conference (GC2) and results in A-B1-C-D in a conference with GC1,
although the call with D was not part of the conference request.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
115

Features Supported by Cisco Unified JTAPI
Join Across Lines with Conference Enhancements (SCCP and SIP)

An active conference call on a terminal is added to the resulting conference when conference is invoked
on a call on any line on that terminal. In this case, the active conference call becomes the surviving final
call (provided the application-specified primary call is not a conference call).

In this example, the application specified primary call is cleared after the conference operation. It is
possible that the application-specified primary call may not join the resulting conference and in that case
the call is not cleared after the conference is complete.

• Consider that the B1 and B2 addresses on the same terminal and conf1 is a conference call with A-B1-C
in conference with B1 as the controller, then:

• B1 --> D – GC1 (on hold)

• conf1 – GC2 (active call)

• B2 --> E – GC3 (on hold)

Application invokes GC1.conference(GC2, GC3). This results in A-B1-C-D-E in conference with GC2
as the surviving call. Although application had specified GC1 to be the primary call, GC1 does not survive
after the conference.

The behavior also applies to regular conferencing with a common controller. Consider A, B, C, and D are
lines on different terminals, then:

• A --> B - GC1

• C --> - GC2

• D --> - GC3 (active call)

The application requests GC1.conference (GC2). This results in A-B-C-D in conference with GC1. Although
a direct call with Dwas not part of the conference request, D joins the conference.

Interface Changes

There are no interface changes. You can use the current interfaces to conference calls on different addresses
on the same terminal.

Message Sequences

Join Across Lines with Enhancements, on page 798

Backward Compatibility

This feature is backward compatible.

JRE 1.2 and JRE 1.3 Support Removal
This release of the CiscoJTAPIClient supports only JRE 1.4. There are no interface changes; however, the
JRE 1.2 and 1.3 versions are no longer supported. This change is to support QoS, which is available only in
the JDK1.4 version (and above). Inaddition, jtapi.jar contains Cisco encryption files that depend on the JRE
1.3 version (and above). This provides a stronger password encryption algorithm when it is sent over TCP to
CTIManager. As part of this feature, JTAPI invokes the API provided by IMS (Identity Management System,
a Cisco Unified Communications Manager component) to encrypt a password before sending it.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
116

Features Supported by Cisco Unified JTAPI
JRE 1.2 and JRE 1.3 Support Removal

JRE 1.4 also enables Cisco Unified JTAPI to use additional JDK 1.4 APIs. Applications that use previous
versions of JRE must install JDK 1.4 to use Cisco Unified JTAPI.

There are no interface changes to JTAPI Applications, however JTAPI.jar contains RSA jsafe.jar (3.3) and
Apache log4j-1.2.8.jar files. If Applications are using any jar files that are not compatible with these versions
of jsafe.jar (Version 3.3) and log4j-1.2.8.jar, then JTAPI or the Application may not work, depending on
which one is in the classpath first

Note

As part of this migration, JTAPIPreferences and sample applications dependency on MS-JVM was also
removed. Two new configuration parameters were provided on the Advanced tab in the JTAPI Preferences
dialog box:

• JTAPI Post Condition Timeout

• Use Progress As Disconnected

Backward compatibility

This feature is not backward compatible.

JTAPI Version Information
In order to connect to Release 5.0 of Cisco Unified Communications Manager Administration, JTAPI clients
have to upgrade to the new version of JTAPI bundled with the Cisco Unified Communications Manager
Administration Release 5.0. JTAPI version is in the form of 3.0(X.Y), where X andY depend on the sub-release.
Applications cannot connect with prior release of JTAPI.

Locale Infrastructure Development
This feature removes currently supported languages for Cisco Unified JTAPI client install. Cisco Unified
JTAPI client install is only supported in English. It also adds the capability to dynamically update the locale
in JTAPI Preference application from the Cisco Unified Communications Manager server. JTAPI Preference
application will continue to support all the languages that are supported in prior releases. Support for adding
new languages and updating locale files is also added.

Before this release, the Cisco Unified JTAPI client install and JTAPI Preferences application were localized
during builds and did not add support for new languages or update locales for existing languages. The JTAPI
client locale updates were performed in Cisco Unified Communications Manager maintenance releases. This
feature adds capability to dynamically update locale file for JTAPI Preferences application, and JTAPI Client
install is installable only in English languages.

The JTAPI Client install needs the Cisco Unified Communications Manager TFTP server IPaddress. The
TFTP IP address is used for downloading locale files for the preferences application. If the TFTP IP address
is not entered or an incorrect IP address is entered, the preference application displays only in English language.
Further on, whenever new locale updates are available, JTAPI Preferences application will notify user about
available updates and update locale files.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
117

Features Supported by Cisco Unified JTAPI
JTAPI Version Information

Interface Changes

There are no interface changes.

Message Sequences

Locale Infrastructure Development Scenarios, on page 1082

Backward Compatibility

This feature is backward compatible from the JTAPI Application perspective, but from the JTAPI Client
install perspective, currently supported languages have been removed. In this regard, it is not backward
compatible.

Logical Partitioning
This feature enables administrators to configure geographic locations and restrict calls that pass through a
PSTN gateway to be connected directly to a VoIP phone or VoIP PSTN gateway in another geographic
location. This feature allows use of single line analog phones and remains compliant with the Telecom
Regulatory Authority of India (TRAI) regulation.

This feature can be turned off by using the Logical Partitioning Enabled service parameter, which is disabled
by default.

Interface Changes

See CiscoJtapiException, on page 414

Message Sequences

See Logical Partitioning Feature Use Cases, on page 1231

Backward Compatibility

This feature is backward compatible.

Media Termination at Route Point
This feature enables multiple active calls at the route point, and applications can terminate media for all active
calls by specifying the IP address and port number for each call or whenever media is established.

To use this feature, applications must register the route point by supplying media capabilities. When a call
gets answered at this route point, CiscoMediaOpenLogicalChannelEv gets sent to the applications. This event
gets sent whenever media is established. Applications must react to this event and specify the IP address and
port number where they want to terminate media.

A CiscoRouteTerminal represents a special kind of CiscoTerminal that allows applications to terminate RTP
media streams. Unlike a CiscoTerminal, a CiscoRouteTerminal does not represent a physical telephony
endpoint, which is observable and controllable in a third-party manner. Instead, a CiscoRouteTerminal
represents a logical telephony endpoint, which may get associated with any application that intends to route
calls and also terminate media. Unlike CiscoMediaTerminal, CiscoRouteTerminal can have multiple active

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
118

Features Supported by Cisco Unified JTAPI
Logical Partitioning

calls at the same time. Typically, CiscoRouteTerminals get used to place calls in queue until an agent is
available to service the caller.

Only RoutePoint Terminals appear as CiscoRouteTerminal through JTAPI.Note

Terminating media comprises a three-step process.

1. The application registers its media capabilities with this terminal by using the CiscoRouteTerminal.register
method.

2. An application adds an observer that implements CiscoTerminalObserver interface by using the
Terminal.addObserver method.

3. The application must add addCallObserver on CiscoRouteTerminal or on CiscoRouteAddress to receive
CiscoCall object from the provider by using CiscoRTPHandle.

Applications receive CiscoMediaOpenLogicalChannelEv for each call and must supply the IP address and
port number by using the setRTPParams method on CiscoRouteTerminal.

You must modify applications that are written for the CiscoJtapiClient 1.4(x) release or earlier to register with
CiscoRouteTerminal. NO_MEDIA_TERMINATION if the applications are not interested inmedia termination.

Multiple applications can register with the same route point as long as they are registered with the same media
capabilities and registrationType. All applications, if they have registered with
CiscoRouteTerminal.DYNAMIC_MEDIA_REGISTRATION and then add a terminal observer, receive
CiscoMediaOpenLogicalChannelEv, but only one application can invoke setRTPParams.

Applications that terminate media must use the CallControl package for answering and redirecting calls.
Applications that only route calls can use a routing package.

Note

Applications should be aware that, if any features are performed before reacting to
CiscoMediaOpenLogicalChannelEv, the features may fail. If applications do not respond to these events in
the time that is specified in the Media Exchange Timeout parameter in the Cisco Unified Communications
Manager Administration windows, the call may fail.

Note

The following new or changed interfaces exists for Media Termination at Route Point:

Interface CiscoRouteTerminal Extends CiscoTerminal

isRegistered()

If the CiscoMediaTerminal gets registered, this method returns true. Otherwise, it
specifies false.

boolean

isRegisteredByThisApp()

If the application issues a successful registration request, this method returns true and
remains true until the application unregisters the device. This remains valid even if the
device is out of service because of CTIManager failure.

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
119

Features Supported by Cisco Unified JTAPI
Media Termination at Route Point

register (CiscoMediaCapability[] capabilities,
intregistrationType)

The CiscoRouteTerminal must exist in the CiscoTerminal.UNREGISTERED state, and
the provider must exist in the Provider.IN_SERVICE state.

void

setRTPParams (CiscoRTPHandle rtphandle, CiscoRTPParams
rtpParams)

Applications set the ipAddress and the RTP port number to dynamically stream media
for a call.

void

Unregister()

Ensure the CiscoRouteTerminal is registered, and the provider is in the
Provider.IN_SERVICE state.

void

Interface CiscoMediaOpenLogicalChannelEv Extends CiscoTermEv

getpacketSize ()

Returns the packet size of the far end in milliseconds.

int

getPayLoadType ()

Returns the payload format of the far end, one of the following constants:

int

getCiscoRTPHandle ()

Returns the CiscoTerminalConnection object on which applications must invoke the
setRTPParams request.

CiscoRTPHandle

Interface CiscoRTPHandle

getHandle()

Returns an integer representation of this object, currently the Cisco Unified
Communications Manager CallLeg ID.

int

CiscoProvider

getCall (CiscoRTPHandle rtpHandle)

Returns the call object with the rtpHandle that is associated with a specific terminal. If
no callobserver gets added to the terminal at the time when the applications receive
CiscoRTPHandle in CallOpenLogicalChannelEv, CiscoCall may register null.

CiscoCall

For details on these interfaces, see Cisco Unified JTAPI Extensions, on page 247 To view the message flow
for media termination at route point, see Message Sequence Charts, on page 759

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
120

Features Supported by Cisco Unified JTAPI
Media Termination at Route Point

Media Termination Extensions
The media termination feature allows applications to transmit and capture the bearer of a call, for example,
audio or video. This action sometimes gets referred to as “rendering and recording” or “sourcing and sinking”
media. It remains distinct from call control because media termination concerns the data that flows between
endpoints in a call, not the details of setting up or tearing down calls. For example, an automatic call distributor
(ACD) uses call control to route calls among available agents but does not terminate media. An interactive
voice response (IVR) application, on the other hand, uses call control to answer and disconnect calls and uses
media termination to play sound files to callers.

Although no telephony applications are solely interested in media termination, this feature always gets used
in combination with call control. JTAPI 1.2 primarily represents a call control specification and offers very
limited support for applications that require media termination. Because the Cisco Unified Communications
Solutions platform supports media termination to a much greater degree than JTAPI standard, the Cisco
Unified JTAPI implementation extends JTAPI to add full support for this feature.

In Cisco Unified JTAPI, software-based media termination occurs by using Computer Telephony Integration
(CTI) ports. They include one or more lines (dialable numbers) that can be used to originate or receive calls.
They however need a controlling application to provide the source and sink of the media. An application
registers its interest in the media termination port with the Cisco Unified Communications Manager. The
Cisco Unified Communications Manager then delivers all the events that relate this virtual device to the
application. InCisco Unified JTAPI, CTI ports get referred to as CiscoMediaTerminals. The following figure
shows the CTI port configuration. For details about administering and configuring a CTI port, refer to the
Cisco Unified Communications Manager Administration information.

Figure 8: CTI Port Diagram

To implement a softphone application (where the PC acts as the telephone set, for example), the Cisco Unified
JTAPI application would manage a CTI port.

Message Waiting Indicator Enhancement
The EnhancedMessageWaiting Indicator (MWI) feature enables applications to provide the followingmessage
counts to be displayed on phones that support the enhanced message waiting counts:

• Total number of new voice messages (includes normal and high priority messages)

• Total number of old voice messages (includes normal and high priority messages)

• Number of new high priority voice messages

• Number of old high priority voice messages

• Total number of new fax messages (includes normal and high priority messages)

• Total number of old fax messages (includes normal and high priority messages)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
121

Features Supported by Cisco Unified JTAPI
Media Termination Extensions

• Number of new high priority fax messages

• Number of old high priority fax messages

Two newAPIs are added as CiscoAddress JTAPI extensions to provide the enhancedMWImessage summary
information. Similar to the existing setMessageWaiting APIs, one of the APIs allows summary information
to be set up for the observed address. The other API allows message summary information to be set up on
any address that is reachable on the observed address, as defined by the configured calling search space of
the observed address.

These new APIs can also be used on phone types that do not support the enhanced message counts. If used
on non-supported phones, these APIs behave similar to the existing setMessageWaiting method, that is, only
the messaging waiting indicator lamp is turned on or off and counts are not displayed.

Interface Changes

See Related Documentation, on page 287

Message Sequences

See Enhanced MWI Use Cases, on page 1164

Backward Compatibility

This feature is backward compatible. The existing setMessageWaiting APIs will not be modified. Applications
that do not want to use the new enhanced MWI feature can continue to use these APIs for setting the MWI
lamp.

Modifying Calling Number
This feature enables applications to modify the calling party DN in the select route API from the route point.
Applications may pass an array of modifying calling numbers in the selectRoute API and an array length of
modifying calling numbers may equal the length of the route that is selected. If no modifying calling number
element is present for a corresponding routeSelected index or if the element is null, then no modifying calling
number gets set for that route selected element.

Two new interfaces getModifiedCallingAddress () and getModifiedCalledAddress () are exposed on the call
object, which returns modified calling or called number. If no modification occurs, these interfaces may return
the same values as getCurrentCallingAddress () and getCurrentCalledAddress () interfaces. If an application
is only controlling the route point and modifies the calling number by using selectRoute API, it may not get
modified calling address in the getModifiedCallingAddress interface. If an application is controlling any
calling or called parties, it may get correct values after it receives call control events after the calling number
is modified.

A new interface, getRouteSelectedIndex (), gets exposed on the new class CiscoRouteUsedEvent, an extension
of RouteUsedEvent, which gives the index of the selected route. Applications need to cast the RouteUsedEvent
to the CiscoRouteUsedEvent to get access to this method.

Example

routeSelected[0] = 133555
routeSelected[1] = 144911
routeSelected[2] = 143911

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
122

Features Supported by Cisco Unified JTAPI
Modifying Calling Number

routeSelected[3] = 5005

modifiedCallingNumber[0] = null
modifiedCallingNumber[1] = 9721234567
modifiedCallingNumber[2] = 9721234568
modifiedCallingNumber[3] = null

If routeSelected[0] or routeSelected[3] is selected for routing, the modifying calling number may not get
applied.

You can only use this feature after an administrator enables the modifying calling number check box in the
Cisco Unified Communications Manager Administration for a particular user, which by default is False. If it
is not configured, a RerouteEventwith the cause of RouteSession.CAUSE_PARAMETER_NOT_SUPPORTED
gets sent to the applications. The application that is modifying the calling number needs to be aware that
display name on the called party is affected, and subsequent feature interactions of the calling or called party
may result in inconsistent behavior.

The following new or changed interfaces exist for Modifying Calling Number:

CiscoRouteSession

selectRoute (java.lang.String[] routeSelected, intcallingSearchSpace,

String[] modifiedCallingNumber)

This interface allows applications to modify the calling party number to the routeSelected
address. If nomodifiedCallingNumber element exists for the corresponding routeSelected
element, the calling number does not get modified if a call gets routed to that particular
routeSelected element.

void

CiscoCall

getModifiedCalledAddress ()

This interface returns a modified called address for the call if an application modifies
the calling party by using the selectRoute API; however, this information may not be
accurate if an application is only controlling the route point that modifies the calling
number. If no modified calling number gets performed, this acts similar to the
getCurrentCalledAddress interface. Typically, this gets varied from
getCurrentCalledAddress when a feature gets invoked after modified calling number
modifications.

javax.telephony.Address

getModifiedCallingAddress ()

This interface returns a modified calling address for the call if an application modifies
the calling party by using the selectRoute API; however, this information may not be
accurate if an application is only controlling the route point that modifies the calling
number. If no modified calling number gets performed, this interface acts similar to the
getCurrentCallingAddress interface.

javax.telephony.Address

CiscoRouteUsedEvent

getRouteSelectedIndex()

This method returns an array index of the route to where the call gets routed.

int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
123

Features Supported by Cisco Unified JTAPI
Modifying Calling Number

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for Modifying Calling Number, see Message Sequence Charts, on page 759.

Multi-fork Recording using CUBE Media Proxy Server
Prior to Cisco Unified Communications Manager, Release 12.5(1), the Unified Communications Manager
supported only single recorder for a call. With the Cisco Unified Communications Manager, Release 12.5(1),
the Unified Communications Manager supports Multi-forking for Call Recording feature.

The Unified Communications Manager is connected to CUBE Media Proxy server which is connected to
multiple recorders. The JTAPI interface is enhanced to get the details of multiple recorders in case of
Multi-Forking recording through CUBE Media Proxy server.

Backward Compatibility

This feature is backward compatible. JTAPI supports the current APIs.

Multilevel Precedence and Preemption Support
Cisco Unified Communications Manager enables the use of supplementary services by phones that are
configured forMultilevel Precedence and Preemption (MLPP). Cisco Unified CommunicationsManager does
this by maintaining the precedence level for calls.

JTAPI does not provide the precedence level of applications.Note

Multiple Calls Per DN
Multiple calls per DN represent the ability to support multiple calls on a line (DN) and the features operation
on these calls. Prior to CiscoUnified CommunicationsManagerRelease4.0(1), the system supported amaximum
of only two calls. Cisco JTAPI now supports multiple calls per line, which allows multiple calls on the same
line and feature operation on that line.

No interface or message flow changes occurred for Multiple Calls Per DN.

Native Queuing
It is very common in a Cisco Unified CM deployment that a hunt pilot has more calls distributed through the
call distribution feature than its hunt members can handle at any given time. Native Queuing feature holds
the calls in a queue until they are answered. When a hunt member is available, the call is removed from the
queue and offerred to the hunt member.

To enable this feature, the Cisco Unified CM administrator needs to enable the check box Queue Calls in
Queuing section of theHunt Pilot configuration page. Following settings are available under Native Queuing
feature configuration:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
124

Features Supported by Cisco Unified JTAPI
Multi-fork Recording using CUBE Media Proxy Server

• Maximum Number of Callers Allowed in Queue (1–100): This is the queue depth configuration and
reflects the maximum number calls that can be in the queue at any point of time.

• Destination When Queue is Full: User Configurable Destination number to which the calls are
forwarded when the Maximum Number of callers allowed in queue limit is reached.

• Disconnect: This option results in the call getting rejected and dropped when theMaximumNumber
of callers allowed in queue limit is reached.

• Maximum Wait Time in Queue (10–3600 seconds): User configurable Maximum wait time a call can
be in the queue.

• Destination When Maximum Wait Time is met: User Configurable destination DN to which the
call is forwarded when the maximum wait time in queue is reached.

• Disconnect: This option results in the call getting rejected and dropped when the the maximum
wait time in queue is reached.

• When There Are No Hunt Members Logged In or Registered: User configurable destination DN to
which the queue feature forwards the calls when none of the hunt members in the HuntPilot are registered
or logged in.

• Disconnect: This option results in the call getting rejected and dropped when there are no hunt
members available for the dialed hunt pilot.

• Destination:User Configurable destinationDN towhich the call is forwardedwhen no hunt members
available for the dialed hunt pilot.

If a caller calls a hunt pilot with all its members busy, a CiscoHuntConnection will be created temporarily.
Then, when this feature is enabled, the hunt connection will drop and a new connection will be created which
will have the address name same as that of the hunt pilot and the address type will be CiscoAddress.INTERNAL.
This new connection will be moved to CallControlConnection.QUEUED state and it will remain in this state
until the call gets dequeued or dropped.

Cisco JTAPI exposes the following new reasons:

• CiscoFeatureReason.REASON_QUEUING

• CiscoFeatureReason.REASON_DEQUEUING

• CiscoFeatureReason.REASON_DEQUEUING_TIMER_EXPIRED

• CiscoFeatureReason.REASON_DEQUEUING_AGENTS_BUSY

• CiscoFeatureReason.REASON_DEQUEUING_AGENTS_UNAVAILABLE

The above reasons indicate when a call gets enqueued and dequeued respectively because of the various
configurations on the Hunt Pilot.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
125

Features Supported by Cisco Unified JTAPI
Native Queuing

The behavior is different when conferencing a queued calls. If a caller which is in a queue conferences the
call with another party, then the queued connection is dropped and a new connection is created with the address
of the hunt pilot number and the address type is CiscoAddress.UNKNOWN, and it will be moved to
CallControlConnection.ESTABLISHED state.

If a call is removed from the queue, for example when an agent becomes free, the agent will be added to the
conference and a connection will be created for it. For the Hunt Pilot, JTAPI creates a normal connection
instead of a CiscoHuntConnection. This is a limitation of JTAPI in handling a conference with Hunt Pilot.

In a case where only the Hunt member is observed, there will be no issues and JTAPI will be able to handle
it.

Note

Interface Changes

See CiscoFeatureReason, on page 406

Message Sequences

See Native Queuing, on page 1285.

Backward Compatibility

This feature is backward compatible. Check theQueue Calls checkbox in the Hunt Pilot Configuration window
to enable this feature. By default this feature is disabled.

Network Alerting
In earlier releases of CiscoJTAPI (CiscoJTAPI versions 1.4(x.y)), when a call was made to an address outside
of the cluster, CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events were delivered
to the farend address.

In later versions of Cisco Unified Communications Manager (4.0 and above) and Cisco Unified JTAPI (2.0),
these events were not delivered. In these versions CallCtlConnection for the farend address went to the
ESTABLISHED state from the OFFERED state. The previous versions of Cisco Unified JTAPI delivered
CallCtlConnOfferedEv, CallCtlConnEstablishedEv for the farend address when a call was made across a
gateway with “overlap sending” turned off. CallCtlConnNetworkReachedEv and
CallCtlConnNetworkAlertingEv events were not delivered to the application.

In Cisco Unified Communications Manager4.0 and 4.1, the “Allow overlap sending” flag on the route pattern
configured for the gateway or the “AllowNetworkEventsAfterOffered” parameter in jtapi.ini needed to be
turned on to receive network events.

In Cisco Unified Communications ManagerRelease 5.0, if the “Allow overlap sending” flag is enabled, an
application sees ConnCreatedEv, CallCtlConnNetworkReachedEv, CallCtlConnNetworkAlertingEv, and
CallCtlConnEstablishedEv for the farend address for calls across a gateway.

If the “Allow overlap sending” flag is not enabled, an application sees ConnCreatedEv, CallCtlConnOfferedEv,
CallCtlConnNetworkReachedEv, CallCtlConnNetworkAlertingEv, and CallCtlConnEstablishedEv for the
farend address for calls across a gateway.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
126

Features Supported by Cisco Unified JTAPI
Network Alerting

AllowNetworkEventsAfterOffered is not available in Cisco Unified Communications Manager Release5.0.
The above events are delivered regardless of the jtapi.ini parameter setting.

Note

Backward Compatibility

This feature is not backward compatible.

Network Events
In previous releases of Cisco Unified JTAPI, when a call is made to an address outside the cluster,
CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events are delivered for the far-end
address.

In Cisco Unified Communications Manager 4.0 and later, these events do not get delivered. In these versions
CallCtlConnection for the far-end address goes to the ESTABLISHED state from OFFERED state. The
application will receive CallCtlConnOfferedEv, CallCtlConnEstablishedEv for the far-end address. The
CallCtlConnNetworkReachedEv and CallCtlConnNetworkAlertingEv events do not get delivered to the
application. To receive network events, the “Allow overlap sending” flag on the route pattern that is configured
for the gateway must be turned on.

A new jtapi.ini parameter, AllowNetworkEventsAfterOffered, that is introduced allow the application to
control the delivery of these events. Applications that need the network events but cannot turn on this flag
can use this new jtapi.ini parameter to receive network events for outgoing calls.

To turn on the parameter, complete the following steps:

Procedure

Step 1 Run jtprefs and select the required options. This creates jtapi.ini file in c:\winnt\java\lib, if Cisco Unified
JTAPI is installed in the default directory. If the jtapi.ini file already exists, you can update the file directly
without running jtprefs.

Step 2 Add AllowNetworkEventsAfterOffered = 1 to the end of the file and save it.
Step 3 Repeat the preceding step every time Cisco Unified JTAPI is reinstalled.

When theAllowNetworkEventsAfterOffered flag is enabled, the applicationwill receive CallCtlConnOfferedEv,
CallCtlConnNetworkReachedEv or CallCtlConnNetworkAlertingEv and CallCtlConnEstablishedEv for the
far-end address.

New Error Code in CiscoTermRegistrationFailedEv
This event is sent to application when TerminalRegistration fails for some reason. The return value of
getErrorCode() interface indicates the type of failure. On receiving this event, application should try to reregister
the Terminal. In this version a new return value is added to this interface.
CiscoTermRegistraionFailedEv.UNKNOWN is introduced in this version to handle unknown failures.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
127

Features Supported by Cisco Unified JTAPI
Network Events

Backward Compatibility

This feature is backward compatible.

Noncontroller Adding of Parties to Conferences
Any party in a conference can now add participants into the conference. In previous releases, only the conference
controller could add participants.

• CiscoConferenceStartEv, on page 380 contains an identifier for the requestor party.

• The method getConferenceControllerAddress returns the terminal connection of the requestor.

• The new method getOriginalConferenceControllerAddress() for CiscoConferenceStartEv, on page 380
returns the terminal connection of the original controller.

Park DN Monitor
Cisco Unified JTAPI applications can register to receive events when calls are parked and unparked.
CiscoProvCallParkEv events will be delivered to provider observer when the application registers for this
feature. To successfully register for this feature, ensure that the “call park retrieval allowed” flag for the user
is turned on. You can access this flag with the user configuration on Cisco Unified Communications Manager
Administration. After registering for this feature, the application will receive CiscoProvCallParkEv events
whenever a call is parked or unparked from any device in the cluster.

The following new interfaces allow applications to register and unregister for this feature:

public interface CiscoProvider {
public void registerFeature (int featureID) throws

InvalidStateException, PrivilegeViolationException;
public void unregisterFeature (int featureID) throws

InvalidStateException;
}

The featureID is CiscoProvFeatureID.MONITOR_CALLPARK_DN.

Park Monitoring and Assisted DPark Support
This feature provides a new park reversion behavior to applications invoking park request. Currently, when
the park reversion timer expires, the call is reverted to the address of the parker. With the new behavior, the
call remains parked at the park DN, even as the Park Monitoring reversion timer expires.

This feature also enables status monitoring of the parked call at the address of the parker. After a call is parked
using the existing CiscoConnection.park() JTAPI API on newer phones or directly from the phone itself,
Cisco Unified JTAPI delivers a new event CiscoAddrParkStatusEv, which includes the current status of the
parked call. The application must then add AddressObserver on the address of the parker, and enable a filter
to receive this event. If application adds an observer after the call is parked, then the events are delivered with
CAUSE_SNAPSHOT. The park status in the new event can be one of the following:

• Parked—Indicates a call was parked by the user of the application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
128

Features Supported by Cisco Unified JTAPI
Noncontroller Adding of Parties to Conferences

• Reminder—Indicates the park monitoring reversion timer for the parked call has expired.

• Retrieved—Indicates a previously parked call was retrieved.

• Abandoned—Indicates a previously parked call is disconnected while waiting to be retrieved.

• Forwarded: indicates the parked call has been forwarded to the configured Park Monitoring Forwarded
No Retrieve destination, as the Park Monitoring Forward-No-retrieve timer has expired.

When the cause is CAUSE_SNAPSHOT the park status can be either Parked or Reminder state only.

On the phone, these notifications are targeted, that is, only the device parking the call can see these notifications
(devices sharing line with the parker's device does not receive similar notifications). In Cisco Unified JTAPI,
getTerminal() interface on CiscoAddrParkStatusEv has been added tomanage this. This returns the terminal
on whose address, these notifications were received and this is the terminal that parked the call.

Cisco Unified JTAPI also provides the CiscoCallID to applications in this new event. Applications may use
this to retrieve the call object. However CiscoCallID.getCall() may return null value if the call does not exist
in the provider's domain at the time this event is received.

Cisco Unified JTAPI provides a new interface CiscoAddrEvFilter to control or filter the new event notifications
to applications. Applications may get or set the filter value through the APIs getCiscoAddrParkStatusEvFilter()
and setCiscoAddrParkStatusEvFilter() on the CiscoAddrEvFilter interface. Two newmethods, getFilter() and
setFilter(), have also been provided in the CiscoAddress to get and set the values of the filters in the
CiscoAddrEvFilter interface. Applications receive the new event notification CiscoAddrParkStatusEv only
if the filter is enabled and the setFilter() is invoked on CiscoAddress. By default, the filter value for
CiscoAddrParkStatusEvFilter is false to maintain backward compatibility.

When a call is parked, the Park monitoring reversion timer starts and then expires. After this, ParkMonitoring
Forward No Retrieve timer starts. When this timer expires, and the Forward No Retrieve destination is
configured, the call is forwarded to this destination. A newCiscoFeatureReason FORWARD_NO_RETRIEVE
is delivered in the connection events, when connections are created at the forwarded destination. If the Forward
No Retrieve destination is not configured, call is forwarded back to the parker's DN, with the same reason as
when park reversion occurs (CiscoFeatureReason.PARKREMINDER).

When application invokes CiscoAddress.getAddressCallInfo(Terminal term), the CiscAddressCallInfowhich
is returned is now enhanced to include number of parked calls. This returns the number of parked calls. Cisco
Unified IP Phone 7900 Series with SIP/SCCP returns zero value even if there are calls parked by this address.

This feature is applicable only when newer phones park the call. If Cisco Unified IP Phone 7900 Series with
SIP/ SCCP, parks the call, user continues to see the existing behavior. So, if a Cisco Unified IP Phone parks
the call and is sharing a line with a Cisco Unified IP Phone 7900 Series with SIP, the new Park Monitoring
enhancements can be seen. However, if the Cisco Unified IP Phone 7900 Series with SIP or SCCP invoked
park, the old Park behavior would be seen on all the phones, if application is monitoring any of these lines.

Users can set the Park Monitoring Reversion Timer to zero and set the Park Monitoring Forward No Retrieve
Destination to the existing Park Reversion Duration timer to get the old behavior on the Cisco Unified IP
Phone (provided the Forward No Retrieve destination is not configured) if the user so desires. However, the
event notification cannot be controlled.

On Cisco Unified Communications Manager Service Parameter pages, the timers mentioned above can be
configured. These would apply only for SIP versions of future models of Cisco Unified IP Phone .

Park Monitoring Reversion timer: This timer is started as soon as the call is parked. This is the amount of
time that a call remains parked before the user is reminded that there is a parked call. The range is 0-1200
seconds, with default value of 60 seconds.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
129

Features Supported by Cisco Unified JTAPI
Park Monitoring and Assisted DPark Support

Park Monitoring Periodic reversion timer: The frequency in which the user is reminded about the parked call.
The range is 0-1200 seconds, with default value of 30 seconds.

Park Monitoring Forward No Retrieve timer: This timer is started when the park monitoring reversion timer
expires. This is how long, in seconds, the park reminder notification plays before the parkee is redirected to
the parker's Park Monitoring Forward No Retrieve (FNR) destination. The range is 30-1200 seconds, with
default value of 300 seconds.

Park Monitoring Forward No Retrieve Destination is configurable on the line page in Cisco Unified
Communications Manager Line page settings.

Assisted DPark provides an alternative one step way to perform DPark operation on phones. When user
performs Assisted DPark from newer phones and application is monitoring the parked party, Cisco Unified
JTAPI provides reason CiscoFeatureReason.REASON_REFER in the connection events (ConnCreatedEv,
ConnInProgressEv and CallCtlConnQueuedEv) for DPark DN. Currently when DPark is done, application
gets connection events with CiscoFeatureReason.REASON_TRANSFER.

Interface Changes

See CiscoAddrParkStatusEv, on page 314

Message Sequences

See Park Monitoring Support, on page 1204

Backward Compatibility

Park Monitoring enhancements and Assisted DPark support are backward compatible.

The new park reversion behavior improves the user experience to allow the parked call to be retrievable for
as long as possible. It also improves the usability of the park feature by allowing the user to monitor the status
of a parked call through the new event being delivered.

Applications can conditionally enable/disable filter to receive event via setCiscoAddrParkStatusEvFilter()
API on CiscoAddeEvFilter. By default this filter is disabled and therefore maintains backward compatibility.

If the application uses a JTAPI client older than 7.1.2, the devices are not restricted but if the application tries
to observe these devices (which supports this feature to be invoked manually), JTAPI throws an exception
and marks these devices as restricted from there on.

Park Reminder
When a parked call is not retrieved for a specified time, a reminder call returns to the address that parked the
call, and Park Number connection moves to the Disconnected state. The call reconnects and moves to the
Established state. A terminal connection in Talking state gets created for the address that parked the call.

Park Retrieval
When a call is parked from an IP phone, the park number displays on the phone. Any terminal can unpark the
call by dialing the park number. When a call is unparked, a new call gets created with connections to unparked
address. The CallControlConnection for the park number in the original call, which is in the Queued state,
moves to the Disconnected state.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
130

Features Supported by Cisco Unified JTAPI
Park Reminder

Partition Support
Prior to Cisco Unified Communications Manager Release 5.0, JTAPI did not support partitions. JTAPI
considered addresses with the same DN, but different partitions, as same address. It created only one Address
object for such cases because addresses are identified only by their DN and not by their partition information.

Beginning with Release 5.0, JTAPI supports addresses that have the same DN but belong to different partitions
and treats them as different addresses. Partition information of the addresses is exposed to applications through
the methods specified below. Applications that want to make use of this partition support feature must use
the API provided to them through JTAPI interfaces and use the address objects accordingly.

This feature is backward compatible. JTAPI supports the current APIs that are used to open and access address
objects.

In Cisco Unified Communications Manager Release 5.0, JTAPI is partition aware, and the following
configurations are supported.

• Addresses with the same DN, in the same partition, and in different devices get treated as shared lines.

• The system does not allow addresses with the same DN, in the same partition and in the same device.

• Addresses with the same DN, in different partitions, and in the same device get treated as different
addresses. Two address objects get created for this scenario, and the application can distinguish between
the two by calling the getPartition() API on the address objects.

• Addresses with the same DN, in different partitions, and in different devices get treated as different
addresses. Two address objects get created for this scenario and the application can distinguish between
the two by calling the getPartition() API on the address objects.

Partition support changes in JTAPI are confined to the address objects and do not affect any other functions
or classes of JTAPI. The following sections specify the interface changes.

CiscoAddress Interface

A new method is provided in this class with the following signature.

string getPartition ()

Returns the partition string of the address object. Applications need to use this method to get the partition
information. JTAPI uses this partition information to distinguish between addresses that have the same
DN but belong to different partitions and sends the partition information to open the specific addresses.

For example, a provider open returns two addresses, A(1000, P1) and B (1000, P2), where A and B denote
the address objects, 1000 denotes the DN of the address objects, and P1, P2 indicate the partitions to which
the addresses belong.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
131

Features Supported by Cisco Unified JTAPI
Partition Support

Figure 9: Provider Open Returns Two Addresses

When the user invokes A.getPartition (), P1 gets returned while B.getPartition () returns P2.

The provider.getAddresses() method returns multiple addresses in which the Address objects have the same
DN but different partition information. An Application can use this method to distinguish between twoAddress
objects that have the same DN but belong to different partitions.

CiscoProvider Interface

The CiscoProvider interface provides the following methods:

getAddress(String number)

Returns an array of Address objects that corresponds to the number and different
partitions.

Address[]

getAddress(String number, String partition)

Returns the Address object that has the same DN as the number parameter and belongs
to the same partition as specified by the partition parameter.

Address

If two addresses A(1000, P1) and B(1000, P2) exist, where A and B denote the address objects, 1000 denotes
the DN of the address objects, and P1, P2 indicate the partitions to which the addresses belong, when an
application calls provider.getAddress(“1000”), it gets two address objects, A and B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
132

Features Supported by Cisco Unified JTAPI
Partition Support

Figure 10: provider.GetAddress() Returns Two Address Objects

When the application calls A.getPartition(), it returns P1, B.getPartition() returns P2, and so on. An Application
can distinguish between the two address objects that are using the getPartition method.

Consider the case where the application calls provider.getAddress(1000, P1). In this case, the application
specifically looks for the address object whose DN is 1000 and partition is P1. In this case, “A” gets returned
by the provider object.

Figure 11: Provider Calls a Specific Address and Partition

CiscoProvCallParkEv Event

CiscoProvCallParkEv provides the following methods in this interface.

string getParkingPartyPartition()

Returns the partition string of the parking party.

string getParkedPartyPartition()

Returns the partition string of the parked party.

string getParkPartyPartition()

Returns the partition string of the park DN.

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
sequences for partitions support, see Message Sequence Charts, on page 759

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
133

Features Supported by Cisco Unified JTAPI
Partition Support

Password Expiry
The administrator can use the CUCM Admin Panel to configure options for login credentials. The password
expiry configuration allows the administrator to specify the following two parameters:

1. The time before the password expires (in days) and

2. The number of days before the end of the password expiry to alert the user to change the password.

If a password is expired, JTAPI delivers an exception to the application. In a situation where a password is
going to expire soon, JTAPI delivers a new event to the application. JTAPI does not allow applications to
modify any of these values, it only reports the information.

Interface Changes

CiscoProvAuthenticationInfoEv, on page 56; CiscoJtapiExceptions, on page 55

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Persistent Connection
Persistent Connection is an extension Cisco Extend and Connect feature that was implemented in Unified
Communications Manager Release 9.1. A persistent call refers to a call between the Unified Communications
manager (CTI Remote Device) and a remote destination that stays up even after calls to it are dropped. JTAPI
APIs and error codes were added.

JTAPI supports a newAPI, CiscoAddress.createPersistentCall(), which allows applications to create persistent
calls. At least one remote destination must be configured and the active remote destination must be set. There
can be only one persistent call per remote device. Persistent calls cannot be created if there is already a call
on the remote device; otherwise, the application receives
CiscoJtapiException.OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE. Furthermore, no feature
invocations are allowed on or involving persistent calls (park, hold, conference, and transfer).

Two new JTAPI APIs return information about the persistent call. The CiscoAddress.getPersistentConnection()
API returns the connection object that is associated to the persistent call. It returns null if no persistent call
exists. This API also allows you to check if an address has a persistent connection created on it and from there
you can get the call object. The other newly added API is CiscoCallisPersistentCall(), which returns true if
the call is a persistent call and false if the call is a normal call.

Existing JTAPI APIs such as Provider.getCalls(), Address.getConnections(), and
Terminal.getTerminalConnections() return only the information for normal calls and do not return anything
for the persistent call. Provider.getCalls() returns all the calls that are associated with the provider, excluding
the persistent calls. Address.getConnections() returns all the connection objects that are associated with this
address, excluding the connection for the persistent call. Terminal.getTerminalConnections() returns all the
terminal connection objects that are associated with this device, excluding the terminal connection for the

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
134

Features Supported by Cisco Unified JTAPI
Password Expiry

persistent call. This functionality helps with backward compatibility so applications do not need to make any
changes to their current implementations.

No new APIs are added to disconnect the persistent calls. Existing Call.drop() and Connection.disconnect()
JTAPI APIs can be used to disconnect or drop the persistent calls. Persistent calls cannot be dropped if there
is an active call to the remote device. Persistent calls can also be dropped in any of the following scenarios:

• The call is dropped by the remote destination (the remote destination hangs up).

• The remote destination is no longer active. If there is an active call, as soon as that call is over, the
persistent call will drop.

After they are created, persistent calls remain connected until the maximum call duration timer expires in
which case the call will be cleared.

Some of the new JTAPI Error Codes introduced as part of this feature include the following:

• CiscoJtapiException.CTIERR_CREATE_PERSISTENT_CALL_FAILED: Indicates that there is an
issue with creating a persistent call.

• CiscoJtapiException.CTIERR_PERSISTENT_CALL_EXISTS: Indicates that a persistent call already
exists.

• CiscoJtapiException.CTIERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL: Indicates
that the specified operation is not allowed on a persistent call.

• CiscoJtapiException.CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_CALL_ACTIVE:
Indicates that the request to disconnect the persistent call failed because there is an active customer call.
Only when there are no active calls can the persistent call be disconnected.

• CiscoJtapiException.CTIERR_PERSISTENT_CALL_BEING_SETUP: Indicates that the request failed
because a persistent call is already being set up.

Backward Compatibility

This feature is backward compatible and existing applications are not affected by this feature.

Interface CiscoAddress Changes

CiscoAddress is enhanced with the addition of newAPIs to create a persistent call and to retrieve the connection
object that is associated to the persistent call.

createPersistentCall (Terminal terminal, String callerIDNumber, String

callerIDName)

This interface creates a persistent call for this address and will return the call object for
the newly created call. Note that CiscoProvider and the address must be in IN_SERVICE
state, otherwise InvalidStateException will be thrown. This API cannot be invoked on
external addresses. Doing so will result inMethodNotSupportedException to be thrown.
If while trying to allocate a globalCallId for the persistent call and an error occurs,
ResourceUnavailableException will be thrown. All other errors encountered will result
in PlatformException to be thrown.

CiscoCall

getPersistentConnection (Terminal terminal)

This interface will return the connection object that is associated with the persistent call.
It returns null if there is no persistent call. This API cannot be invoked on external
addresses. Doing so will result in MethodNotSupportedException to be thrown.

Connection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
135

Features Supported by Cisco Unified JTAPI
Persistent Connection

Interface CiscoCall Changes

CiscoCall represents a call in the JTAPI model. This interface is enhanced with the addition of a new API.

isPersistentCall ()

This interface returns true if the call is a persistent call and false otherwise (if it is a
normal call).

boolean

Interface CiscoJtapiException Changes

CiscoJtapiException contains all of the error codes that can be delivered by JTAPI to applications. This
interface is enhanced with the addition of new error codes.

public static final int

• CTIERR_CREATE_PERSISTENT_CALL_FAILED= "Failed to create Persistent Call." (0x8CCC0132)
• CTIERR_PERSISTENT_CALL_EXISTS = "Persistent Call exists." (0x8CCC0133)
• CTIERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL = "Operation is not allowed on
a Persistent Call." (0x8CCC0134)

• CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_CALL_ACTIVE = "Disconnect persistent
call failing, there are active calls." (0x8CCC0136)

• CTIERR_PERSISTENT_CALL_BEING_SETUP = "Persistent Call is being set up." (0x8CCC0139)

Play Zip Tone
The Play Zip Tone feature allows Cisco JTAPI application to play zip tones on active calls. The application
specifies the type and the direction of the tone.

Zip tones are played at local or remote end of the call. They are audible and played only for IP phones. These
tones are not played if the remote side is a trunk, conference or Cisco Media Terminal or Route Terminal.

The following tones can be played:

• CiscoTone.ZIPZIP

• CiscoTone.ZIP

• CiscoTone.CALLWAITINGTONE

Sample Code

Void playTone(TerminalConnection termConn, int tone, int direction){
If (termConn ! = null){

try {
((CiscoTerminalConnection)termConn).playTone(tone, direction);
} catch (Exception e){
System.out.println("Exception for playtone request " + e);
}

Interface Changes

See CiscoTerminalConnection, on page 634, CiscoTone, on page 656

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
136

Features Supported by Cisco Unified JTAPI
Play Zip Tone

Message Sequences

See Play Zip Tone, on page 1388

Backward Compatibility

This feature is backward compatible.

Presentation Indicator for Calls
The presentation indicator (PI) on a call provides the application with the ability to hide or reveal
Calling/Called/CurrentCalling/CurrentCalled/LastRedirecting parties name and number to the end user. JTAPI
provides functions on CiscoCall to get PI value for the party. Use this PI info to present the parties information
to the end user. These functions return a value of true or false. A value of “True” indicates that presentation
in “Allowed, ” and a value of “False” indicates the presentation is “Restricted.”

For a conference call, the interfaces on CiscoCall do not return a correct value. Applications must iterate
through all the connections in the call to get the PI value that is associated with the address for which the
connection gets created. The interface that is provided on CiscoConnection is getAddressPI().

The following new interfaces exist on CiscoCall retrieve PI values.

CiscoCall

getCalledAddressPI()

Returns the PI that is associated with getCalledAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCallingAddressPI()

Returns the PI that is associated with getCallingAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCurrentCalledAddressPI()

Returns the PI that is associated with CurrentCalledAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

getCurrentCalledDisplayNamePI()

Returns the PI that is associated with CurrentCalledDisplayNamePI. If it returns true,
the application displays the address name. If it returns false, the application must not
display the address name.

boolean

getCurrentCallingAddressPI()

Returns the PI that is associated with getCurrentCallingAddressPI. If it returns true, the
application displays the address name. If it returns false, the application must not display
the address name.

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
137

Features Supported by Cisco Unified JTAPI
Presentation Indicator for Calls

getCurrentCallingDisplayNamePI()

Returns the PI that is associated with getCurrentCallingDisplayNamePI. If it returns
true, the application displays the address name. If it returns false, the application must
not display the address name.

boolean

getLastRedirectingAddressPI()

Returns the PI that is associated with getLastRedirectingAddressPI. If it returns true,
the application displays the address name. If it returns false, the application must not
display the address name.

boolean

The following interface on CiscoConnection retrieves the PI value for the address that is associated with the
connection:

CiscoConnection

getAddressPI()

Returns the PI that is associated with the address on which the connection gets created.
If it returns true, the application displays the address name. If it returns false, the
application must not display the address name.

boolean

No change exist in the message flow.

Privacy On Hold
This feature enhances the privacy of private held calls. When privacy is enabled, only the phone that placed
a call on hold can retrieve that call, and the calling name and number are not displayed.

The feature provides the ability for a shared address to determine whether other shared addresses may barge
into a call. When privacy is enabled, other shared address cannot barge into the call. Privacy is a terminals
property. On IP phones, a Privacy feature button allows the users to enable and disable the privacy feature.
Privacy can be dynamically enabled and disabled for the active calls on the terminal. When Privacy is on for
a call, the TerminalConnection state available to other shared addresses is set to In Use. If Privacy status is
changed during the CallProgress, CiscoTermConnPrivacyChangedEvent is delivered to the application.

In prior releases, if Privacy is enabled and the call is put on hold, all TerminalConnections were in
TermConnHeld state and any other shared Address terminalConnection could unhold the call. In Cisco Unified
Communications Manager 4.2, if the Enforce Privacy on Held Calls service parameter is enabled, and if
Privacy is enabled for a call, putting the call on hold does not change the terminalConnections of other shared
addresses and they remain in the In Use state.

Performance and Scalability

There is no performance impact with this feature because there is no additional traffic generated between
Cisco Unified JTAPI, applications, and Cisco Unified Communications Manager.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
138

Features Supported by Cisco Unified JTAPI
Privacy On Hold

Progress State Converted to Disconnect State
If an outbound call is initiated through the API to an unallocated directory number across the European PSTN,
the application will perceive the ConnFailedEv event with the cause as
CiscoCallEv.CAUSE_UNALLOCATEDNUMBER. For the US PSTN, the applicationmay not see any event.

To make the behavior consistent across the European and American PSTNs and also to address backward
compatibility issues, a new service parameter UseProgressAsDisconnectedDuringErrorEnabled was added
to the jtapi.ini file starting with JTAPI Version 1.4(3.21), which, when enabled (1 = enable; 0 = disable; the
default is disable), causes applications to perceive ConnFailedEv in both cases.

Q.Signaling (QSIG) Path Replacement
QSIG Path Replacement, a network feature, optimizes the real-time protocol (RTP) path when calls are
transferred or forwarded to other PBXs that are connected through QSIG trunks. When path replacement is
in progress, a small window of time exists when the feature requests from applications would be ignored and
JTAPI would throw an exception to the application.

The Global Call ID or the call is changed when the RTP path is optimized with a direct path between the
starting terminating PBXs. JTAPI provides new interfaces to monitor the call.

QoS Support
QoS support is enhanced in this release to enable QoS (DSCP marking) in both directions of the application
<--> CTIManager connectivity. In previous releases it was enabled in only one direction: CTIManager -->
application.

The DSCP (QoS) values for both directions of the link are set by the “DSCP IP CTIManager to Application”
value in the CTIManager service parameters. The default value is CS3(precedence 3) DSCP (011000).

The “DSCP value for Audio calls” service parameter is the recommended QoS value for audio calls. Thisvalue
is exposed to JTAPI applications.

You must perform one of the following setup procedures on the client machine for JTAPI QoS to work on
Windows platforms.

Procedure

Step 1 If you are running Windows 2000, follow the steps in QoS Setup on Windows 2000, on page 140.
Step 2 If you are running Windows XP or Windows Server 2003, follow the steps in QoS Setup on Windows XP

Server 2003, on page 140.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
139

Features Supported by Cisco Unified JTAPI
Progress State Converted to Disconnect State

What to do next

For more information on using the Registry Editor to set the Internet Protocol Type of Service bits, see the
topic “Setsockopt is unable to mark the Internet Protocol type of service bits in Internet Protocol packet header”
on the Microsoft technical support website.

These JTAPI interfaces support QoS:

Provider Interface

getAppDSCPValue()

Returns the “DSCP IP for CTI applications” service parameter. This value specifies the
DSCP value that JTAPI sets on its link to CTI. Applications can get this value by
querying the provider object by using this API every time that they get a
ProviderInServiceEvent.

int

precedenceValue = 0x00

Stores the DSCP value that CTI provides.

private int

For details on these interfaces, see Cisco Unified JTAPI Extensions, on page 247 To view the message flow
for QoS, see Message Sequence Charts, on page 759.

QoS Setup on Windows 2000
If you are running Windows 2000, follow these steps.

Procedure

Step 1 Start the Registry Editor (Regedt32.exe).
Step 2 Go to key: HKEY_LOCAL_MACHINE on Local

Machine\System\CurrentControlSet\Services\Tcpip\Parameters\
Step 3 On the Edit menu, click Add Value.
Step 4 In the Value name box, enter DisableUserTOSSetting.
Step 5 In the Data Type list, click REG_DWORD and then click OK.
Step 6 In the Data box, enter a value of 0 (zero) and then click OK.
Step 7 Quit Registry Editor and then restart the computer.

QoS Setup on Windows XP Server 2003
If you are running Windows XP or Windows Server 2003, follow these steps.

Procedure

Step 1 Start Registry Editor (Regedt32.exe).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
140

Features Supported by Cisco Unified JTAPI
QoS Setup on Windows 2000

Step 2 Go to key: HKEY_LOCAL_MACHINE on Local
Machine\System\CurrentControlSet\Services\Tcpip\Parameters\

Step 3 On the Edit menu, point to New, and then click DWORD Value.
Step 4 Enter DisableUserTOSSetting as the entry name, and then press ENTER.

When you add this entry, the value gets set to 0 (zero). Do not change the value.

Step 5 Quit Registry Editor and then restart the computer.

Quiet Clear
QuietClear occurs at the other end when two parties are on a call, and one address goes out of service because
of a network outage, the Cisco Unified Communications Manager goes down, the application controlling
CTIPort goes down, or CTIManager goes down. At this stage, the other end of the call can only drop the call
or disconnect the connection. It cannot perform any other callControl operations.

For the party that went out of service, applications will perceive ConnDisconnectedEv and/or
TermConnDroppedEv, and the other end of the call receives ConnFailedEv with CiscoCause of
CiscoCallEv.CAUSE_TEMPORARYFAILURE.

If applications try to invoke the following features during QuietClear mode, PlatformException with error
code of CiscoJtapiException.CTIERR_OPERATION_FAILER_QUIETCLEAR gets thrown:

• Consult transfer

• Consult conference

• Blind transfer

• Hold

• Unhold

Applications may only drop the call in this mode.Note

Receiving and Responding to Media Flow Events
Whenever a media stream must be created between two endpoints, Cisco Unified Communications Manager
issues start transmission and start reception events to both endpoints. In JTAPI, the CiscoRTPOutputStartedEv
and CiscoRTPInputStartedEv events represent the start transmission and start reception events. The
CiscoRTPOutputStartedEv.getRTPOutputProperties() method returns a CiscoRTPOutputProperties object,
from which the application can determine the destination address of its peer endpoint in the call, as well as
the other RTP properties for the stream such as payload type and packet size. Similarly, the
CiscoRTPInputStartedEv.getRTPInputProperties() method returns a CiscoRTPInputProperties object that
informs the application of the RTP characteristics for the inbound stream.

At any time while media is flowing, the current CiscoRTPOutputProperties and CiscoRTPInputProperties
also remain available from the CiscoMediaTerminal.getRTPOutputProperties() and

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
141

Features Supported by Cisco Unified JTAPI
Quiet Clear

CiscoMediaTerminal.getRTPInputProperties() methods as well. These methods throw an exception if the
CiscoMediaTerminal is not currently supposed to transmit or receive media.

When Cisco Unified Communications Manager wants the application to stop sending or receiving media as
the result of a call disconnecting or being put on hold, for example, it sends the CiscoRTPOutputStoppedEv
and CiscoRTPInputStoppedEv events. These events mean that the current RTP media stream that exists
between the two endpoints should be torn down.

Inbound Call Media Flow Event Diagram
The following table illustrates the dialogue between Cisco Unified Communications Manager and a JTAPI
application when a call is presented to an application-controlled endpoint. The events in the left column
represent JTAPI events that are sent to the CallObserver of the application, and the requests in the right column
represent methods that the application invokes.

Table 4: Inbound Media Flow Event

Application RequestDirectionJTAPI Event

ÆCallActiveEv

ConnCreatedEv

ConnProceedingEv

CallCtlConnOfferingEv

CallControlConnection.accept ()¨

ÆCallCtlConnAlertingEv

TermConnCreatedEv

TermConnRingingEv

TerminalConnection.answer ()¨

ÆConnConnectedEv

CallCtlConnEstablishedEv

TermConnTalkingEv

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

CallControlConnection.disconnect ()¨

ÆCiscoRTPOutputStoppedEv

CiscoRTPInputStoppedEv

TermConnDroppedEv

CallCtlConnDisconnectedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
142

Features Supported by Cisco Unified JTAPI
Inbound Call Media Flow Event Diagram

The table above shows JTAPI events for the local connection: that is, for the application endpoint.
TheactualJTAPI meta event stream contains events that describe the state of the calling party.

Note

Cisco Unified Communications Solutions RTP Implementation
The Cisco Unified Communications Solutions architecture puts a premium on performance, and thus Cisco
Unified Communications Solutions phones and gateways do not implement some of the features of RTP and
its often-associated real-time control protocol (RTCP). To ensure its compatibility, applications must consider
the following points:

• Because RTCP is not supported. Cisco Unified Communications Solutions endpoints will not send RTCP
messages, and they will ignore any such messages that are sent to them.

• Cisco Unified Communications Solutions endpoints do not currently make use of the synchronization
source (SSRC) field in the RTP header. Applications must not multiplex RTP streams by using the SSRC
field, or phones and gateways may not correctly decode and present the media.

Recording
Introduction

New regulations require organizations to archive contact interactions to meet compliance directives and
Contact Centers need to guarantee the quality of service their Agents provide. Cisco’s Recording feature
enables organizations to archive the conversation of two or more parties for review, analysis, and/or legal
compliance.

The recording feature lets applications record conversations on any observed address. Three recording
configurations are available:

• No recording
• Automatic recording:

The system initiates a recording session and streams media to the configured recording device whenever
a call goes to a connected state.

• Application-controlled recording:

If application-controlled recording is configured on an address, the application can start and stop recording.
The call must exist in the connected state before the application can start recording.

The ability to record calls was introduced in Unified CommunicationsManager Release 6.0 with phone-based
built-in bridge (BIB) recording. Cisco IP Phones were instructed to send copies of conversations to supervisors
and recorders. In Release 8.0, Encrypted media (sRTP) support was added and was expanded to have the
information sent to recorders (meta-data) in Release 8.6(2).With Release 9.0 selective user controlled recording
was added to the feature

In Unified Communications Manager Release 10.0(1), the recording feature is enhanced so that Dynamic
combinations of Cisco Gateways and IP Phone are instructed to send copies of conversations to recorders
based on call flows, participants, and media requirements. Also, recording Serviceability counters and alarms

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
143

Features Supported by Cisco Unified JTAPI
Cisco Unified Communications Solutions RTP Implementation

have been added to help compliance officers ensure calls are recorded by monitoring the real-time status and
historical performance of the feature.

For internal calls within a cluster between end users, the media-forking device is the end user device involved
in the call that triggers the recording session. For an external call from a recording gateway, both the end user
device and the gateway involved in the call can be used as the media-forking device. Unified Communications
Manager enables the administrator to select one over the other as the preferred recording media source: "Phone
preferred" or "Gateway preferred", using the device's line configuration.

If the phone preferred recording media source is selected, the phone that triggers the recording is used to fork
the media for the recording session, provided that the phone is capable of media forking and phone's BIB is
enabled. If the phone is not capable of media forking or the phone's BIB is not enabled, and the gateway
involved in the call has the media forking capability and is enabled for recording, then the gateway is used to
fork the media for the recording session. If the gateway preferred recording media source is selected, the
gateway that is already in the media path will be used to fork the media for the recording session, provided
that the gateway is capable of media forking and is enabled for recording. If gateway is not capable of media
forking or is not enabled for recording, and the phone triggering the recording is capable of media forking
and the phone's BIB is enabled, then the phone is used to fork the media for the recording session. If none of
the recording resources is available, this recording request fails. Similar to the phone-based recording,
gateway-based recording is also triggered from the end-user's device or CTI/JTAPI application.

Virtual devices without BIB such as CTI Port, Route Point, and CTI Remote Device can only be set to
Gateway-Preferred.

Note

When a gateway is registered with the same cluster as the device that initiates a recording, it is called a "Single
Cluster" gateway recording. When a gateway is registered with a cluster that is different than where the
recording request is initiated, it is called an "Inter-Cluster" gateway recording. The cluster where the recording
initiates is a recording triggering cluster (Trigger) and the cluster where the recording gateway registers to
is a recording anchoring cluster (Anchor).

The inter-cluster recording is only supported by SIP trunks.Note

When there is any mid-call feature involved with the call being recorded, the recording resource may change
due to the feature interactions. In previous Unified CommunicationsManager releases, the recording sessions
started by a near-end party continues when the far-end party can hold or transfer the call while the near-end
party remains connected. The only time the recording session restarts is when the near-end party holds and
resumes the call. However, for Gateway-based Recording, Unified Communications Manager no longer
maintains this behavior. Instead of continuing the recording session when the connected party of the near-end
changes, the recording session is re-started by the near-end party. In JTAPI, this "Recording-Re-trigger"
behavior results in extraCiscoTermConnRecordingEndEv andCiscoTermConnRecordingStartEv events
sent to applications. With the new behavior, each recording session is a complete section of the conversion
between two unique parties. A near-end connected party change can be caused by mid-call features such as
call transfer, call redirect, conference, shared line hold/resume, etc. Therefore, from JTAPI application
perspective, there can be multiple RecordingStart/Stop events within a single call. This applies to both
Gateway-based recording and Phone/BIB-based recording.

In CiscoUnified CommunicationsManager Release 10.0(1), CTI is introducing support for Gateway Recording
(in addition to existing phone-based BIB Device Recording). CTI applications, using Cisco JTAPI, is able to
differentiate a recording call's recording type and media forking device/cluster info from existing JTAPI

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
144

Features Supported by Cisco Unified JTAPI
Recording

interface and event; and a new JTAPI event is also introduced to identify recording failure as described below.
With this new Gateway Recording feature, either the gateway or the built-in bridge (BIB) can be used as the
recording resource based on the end user's preference and the availability.

The following interfaces extend TermConnEv and are delivered to callobserver. For shared lines, the system
delivers these events to call observers on the address or terminal of the talking terminal connections.
Applications receive no events if they have only the terminal whose connection is in the INUSE or BRIDGED
state.

CiscoTermConnRecordingStartEv
CiscoTermConnRecordingStartEv

Indicates the start of recording and is delivered to the call observer of the recording initiator. Auto
recording configuration or an application request can trigger recording.

CiscoTermConnRecordingEndEv
CiscoTermConnRecordingEndEv

Indicates the end of recording and is delivered to the recording initiator.

CiscoTermConnRecordingFailedEv
CiscoTermConnFailedEv

This interface is added for Cisco Unified Communications Manager Release 10.0(1) and indicates when
a call recording failed.

Exposing Recording Media Forking Info on CiscoRecorderInfo

Cisco JTAPI provides new APIs for Release 10.0(1): getMediaForkingDeviceType(),
getMediaForkingDeviceName(), getProtocolReferenceGUID(), and getMediaForkingClusterID() to expose
various call recording media forking information of a recording call to JTAPI application. These capabilities
are exposed on the existing interface of CiscoRecorderInfo, where applications can extract from
CiscoTerminalConnection and CiscoTermConnRecordingTargetInfoEv.

Exposing Recording Media Forking Device Type on CiscoCall

With Release 10.0(1), Cisco JTAPI introduces three new forking device types:

• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_NONE
• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE
• CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

Exposing Cluster ID on CiscoProvider

Cisco JTAPI provides API of CiscoProvider.getClusterID(), which returns the clusterID enterprise parameter
configured for the cluster. (Note that the cluster ID is an Enterprise parameter configurable from CUCM
admin page, and when this parameter is changed by administrator, the CTIManager service and CallManager
service would need to be restarted for it to take effect).

Secured Recording

With this enhancement a recording device can record a secure call if its device security capability is same as
or more than that of the agent. A recording request fails if the recording is attempted for an authenticated
device, or if the security capability of the recorder is non-secured and that of the agent is encrypted.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
145

Features Supported by Cisco Unified JTAPI
Recording

Backward Compatibility

This feature is not backward compatible and existing applications can be affected with the introduction of
this new feature. That is, when mid-call feature(s) is involved, there can be recording retrigger(s) with multiple
recording sessions within a single call, applications need to coordinate these recording sessions accordingly.
This new change of behavior applies to both Gateway-based recording as well as Phone/BIB-based recording.

For detailed information about these interface changes, see the following topics:

• CiscoJtapiException, on page 414

• Related Documentation, on page 287

• CiscoCall, on page 330

• CiscoProvider, on page 490

• CiscoProviderCapabilities, on page 502

• CiscoProviderCapabilityChangedEv, on page 504

• CiscoProviderObserver, on page 506

• CiscoRecorderInfo, on page 509

• CiscoTerminalConnection, on page 634

• CiscoTermConnRecordingTargetInfoEv, on page 592

Redirect
JTAPI 1.2 specifies that one of the preconditions of the CallControlConnection.redirect() method specifies
for the state of the connection to be in either the CallControlConnection.OFFERING or the
CallControlConnection.ALERTING state. Cisco Unified JTAPI also allows a connection in the
CallControlConnection.ESTABLISHED state to get redirected.

The redirect() method includes the following overloaded form in the CiscoConnection interface. It allows
applications to specify the behavior that is desired when a failure occurs while a call is redirected and specifying
the calling search space, or resetting the original called field.

Applications choose the desired behavior, by passing one of the following INT parameters in the overloaded
redirect method from the CiscoConnection interface:

• Redirect drop on failure—When a call is directed to a busy or an invalid destination, Cisco Unified
Communications Manager can either drop the call if the redirect fails or leave the call at the redirect
controller. The JTAPI application can then take corrective action, such as redirecting the call to another
destination. The option for the redirect mode parameter follows:

• CiscoConnection.REDIRECT_DROP_ON_FAILURE

• CiscoConnection.REDIRECT_NORMAL

• Calling Address search space—Redirect uses the calling search space parameter to indicate which
callingSearchSpace is used. Applications can either use the calling party search space or the redirect
controller search space. The parameter options for this scenario follow:

• CiscoConnection.CALLINGADDRESS_SEARCH_SPACE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
146

Features Supported by Cisco Unified JTAPI
Redirect

• CiscoConnection.ADDRESS_SEARCH_SPACE

• Resetting original called—The called address option parameter gets used to reset the original called
fields. The options for this scenario follow:

• CiscoConnection.CALLED_ADDRESS_UNCHANGED

• CiscoConnection.CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATION. This option
affects the fields when the call arrives at the redirect destination.

For more information, refer to the com.cisco.jtapi.extensions.CiscoConnection documentation.

For the scenario where A Calls B, B redirects to C, and C (redirect destination) does not represent a provider
observed address, JTAPI would provide CallCtlConnAlertingEv for Cwith cause code Ev.CAUSE_NORMAL.
Prior to release 5.0, the cause code specified Ev.CAUSE_REDIRECT for the same scenario.

This change kept the behavior consistent for scenarios where C observed or did not observe the provider.

When C is observed, for the same scenario, CallCtlConnAlertingEv at C is provided with CAUSE_NORMAL
from releases prior to 5.0, and that behavior continues without change.

Note

Redirect Set Original Called ID
Cisco Unified JTAPI applications can specify the preferred original called party DN in the redirect request.
The Redirect Set Original Called ID feature lets applications redirect a call on a connection to another destination
while letting the applications set the OriginalCalledID to any value. This enables applications to transfer the
call directly to the voice mail of another. For example, if A calls B and B wants to transfer the call to CVoice
Mail, applications can specify in the enhanced redirect request C as the preferred original called party and
destination party as CVoice Mail profile. With this request, calls appear in C Voice Mail profile with the Cisco
Unified Communications Manager originalCalledParty field as C. Typical voice mail applications look for
originalCalledParty information to identify a user voice mailbox.

Any application that redirects a call to a party by modifying the original called party can take advantage of
this feature.

This feature also changes the lastRedirectedAddress to the preferredOriginalCalledParty that gets specified
in the redirect request.

Note

The following callControlConnection interface applies for Redirect Set Original Called ID:

Interface CiscoConnection Extends callControlConnection With Additional Cisco Unified

Communications Manager-Specific Capabilities

redirect (java.lang.String destinationAddress, intmode, int callingSearchSpace,
java.lang.String preferredOriginalCalledParty)

This method overloads the CallControlConnection.redirect() method.

javax.telephony.Connection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
147

Features Supported by Cisco Unified JTAPI
Redirect Set Original Called ID

For details on the interface, see Cisco Unified JTAPI Extensions, on page 247 To view the message flow for
Redirect Set Original Called ID, see Message Sequence Charts, on page 759

Redirect to Device
With Release 11.5(1), the Redirect feature of Cisco Unified JTAPI is enhanced to allow you to redirect calls
to a specific device via the deviceName parameter. Even in shared line situations, the redirected call goes to
the target device only and not to other devices that share the phone line.

To support this feature, the following methods have been enhanced with a new deviceName field:

• CiscoConnection.redirect now includes a deviceName field, which allows you to target the redirect to a
specific device. If another device shares the same phone line, that device goes into remote-in-use state.
Cisco JTAPI delivers a TermConnPassiveEv and CallCtlTermConnInUseEv to the shared line devices.

• CiscoRouteSession.selectRoute also includes a deviceName field allowing the selectRoute() method to
take an array of destination device names. The order of device names corresponds to the order of route
selected. Once the route is selected, Cisco JTAPI attempts to redirect the call to the destination device.

Table 5: Method Structure

MethodInterface

redirect(String destinationAddress, int mode, int callingSearchSpace,
int calledAddressOption, String preferredOriginalcalledParty, String
facCode, String cmcCode, int featurePriority, byte[]
applicationXMLData, String deviceName)

CiscoConnection

selectRoute(String[] routeSelected, int[] callingSearchSpace, String[]
modifyingCallingNumber,String[] preferedOriginalCalledNumber, int[]
preferedOriginalCalledOption, String[] facCode, String[] cmcCode,int[]
featurePriority, byte[][] applicationXMLData, String[] deviceName)

CiscoRouteSession

Restrictions

The following restrictions apply:

• If an invalid deviceName is passed to the redirect method, the
REDIRECT_CALL_INVALID_DEVICE_NAME error gets thrown.

• The deviceName can be used to redirect calls within the cluster only. If the application attempts to redirect
a call across clusters with the deviceName completed, the
REDIRECT_CALL_INVALID_DEVICE_NAME gets thrown. To redirect calls across clusters, the
deviceName must be null, or the application must use other redirect methods.

• The deviceName must be associated to the directory number that the application passes to the redirect
method and not any other directory number. Otherwise, the
REDIRECT_CALL_INVALID_DEVICE_NAME error gets thrown

Backward Compatibility

There is no impact on backward compatibility as the above methods are overloaded.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
148

Features Supported by Cisco Unified JTAPI
Redirect to Device

Message Sequence Charts

Redirect to a Device, on page 1447

Redundancy
Configuration requires that devices are configured into device pools and are assigned static Cisco Unified
CommunicationsManager groups. Devices register with a particular Cisco Unified CommunicationsManager
server that handles call control signaling. When a server fails, the devices failover to the backup server in the
group. When the primary server comes back online, it waits until no active calls exist on the device, then
re-homes to the primary Cisco Unified Communications Manager server. Cisco Unified JTAPI informs the
applications of this transition by sending a temporary out-of-service message while registering to the backup
server.

Redundancy in CTI Managers
Cisco Unified JTAPI also offers transparent applications for redundancy via the CTI Manager. When the
primary CTIManager fails, Cisco Unified JTAPI automatically connects to the backup CTI Manager and
communicates the reconnection to applications. Instead of connecting to a single CiscoUnified Communications
Manager server, applications now connect to a set of CTIManagers. The applications supply the CTIManager
server names when they invoke JTAPI.

Cisco Unified JTAPI and the CTIManager maintain bidirectional heartbeat signals to detect a loss of
connectivity between them. The CTIManager detects when an application no longer runs and cleans up its
allocated resources. The following figure illustrates the“Logical Representation of JTAPI, CTIManager and
Cisco Unified Communications Manager in a cluster”

After Cisco Unified JTAPI successfully connects to the primary CTIManager, it alternately will attempt to
reconnect to the primary or backup CTIManager if the JTAPI connection to the CTIManager fails.

Note

Figure 12: Logical Representation of JTAPI, CTIManager and Cisco Unified Communications Manager in a Cluster

Invoking CTIManager Redundancy
When getProvider() method on the CiscoJtapiPeer is called during the application startup, Cisco Unified
JTAPI attempts a connection to the first CTIManager in the list and tries a connection to the next CTIManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
149

Features Supported by Cisco Unified JTAPI
Redundancy

if connection attempt fails with the first. If all the CTIManagers in the list are not available or if connection
is refused by all CTIManagers, an exception gets sent to the application, and no further reconnection attempts
occur. After the first successful connection, Cisco Unified JTAPI alternatively attempts to connect to the
backup or primary CTIManager when a failure to CTIManager or connection to CTIManager is detected.

The list of redundant CTIManagers designates a comma-separated list that is passed into the
CiscoJtapiPeer.getProvider(String providerString) method as a String. The usage for the providerString follows:

• providerString = CTIManager;login = XXX;passwd = YYY;appinfo = ZZZ (Non-redundant feature)

• providerString = CTIManager1, CTIManager2;login = XXX, passwd =YYY;appinfo = ZZZ (Redundant
feature)

Because the appinfo parameter is optional, the application provides no specific appinfo parameter. Cisco
Unified JTAPI generates one from a JTAPI instance ID and the local host name.

Note

Additionally, the jtapi.ini file may define different CTIManager lists to support the CiscoJtapiPeer.getServices()
method. Cisco Unified JTAPI accepts the following definition:

CtiManagers = <CTIManager1>, <CTIManager2>;<CTIManager3>

where

<CTIManager1>, <CTIManager2> specifies a redundant group.

<CTIManager3> specifies a nonredundant group.

From Unified CM Release 14SU3 onwards, support has been added to allow an application to specify a
CTIManager as having least priority. Prior to this, all CTIManagers in a redundancy group have equal
weightage. JTAPI would attempt to failover to the next availabe CTIManager in the group, if connection is
lost or not established to the current server.

This feature support is added to aid Dedicated Instance (DI) deployments that are cloud managed. It has been
extended as a general usage API for all applications.

An application needs to invoke setLeastPriorityCtiServer exposed on the <CiscoProvider>.

Once a CTIManager is marked as least priority, JTAPI includes the configured CTIManager internally into
the redundancy group. JTAPI attempts a connection to this CTIManager only if no other CTIManager is
available.

Once connected to the least priority CTIManager, JTAPI would deliver a
CiscoProvConnToLeastPriorCtiServerEv on provider to indicate it is now connected to least priority
CTIMaanger.

JTAPI internally monitors availability or reachability to the other servers in the group.

Once one of the servers are available, JTAPI would deliver a CiscoProvPrimNwReachableEv on the Provider
observer to indicate one of the other servers are reachable now.

JTAPI would later attempt a failover based on the configured fallback initiation time as specified by application
via the API.

If no time is specified, it would default to 10 min, post which JTAPI would forcefully failover application to
the CTIManager which is available now.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
150

Features Supported by Cisco Unified JTAPI
Invoking CTIManager Redundancy

On successful fallback, JTAPI would deliver a CiscoProvFallbackToPrimNwCompltdEv on Provider to
indicate it is no longer connected to the least priority CTIManager server.

CTIManager Failure
When Cisco Unified JTAPI detects a loss of connection to a CTIManager, the application receives notification
of this loss in service. The following events get sent to the application on the appropriate Observers:

• A CallObservationEndedEv event gets sent to all call observers on an address, and calls in progress end.
The calls get physically connected, but the application observation of the call ends because Cisco Unified
JTAPI cannot send call state changes.

• A CiscoAddrOutOfServiceEv event gets sent to all addresses on a terminal and a
CiscoTermOutOfServiceEv event gets sent to the terminal.

• This process repeats for all terminals in the provider user-controlled list. (A CiscoAddrOutOfServiceEv
event gets sent only to the addresses that have an active AddressObserver, and a
CiscoTermOutOfServiceEv event gets sent only to terminals with an active TerminalObserver.)

• The provider gets set in the out-of-service state, and the ProvOutOfServiceEv event gets delivered on
any ProviderObserver callbacks present on the provider.

Cisco Unified JTAPI attempts a connection to the next CTIManager in the list, and the ProvInServiceEv gets
sent to the ProviderObserver. The devices that previously registered under the application control get reinstated
in the new CTIManager After the device is reinstated, CiscoAddrInServiceEv and CiscoTermInServiceEv
events get sent to the application via the respective observers. All previously added observers are maintained.
If any calls exist on the devices, a snapshot of the call gets sent to the respective call observers.

CTI ports that were previously registered are reregistered with the same media parameters. RouteAddress
callbacks are maintained as before, and these calls get recovered on the new CTIManager. No call snapshot,
however, gets delivered to the RouteAddresses.

If a least priority CTIManager was set, and an application fails over to it, JTAPI delivers a
CiscoProvConnToLeastPriorCtiServerEv on Provider.

Heartbeats
Cisco Unified JTAPI and the CTIManager maintain heartbeat signals to discover a failure in either the
CTIManager or JTAPI. The CTIManager server controls the heartbeat parameters in the bidirectional heartbeat.
Applications can request a desired server heartbeat interval when they are initializing Cisco Unified JTAPI,
but the CTIManager can override it.

Applications specify the desired heartbeat parameter by using DesiredServerHeartbeatInterval in the jtapi.ini
setting.

Cisco Unified JTAPI specifies the desired heartbeat interval for the client during initialization. The CTIManager
specifies the client side heartbeat interval to Cisco Unified JTAPI and specifies the interval at which the server
(CTIManager) will send heartbeats. A failure to receive heartbeat message for twice the server-specified
interval results in a client-initiated teardown of the connection. To minimize heartbeat traffic, any messages
from the client to the server or events from the server to the client substitute for a heartbeat.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
151

Features Supported by Cisco Unified JTAPI
CTIManager Failure

Ringback on SIP 183 for Transferred Calls
In Release 11.0(1), Cisco JTAPI has been updated with how it responds to SIP 183 messages when a call is
transferred over a gateway or trunk. When an established call gets transferred over a trunk and a SIP 183 is
received, Cisco JTAPI moves the call to CallControlConnection.NETWORK_ALERTING state. When the
call is answered, Cisco JTAPI moves the call state to CallControlConnection.ESTABLISHED.

A new Cisco CallManager service parameter, CTI Report Ringback on SIP 183 with SDP, has been added
to configure this feature. When this sevice parameter is set to True, the above behavior applies. This is the
default setting.

If an application needs to use the legacy behavior, you can set the service parameter to False. Under this
setting, if the call call is transferred over a gateway or trunk, CTI will use the
CallControlConnection.NETWORK_REACHED state to report that the other network has been reached, but
CTI will not report back that a connection has been established.

Routing
Routing in JTAPI requires the configuration of a CTI Route Point on the Cisco Unified Communications
Manager. Multiple calls can be queued to this Route Point, but only a single line can be configured on a CTI
Route Point device.

JTAPI implementation of adjunct Routing, as described in the call center package, includes the following
actions:

• Registering route callbacks on Route Addresses

• Creating appropriate handlers in response to the various routing events (routeSelect, routeEnd)

CTI Route Points represent devices that can process any number of incoming
calls simultaneously on the same line. You can route calls by using the methods
in the javax.telephony.callcenter package, or you can accept, redirect, or disconnect
calls by using the methods in the javax.telephony.callcontrol package. You can
configure each CTI Route Point with a maximum of 34 lines. To support more
than 34 lines, provision additional route points. For details on how to configure
and administer the CTI Route Point, refer to the Cisco Unified Communications
Manager Administration Guide.

Note

The following figure shows the CTI Route Point configuration.

Figure 13: CTI Route Points

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
152

Features Supported by Cisco Unified JTAPI
Ringback on SIP 183 for Transferred Calls

Cisco Route Session Implementation
When a call comes in to the RouteAddress, the implementation starts a Route Session thread and sends the
application a RouteEvent. This thread in turn starts a timer thread to time the application response to a
RouteEvent with either a routeSelect() or an endRoute(). If the application responds with a routeSelect (String[]
selectedRoutes), JTAPI verifies that all preconditions are satisfied and then attempts to route the call to the
first destination that is specified in the array. If the destination is a valid and available number, the call gets
routed, and the application gets a RouteUsedEvent followed by a RouteEndEvent. Otherwise, if an error
occurs in routing (which may be caused by an invalid/busy/unavailable destination), the application gets a
ReRouteEvent. JTAPI starts the Timer Thread again before it sends the re-Route Event. Because Cisco Unified
Communications Manager does not support re-Routing, if the routing was unsuccessful, either the caller will
receive a busy tone, or the call will get dropped. The application can clean up all failure instances and/or send
JTAPI an endRoute to clean up the RouteSession. If the application does not respond with an endRoute(), the
JTAPI timer once again expires, and JTAPI cleans up the Route Session by sending the application a
RouteEndEvent().

If the routing timer expires before the application returns with a selectRoute() or an endRoute() method, the
Cisco Unified Communications Manager applies same treatment as when a call is made to an unregistered
phone (that is, play fast busy). If ForwardNoAnswer is configured on the Route Point, the call immediately
forwards to that number when the timer expires.

If the application cannot respond with a valid address to which to route the call, the application may choose
to call endRoute with an error. The JTAPI specification defines three errors in the RouteSession interface:
ERROR_RESOURCE_BUSY, ERROR_RESOURCE_OUT_OF_SERVICE, and ERROR_UNKNOWN. If
an endRoute is invoked on the RouteSession, the implementation currently accepts() the call at the
RouteAddress, so the caller may begin to receive ringback. If forwarding is configured for the Route Point,
the call gets forwarded when the Forwarding Timer expires.

Select Route Timer
Configure this timer via the JTAPI.ini configuration file that has a key called RouteSelectTimeout = 5000.
Use milliseconds as the unit. The default value for this timer specifies 5 seconds; however, depending on the
needs of the application, you can extend or decrease this timer to improve Route Session cleanup efficiency.
Ensure that this timer is not unreasonably large. Each Route Session as a thread represents a call to the Route
Point, and these Route Sessions should be cleaned up. Should an application expect significant delays between
receiving the Route Event and responding with a routeSelect/endRoute event, the application would want to
appropriately extend this timer.

Forwarding Timer
You can configure the timer for Forward on No Answer that is currently systemwide (that is, it applies to all
devices on Cisco Unified CommunicationsManager) via the Cisco Unified CommunicationsManager Service
Parameters configuration. The default value for this timer specifies 12 seconds. In future releases, a separate
timer for CTI Route Points might get included, so forwarding for the route point takes effect immediately
after JTAPI accepts the call (when the application calls an endRoute or if the routing timer expires).

Route Session Extension
CiscoRouteSession acts as a Cisco Extension to the JTAPI specification. Most importantly, this extension
exposes the underlying Call object to the Applications. CiscoRouteSession.getCall() returns CiscoCall, and

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
153

Features Supported by Cisco Unified JTAPI
Cisco Route Session Implementation

this call exposes other Call Model Objects such as the associated Addresses, Connections, and so on. The
extension also defines additional errors for the application.

Caller Options Summary
In the absence of a callback, or if RouteSession.routeSelect() or endRoute() has not responded to a routeEvent,
the caller receives nothing until

• The application can disconnect() or reject() the connection on the Route Point, and, thereby, the caller
receives a busy tone.

• The application can accept the call, and the Forward No Answer, if configured, kicks in.

• The application can drop the call. The caller holds the receiver but does not know what happened.

With a callback, if the application chooses to call an endRoute(), after endRoute() returns, the caller receives
a ringback until

• The client calls a disconnect() that would drop the call.

• The client redirects() the call.

• The forward on no answer timer that is configured via the scm.ini will kick in and forward the call unless
the preceding two options have already kicked in.

• If no forwarding is configured for the Route Point, the caller continues to receives a ringback unless the
first two options kick in.

Fault Tolerance When Using Route Points
One way for an application that uses route points to deal with fault tolerance requires connecting two JTAPI
applications to two different Cisco Unified Communications Managers, each registering a different
RouteAddress. For example, Application1 manages RouteAddress1 by using Communications Manager1.
Application2manages RouteAddress2 by using CommunicationsManager2. In CiscoUnified Communications
Manager Administration, ensure the ForwardNoAnswer configuration for these CTI Route Points is
administered, so they point to each other. In this example, RouteAddress1 would have FNA = RouteAddess2,
and RouteAddress2 would have FNA = RouteAddress1. If Communications Manager1 goes down, calls
forward to RouteAddress2, so Application2 takes over. Furthermore, both applications could be configured
to reconnect to the proper Cisco Unified Communications Manager server when they receive a
ProviderShutdown event.

Secure Conferencing
This feature informs applications whether a call is secure, allowing for secure conference calls. When the
overall security status of the call changes, secure conferencing provides applications with a notification in the
form of an event on the call. Applications receive the overall call security status of the call in the
CiscoCallSecurityStatusChangedEv when the overall call security status changes. When a terminal goes to
the talking state, JTAPI provides the call security status information to the applications. Applications can
query the security status of the call by using a new interface on CiscoCall. The system makes the security
status information available to applications when the applications start monitoring an existing call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
154

Features Supported by Cisco Unified JTAPI
Caller Options Summary

In shared address scenarios, the system also reports CiscoCallSecurityStatusChangedEv to the RIU parties.
The OverallCallSecurityStatusmatches the status reported on the active terminals. For example, in a three-party
conference with A (Encrypted), B (Encrypted), C (Authenticated), and C' (Authenticated), the system reports
CiscoCallSecurityStatusChangedEv with OverallCallSecurityStatus = Authenticated to C and C'. The system
delivers this event on a per-call basis.

SRTP key information will continue to be sent for encrypted parties whether or not the
OverallCallSecurityStatus is Encrypted. For example, in a three-party conference with A (Encrypted), B
(Encrypted), and C (non-secure), the OverallCallSecurityStatus of the conference call is NotAuthenticated.
However, the media that connects A, B, and the conference bridge continues to be encrypted because they
are encrypted parties. Thus, A and B receive SRTP keys despite the OverallCallSecurityStatus.

Backward Compatibility

This feature is backward compatible. The new parameter, EnableSecurityStatusChangedEv, in the jtapi.ini
file controls the new event CiscoCallSecurityStatusChangedEv that the secure conferencing feature generates.
Applications can turn on this parameter by adding the line “EnableSecurityStatusChangedEv = 1” to the
jtapi.ini file to receive this new event. By default, this parameter does not appear in the jtapi.ini file, so event
notification is disabled. The setCallSecurityStatusChangedEv() interface on
com.cisco.jtapi.extensions.CiscoJtapiProperties lets applications set this ini parameter programmatically.

For additional information, see CiscoCallSecurityStatusChangedEv, on page 366.

Secure Real-Time Protocol Key Material
This feature provides the mechanism that is needed to deliver Secure Real-Time Protocol (SRTP) key material
of an encrypted media session between authenticated end points within Cisco Unified Communications
Manager based Enterprise systems. To receive this key material, the administrator must configure the TLS
Enabled and SRTP Enabled flags in the Cisco Unified Communications Manager Administrator windows
and a TLS link must be established between JTAPI and the CTIManager.

Key materials get exposed in CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv. To get these events,
applications must enable rtpKeyEvenabled in CiscoTermEvFilter. By default, filters are disabled to maintain
backward compatibility. If filters are enabled, application always get CiscoRTPInputKeyEv and
CiscoRTPOutputKeyEv. A security indicator in these events indicates whether the media is encrypted and
whether keys are available.

CiscoRTPInputKeyEv contains key material of the input stream and CiscoRTPOutputKeyEv contains key
material of the output stream. Applications can use this key material to decrypt the packets and start monitoring
or recording themedia. Applicationsmust not store this keymaterial in a way that leaves the material vulnerable
to tampering, and applications must zero out or clear the entry for these keys when they go out of scope.

This key material contains

• Key Length

• Master Key

• Salt Length

• Master Salt

• AlgorithmID

• isMKIPresent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
155

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

• Key Derivation Rate

This enhancement also supports a secure media termination for CTIPorts and RoutePoints. To do this, the
application passes in supported encrypted algorithms in CTIPort and route point register requests. The
application gets an error if no TLS link and no SRTP Enabled flags exist. Whether media are encrypted or
not depends on whether the other end is interested in secure media and whether the algorithm is negotiated
successfully.

For mid-call monitoring, if the application comes up after a call is established between two end points, the
application must query Terminal.createSnapshot() and snapshot event CiscoTermSnapshotEv.
CiscoTermSnapshotCompletedEv gets sent, which indicates whether the current media between end points
is secure or not. Applications can query CiscoMediaCallSecurityIndicator to get a security indicator for a call;
however, this does not contain any key material in the event. If no calls exist on any of the lines on the terminal,
applications only get CiscoTermSnapshotCompletedEv. To maintain backward compatibility, these events
get generated only when an application enables the snapShotRTPEnabled filter in CiscoTermEvFilter.

CiscoRTPHandle gets added in all RTP events so that applications can correlate RTP events related to a single
call. For backward compatibility, no new events are generated when there is no secure media.

For more information on SRTP, see the Secure RTP Library API Documentation by David McGrew on
SourceForge.net.

The following sections describe the interface changes for SRTP key material.

Public Interface CiscoMediaEncryptionKeyInfo

getAlgorithmID()

This method returns the media encryption algorithm for the current stream.

int

getIsMKIPresent()

An MKI indicator that indicates whether MKI is present. Key management defines,
signals, and uses the MKI.

int

getKeyLength ()

This method returns the master key length.

int

getKey()

This method returns the master key for the stream.

byte[]

getSaltLength ()

This method returns the salt length.

int

getSalt()

This method returns the salt key for the stream.

byte[]

keyDerivationRate()

Indicates the SRTP key derivation rate for this session.

int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
156

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoMediaSecurityIndicator

MEDIA_ENCRYPTED_KEYS_AVAILABLE

Indicates that media terminated is secured and keys are available.

static int

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

Indicates that media is terminated in secured mode, but keys are not available because
SRTP is not enabled in Cisco Unified Communications Manager Administration User
windows. This could be because either no TLS exists or no IPSec is configured for this
application.

static int

MEDIA_ENCRYPTED_USER_NOT_AUTHORIZED

Indicates that media is terminated in secured mode, but keys are not available because
user is not authorized to get the keys.

static int

MEDIA_NOT_ENCRYPTED

Indicates that media is not encrypted for this call.

static int

CiscoRTPInputKeyEv

getCiscoMediaEncryptionKeyInfo ()

Returns CiscoMediaEncryptionKeyInfo only if the provider is opened with TLS link
and if SRTP enabled option is set for the application in Cisco Unified Communications
Manager User Administration; otherwise, it returns null.

CiscoMedia EncryptionKeyInfo

getCiscoMediaSecurityIndicator()

Returns media security indicator, which is one of the following constants from the
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

getCallID ()

Returns CiscoCallID object if CiscoCall is present when this event is sent. If no CiscoCall
is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered, CiscoProvider.getCall(
CiscoRTPHandle) may return null.

CiscoRTPHandle

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
157

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoRTPOutputKeyEv

getCiscoMediaEncryptionKeyInfo ()

Returns CiscoMediaEncryptionKeyInfo only if the provider is opened with TLS link
and if the SRTP enabled option is set for the applicationin CiscoUnified Communications
Manager User Administration. Otherwise, it returns null.

CiscoMedia EncryptionKeyInfo

getCiscoMediaSecurityIndicator()

Returns media security indicator, which is one of the following constantsfrom
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

getCallID ()

Returns CiscoCallID object if CiscoCall is present when this event is sent. If no CiscoCall
is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered, CiscoProvider.getCall(
CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoTermSnapshotEv

getMediaCallSecurityIndicator ()

Returns media security status for each active call on this device.

CiscoMediaCallMediaSecurity Indicator[]

CiscoTermSnapshotCompletedEv

This event has no methods.

CiscoMediaCallSecurityIndicator

getCiscoMediaSecurityIndicator()

Returns media security indicator, one of the following constants from
CiscoMediaSecurityIndicator:

MEDIA_ENCRYPTED_KEYS_AVAILABLE

MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

MEDIA_NOT_ENCRYPTED

int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
158

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

getCallID ()

Returns a CiscoCallID object if a CiscoCall is present when this event is sent. If no
CiscoCall is present, this method returns null.

CiscoCallID

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by using
CiscoProvider.getCall(CiscoRTPHandle). If no callobserver exists or if there was no
callobserver when this event is delivered, CiscoProvider.getCall(CiscoRTPHandle)
may return null.

CiscoRTPHandle

CiscoRTPInputStartedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPInputStoppedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPOutputStartedEv

getCiscoRTPHandle ()

Returns a CiscoRTPHandle object. Applications can get a call reference by
usingCiscoProvider.getCall(CiscoRTPHandle). If no call observer exists, or if there
was no call observer when this event is delivered,
CiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

CiscoRTPOutputStoppedEv

getCiscoRTPHandle ()

Returns CiscoRTPHandle object. Applications can get call reference
usingCiscoProvider.getCall(CiscoRTPHandle). If there is no call observer, or if there
was no call observer when this event is delivered,
thenCiscoProvider.getCall(CiscoRTPHandle) may return null.

CiscoRTPHandle

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
159

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoTermEvFilter

getSnapshotEnabled ()

Returns the enable/status of CiscoTermSnapshotEv andCiscoTermSnapshotCompletedEv
for the terminal.

boolean

setSnapshotEnabled (boolean enabled)

Sets enable/disable status of CiscoTermSnapshotEv. If disabled, CiscoTermSnapshotEv
and CiscoTermSnapshotCompletedEv are not sent to applications.

void

getRTPKeyEvEnabled ()

Returns the enable/disable status of CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv.

boolean

setRTPKeyEvEnabled (boolean enabled)

Sets enable/disable status for CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv.

void

CiscoTerminal

createSnapshot () throws InvalidStateException

This method generates CiscoTermSnapshotEv, which contains security statusof current
active call on the terminal. To access this method, the terminal must be in
CiscoTerminal.IN_SERVICE state, and CiscoTermEvFilter.setSnapshotEnabled () must
be set to True.

void

CiscoMediaTerminal

register (CiscoMediaCapability[] capabilities, int[]supportedAlgorithms)

The CiscoMediaTerminal must be in the CiscoTerminal.UNREGISTERED state and
its provider must be in the Provider.IN_SERVICE state. Thisinterface provides dynamic
registration with secure media. Ifapplications do not invoke this method, the media gets
terminated in non-secure mode.

void

register (java.net.InetAddress address, int port, CiscoMediaCapability[]

capabilities, int[] algorithmIDs)

The CiscoMediaTerminal must be in the CiscoTerminal.UNREGISTERED state, and
its provider must be in the Provider.IN_SERVICE state. This interface provides static
registration with secure media. If applications do not register this interface, the media
remains non-secured. AlgorithmIDs indicate SRTP algorithms that this CTIPort supports.
AlgorithmIDs maybe only one of CiscoSupportedAlgorithms.

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
160

Features Supported by Cisco Unified JTAPI
Secure Real-Time Protocol Key Material

CiscoRouteTerminal

register (CiscoMediaCapability)[] capabilities, int registrationType,

int[] algorithmIDs

The CiscoRouteTerminal must be in the CiscoTerminal.UNREGISTERED state, and
its provider must be in the Provider.IN_SERVICE state. By default, media gets
terminated in non-securemode. AlgorithmIDs indicate SRTP algorithms that this CTIPort
supports. AlgorithmIDs may be only one of CiscoSupportedAlgorithms.

void

CiscoSupportedAlgorithm Constants

AES_128_COUNTER

Secured Monitoring and Recording
This feature enables Cisco JTAPI to monitor and record secured calls. Monitoring and recording of calls was
introduced in Release 6.0 of the Cisco Unified Communications Manager, but it did not support secured
monitoring or recording of calls. For this release, the feature also supports secured calls.With this enhancement
a supervisor or recorder can monitor or record a secure call only if its device security capability is same as or
more than that of the agent. If the security capability of the monitor initiator's device is less than that of the
target, the request for monitor fails. Recording request fails if the recording is attempted for an authenticated
device, or if the security capability of the recorder is non-secured and that of the agent is Encrypted.

Cisco JTAPI throws a PriviledgeViolationExceptionwith CTIERR_SECURITY_CAPABILITY_MISMATCH,
when the monitoring request is rejected due to the supervisor not meeting the security capabilities of the agent.
A new API getTransactionID() is added to CiscoTermConnMonitorInitiatorInfoEv and
CiscoTermConnMonitorTargetInfoEv.

CiscoJTAPI delivers a new event CiscoAddrMonitoringTerminatedEv when the monitoring session is torn
down. This event is delivered to the Supervisor who had started the securedmonitoring session but had dropped
off from the monitoring call.

New APIs getCiscoAddrMonitoringTerminatedEvFilter() and setCiscoAddrMonitoringTerminatedEvFilter()
have been added to the interface CiscoAddrEvFilter for applications to get or set the filter value for the
CiscoAddrMonitoringTerminatedEv. By default, the filter is set to True and the event is delivered. To stop
receiving this event, applications must set this filter to False.

As before, When a monitoring call (call used by monitor initiator) is conferenced, the final call may not have
any connection to monitor target. When monitor initiator conferences another party to a monitoring call, both
parties can to listen to the audio between monitor target and caller.

Interface Changes

CiscoJtapiException, on page 414, CiscoTermConnMonitorInitiatorInfoEv, on page 585,
CiscoTermConnMonitorTargetInfoEv, on page 587, CiscoAddrMonitorTerminatedEv, on page 286,
CiscoAddrEvFilter, on page 303,

Message Sequences

Secured Monitoring Use Cases, on page 1280, Secured Recording, on page 1444

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
161

Features Supported by Cisco Unified JTAPI
Secured Monitoring and Recording

Backward Compatibility

This feature is backward compatible.

SelectRoute Interface Enhancement
The SelectRoute interface gets enhanced to take the parameters PreferredOriginalCalledNumber and
PreferredOriginalCalledOption. This enables applications to reset the OriginalCalled value to a specified
PreferredOriginalCalledNumber when the call gets routed. This interface takes a list of
PreferredOriginalCalledNumber, PreferredOriginalCalledOption, and corresponds them to the RouteSelected
list. If the call gets routed to Route at index I in the RouteSelected list, the PreferredOriginalCalledNumber
and PreferredOriginalCalledOption at index I get used. Applications get the following behavior with different
values for these parameters.

Below x, point to the index where the call is being routed. For example, if the call gets routed to Route n, then
value of x will equal n. If a PreferredOriginalCalledOption at index x is invalid or out of range, JTAPI defaults
it to CiscoRouteSession.DONOT_RESET_ORIGINALCALLED, and if PreferredOriginalCalledOption is
null, all the routing gets done with option CiscoRouteSession.DONOT_RESET_ORIGINALCALLED.

Note

When PreferredOriginalCalledOption[x] Is Set to CiscoRouteSession.RESET_ORIGINALCALLED

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
On, if R1 is available, then call will be routed to R1, and OriginalCalledNumber will be set to O1; if R1
is busy and R2 is available, then call will be routed to R2, and OriginalCalledNumber will be set to O2
… and so on.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
Om, and m < n, if R1 is available, the call will be routed to R1, and preferredOriginalCalled will be set
to O1; if R1 is busy and R2 is available, the call will be routed to R2, and OriginalCalledNumber will
be set to O2 and so on until m. From Route m+1, if Rm+1 is available, the call will be routed to Rm+1,
and OriginalCalledNumber will be set to Rm+1, and so on. Lastly, if Rn is available, the call gets routed
to Rn, and OriginalCalledNumber gets set to Rn".

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list is NULL, then if R1
is available, the call will be routed to R1, and OriginalCalledNumber will be set to R1; if R1 is busy and
R2 is available, the call will be routed to R2, and OriginalCalledNumber will be set to R2 … and so on.

When PreferredOriginalCalledOption[x] Is Set to CiscoRouteSession.DONOT_RESET_ORIGINALCALLED

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, ..
On, the call will be routed to one of the available routes, and the OriginalCalledNumber will remain
unchanged.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list contains O1, O2, …
Om, and m < n, the call will be routed to one of the available routes, and the OriginalCalledNumber will
remain unchanged.

• If RouteSelected list contains Routes R1, R2 .. Rn, and preferredOriginalCalled list is NULL, the call
will be routed to one of the available routes and OriginalCalledNumber will remain unchanged.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
162

Features Supported by Cisco Unified JTAPI
SelectRoute Interface Enhancement

When OriginalCalled gets set to PreferredOriginalCalled, LastRedirectingParty number also gets reset to
PreferredOriginalCalled.

Note

The following new or changed interfaces exist for SelectRoute Interface Enhancement:

selectRoute (java.lang.String[] routeSelected, int callingSearchSpace,

java.lang.String[] preferredOriginalCalledNumber, int[]

preferredOriginalCalledOption)

Selects one or more possible destinations for routing a call.

int

PreferredOriginalCalledOption takes one of the following values:

DONOT REESET_ORIGINALCALLED

Optional parameter value for PreferredOriginalCalledOption that specifies not to reset
OriginalCalled.

static int

REESET_ORIGINALCALLED

Optional parameter value for PreferredOriginalCalledOption that resets OriginalCalled
to preferredOriginalCalledNumber.

static int

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for SelectRoute Interface Enhancement, see Message Sequence Charts, on page 759.

selectRoute() with Calling Search Space and Feature Priority
The selectRoute() has feature priority and calling search space parameters as an array. This API provides the
flexibility of different feature priorities and calling search spaces for each route selected.

Interface Changes

CiscoRouteSession, on page 521

Message Sequences

selectRoute() with Calling Search Space and Feature Priority, on page 1122

Backward Compatibility

This feature is backward compatible. The selectRoute() API remains functional and interoperates with the
overloaded selectRoute() API.

Set MessageWaiting
SetMessageWaiting provides a method for applications to set the message-waiting lamp or indicator for an
address. Invoke the method on an address that is in the same partition as the destination.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
163

Features Supported by Cisco Unified JTAPI
selectRoute() with Calling Search Space and Feature Priority

The following interface specifies whether the message waiting indicator should be activated or deactivated
for the address that the destination specifies. If enable is true, message waiting activates if not already
activated. If enable is false, message waiting deactivates if not already deactivated.

{
public void setMessageWaiting (java.lang.String destination, boolean enable)

throws javax.telephony.MethodNotSupportedException,
javax.telephony.InvalidStateException,
javax.telephony.PrivilegeViolationException

}

Shared Line Support
Shared line represents the same DN appearances on multiple terminals. CiscoJtapi provides support for Shared
Line, which provides applications with the ability to control shared DN terminals, hold a call on one shared
DN Terminal and unhold the same call from another shared DN Terminal, make calls between two shared
lines, initiate a call from one shared line terminal while another active call exists on another shared line terminal
with the same DN.

Share line provides the following interfaces:

• CiscoAddress.getInServiceAddrTerminals()—Returns an array of terminals for which the address is in
service.
Terminal {} getInServiceAddrTerminals();

• CiscoAddrOutOfService.getTerminal()—Returns the terminal that is going out of service.
Terminal getTerminal();

• CiscoAddrInService.getTerminal()—Returns the terminal that is going in service.
Terminal getTerminal();

• CiscoConnection.setRequestController(TerminalConnection tc)—Allows an application to select a
terminalConnection that is associated with a connection on which you can perform park, redirect, or
disconnect operations. You need to do this in a situation where more than one active TerminalConnection
exists in a SharedLine scenario.

• CiscoConnection.getRequestController()—Returns TerminalConnection that application sets as request
controller.

• CiscoAddrAddedToTerminalEv—Gets sent when the following conditions occur:

• A Terminal/Device gets added into the user controlList that contains a SharedDN, which sends the
event to the application. In other words, if user has an address in control list, and a new device gets
added with same address in control list, this event gets sent.

• An EM (extension mobility) user logs into the terminal with a profile that contains a SharedDN. In
this scenario, this event notifies that a new terminal is added to an already existing Address.

• A new SharedDN is added to a device in a user control list

Interface getTerminal() returns the terminal that gets added to the address.

Interface getAddress() returns the address on which a new terminal is added.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
164

Features Supported by Cisco Unified JTAPI
Shared Line Support

• CiscoAddrRemoveFromTerminalEv—Gets sent when the following conditions occur:

• A user removes a Terminal/Device from the user controlList that contains a SharedDN. In other
words, if a user has a shared address in a control list, and one of the devices with same address gets
removed, this event gets sent.

• An EM(extension mobility) user logs out from the terminal that had a profile that contains a
SharedDN. This event notifies applications that one of the terminals is removed from an existing
Address.

• A new SharedDN (SharedLine) is removed from a device in a control list.

Interface getTerminal() returns the terminal that gets removed from the address.

Interface getAddress() returns the address from where the terminal gets removed.

The following changed or new behaviors exist for a SharedLine:

• Behavior changes for CiscoAddress event include

• JTAPI applications will receive multiple CiscoAddrInServiceEv for shared line addresses.
Applications can use CiscoAddrInServiceEv.getTerminal() to get the terminal on which address
goes in service.

• JTAPI applications receive multiple CiscoAddrOutOfServiceEv for shared line addresses.
Applications can use CiscoAddrInServiceEv.getTerminal() to get terminal on which address goes
out of service.

• The address state goes in service when a first shared line goes in service; for example, when the
first CiscoAddressInServiceEv gets received.

• The address state goes out of service when the last shared line goes out of service; for example,
when the last CiscoAddressOutOfServiceEv gets received.

• For an incoming call, all the line appearances of a shared line ring. To applications, this gets presented
as one active call (callActiveEv), one Connection(ConnCreatedEv), and multiple
terminalConnection(TermConnCreatedEv one each for each shared line).

• Calls get presented to all terminals. When a call is in a ringing state, the state of the terminal connection
equals Ringing. When a the shared line answers, the terminalConnection state goes to an active state,
while other terminalConnections on the shared line go to a passive state, and
callControlTerminalConnection for all the shared lines at this point go into a bridged state. When a call
is put on hold, all the terminal connections go into an active state, and callControllTerminalConnection
goes to a held state. At this point, any terminal can retrieve the call. The retrieving terminal
terminalConnection remains in an active state, and callControlTerminalConnection goes to a talking
state while all other shared terminals terminalConnections go into a passive state. Simultaneously,
CallControlTerminalConnection changes from a held state to a bridged state.

• A shared line can make a call to another shared line of the same DN. In this scenario, the call includes
only one connection and multiple terminal connections.

• When a shared line makes a call to another shared line of the same DN, the post condition for this equals
only one connection.

• For a shared line connectionwith two active terminalConnections (such as barge), Connection.Disconnect()
does not result in disconnected connection.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
165

Features Supported by Cisco Unified JTAPI
Shared Line Support

If an application is monitoring only a SharedDN Connection with only a passive or bridged
TerminalConnection, invoking any API on the connection results in a PreConditionException.

• Similar to the previous scenario, if all the connections of a call monitored by an application have only a
Passive or Bridged TerminalConnection, all APIs on the call throw a PreConditionException (such as
Call.Drop()).

• If more than one active TerminalConnection exists on a shared line, Call.drop() does not return in
CallInValid in the following scenarios:

• A normal two-party call between A and B, where A represents a SharedLine with A' and A' barged
into the call

The application does not monitor A' and B. If the application issues a Call.drop(), the A’
TerminalConnection goes into a passive state, but the call does not go InValid.

• Similar to above, if A, A' , A" and B are in a Conference Call

The application monitors only A and A', and Call.drop() does not result in the call going InValid.
Only the A and A' terminal connections go passive.

• A, A', and B, B' represent a SharedLine address

A calls B, B answers, and A' and B' barge into the call. The application monitors only A and B. In
this scenario, Call.drop() results in a TerminalConnection of A and B going passive, but the call
does not go InValid.

• If a TerminalConnection is in a passive or bridged state or Passive/InUse state, all APIs on the
TerminalConnection() throw a PreConditionException. A TerminalConnection only allows an API
Terminal ConnectionJoin() (called Barge) in the passive or bridged state. TerminalConnection does not
currently support TerminalConnection Join().

• If more than one active or talking TerminalConnections exists in a connection, applications may have
to end one before issuing an API on the connection like Redirect(), Park(), Disconnect(). You can select
TerminalConnection by using API Connection.setRequestController (TerminalConnection tc).

• If a call gets held on SharedLine terminals and an application issues a Connection.Disconnect (), the
applications may set a particular TerminalConnection through API
Connection.setRequestController(TerminalConnection tc). If requestcontroller is not set, all
HeldTerminalConnections get dropped, and connection goes to a disconnected state. If only one
HeldConnection gets dropped, the call remains present on other SharedLines terminals. The call appearance
disappears from the dropping terminal, which disallows the terminal from barging into the call or
participating in feature operations on the call.

For details on the interface changes, see Cisco Unified JTAPI Extensions, on page 247 To view the message
flow for shared lines, see Message Sequence Charts, on page 759

Silent Monitoring
This feature provides the ability to silently monitor calls using an IP Phone. The caller represents the end
point, which calls or receives a call from the monitor target. The monitor target is the party to monitor (in a
call centre, the agent), and the monitoring party is the monitor initiator (the supervisor).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
166

Features Supported by Cisco Unified JTAPI
Silent Monitoring

The recording feature lets applications record conversations on any observed address. Three recording
configurations are available:

The silent monitoring feature lets applications listen to a live conversation between two other parties. The
monitor initiator cannot talk to either the monitor target or the caller. The feature provides notification tones
when legal compliance is required.

Only an application request can initiate monitoring. The application must send a monitor request for each call
that it wants to monitor. The system can only monitor calls that are in a connected state. On the successful
completion of a monitor request, the audio stream between the monitor target and the caller streams to the
monitor initiator. The monitor target receive a tone:

• if the monitor target is configured to receive a tone, or

• if the application requests a tone when it starts the monitor

Applications can monitor calls if they belong to the Standard CTI Allow Call Monitor user group or can be
used outside of contact center. The system delivers monitoring-related events to all call observers.

“Monitor” is a reserved word that should not be configured as display names for any lines in the system. Other
reserved words are “Conference, ” “Park Number, ” “Barge, ” and “CBarge.”

When a monitoring session is established, the terminal observer on the monitoring initiator receives Cisco
RTP events. Although the media for a silent monitoring call flows only in one direction,
getMediaConnectionMode()would returnCiscoMediaConnectionMode.TRANSMIT_AND_RECEIVE instead
of CiscoMediaConnectionMode.RECEIVE_ONLY. Applications should expect to find the same behavior in
CiscoMediaOpenLogicalChannelEv if a CTIPort is used as the monitor initiator.

When a monitoring call (the call used by the monitor initiator) is conferenced, the final call does not have any
connection to the monitor target. When the monitor initiator conferences another party into a monitoring call,
both parties can listen to the audio between the monitor target and the caller.

The following interfaces extend TermConnEv and are delivered to the call observer. For shared lines, the
system delivers these events to call observers on the address or terminal of the talking terminal connections.
Applications receive no events if they have only the terminal whose connection is in the INUSE or BRIDGED
state.

CiscoTermConnMonitoringStartEv
CiscoTermConnMonitoringStartEv

Indicates the start of monitoring and is delivered to the call observer on the monitor target. Using
getMonitorType() on this event returns the monitor type.

CiscoTermConnMonitoringEndEv
CiscoTermConnMonitoringEndEv

Indicates the end of monitoring and is delivered to the call observer on the monitor target.

CiscoTermConnMonitorInitiatorInfoEv

Exposes monitor initiator information and is delivered to the call observer of the monitor target. This
interface has one method:CiscoMonitorInitiatorInfo getCiscoMonitorInitiatorInfo ()

Returns a CiscoMonitorInitiatorInfo that exposes the terminal name and address of the monitor initiator.

CiscoTermConnMonitorTargetInfoEv

Exposes monitor target information and is delivered to the call observer of monitor target. This interface
has one method:CiscoMonitorInitiatorInfo getCiscoMonitorTargetInfo()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
167

Features Supported by Cisco Unified JTAPI
Silent Monitoring

Returns a CiscoMonitorInitiatorInfo that exposes the terminal name and address of the monitor target.

Two new error codes notify applications about monitoring failures:

• CTIERR_PRIMARY_CALL_INVALID is returned by CiscoException.getErrorCode() for exceptions
that occur when a monitoring request fails due to the call going idle or getting transferred.

• CTIERR_PRIMARY_CALL_STATE_INVALID is returned when the monitoring request fails due to
the call transitioning to a different state where monitoring cannot be invoked.

This release introduces a new AddressType, MONITORING_TARGET. JTAPI creates a connection on an
address of this type for a monitoring target address; CiscoAddress.getType() returns this value.

Backward Compatibility

This feature is backward compatible. Applications will not see any new events unless this feature is configured
and used on one of the application-controlled addresses. The administrator can enable this feature by adding
Standard CTI Allow Call Monitor user groups.

For detailed information about these interface changes, see the following topics:

• CiscoJtapiException, on page 414

• Related Documentation, on page 287

• CiscoCall, on page 330

• CiscoMediaTerminal, on page 452

• CiscoMonitorTargetInfo, on page 464

• CiscoMonitorInitiatorInfo, on page 463

• CiscoProvider, on page 490

• CiscoProviderCapabilities, on page 502

• CiscoProviderCapabilityChangedEv, on page 504

• CiscoRecorderInfo, on page 509

• CiscoTerminalConnection, on page 634

• CiscoTermConnMonitorInitiatorInfoEv, on page 585

• CiscoTermConnMonitorTargetInfoEv, on page 587

Secured Monitoring

With this enhancement a supervisor can monitor a secure call only if its device security capability is same as
or more than that of the agent. If the security capability of the monitor initiator's device is less than that of the
target, the request for monitor fails.

Cisco JTAPI throws a PriviledgeViolationExceptionwith CTIERR_SECURITY_CAPABILITY_MISMATCH,
when the monitoring request is rejected due to the supervisor not meeting the security capabilities of the agent.
A new API getTransactionID() is added to CiscoTermConnMonitorInitiatorInfoEv and
CiscoTermConnMonitorTargetInfoEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
168

Features Supported by Cisco Unified JTAPI
Silent Monitoring

CiscoJTAPI delivers a new event CiscoAddrMonitoringTerminatedEv when the monitoring session is torn
down. This event is delivered to the Supervisor who had started the securedmonitoring session but had dropped
off from the monitoring call.

The APIs getCiscoAddrMonitoringTerminatedEvFilter() and setCiscoAddrMonitoringTerminatedEvFilter()
have been added to the interface CiscoAddrEvFilter for applications to get or set the filter value for the
CiscoAddrMonitoringTerminatedEv. By default, the filter is set to True and the event is delivered. To stop
receiving this event, applications must set this filter to False. As before, When a monitoring call (call used by
monitor initiator) is conferenced, the final call may not have any connection to monitor target. When monitor
initiator conferences another party to a monitoring call, both parties can to listen to the audio between monitor
target and caller.

Secured Monitoring Interface Changes

CiscoJtapiException, on page 414, CiscoTermConnMonitorInitiatorInfoEv, on page 585,
CiscoTermConnMonitorTargetInfoEv, on page 587, CiscoAddrMonitorTerminatedEv, on page 286,
CiscoAddrEvFilter, on page 303

Message Sequences

Secured Monitoring Use Cases, on page 1280, Secured Recording, on page 1444

Backward Compatibility

This feature is backward compatible.

Single Sign-On
The Single Sign-On feature allows Cisco JTAPI applications to use the single sign-on ticket to authenticate
instead of a user ID and password.

Applications fetch the service ticket for the OpenSSO server from the active directory and then pass the ticket
to Cisco JTAPI in the string used in the getProivder(String str) API. Applications can set the single sign-on
ticket as ssoticket = "ssotokenfromat".

Only end users can use this feature.

Applications using this feature need not specify the user ID and password in the getProvider string.

If an application is used by an end user and has the Standard CTI Secure Connection role enabled, then a user
ID is required in the provider string. No password is required.

This solution is designed around an active directory with a Kerberos environment to achieveWindows desktop
Single Sign-On. If an active directory with a Kerberos environment is unavailable, then an alternate equivalent
setup is available, which includes a KDC, an authentication server, and a domain controller.

Sample Code
String ssoticket = getSSOticket(); //application implementation
String providerString = cucmserver + ssoticket +";";
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
try
{
Provider provider = peer.getProvider (providerString);

}
catch (Exception exp)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
169

Features Supported by Cisco Unified JTAPI
Single Sign-On

{
if (exp instanceof PlatformException)
{
switch (((CiscoJtapiException)exp).getErrorCode())
{
case CiscoJtapiException. CTIERR_SSO_DISABLED:
System.out.println("SSO feature not enabled on CUCM ");
break;

case CiscoJtapiException. CTIERR_SSO_AUTH_SERVER_DOWN:
System.out.println("server down");
break;

}
}
else
{
System.out.println("Exception = " + exp.toString());

}

}

SSO Cookie

JTAPI supports authentication using SSO Cookie from Release 10.0.1 and later. An SSO Cookie, once
generated, is valid for the entire session. The cookie can be reused during that session. SSOCookie is supported
only on a Secure Connection. Cisco JTAPI does not allow authentication using SSO Cookie over non-secure
connections.

Applicationsmust also provide the fully qualified name of the client and server certificates in the providerString.

The following new keywords are being introduced to be used in the provider string : ssocookie, cCert, sCert.

The providerString must be in the following format when using an SSO Cookie:

providerString = "ssocookie = <cookie>;cCert = <fully qualified client certificate>;sCert = <fully
qualified server certificate>;"

Interface Changes

See CiscoJtapiException, on page 414

Message Sequences

See Single Sign-On, on page 1472

Backward Compatibility

This feature is backward compatible.

Single Step Transfer
This interface allows applications to transfer a call to an address. Cisco Unified JTAPI continues to support
this interface as defined in JTAPI 1.2 specification, but the events that are delivered to applications are changed
from the previous versions of Cisco Unified JTAPI.

In previous versions of Cisco Unified JTAPI, the original call goes to a held state, and a new call gets created
between the transfer controller and destination when applications use this interface. After successful completion
of transfer, both calls on transfer controller go to an IDLE state. If a transfer fails, the original call remains in

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
170

Features Supported by Cisco Unified JTAPI
Single Step Transfer

a held state, and applications retrieve the call. CiscoTransferStart and end events get delivered to the applications
at the start and completion of the transfer operation.

Applications get the following changes:

• A new call does not get created.

• CiscoTransferStartEv and CiscoTransferEndEv do not get delivered to applications.

• The state of the original call is retained if the transfer operation fails.

The pre and post conditions of this interface did not change.

To view the message flow for Single Step Transfer, see Message Sequence Charts, on page 759

SIP 3XX Redirection
The SIP Redirect server receives SIP requests and responds with 3xx(redirection) responses, which direct the
client to contact an alternate set of SIP addresses. This enhancement supports the CiscoUnified Communications
Manager Redirection (3xx) Call Control primitive in compliance with RFC 3261. The Cisco Unified
Communications Manager Redirection primitive processes SIP 3xx responses and does sequential hunting to
each contact address from the 3xx response. Cisco Unified Communications Manager Redirection primitive
also handles feature interactions that result from performing this operation. Cisco Unified JTAPI exposes new
reason codes in all CallEvs, which indicate when connection and terminalConnection are created and destroyed
as a result of this primitive.

LastRedirectAddress may change if feature interactions like JTAPI Redirect or CallForwardNoAnswer occur
when the Redirection primitive is hunting for a target. If the target does not answer and Cisco Unified
Communications Manager Redirect takes control of the call to send it to next target, lastRedirectAddress is
set to the party who originally sent the SIP 3xx response.

If a diversion header is present in the SIP 3xx response, the 3xx primitive uses the first value of the diversion
header for lastRedirectParty, and JTAPI applications will see the diversion header element as
lastRedirectAddress.

To maintain backward compatibility, JTAPI exposes the new API CiscoCallEv.getCiscoFeatureReason() in
the CiscoCallEv interface, which contains the reason as CM_REDIRECTION.

Applications should be aware that new feature-specific reason codes could be returned from this API, and
applications should provide default behavior for unrecognized reason codes.

Note

The following sections describe the interface changes for SIP 3XX Redirection.

Public Interface CiscoFeatureReason

REASON_CM_REDIRECTION

This reason indicates that event is a result of 3xx response from the CM_REDIRECTION
primitive in Cisco Unified Communications Manager.

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
171

Features Supported by Cisco Unified JTAPI
SIP 3XX Redirection

CiscoCallEv

getCiscoFeatureReason()

A feature specific reason for this event. Applications should make sure to handle
unrecognized reasons and provide default behavior as this interfacemay not be backward
compatible as new reasons might be added in the future.

int

SIP Phone Support
This release of Cisco Unified CommunicationsManager allows phones that run SIP to register and interoperate
with phones that run SCCP. The following sections describe the new interfaces introduced to support phones
that run SIP along with the limitations and differences in behavior with respect to phones that support SCCP.
Though not all existing features are supported on phones that run SIP, the general behavior in terms of JTAPI
events and interfaces for phones that run SIP are similar to that of a phone that runs SCCP.

JTAPI applications can only control Cisco Unified IP Phone 7900 Series that run SIP, which includes Cisco
Unified IP 7970 phones. Applications should not include Cisco Unified IP 7960, 7940, and other phones that
run the SIP protocol in their control list. JTAPI applications cannot control third-party phones that run SIP,
so third-party phones that run SIP should not be included in the control list.

In prior releases, JTAPI supported an initial feature set on phones that run SIP. In this release support is added
for the following functionality on phones that run SIP:

• Park for Phones that run SIP

• Unpark Phones that run SIP

The order of events for consult calls differs for phones that run SIP and SCCP phones. Consider the following
scenario:

Tip

1. Terminal A initiates a call to the shared line B/B'.
2. The shared line initiates a consult call to Terminal C.

If the shared line is a SIP device, the following call events occur:

• B (active) receives: OnHold -> Select -> NewCall

• B' (remote-in-use) receives: Select -> NewCall -> OnHold

However, if the shared line is a SCCP device, the call events are Select -> OnHold -> NewCall on both
terminals.

If the application is only monitoring, call.getConsultingTerminalConnection() may return null.

JTAPI supports the following features for phones that run SIP:

• Call.connect; offhook

• answer; disconnect; drop; hold, unhold

• consult; transfer; conference; redirect

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
172

Features Supported by Cisco Unified JTAPI
SIP Phone Support

• playdtmf, deviceData

JTAPI supports the following events for phones that run SIP:

• CiscoTermDeviceStateEv, RTP events, inService, and OutOfService

• MediaTermConnDtmfEv (only out of band is supported), transfer start and end events, conference start
and end events, CiscoToneChangedEv, and CiscoTermConnPrivacyChangedEv

Behavior of phones that run SIP differ from that of phones that run SCCP in the following ways:

• Call Rejection—When a call is made to a phone that runs SIP, the phone can choose to reject the call.
In this case, applications perceive CallActive, ConnCreatedEv followed by ConnDisconnectedEv for the
address on the SIP terminal. This is similar to RP rejecting the call.

• Consult without media calls involving SIP phones should be transferred within 1.5 seconds after the call
is connected.

• For phones that run SIP, enbloc dialing is always used even if the user first goes off hook before dialing
digits. The phone waits until all the digits are collected before sending the digits to the Cisco Unified
Communications Manager . This means that CallCtlConnDialingEv is delivered only after enough digits
are pressed on the phone to match one of the configured dialing patterns.

• Applications should configure “out of band DTMF” on all devices to receive MediaTermConnDtmfEv.

Events for CTI ports, route points, and phones that run SCCP are not changed.

When a Cisco Unified IP Phone 7900 Series model that runs SIP using UDP as transport fails connectivity
with Cisco Unified Communications Manager , JTAPI applications receive the events
CiscoTermOutOfServiceEv and CiscoAddrOutOfServiceEv for the terminal and address defined for the phone.
Because of the inherent delay in UDP in detecting the connectivity loss, the Cisco Unified IP Phone 7900
Series that runs SIP may visually show as registered after applications have already been notified with the
out-of-service events.

If Cisco Unified IP Phone s 7960, 7940, and non-Cisco Unified IP Phone 7900 Series that run SIP are included
in the control list, exceptions are thrown when observers (both observer and call observers) are added to the
address or terminal and CiscoTermRestrictedEv is delivered to a provider observer. The cause for these events
would be CiscoRestrictedEv.CAUSE_UNSUPPORTED_PROTOCOL.

CiscoTerminal exposes new interface getProtocol() to indicate whether terminal is a phone that runs SCCP
or a phone that runs SIP. CiscoTerminalProtocol defines the values that are returned by getProtocol().

The following new interfaces that are defined on CiscoCall let applications get URL information for external
SIP entities.

Public Interface CiscoCall

getLastRedirectingPartyInfo()CiscoPartyInfo

getCurrentCallingPartyInfo()CiscoPartyInfo

getCurrentCalledPartyInfo()CiscoPartyInfo

getCalledPartyInfo()CiscoPartyInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
173

Features Supported by Cisco Unified JTAPI
SIP Phone Support

Public Interface CiscoPartyInfo

getUrlInfo()CiscoUrlInfo

getAddress()Address

getDisplayName()string

getUnicodeDisplayName()string

getAddressPI()boolean

getDisplayNamePI()boolean

getlocale()boolean

Public Interface CiscoUrlInfo

getUrlType()

Final int URL_TYPE_TEL

Final int URL_TYPE_SIP

Final int URL_TYPE_UNKNOWN

int

getHost()string

getUser()string

getPort()int

getTransportType()

Final int TRANSPORT_TYPE_UDP

Final int TRANSPORT_TYPE_TCP

int

Public Interface CiscoTerminal

getProtocol ()int

CiscoTerminalProtocol

PROTOCOL_NONE

Indicates an unrecognized or unknown protocol type

static int

PROTOCOL_SCCP

Indicates the device is using SCCP to communicate to Cisco Unified Communications
Manager

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
174

Features Supported by Cisco Unified JTAPI
SIP Phone Support

PROTOCOL_SIP

Indicates the device is using SIP to communicate to Cisco Unified Communications
Manager

static int

SIP REFER or REPLACE
REFER is a SIP method that is defined by RFC 3515. The REFERmethod indicates that the recipient (referee,
identified by the Request-URI) should contact a third party (referred to as the target) by using the contact
information that is provided in the request. This REFER method allows the party who is sending the REFER
(referrer) to be notified of the outcome of the referenced request.

Cisco Unified CommunicationsManager, being a Back-To-Back User Agent (B2BUA), processes both inside
and outside dialog inbound REFER on behalf of the Referee. As result of REFER, Cisco Unified
Communications Manager creates a call between the Referee and the Refer-to-Target. Ifthere is a previously
existing call between the Referrer and the Referee, the call at the Referrer gets dropped after REFER completes.

The REPLACES feature is the replacement of an existing SIP dialog with a new dialog. A SIP dialog is a call
between two SIP user agents; a Cisco Unified Communications Manager dialog is a half call (callleg). The
REPLACES feature is triggered either by REFER or by an INVITE. Cisco Unified CommunicationsManager
handles a REPLACES request on behalf of the recipient of the REPLACES header. The request is associated
with a new dialog and the requesting party is the party that wants to replace another party in the existing dialog
(call) identified in the REPLACES header. Cisco Unified Communications Manager disconnects the dialog
(call) identified in the REPLACES header and connects the requesting party.

JTAPI is enhanced to model Call events caused by the Cisco Unified Communications Manager REFER and
REPLACE features in the JTAPI call model. JTAPI provides applications with the capability to handle call
events caused by REFER and REPLACE features. JTAPI does not provide any interface for applications to
initiate REFER or REFER/INVITE with REPLACES requests; however, JTAPI can handle the call events
properly.

These two features are backward compatible. JTAPI provides events that are caused by REFER/REPLACE
with CAUSE_NORMAL. Applications can get feature-specific reasons from the new interface
CiscoCallEv.getCiscoFeatureReason().

This interface provides feature-specific reasons for current and new features, but this method will not remain
backward compatible in future releases. Applications using this interface must implement default handling
to avoid future backward-compatibility issues.

Note

The following sections describe the interface changes for SIP REFER/REPLACE.

CAUSE Provided for REFER/REPLACE

JTAPI provides CAUSE_NORMAL for events that caused by REFER/REPLACES. Applications should use
CiscoCallEv.getCiscoFeatureReason() to get the feature-specific reason.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
175

Features Supported by Cisco Unified JTAPI
SIP REFER or REPLACE

Interface Provided on CiscoCallEv

This interface provides CiscoFeatureReason in the JTAPI call event. Older features, such as transfer, continue
to receive the old CiscoCause that is provided by the previous interface, CiscoCallEv.getCiscoCause(). This
new interface provides REASON_TRANSFER for transfer.
com.cisco.jtapi.extensions
Interface CiscoCallEv

getCiscoFeatureReason()

This interface returns Cisco Unified Communications Manager Feature Reason.

int

Interface CiscoFeatureReason

JTAPI provides CiscoFeatureReason in Call events caused by features. CiscoFeatureReason is provided for
existing as well as new Cisco Unified Communications Manager features. For REFER and REPLACES
features, the reason would be REASON_REFER and REASON_REPLACES. This interface will provide new
reasons for any new features that may be introduced in the future, and is not backward compatible.

Applications using CiscoFeatureReason should expect to receive new reasons in later releases and must
implement default behavior to maintain the Application’s backward compatibility.

Applications that use CiscoFeatureReason should expect to receive new reasons in later releases and must
implement default behavior to maintain backward-compatibility.

Public Interface CiscoFeatureReason

REASON_REFER

Reason returned for events that are sent for REFER by Cisco Unified Communications
Manager.

static int

REASON_REPLACE

Reason returned for events that are sent for REPLACEbyCiscoUnified Communications
Manager.

static int

SIP Trunk Early Offer
The SIP Trunk Early Offer feature allows the SIP trunk to support early offer outbound calls. The SIP trunk
does not use a Media Termination Point (MTP) when the media capabilities and port information of the phone
is available.

If the media port information is not available, the Cisco Unified Communications Manager allocates an MTP
to provide an offer.

If the application enables this feature and makes a call that goes though a SIP trunk, the Cisco Unified
Communications Manager must have the IP address and the port information of the registered terminal even
before the media is established. This eliminates the need for MTP.

The following are the changes done from the JTAPI perspective:

• A new interface, CiscoBaseMediaTerminal, extends CiscoTerminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
176

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

• A new register() API has the following arguments:

• IP Address

• Port

• Media Capability

• Algorithm ID

• IP_V6 Address

• Addressing Mode

• Registration Type

Applications use register() API to register CiscoMediaTerminal and CiscoRouteTerminal with the following
registration types available in CiscoBaseMediaTerminal.

• CiscoBaseMediaTerminal.NO_MEDIA_REGISTRATION (applicable only for route points)

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION (for dynamic registration of CTI
ports and route points)

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT

• CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION (for static registration of CTI port)

• CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT

The applications use the register() APIs on CiscoRouteTerminal and CiscoMediaTerminal for route points
and CTI ports to specify the registration type.

Note

To enable this feature, select one of the following:

• CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT for
registration type to register a CTI port or a route point dynamically

• CiscoBaseMediaTermial.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT for
registration type to register a CTI port or a route point statically.

If an application has enabled this feature and initiated a call that goes through a SIP Trunk, CiscoJTAPI
delivers a new event CiscoMediaOpenIPPortEv. On recieving this event, applications query for the registration
type using the API getRegistrationType(), which is exposed on this interface, and do the following based on
the value returned.

• If return value is
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT,
applications must set the RTP Parameters and open the port. At present, the applications set the RTP
parameters upon receiving CiscoMediaOpenLogicalChannelEv for dynamically registered
CiscoMediaTerminal and CiscoRouteTerminal.

• If return value is
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
177

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

applications must open the port. At present, most of the applcations open statically registered terminals
when they receive RTP events.

If an application tries to register a terminal, which is already registered with registration type as
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT or
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT, with a
different registration type, JTAPI throws a PlatformException with the error code as
CiscoJtapiException.CTIERR_MEDIA_ALREADY_TERMINATED_DYNAMIC_GETPORT_SUPPORT
or CiscoJtapiException.CTIERR_MEDIA_ALREADY_TERMINATED_STATIC_GETPORT_SUPPORT,
respectively.

A newAPI, isRTPRequired(), is also exposed on the interface CiscoMediaOpenLogicalChannelEv to indicate
if the applications must set the RTP parameters or not when they receive this event.

Applications must check the API when they recieve the CiscoMediaOpenLogicalChannelEv and set the RTP
Parameters only when the return value is true.

Early offer is not supported for IPv6 calls in release 8.5(1).Note

If an application registers a terminal with registration type as
CiscoBaseMediaTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT or
CiscoBaseMediaTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT and the IP
addressing mode as IPv6, the registration follows but this feature does not come into effect. The applications
do not receive the CiscoMediaOpenIPPortEv.

The application must close the ports when it receives media termination events or when a call is disconnected.

When IPv6 support is added, the application receives two CiscoMediaOpenIPPortEv, for dual mode devices,
one for IPv4 and the other for IPv6 addresses. When the call is answered, application closes the unused port
based on MediaIPAddressingType in CiscoMediaOpenLogicalChannelEv.

The service parameter, Fail Call Over SIP Trunk if MTP Allocation Fails, decides if the call must go through
as a delayed offer or not. If applications do not set the RTP parameters when they receive
CiscoMediaOpenIPPortEv for a dynamically registered terminal with get port support, this service parameter
decides if the call must go through as a delayed offer or not.

Interface Changes

See CiscoBaseMediaTerminal, on page 327, CiscoMediaOpenIPPortEv, on page 445,
CiscoMediaOpenLogicalChannelEv, on page 447, CiscoJtapiException, on page 414

Message Sequences

See SIP Trunk Early Offer, on page 1496

Backward Compatibilty

This feature is backward compatible.

This feature is applicable only when applications register the CiscoMediaTerminals and CiscoRouteTerminals
with registrationType as CiscoTerminal. DYNAMIC_MEDIA_REGISTRATION_GET_PORT or
CiscoBaseMediaTerminal. STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
178

Features Supported by Cisco Unified JTAPI
SIP Trunk Early Offer

Star (*) 50 Update
The Star (*) 50 feature enables you to divert a call to original called party (value returned by
CiscoCall.getCalledAddress() method) and the called party (value returned by
CiscoCall.getCurrentCalledAddress() method) from phone UI. After pressing the iDivert softkey, a menu
displays that identifies the names of the original called party and the called party.

The user selects one of the two names and the call is redirected to the voice mailbox of the selected party.
With the legacy iDivert, the call is diverted to original called party voice mailbox by just pressing iDivert
softkey. Cisco Unified CommunicationsManager Administration introduced the following Service parameters
to configure this feature:

• iDivert Legacy Behavior—Determines whether the phone uses the legacy iDivert behavior when a user
presses the iDivert softkey or the enhanced *50 iDivert behavior. If the iDivert legacy service parameter
is set to true, the iDivert legacy behavior is adopted and vice versa.

• Allow QSIG during iDivert–Determines whether iDivert legacy is allowed in deployments that have
voice messaging integration over QSIG trunks and only used when the Use Legacy iDivert service
parameter is set to true.

• iDivert User Response timer–Determines the number of seconds that Cisco Unified Communications
Manager Administration waits for a response from the user before the iDivert screen is removed. If no
user action occurs by the time this timer expires, the screen is removed from the phone. If the Use Legacy
iDivert service parameter is set to true, Cisco Unified Communications Manager Administration ignores
this parameter.

There is no interface change at JTAPI layer for this feature. The behavior changes from JTAPI application
point of view means that Calls could either go to voice mail of OrigicalCalled Party or Called.

Backward Compatibility

This feature is backward compatible.

Super Provider (Disable Device Validation)
When a JTAPI application user is configured, the system administrator normally associates a certain set of
terminals (Cisco Unified IP Phones and devices) with this application user, who can control and monitor only
this set of terminals. The Super Provider feature gives applications the ability to control and monitor any
terminal in a Cisco Unified Communications Manager cluster.

The new createTerminal() new interface in CiscoProvider lets the application create a terminal by specifying
a terminalName. JTAPI does not provide the capability to get the terminalName through any interface. The
CiscoProvider.createTerminal(terminalName) returns the terminal. If the terminal already exists in the provider
domain, JTAPI returns the existing terminal.

A second new interface, CiscoProvider.deleteTerminal(), lets the application delete the CiscoTerminal objects
that are created by using the CiscoProvider.createTerminal() interface. If the terminal object does not exist
or the application did not create the terminal with the CiscoProvider.createTerminal() interface, JTAPI throws
exceptions.

JTAPI also provides a new interface on CiscoProviderCapabilities, canObserveAnyTerminal(), which can be
enabled for application users through Cisco Unified Communications Manager Administration user

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
179

Features Supported by Cisco Unified JTAPI
Star (*) 50 Update

configuration. Applications can use this interface to determine whether they have sufficient capability to
invoke the createTerminal(terminalName) interface. If the application does not have sufficient capability and
this interface is invoked, JTAPI throws a PrivilegeViolationException. If the application provides a
terminalName that does not exist in the Cisco Unified Communications Manager cluster, JTAPI throws a
InvalidArgumentException.

Superprovider and Change Notification
Superprovider enhancements for JTAPI in this release consist primarily of the following changes.

When the “Superprovider privilege” gets disabled fromCiscoUnified CommunicationsManager Administration
after a provider opens, JTAPI gets notified through a CTI Change Notification Event and cleans up all the
devices that it has opened that are not in its control list.

JTAPI informs applications about the change using the “CiscoProviderCapabilityChangedEvent.” This new
event gets issued when the flag changes and indicates whether the flag has been enabled or disabled. When
a device that is not in the control list is opened in the Superprovider mode, then moved to the control list,
JTAPI moves the device into its control list.

• When a normal application receives a “CiscoProviderCapabilityChangedEvent”with the flag set, it means
the Superprovider privilege has been granted to it, and it can start acquiring devices not in its control list.

• When a Superprovider application receives a “CiscoProviderCapabilityChangedEvent” with the
Superprovider flag not set, it means that the Superprovider privilege has been removed for it. The following
sequence of events then occurs:

• Applications receive a Provider OOS event and all devices acquired/opened by it are closed.

• Applications receive a CiscoTermRemovedEv for all devices not in the control list that have been
acquired or opened.

• Applications receive a Provider inService event when JTAPI succeeds in reconnecting to CTI as a
normal user.

• Applications receive device and line information.

• Applications receive CiscoTermCreatedEv for all controlled devices that were open before the
provider went OOS.

• JTAPI notifies applications by using the “CiscoProviderCapabilityChangedEvent” when the “park DN
monitoring” flag is changed from Cisco Unified Communications Manager Administration.

• When an application receives this event with the flag set, it does a register feature for the controlling
park DN.

• When an application receives this event with the flag not set, JTAPI again informs applications by
using a “CiscoProviderCapabilityChangedEvent” and closes all the park DN addresses.

• JTAPI notifies applications by using the CiscoProviderCapabilityChangedEvent” when the “change
calling party number” flag is changed from Cisco Unified Communications Manager Administration.

• When an application receives this event with the flag set, it can change the calling party number.

• When an application receives this event with the flag not set, it cannot change the calling party
number.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
180

Features Supported by Cisco Unified JTAPI
Superprovider and Change Notification

Applications should not change the calling party number when this flag is disabled.

• When a device that is not in the control list is opened or acquired by Superprovider, and is then deleted
from Cisco Unified Communications Manager Administration, JTAPI closes the terminal object and
sends a CiscoTermRemovedEvent to the application for that device.

Interface Changes

As a part of the Superprovider and change notification enhancements, JTAPI exposes the following API to
applications. The JTAPI implementation for Superprovider and the handling of certain Provider capabilities
has changed as a result. Superprovider enhancements for JTAPI in this release consist of the JTAPI QBE
interface, changes in JTAPI behavior, and the new API which is exposed to applications.

JTAPI delivers CiscoProviderCapabilityChangedEv to the applications, with the following format. Applications
should be able to receive and process this new event from JTAPI.

public interface CiscoProviderCapabilityChangedEv {
public CiscoProviderCapabilities getCapability ();

}

CiscoProviderCapabilities have the following new methods for setting calling party modify privilege for the
provider:

public boolean canModifyCallingParty();
public void setCanModifyCallingParty(boolean value);

CiscoProviderCapabilityChangedEv is delivered to the applications with the appropriate flag values.

After this, the following sequence of events occurs:

• JTAPI sends provider OOS events to the application and device/line OOS to devices and lines in the
control list that are open.

• JTAPI then tries to reconnect to CTI.

• If reconnect succeeds, JTAPI sends a provider inService event and reopens all the devices in the
control list that were previously open.

• If reconnect does not succeed, JTAPI shuts down the provider and sends a ProviderClosedEvent.

• If Superprovider privilege is added, JTAPI sends a CiscoProviderCapabilityChangedEv to the applications
with the appropriate flag values.

• If the MonitorParkDN flag is enabled, JTAPI sends a CiscoProviderCapabilityChangedEv with the
monitor park DN flag set to true.

• If the MonitorParkDN flag is disabled, JTAPI sends a CiscoProviderCapabilityChangedEv with the
monitor park DN flag set to false.

JTAPI also closes all the park DN addresses and delivers a CiscoAddrRemovedEv to applications.

• When the ModifyCgPn flag is changed, JTAPI sets a flag in the provider object that is checked during
redirect scenarios, and applications are accordingly allowed or denied permission to change the calling
party.

JTAPI also delivers a CiscoProviderCapabilityChangedEv with the flag set to modify CgPn.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
181

Features Supported by Cisco Unified JTAPI
Superprovider and Change Notification

CiscoProvider Interface

hasSuperproviderChanged()

Tells the application whether the Superprovider privilege changed.

boolean

hasModifyCallingPartyChanged()

Tells the application whether the ModifyCgPn privilege changed.

boolean

hasMonitorParkDNChanged()

Tells the application whether the Park DN monitoring privilege changed.

boolean

Backward Compatibility

This feature is not backward compatible.

Support for Cisco Unified IP Phone 6901
Cisco Unified IP Phone 6901 is a new IP phone with keypad similar to other basic Cisco IP phones but this
phone does not have display, speaker phone, or head set jack. This phone supports only SCCP protocol.
Features such as Park, Unpark, Call Pickup, Group Call Pickup, Direct Transfer, Call Forward All, and Join
are not supported as softkeys are not provided for these features. These features are supported only fromCisco
Unified CommunicationManager. Cisco Unified IP Phone 6901 is a one line device and can support two calls
per line. So, features such as Join Across Lines and Direct Transfer Across Lines cannot be supported by
these devices.

One of the limitations of this phone is that to intiate or answer a call, the phone must be off-hook. If the phone
is on-hook and the user initiates or answers a call, JTAPI throws InvalidStateException to the application
with error code as CiscoJtapiException.OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE.

Another limitation is that Cisco Unified IP Phone 6901 does not accept XSI objects from applications, but if
the application calls sendData() API for these phones, JTAPI throws an exception for the request to the
applicationwith the error code as CiscoJtapiException.COMMAND_NOT_IMPLEMENTED_ON_DEVICE.

Table 6: List of Supported or Unsupported Features on Cisco Unified IP Phone 6901

ScopeSupported/UnsupportedFeature

From application onlySupportedPark

From application onlySupportedUnPark

From application onlySupportedCallPickup

From phone and applicationSupportedHold/Retrieve

From phone and applicationSupportedDirectTransfer

UnsupportedsendData() API

As only one line can be configured on the
phone

UnsupportedJoinAcrossLines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
182

Features Supported by Cisco Unified JTAPI
Support for Cisco Unified IP Phone 6901

ScopeSupported/UnsupportedFeature

As only one line can be configured on the
phone

UnsupportedDirectTransferAcrossLines

From phone onlySupportedAutoBarge

BIB cannot be configured on the phoneUnsupportedRecording

From application only

If 6901device is a supervisor.
If it is an agent then
monitoring is not supported.

Note

SupportedMonitoring

SupportedHunt-list support

From phone and application.SupportedConference

From application only.SupportedCallForwardAll

From application only.SupportedRedirect

UnsupportedEM-Login

Intercom line cannot be configuredUnsupportedIntercom

Interface Changes

See CiscoJtapiException, on page 414

Message Sequences

See Support for Cisco Unified IP Phone 6901, on page 1510

Backward Compatibility

This feature is backward compatible.

Support for Cisco Unified IP Phone 6900 Series
This feature allows Cisco Unified JTAPI applications to control terminals with rollover mode enabled. In
rollover mode, terminals are configured with multiple addresses with the same DN but in different partitions
or with different DNs. When rollover mode is enabled, consult calls can be created on the next available
address on the terminal. Cisco Unified IP Phone 6900 Series can be configured with rollover mode.

A new role Standard CTI Allow Control of phones supporting rollover mode has also been introduced to
allow applications to control terminals with rollover enabled. Applications that support this new behavior
where consult calls are created on a different address, must include this role to their application or end user.
If not, all terminals configured with rollover mode are restricted and exceptions are thrown to addObserver()
requests.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
183

Features Supported by Cisco Unified JTAPI
Support for Cisco Unified IP Phone 6900 Series

Applications that support this behavior are must add call observer on the terminal or add call observers on all
addresses on the terminal. Since consult call is created on the next available addresses, exceptions are thrown
to consult requests if call observers are not added to all addresses.

Join across lines must be enabled on Cisco Unified IP Phone 6900 Series to successfully complete conferences
from applications.

Cisco Unified Communications Manager Release 8.6, JTAPI supports multiple calls per line configuration
on Cisco Unified IP Phone 69xx series. Prior to Release 8.6, Cisco Unified IP Phone 69xx series supported
only one call per line, where Maximum Number of Calls/Busy Trigger defined for a line (MNC/BT) cannot
exceed 2/1. With multiple calls per line, Cisco Unified IP Phone 69xx series supports more than one call per
line, and MNC/BT is configured to values greater than 2/1.

Outbound Rollover Behavior for 69xx Phones

With MNC/BT configured as 2/1,

When a second call is initiated from a line, the new call will be created on (rollover to) the second line. Cisco
Unified Communications Manager Release 8.6 supports outbound rollover. If MNC is greater than 2, there
can be multiple calls on the line before the rollover occurs. For both Cisco Unified Communications Manager
Release 8.5 and 8.6, the outbound rollover occurs if MNC-1 calls are active on the line.

Outbound Rollover is supported only on the endpoints. Using the JTAPI application, you can make MNC
calls for a line; however, rollover will not happen at MNC-1, even if a second line exists).

Interface Changes

See CiscoProviderCapabilities, on page 502 and CiscoProviderCapabilityChangedEv, on page 504

Message Sequences

See Support for Cisco Unified IP Phone 6900 Series, on page 1234

Backward Compatibility

This feature is backward compatible.

Support for 100+ Directory Numbers
This feature enables users to have more than 100 Directory Numbers associated with a Device (Phones, CTI
Ports and Route Points). JTAPI supports this feature and displays the corresponding addresses on the terminal
to the application.

Interface Changes

There are no interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

This feature is backward compatible.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
184

Features Supported by Cisco Unified JTAPI
Support for 100+ Directory Numbers

Support for VMware
From Cisco Unified Communications Manager Release 8.0(1), Cisco JTAPI can be used on VMware ESXi
version 4.0. The application can useWindows 2003 andWindows 2008 virtual machines on the above VMware
version to run Cisco JTAPI. For more information on the supported Java Virtual Machines, see the following
table.

Table 7: Supported JVM Versions for Cisco Unified Communications Manager

Unified CM
12.5

Unified CM
12.0

Unified CM
11.5

Unified CM
11.0

Unified CM
10.5

Unified CM
10.0

VersionOperating
System

Not supportedNot supportedNot supportedNot supportedNot supportedNot supportedAS 3.0Linux

SupportedNot supportedNot supportedNot supportedNot supportedNot supportedRHEL 7 (64
bit)

Linux

Not supportedNot supportedNot supportedNot supportedNot supportedNot supportedRHEL 3.7Linux

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.79

RH 5.5 Oracle
JVM 1.7.0.76

RH 5.5 Oracle
JVM 1.7.0.40

RH 5.5 Sun
JVM 1.6.0.29

RHEL (32 bit)Linux

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

RHEL 5.5 (64
bit)

Linux

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.7.0.40

RHEL 6 (64
bit)

Linux

Not supportedNot supportedNot supportedNot supportedNot supportedNot supported6.2 on Sparc
and x86

Solaris

Not supportedNot supportedOracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows XP
2003, 2008
Server(32-bit)

Windows

Not supportedNot supportedOracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Vista (32 bit)Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows 7(32
and 64 bit)
2008 Server
R2(64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows 8(32
and 64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.6.0.29

Windows
Server 2012
R1 (32 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Not supportedWindows
8.1(32 and 64
bit)

Windows

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
185

Features Supported by Cisco Unified JTAPI
Support for VMware

Unified CM
12.5

Unified CM
12.0

Unified CM
11.5

Unified CM
11.0

Unified CM
10.5

Unified CM
10.0

VersionOperating
System

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Sun JVM
1.7.40

Windows
Server 2012
R2 (64 bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.76

Oracle JVM
1.7.0.40

Not supportedWindows
10(32 and 64
bit)

Windows

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Oracle JVM
1.7.0.79

Not supportedNot supportedNot supportedWindows
Server 2016(64
bit)

Windows

Interface Changes

There are no interface changes.

Message Sequences

There are no message sequences.

Backward Compatibility

Not applicable.

Swap or Cancel and Transfer or Conference Behavior
This feature enables Cisco Unified JTAPI support for Swap and Cancel operations on supported IP phones.

When a Swap operation is invoked, it puts an active call on hold and retrieves the held call. When a Cancel
operation is invoked, it breaks the consulting relationship between primary and consulting calls. These
operations can only be invoked from supported phones. The Cisco Unified JTAPI interface does not allow
SWAP/CANCEL operations to be invoked from the application. Whenever a user presses the SWAP key on
a phone, JTAPI delivers CallCtlTermConnHeldEv and CallCtlTermConnTalkingEv for active and held calls
and indicates their state change with CiscoFeatureReason.REASON_NORMAL.

When a CANCEL operation is invoked and the relationship is broken between primary and consulting calls,
Cisco Unified JTAPI is still able to use the Direct Transfer or Join feature to complete the transfer or conference
operation. If the user presses the CANCEL key on phone after initiating a consult, the conference or transfer
is not completed. Pressing the CANCEL key on phone triggers a Cancel notification to the application; Cisco
Unified JTAPI sends CiscoCallFeatureCancelledEv to indicate the CANCEL operation.
CiscoCallFeatureCancelledEv.getConsultCall() returns the earlier created consult call.

When the CANCEL operation is performed during a connected transfer or conference, the following can
occur:

• The user presses the CANCEL key before selecting the Active Call softkey:

In this case, pressing the Transfer key creates a consultCall GC3, and pressing the CANCEL key triggers
CiscoCallFeatureCancelledEv on GC2 with GC3 as a consult call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
186

Features Supported by Cisco Unified JTAPI
Swap or Cancel and Transfer or Conference Behavior

• The user presses the CANCEL key after pressing the Active Calls softkey but does this before selecting
the call on phone UI.

In this case, pressing the Active Calls softkey on the phone UI makes consultCall GC3 IDLE, but there
is no CANCEL notification, as other feature operations are possible. However, if the user presses
CANCEL, the CiscoCallConsultCancelEv with consult call as null, is trigerred.

• The user presses the Active Call softkey, selects a call and then presses CANCEL.

In this case, the selected call is returned as a consultCall with CiscoCallFeatureCancelledEv.

Interface Changes

See CiscoCallFeatureCancelledEv, on page 363

Message Sequences

See Swap or Cancel and Transfer or Conference Behavior Change, on page 1172

Backward Compatibility

This feature is backward compatible.

For this release, the Swap or Cancel feature is enabled without a service parameter to turn it off. This means
that Cisco Unified JTAPI always supports or reports events for Swap or Cancel for phones which support this
feature.

However, to provide backward compatibility for applications, a new permission that enables control of these
devices and to enable SWAP or CANCEL operation has been added. A new standard role Standard Supports
Connected Xfer/Conf and a standard user group are added in the admin pages for this feature. Applications
can control these devices only if this new role is associated to the application user, assuming that the application
uses JTAPI client 7.1.2 or higher. So, by default these devices are listed as restricted and only if application
upgrades to handle this feature and associates the new permission can it control these devices. If the application
uses an older JTAPI client the devices are not restricted but if the application tries to observe these devices
(which supports this feature to be invoked manually) then JTAPI throws an exception and marks these devices
as restricted from there on.

Since, the feature is designed to provide an enhanced user experience, it is strongly recommended for all Cisco
Unified JTAPI applications to evaluate and support this feature and upgrade if necessary with the code logic
to handle the old behavior and the new behavior.

Terminal and Address Capability Settings
This feature introduces interfaces that expose different configuration settings of address and terminal. These
interfaces can be called even when the terminal or address is in out-of-service state. All interfaces return the
values that are configured while registering with Cisco Unified Communications Manager. If the terminal is
not registered, an InvalidStateException is returned. Application can get the voice mail pilot even if the
terminal is not registered.

All the other changes, except voice mail, require the terminal to be reset for the new values to take effect.
Interfaces return new values only after phones re-register after reset. Applications can use the interface
CiscoProvTerminalRegisteredEv to read the configuration of the terminal and address.

The following configurations are exposed on CiscoAddress:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
187

Features Supported by Cisco Unified JTAPI
Terminal and Address Capability Settings

• Max calls configured

• Busy Trigger

• Position of address on a terminal

• Voice mail pilot

• ASCII and Unicode labels

CiscoTerminal provides new interfaces to applications to get the following configurations of a terminal:

• IPV4 and IPV6 IP addresses

• Outbound Rollover configuration

Terminal and address capability feature introduces new interfaces to determine if the terminal is capable of
performing the following features:

• Consult call rollover

• Out bound call rollover

• Join across lines

• Direct transfer across lines

• Join on same line

• Direct transfer on same line

Interface Changes

SeeRelatedDocumentation, on page 287, CiscoAddrEvFilter, on page 303, CiscoAddrVoiceMailPilotChangedEv,
on page 324, CiscoTerminal, on page 615, CiscoProvFeatureID, on page 483, CiscoProvTerminalRegisteredEv,
on page 488, and CiscoProvTerminalUnRegisteredEv, on page 489.

Message Sequences

See Terminal and Address Capability Settings Use Cases, on page 1238

Backward Compatibility

This feature is backward compatible.

Terminal and Address Restrictions
This enhancement restricts applications from controlling andmonitoring a certain set of terminals and addresses
when the administrator configures them as restricted in CiscoUnified CommunicationsManager Administration.

The administrator can configure a particular line on a device (address on a particular terminal) as restricted.
If a terminal is added into the restricted list in Cisco Unified Communications Manager Administration, all
addresses on that terminal are also marked as restricted in JTAPI. If an application comes up after the
configuration is completed, it can know whether a particular terminal or address is restricted from checking
the interface CiscoTerminal.isRestricted() and CiscoAddress.isRestricted(Terminal). For shared lines,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
188

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

applications can query the interface CiscoAddress.getRestrictedAddrTerminals(), which indicates whether
an address is restricted on any terminals.

If a line (address on a terminal) is added into the restricted list after an application comes up, the applications
will see CiscoAddrRestrictedEv. If the address has any observers, applications will see CiscoAddrOutOfService.
When a line is removed from the restricted list, applications will see CiscoAddrActivatedEv. If an address
has any observers, applications see CiscoAddrInServiceEv. Ifan application tries to add observers on an
address after it is restricted, a PlatformException gets thrown. However, if any observers are added before
the address is restricted, they will remain as is, but applications cannot get any events on these observers
unless the address is removed from the restricted list. Applications can also choose to remove observers from
an address.

If a device (terminal) is added to the restricted list after an application comes up, the application will see
CiscoTermRestrictedEv. If the terminal has any observers, the application will see CiscoTermOutOfService.
If a terminal is added to the restricted list, JTAPI also restricts all addresses that belong to that terminal and
applications will see CiscoAddrRestrictedEv. If a terminal is removed from the restricted list, applications
will see CiscoTermActivatedEv and CiscoAddrActivatedEv for the corresponding addresses. If an application
tries to add observers on a terminal after it is added to the restricted list, a PlatformException is thrown.
However, if observers are added before the terminal is restricted, they remain as is, but applications cannot
get any events on these observers unless the terminal is removed from the restricted list.

If a shared line is added to the restricted list after an application comes up, the application will see
CiscoAddrRestrictedOnTerminalEv. If any address observers exist on the address, the application will see
CiscoAddrOutOfServiceEv for that terminal. If all shared lines are added to the restricted list, when the last
one is added, applications will see CiscoAddrRestrictedEv. If a shared line is removed from the restricted list
after the application comes up, applications will see CiscoAddrActivatedOnTerminalEv. If any observers
exist on the address, the application will see CiscoAddrInServiceEv for that terminal. Ifall shared lines in the
control list are removed from the restricted list, applications will see CiscoAddrActivatedEv when the last
one is removed, and all addresses on terminals will receive InService events.

If all shared lines in the control list are marked as restricted, and an application tries to add observers, a
platform exception is thrown. If a few shared lines are in the restricted list, while others are not, when an
application adds an observer on the address. Only non-restricted lines go in service.

If any active calls are present when an address or terminal is added to the restricted list and reset, applications
will see connection and TerminalConnections get disconnected.

If no addresses or terminals are added to the restricted list, this feature is backward compatible with earlier
versions of JTAPI: no new events are delivered to applications.

The following sections describe the interface changes for address and terminal restrictions.

CiscoTerminal

isRestricted()

Indicates whether a terminal is restricted. If the terminal is restricted, all associated
addresses on this terminal are also restricted. Returns true if the terminal is restricted;
returns false if it is not restricted.

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
189

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoAddress

getRestrictedAddrTerminals()

Returns an array of terminals on which this address is restricted. If none are restricted,
this method returns null.

In shared lines, a few lines on terminals may be restricted. This method returns all the
terminals on which this particular address is restricted. Applications cannot see any call
events for restricted lines. If a restricted line is involved in a call with any other control
device, an external connection gets created for the restricted line.

javax.telephony.Terminal[]

isRestricted(javax.telephony.Terminal terminal)

Returns true if any address on this terminal is restricted.

Returns false if no addresses on this terminal are restricted.

boolean

public interface CiscoRestrictedEv extends CiscoProvEv {
public static final int ID = com.cisco.jtapi.CiscoEventID.CiscoRestrictedEv;

/**
* The following define the cause codes for restricted events
*/

public final static int CAUSE_USER_RESTRICTED = 1;

public final static int CAUSE_UNSUPPORTED_PROTOCOL = 2;

}

This is the base class for restricted events and defines the cause codes for all restricted events.
CAUSE_USER_RESTRICTED indicates the terminal or address is marked as restricted.
CAUSE_UNSUPPORTED_PROTOCOL indicates that the device in the control list is using a protocol that
is not supported by Cisco Unified JTAPI. Existing Cisco Unified IP 7960 and 7940 phones that are running
SIP fall in this category.

CiscoAddrRestrictedEv

Public interface CiscoAddrRestrictedEv extends CiscoRestrictedEv. Applications will see this event when
a line or an associated device is designated as restricted from Cisco Unified Communications Manager
Administration. For restricted lines, the address goes out of service and does not come back in service until
it is activated again. If an address is restricted, addCallObserver and addObserver throws an exception. For
shared lines, if a few shared lines are restricted, and others are not, no exception is thrown, but restricted
shared lines do not receive any events. If all shared lines are restricted, an exception is thrown when adding
observers. If an address is restricted after adding observers, applications see CiscoAddrOutOfServiceEv, and
when the address is activated, the address goes in service.

CiscoAddrActivatedEv

Public interface CiscoAddrActivatedEv extends CiscoProvEv. Applications see this event whenever a line
or an associated device is in the control list and is removed from the restricted list in the Cisco Unified
Communications Manager Administration. If any observers exist on the address, applications see
CiscoAddrInServiceEv. If no observers exist, applications can try to add observers, and the address goes in
service.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
190

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoAddrRestrictedOnTerminalEv

Public interface CiscoAddrRestrictedOnTerminalEv extends CiscoRestrictedEv. If a user has a shared
address in the control list, and if one of the lines is added into the restricted list, this event is sent. Interface
getTerminal() returns the terminal on which the address is restricted. Interface getAddress() returns the address
that is restricted.

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoAddrActivatedOnTerminal

Public interface CiscoAddrActivatedOnTerminalEv extends CiscoProvEv. When a shared line or a device
that has a shared line is removed from the restricted list, this event will be sent. The interface getTerminal()
returns the terminal that is being added to the address. The interface getAddress() returns the address on which
the new terminal is added.

getAddress()javax.telephony.Address

getTerminal()javax.telephony.Terminal

CiscoTermRestrictedEv

Public interface CiscoTermRestrictedEv extends CiscoRestrictedEv. Applications see this event when a
device is added into restricted list from Cisco Unified Communications Manager Administration after the
application launches. Applications cannot see events for restricted terminals or addresses on those terminals.
If a terminal is restricted when it is in InService state, applications get this event and terminal and corresponding
addresses move to the out-of-service state.

CiscoTermActivatedEv

Public interface CiscoTermActivatedEv extends CiscoRestrictedEv.

getTerminal()

Returns the terminal that is activated and is removed from the restricted list.

javax.telephony.Terminal

CiscoOutOfServiceEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
191

Features Supported by Cisco Unified JTAPI
Terminal and Address Restrictions

CiscoCallEv

CAUSE_DEVICE_RESTRICTED

Indicates whether an event is sent because a device is restricted.

static int

CAUSE_LINE_RESTRICTED

Indicates whether an event is sent because a line is restricted.

static int

SHA-512 Support for Digital Signatures
From Release 11.5(1), Cisco Unified Communications Manager supports the SHA-512 algorithm for CTL,
ITL and TFTP configuration file encryption. The TFTP File Signature Algorithm enterprise parameter has
been added to allow administrators to select which encryption algorithmwill be used. By default, this enterprise
parameter is set to SHA-1, but you can reconfigure the parameter to SHA-512.

Backward Compatibility

The SHA-512 algorithm is not supported prior to release 11.5(1). If an application is running a Cisco JTAPI
version that is prior to 11.5(1), that application must be using the SHA-1 algorithm in order to maintain a
secure connection.

Use Cases

SHA Support for Digital Signatures, on page 1533

Transfer
The transfer feature moves the participants of one call, the transferred call, to another call, the final call.
Moving participants in a call trasitions their associated connections to the DISCONNECTED state in the
transferred call and new connections for these participants getting created in the final call. Similarly, any
associated TerminalConnections transition into the DROPPED state in the transferred call and get created in
the final call. Cisco extensions by definition mark the start and the end of the events that relate to transfer.

You can correlate the newly created connection objects with the old connection objects by use of the
CiscoConnection.getConnectionID()method to obtain the CiscoConnectionID for the old and new connections.
Matching connections possess identical CiscoConnectionID objects when you compare them by using the
CiscoConnectionID.equals() method.

CiscoTransferStartEv
This event indicates that the transfer operation started, and the events that follow relate to this operation.
Specifically, Connections and TerminalConnections get both removed and added as a result of the transfer.

Applications may obtain the two calls that are involved in transfer-transferred call and final call and the transfer
controller information from this event. If the JTAPI application is not observing the transfer controller, the
transfer controller information does not get made available in this event.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
192

Features Supported by Cisco Unified JTAPI
SHA-512 Support for Digital Signatures

CiscoTransferEndEv
This event indicates that the transfer operation ended. After this event is received, the application can assume
that all involved parties transferred and that all Connections and TerminalConnections moved to the final call.

Transfer Scenarios
In the following scenarios, A, B, and C represent three parties that are involved in the transfer.

Consult Transfer; B Is the Transfer Controller

In a consult transfer, applications can redirect calls to a different address, and the transferrer can “consult”
with the transfer destination before redirecting.

• A calls B on call Call1.

• B answers and consults to C on call Call2.

• B transfers call Call2 to call Call1.

To do this type of transfer, use the following JTAPI methods:

• Call2.setTransferEnable(true) (This optional method means that transfer is enabled in the call object by
default.)

• Call2.consult(TermConnB, C)

• Call1.transfer(Call2)

During consult transfer, Call1.transfer(Call2) will transfer the call but not Call2.transfer(Call1).Note

The following table lists the core events that observers of A and B receive between the CiscoTransferStartEv
and the CiscoTransferEndEv.

Table 8: Core Events for Observers of A and B

FieldsEventCallMeta Event Cause

transferredCall = Call2 finalCall =
CalltransferController = TermConnB

CiscoTransferStartEvCall1META_UNKNOWN

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call1META_CALL_TRANSFERRING

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
193

Features Supported by Cisco Unified JTAPI
CiscoTransferEndEv

FieldsEventCallMeta Event Cause

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv
C TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv
C

Call1META_CALL_TRANSFERRING

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call2META_CALL_TRANSFERRING

TermConnDroppedEv C
CallCtlTermConnDroppedEv
C ConnDisconnectedEv C
CallCtlConnDisconnectedEv
CCallInvalidEv C

Call2META_CALL_TRANSFERRING

CallObservationEndedEvCall2META_UNKNOWN

transferredCall = Call2 FinalCall = Call1
transferController = TermConnB

CiscoTransferEndEvCall1META_UNKNOWN

Arbitrary Transfer; A Is the Transfer Controller

In an arbitrary transfer, one call can get transferred to another call, irrespective of how either call was created.
Unlike consult transfer, no need exists to first create one of the calls by using the consult method.

• A calls B on call Call1.
• A puts Call1 on hold.
• A calls C on call Call2.
• A transfers Call1 to Call2.

To do this type of transfer, use the following JTAPI methods:

• Call2.transfer(Call1) to transfer call Call1 to final call Call2, or
• Call1.transfer(Call2) to transfer call Call2 to final call Call1

Assuming Call1.transfer(Call2) was called, the following table lists the core events that observers on A and
C receive between CiscoTransferStartEv and CiscoTransferEndEv.

Table 9: Core Events for Observers of A and C

FieldsEventCallMeta Event Cause

transferredCall = Call2 finalCall = Call1
transferController = TermConnB

CiscoTransferStartEvCall1META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
194

Features Supported by Cisco Unified JTAPI
Transfer Scenarios

FieldsEventCallMeta Event Cause

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call1META_CALL_TRANSFERRING

ConnCreatedEv C
ConnConnectedEv C
CallCtlConnEstablishedEv
C TermConnCreatedEv C
TermConnActiveEv C
CallCtlTermConnTalkingEv
C

Call1META_CALL_TRANSFERRING

TermConnDroppedEv B
CallCtlTermConnDroppedEv
B ConnDisconnectedEv B
CallCtlConnDisconnectedEv
B

Call2META_CALL_TRANSFERRING

TermConnDroppedEv C
CallCtlTermConnDroppedEv
C ConnDisconnectedEv C
CallCtlConnDisconnectedEv
C CallInvalidEv C

Call2META_CALL_TRANSFERRING

Transfer and Conference Extensions
You may find that transfer and conference events are difficult to understand in JTAPI. This happens because,
when the participants are moved from one call to the other, JTAPI represents this action by deleting the parties
from one call and adding them to the other call. It may confuse you for an application to receive an indication
that a party dropped from the call when, in reality, it is in the process of being moved. The Cisco Unified
JTAPI implementation defines some extra events that make it easier for applications to deal with these
functions.

Transfer and DirectTransfer
The transfer feature provides the ability to transfer a call.

The direct transfer feature represents the ability to transfer any of the two calls that are present on the line, so
controller of the call drops out, and other two parties remain active on the call. This functionality gets supported
with one enhancement: this feature can be done in any state of the call and also can be redesigned to work
with new CTI events. The following enhancements apply to the transfer feature:

• The application can transfer two held calls.

• The application can have OneHeld and OneConnected call in any order.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
195

Features Supported by Cisco Unified JTAPI
Transfer and Conference Extensions

• The application can transfer any two calls that are present on the line.

The following changed or new interfaces exist for Transfer and DirectTransfer:

• CiscoTransferStarted. getTransferControllers()—This new interface, which is provided for SharedLine
scenarios, supports multiple terminalConnections if a SharedLine is a TransferController. When a
transferController is not a SharedLine, only a TerminalConnection occurs in the list. This method returns
null if the transfer controller is not being observed.

• CiscoTransferStarted. getTransferController()—This current interface, which behaves as it does for a
normal transfer, may exhibit a different behavior for SharedLines. When a transferController is a
SharedLine, multiple TerminalConnections exist. This method returns an ACTIVE TerminalConnection;
however, if the application is not observing the ACTIVE TerminalConnection, this method returns one
of the PASSIVE TerminalConnections.

• CiscoTransferEnded isSuccess()—This new interface, which is provided for the CiscoTransferEnded
event, returns true if the transfer operation succeeds and false if the transfer fails. Transfer failure may
result from the following events:

• The party dropped the call before CallProcessing could complete the transfer.

• CallProcessing cannot Complete the transfer.

The following changed or new behaviors exist for JTAPI Transfer:

• No Hold or UnHold messages occur with an arbitrary transfer.

• If a precondition for a transfer request has been modified, an application can issue transfer in any state
of the call.

• If an application does not have an active TerminalConnection that is passed as an argument, Call.consult()
throws a PreConditionException/InvalidArgumentException.

• If controller does not have any active TerminalConnection, Call.Transfer() throws a
PreconditionException/InvalidArgumentException.

To view the message flow for Transfer and DirectTransfer, see Message Sequence Charts, on page 759

Translation Pattern Support
If a calling party transformation mask is configured for a translation pattern that is applied to a JTAPI
application-controlled Address, the application may recognize extra connections that are created and
disconnected when both the calling and called party are observed. A Connection is created for a transformed
calling party instead of the actual calling party and CiscoCall.getCurrentCallingParty() would return the
transformed calling party, when only the called party is observed. In general, JTAPI might not be able to
create the appropriate Connection in the Call, and might not be able to provide correct information for
currentCalling, currentCalled, calling, called, and lastRedirecting parties.

For example, consider a translation pattern X that is configured with a calling party transformation mask Y
and called party transformation mask B. If A calls X, the call goes to B. In this scenario:

• If the application is observing only B, JTAPI creates a Connection for Y and B, and
CiscoCall.getCurrentCallingParty() would return Address Y.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
196

Features Supported by Cisco Unified JTAPI
Translation Pattern Support

• If the application is observing both A and B, a Connection for A and B gets created, a Connection for Y
gets temporarily created and dropped, and CiscoCall.getCurrentCallingParty() would return Address Y.

Other inconsistencies in the calling information could occur if further features get performed on a basic call.
Cisco recommends that you not configure a calling party transformation mast for a translation pattern that
might get applied to JTAPI application-controlled addresses.

Transport Layer Security (TLS)
This feature lets JTAPI applications communicate with CTIManager through a secure connection. CTIManager
runs a TLS listener socket to accept connections from JTAPI. Establishing a TLS connection requires a client
certificate, which the server uses to authenticate the client, and a server certificate, which the client uses to
authenticate the server.

In the Cisco Unified Communications Manager environment, the server certificate exists in the form of CTL
on the TFTP server, and JTAPI downloads this certificate. The initial download of CTL is trusted and occurs
without verification, so Cisco strongly recommends performing this download in a secure environment. One
of the two System Administrator Security Tokens (SAST) that are present in the CTL file signs the CTL;
subsequent CTL downloads get verified with the SAST from the old CTL file.

JTAPI connects to CAPF by using the CAPF protocol to get the client certificate (LSC). You can authenticate
these certificates with the issuers certificate present in CTL.

CTI tracks the number of provider connections that are created per client certificate. Applications can create
only one provider by using a client certificate. If more than one instance of a provider is created, both providers
get disconnected from CTI and go out of service. JTAPI will retry the connection to CTI to bring the original
provider in service; however, if both instances of provider continue to exist, after a certain number of retries,
provider gets permanently shut down, and the client certificate is marked as compromised. Any further attempt
to create a provider by using this client certificate fails. Applications must contact the administrator to configure
a new instanceId and download a new client certificate to resume operation.

Each client certificate is associated with a unique instanceId configured in the Cisco Unified Communications
Manager database. Applications can provide an instanceId in providerString as an optional parameter to use
a unique certificate while creating a CiscoProvider.

Note

To run multiple instances of applications with TLS, ensure that the application user is configured in the Cisco
Unified Communications Manager database with multiple instanceIDs. Applications use these unique
instanceIDs to get unique client certificates for each instance.

The JTAPI preferences application provides a graphic user interface to configure the Security parameters and
update server/client certificates. Application users need to configure the TFTPServer IP address, CAPFServer
IP address, Username, InstanceID, and AuthorizationString parameters through the JTAPI preferences to
download/install certificates on the application server.

New interfaces are provided for JTAPI client applications on the client layer object. For example, a JTAPI
client interface is provided on the CTIClientProperties class.

This feature is backward compatible with previous releases as JTAPI Applications can still connect to
CTIManager on non-secure socket connections.

The following sections describe the interfacr changes for TLS support in JTAPI.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
197

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

CiscoJtapiPeer.getProvider()

public javax.telephony.Provider getProvider(java.lang.String providerString)
throws javax.telephony.ProviderUnavailableException

This modified interface takes a new optional parameter InstanceID. It returns an instance of a Provider object,
given a string argument that contains the desired service name.

Optional arguments may also be provided in this string, with the following format:
< service name > ; arg1 = val1; arg2 = val2; ...

Where < service name > is not optional, and each optional argument = value pair that follows is separated by
a semicolon. The keys for these arguments are implementation-specific, except for two standard-defined keys:

• login—Provides the login user name to the Provider.

• passwd—Provides a password to the Provider.

CiscoJtapiPeer in providerString expects a new optional argument:

• InstanceID—Provides InstanceID for Application Instance.

InstanceID is needed when two or more instances of an application want to connect to Provider (CTIManager)
through a TLS connection from the same client machine. Each instance of an application requires its own
unique X.509 certificate to establish a TLS connection. If JTAPI attempts to open more that one connection
with same username/instanceID, CTIManager rejects the TLS connection. If instanceID is not provided, JTAPI
randomly picks one of the instances of USER and, in that case, the connection may fail if a connection for
the selected Instance already exists.

If the argument is null, this method returns some default provider as determined by the JtapiPeer object. The
returned provider is in the Provider.OUT_OF_SERVICE state.

Post-conditions:

this.getProvider().getState() = Provider.OUT_OF_SERVICE

Specified by

getProvider in interface javax.telephony.JtapiPeer

Parameters

providerString The name of the desired service plus an optional argument.

Returns

An instance of the Provider object.

Throws

javax.telephony.ProviderUnavailableException

Indicates that a provider that corresponds to the given string is unavailable.

CiscoJtapiProperties

JTAPI provides an interface on CiscoJtapiProperties to enable or disable the security option and install the
client/server certificates that are required to establish a secure TLS socket connection.
com.cisco.jtapi.extensions
Interface CiscoJtapiProperties

getSecurityPropertyForInstance

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
198

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

public java.util.Hashtable getSecurityPropertyForInstance()

This interface returns a Hash table with all the parameters set for User/InstanceID. The Hash table gets set
with the following “key–value” pairs:

VALUEKEY

userName“user”

InstanceIDstring “instanceID”

authCodestring “AuthCode”

capfServer IP-Addressstring “CAPF”

capfServer IP-Address portstring “CAPFPort”

tftpServer IP-Addressstring “TFTP”

tftpServer IP-Address portstring “TFTPPort”

certificate Pathstring “CertPath”

Boolean security option(true for enable/ false for disabled)string “securityOption”

Boolean certificate status(true for updated/ false for not updated)string “certificateStatus”

Returns—Hash table in the format described previously for the first user and instance.

getSecurityPropertyForInstance
public java.util.Hashtable getSecurityPropertyForInstance
(java.lang.String user, java.lang.String instanceID)

This interface returns a Hash table with all the parameters set for User/InstanceID. The Hash table is set with
the following “key–value” pairs:

VALUEKEY

userName“user”

InstanceIDstring “instanceID”

authCodestring “AuthCode”

capfServer IP-Addressstring “CAPF”

capfServer IP-Address portstring “CAPFPort”

tftpServer IP-Addressstring “TFTP”

tftpServer IP-Address portstring “TFTPPort”

certificate Pathstring “CertPath”

Boolean security option(true for enable/ false for disabled)string “securityOption”

Boolean certificate status(true for updated/ false for not updated)string “certificateStatus”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
199

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Parameters:

user - UserName for which you want security parameters

instanceID - InstanceID for which you want security parameters

Returns—Hash table in preceding format.

setSecurityPropertyForInstance
public void setSecurityPropertyForInstance(java.lang.String user,
java.lang.String instanceID,

java.lang.String authCode,
java.lang.String tftp,
java.lang.String tftpPort,
java.lang.String capf,
java.lang.String capfPort,
java.lang.String certPath,
boolean securityOption)

You can use this interface to set security properties for the following parameters:

Parameters:

user—UserName for which the security parameter is being updated

instanceID—InstanceID for which the security parameter is being updated

authCode—Authorization string

capf—IP-Address of CAPF server

capfPort—IP-Address port number on which the CAPF server is running, as defined in a CallManager Service
parameter. If the value is null, the default value is 3804.

tftp—IP-Address of TFTP server

tftpPort—IP-Address port number on which the TFTP server is running. The Cisco Unified Communications
Manager TFTP server usually runs on port 69. If the value is null, the default value is 69.

certPath—Path where certificate needs to be installed

updateCertificate
public void updateCertificate(java.lang.String user,

java.lang.String instanceID,
java.lang.String authcode,
java.lang.String ccmTFTPAddress,
java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress,
java.lang.String ccmCAPFPort,
java.lang.String certificatePath)

This interface installs an X.509 client certificate for the USER instance in the certificate store by connecting
to the Cisco Unified Communications Manager Certificate Authority Proxy Function (CAPF) server. Italso
downloads the Certificate Trust List (CTL) from the Cisco Unified Communications Manager TFTP server.

If the user credentials are not valid, this method throws a PrivilegeViolationException. If the TFTP server or
CAPF server address is not correct, this method throws an InvalidArgumentException. Every instance of an
application requires a unique client certificate. If a multiple instanceID is configured in the Cisco Unified
Communications Manager database, applications can call this interface multiple times to install a client
certificate for every instance.

Pre-conditions—When calling this interface, an application should have network connectivity with the Cisco
Unified Communications Manager CAPF and TFTP servers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
200

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Post-conditions—This process installs client and server certificates on the JTAPI application machine.

Parameters:

user—Name of the CTI application user that is configured in the Cisco Unified Communications Manager
database

instanceID—Application instance ID that is configured in the Cisco Unified Communications Manager
database. Everyinstance of an application requires a unique ID.

authCode—Authorization string that is configured in the Cisco Unified Communications Manager database.
You can use the authCode only once for getting certificates.

ccmTFTPAddress—IP-Address of the Cisco Unified Communications Manager TFTP server.

ccmTFTPPort—IP-Address port number on which the Cisco Unified Communications Manager TFTP server
is running. The Cisco Unified Communications Manager TFTP server usually runs on port 69. Ifnull, the
default value is 69.

ccmCAPFAddress—IP address of the Cisco Unified Communications Manager CAPF server.

ccmCAPFPort—Port number on which the Cisco Unified Communications Manager CAPF server is running,
as defined in the Cisco Unified Communications Manager Service parameters. If the value is null, the default
value is 3804.

certificatePath—Directory path where the certificate needs to be installed

Throws:

InvalidArgumentException—This exception gets thrown for an invalid TFTP server or CAPF server address.

PrivilegeViolationException—This exception gets thrown for an invalid user, instanceID, or authCode.

IsCertificateUpdated
public boolean IsCertificateUpdated

(java.lang.String user, java.lang.String instanceID)

This interface provides information about whether client and server certificates are updated for a given
user/instanceID.

Parameters:

user—UserName as defined in the Cisco Unified Communications Manager Administration.

instanceID—InstanceID for the specified UserName.

Returns—True if certificates are already updated; false if certificates are not updated.

updateServerCertificate
public void updateServerCertificate(java.lang.String ccmTFTPAddress,

java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress,
java.lang.String ccmCAPFPort,
java.lang.String certificatePath)

This interface installs an X.509 server certificate that is given the certificate path. If the TFTP server address
is not correct, this method throws an InvalidArgumentException. Auto update applications should use this
interface to update the server certificate before invoking an HTTPS connection with Cisco Unified
Communications Manager.

Pre-conditions—When calling this interface, applications should have network connectivity with the TFTP
server.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
201

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

Post-conditions—This interface installs the server certificate on the JTAPI application machine.

Parameters:

ccmTFTPAddress—IP address of the Cisco CallManager TFTP server.

ccmTFTPPort—Port number on which the Cisco Unified Communications Manager TFTP server is running.

If null, the default value is 69.

certificatePath—Directory path for installing the certificate.

ccmCAPFAddress—IP address of the Cisco Unified Communications Manager CAPF server.

ccmCAPFPort—Port number on which the Cisco Unified Communications Manager CAPF server is running.

If the value is null, the default value is 3804.

Throws:

InvalidArgumentException—If the TFTP server address is invalid.

Interface Provided on JTAPI Preferences

The JTAPI Preferences dialog box includes a Security tab to let application users configure the username,
instanceId, authCode, TFTP IP address, TFTP port, CAPF IP server address, CAPF server port, and certificate
path, and enable secure connection.

• “CAPF server port” number defaults to 3804.

You can configure this value in the Cisco Unified Communications Manager Administration service
parameters window. The CAPF server port value entered through JTAPI Preferences should match the
one that is configured in Cisco Unified Communications Manager Administration.

• “TFTP server port” number defaults to 69.

Do not change this value unless you are advised to do so by the System Administrator.

• “Certificate Path” is where the application wants the sever and client certificates to be installed.

If this field is left blank, the certificates get installed in the ClassPath of JTAPI.jar.

• “Certificate update Status” provides information on whether a certificate has been updated or not.

• You must select “Enable Secure Connection” to enable a secure TLS connection to Cisco Unified
Communications Manager.

If “Enable Security Connection” is not selected, JTAPI makes a non-secure connection to CTI even if
the certificate is updated/installed.

• The “Enable Security Tracing” check box lets you enable or disable tracing for the certificate installation
operation.

If tracing is enabled, you can select three different levels, Error, Debug, or Detailed, from the drop-down
menu.

You can use the JTAPI Preference UI to configure a security profile for one or more than one
userName/instanceID pair. When application users revisit this window, and have previously configured
security profile for a userName/instanceID pair, the security profile automatically gets populated when the
user enters a username/instanceID and clicks on other edit box.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
202

Features Supported by Cisco Unified JTAPI
Transport Layer Security (TLS)

The Trace Levels tab in the JTAPI Preferences UI is renamed as JTAPI Tracing. This highlights the fact that
the JTAPI Tracing tab only lets you change trace setting for the JTAPI layer. Tracing for the installation of
Security certificates must be enabled on the Security tab.

Unicode Support
Cisco Unified Communications Manager release 5.0 supports unicode display names on unicode-enabled IP
phones. You can configure ASCII names and unicode names for display names. JTAPI receives all names in
unicode and ASCII formats and provides two new interfaces, getCurrentCalledPartyUnicodeDisplayName
and getCurrentCallingPartyUnicodeDisplayName, toallow applications to get display names in unicode. Italso
provides the ability to get unicode display names during call progress.

JTAPI receives the encoding capability of application controlled IP phones in device registered and device
in service events from CTI, locale and language group information in device info response, and provides
interfaces to applications to get the locale, alternate script, and unicode capability of IP phones. CiscoTerminal
and CiscoTermInServiceEv interfaces are enhanced to provide this information for phones that are in the
application control list when the CiscoTerminal is in the inservice state.

JTAPI receives the alternate script information of all parties in the call and provides interfaces to applications
to get the language group of the current calling and current called party. Two interfaces,
getCurrentCallingPartyLanguageGroup and getCurrentCalledPartyLanguageGroup, are available on CiscoCall
to get this information. Applications also receive both ASCII and UCS-2 encoded unicode display names for
the current calling and called addresses.

Unicode support for JTAPI also includes:

• CiscoCall interface changes

• CiscoLocales interface changes

• CiscoTerminal / CiscoTerminalInServiceEv interface changes

Applications might need to reconfigure their username/password after upgrading to Release 5.0.

The following sections describe the interface changes for unicode support.

Interface CiscoCall Changes

The following newmethods on CiscoCall let applications get the unicode display names and the corresponding
locales.
/**
* This interface returns the unicode display name of the current called party
* in the call.
*/
public String getCurrentCalledPartyUnicodeDisplayName();

/**
* This interface returns the locale of the current called party unicode
* display name. CiscoLocales interface lists the supported locales.
*/
public int getCurrentCalledPartyUnicodeDisplayNamelocale();

/**
* This interface returns the unicode display name of the current calling party
* in the call.
*/

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
203

Features Supported by Cisco Unified JTAPI
Unicode Support

public String getCurrentCallingPartyUnicodeDisplayName ();

/**
* This interface returns the locale of the current called party
* unicode display name
*/
public int getCurrentCallingPartyUnicodeDisplayNamelocale();

CiscoLocales

The CiscoLocales interface lists all the locales that Cisco Unified JTAPI supports.

For a list of all supported locales in the most recent release, see the man page for CiscoLocales, on page 440.Note

public interface CiscoLocales
{
public static final int LOCALE_ENGLISH_UNITED_STATES;
public static final int LOCALE_FRENCH_FRANCE;
public static final int LOCALE_GERMAN_GERMANY;
public static final int LOCALE_RUSSIAN_RUSSIA ;
public static final int LOCALE_SPANISH_SPAIN ;
public static final int LOCALE_ITALIAN_ITALY ;
public static final int LOCALE_DUTCH_NETHERLAND ;
public static final int LOCALE_NORWEGIAN_NORWAY ;
public static final int LOCALE_PORTUGUESE_PORTUGAL;
public static final int LOCALE_SWEDISH_SWEDEN ;
public static final int LOCALE_DANISH_DENMARK
public static final int LOCALE_JAPANESE_JAPAN;
public static final int LOCALE_HUNGARIAN_HUNGARY ;
public static final int LOCALE_POLISH_POLAND ;
public static final int LOCALE_GREEK_GREECE ;
public static final int LOCALE_TRADITIONAL_CHINESE_CHINA;
public static final int LOCALE_SIMPLIFIED_CHINESE_CHINA;
public static final int LOCALE_KOREAN_KOREA;

}

CiscoTerminalInServiceEv Interface

getLocale()

This method returns the current locale information for this terminal.

int

getSupportedEncoding ()

This method returns true if this terminal supports unicode.

int

CiscoTerminal Interface

getLocale()

This method returns the current locale information for this terminal. The CiscoTerminal
must be in the CiscoTerminal.IN_SERVICE state to access this method.

int

getSupportedEncoding ()

This method returns the unicode capability of this Terminal. The CiscoTerminal must
be in the CiscoTerminal.IN_SERVICE state to access this method.

int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
204

Features Supported by Cisco Unified JTAPI
Unicode Support

The getSupportedEncoding () returns one of the following results that are defined in CiscoTerminal.
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this Terminal is UNKNOWN
*/
public final static int UNKNOWN_ENCODING = 0;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this is NOT_APPLICABLE.
* This is valid for only CiscoMediaTerminals and RoutePoints
*/
public final static int NOT_APPLICABLE = 1;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE> for this
* Terminal is ASCII and this terminal supports only ASCII_ENCODING
*/
public final static int ASCII_ENCODING = 2;
/**
* Indicates the <Code>CiscoTerminal.getSupportedEncoding ()</CODE>
* for this Terminal is UCS2UNICODE_ENCODING
*/
public final static int UCS2UNICODE_ENCODING = 3;

Unrestricted Unified CM
Cisco Unified JTAPI provides support for Unrestricted Cisco Unified Communications Manager, where
encryption is disabled.

This feature was added in Cisco Unified Communications Manager 7.1(5) and is available in 8.5(1) or later
versions.

Upgrade from an unrestricted version to a restricted version is not supported.Note

Currently, the administrator is unable to create a new role with security groups and roles - ‘Standard CTI
Secure Connection’ and ‘Standard CTI AllowReception of SRTPKeyMaterial’ as these roles are not available
in unrestricted Cisco Unified Communications Manager.

In case of an upgrade from non-secure restricted Cisco Unified Communications Manager to unrestricted
Cisco Unified Communications Manager, all the security features are disabled and standard CTI secure roles
associated with the end user are removed. But, the custom administrative roles created with CTI secure
privileges are not disabled in the Cisco Unified Communications Manager database.

In such cases, the application connects to the unrestricted Cisco Unified Communications Manager as a
non-secure application as the CTIManager filters out the information about CTI secure roles.

Upgrading from a secure restricted Cisco Unified Communications Manager to an unrestricted Cisco Unified
Communications Manager is not supported. To do so, you should first set the security mode of the secure
restricted Cisco Unified Communications Manager to non-secure and then upgrade to unrestricted Cisco
Unified Communications Manager.

Also, after an upgrade, the secure JTAPI application will not be able to connect to upgraded Cisco Unified
Communications Manager version. To achieve this, the application must delete the existing certificates and
disable secure connections.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
205

Features Supported by Cisco Unified JTAPI
Unrestricted Unified CM

If the application tries to register to the CTI ports or route points as secure phones in unrestricted Cisco Unified
Communications Manager, the request fails and JTAPI throws CiscoRegistrationExceptionImpl with error
code as CiscoJtapiException.CTIERR_USER_NOT_AUTH_FOR_SECURITY. However, in some scenarios
the registration request may pass but is followed by CiscoTermRegistrationFailedEv with a new errorCode
CTI_SECURITY_NOT_ALLOWED.

Interface Changes

See CiscoTermRegistrationFailedEv, on page 646

Message Sequences

See Unrestricted Unified CM, on page 1539

Backward Compatibility

This feature is backward compatible.

URI Dialing
Cisco Unified JTAPI provides CTI support for URI dialing using directory URIs. Cisco Unified JTAPI
differentiates between directory numbers and directory URIs by the presence of the@ symbol. If an@ symbol
is present, the address is a directory URI.

URI dialing is also supported for CTI Remote Devices. Remote destinations can be configured with directory
URIs as the remote destination number.

Interface Changes

The following interfaces support directory URI addresses as the dialed digits or destination address:

• Call.connect(Terminal origterm, Address origaddr, java.lang.String dialedDigits)

• CallControlCall.consult(TerminalConnection tc, java.lang.String dialedDigits)

• CallControlConnection.redirect(java.lang.String destinationAddress)

• CallControlCall.transfer(java.lang.String address)

• CallControlForwarding(java.lang.String destAddress)

Message Sequence

No effect on the message sequence

Backward Compatibility

No backward incompatible changes

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
206

Features Supported by Cisco Unified JTAPI
URI Dialing

Version Format Change
In release 6.0, the Cisco Unified JTAPI version changed from a 4-digit format to a 5-digit format that is similar
to the format used by Cisco Unified Communications Manager. The JTAPI version will remain similar to the
Cisco Unified Communications Manager version. New interfaces let applications get the extended version
number. See CiscoJtapiVersion, on page 259.

Backward Compatibility

This feature is backward compatible.

Verification Involving PSTN Reachability
The Verification Involving PSTN Reachability (VIPR) feature routes calls that are currently routed over
PSTN, over the internet. For a normal VIPR call, JTAPI supports a VIPR call but no notification is sent to
the application indicating that it is a VIPR call. Currently, VIPR calls are similar to Gateway or ICT calls.

When the quality of VIPR calls over an IP trunk drops below a certain threshold, the calls are automatically
routed through PSTN. JTAPI supports this fallback but does not report this to applications. Whenever VIPR
PSTN fallback happens, media is terminated and reestablished. Applications can view
CiscoRTPInputStoppedEv, CiscoRTPOutputStoppedEv followed by CiscoRTPInputStartedEv and
CiscoRTPOutputStartedEv indicating the same.

Interface Changes

There are no interface changes.

Message Sequences

See Verification Involving PSTN Reachability, on page 1581.

Backward Compatibility

This feature is backward compatible.

Video Capabilities and Multi-Media Information
In Cisco Unified Communications Manager 10.0(1), JTAPI is exposing video capabilities for supported
terminals and calls. Video capabilities for near and far-end terminals include whether they are video-enabled,
inter-operability with TelePresence, and the number of screens. Video attributes for calls will also be available
to JTAPI applications which would include IP/port address, codec, and other information. Using the provided
video terminal and call information, JTAPI applications will be able to better handle calls like routing incoming
video-capable calls to agents with video-enabled terminals.

Exposing Multimedia Capability on CiscoTerminal
Cisco JTAPI provides a new API, getCiscoMultiMediaCapabilityInfo() on CiscoTerminal to expose the
multimedia capabilities of the terminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
207

Features Supported by Cisco Unified JTAPI
Version Format Change

The Video Capabilities and Multi-Media Information application can determine:

• the video capability (either video disabled or video enabled) of the device,

• the number of screens on a SIP device (only), and

• if the device supports interoperability with telepresence devices.

These capabilities are exposed on a new interface CiscoMultiMediaCapabilityInfo, which will have the
following APIs to expose these capabilities:

• getVideoCapability(),

• getTelepresenceInfo(), and

• getScreenCount().

Exposing Changes in Multimedia Capability Via a New Provider Event
Any change in video capability of the terminal will be notified to the application by a new JTAPI event
(CiscoProvTerminalMultiMediaCapabilityChangedEv). Video capability can be changed only from the Admin
Device Configuration pages. Plugging in or out a Cisco Camera does not affect the video capability status,
hence the new event is not triggered in this case. This event is a JTAPI provider event, and will be delivered
only if the application has added provider observers. The terminal has to be in the registered state as a
pre-condition for receiving this event.

A change in Multimedia Capability through CiscoProvTerminalMultiMediaCapabilityChangedEv will not
be delivered to applications when the video capability of an SCCP Phone changes. In this case, the terminal
will unregister and register back; therefore the application needs to update the video capability after the
terminal is registered. See Scenario Three, on page 1541.

Note

Exposing Multimedia Capability on a CiscoCall
An application can detect if the far-end Party for an incoming call is video capable prior to media setup.
Consider a scenario where A calls B, the multimedia capabilities of the calling and called party will be exposed
on the CiscoCall on terminal B after the call is offered to terminal B. The Cisco JTAPI provides the
getCallingTerminalMultiMediaCapabilityInfo () and getCalledTerminalMultiMediaCapabilityInfo() APIs on
the CiscoCall to expose the multimedia capabilities of the calling and called party in a call.

The same APIs can be used to determine the multimedia capabilities for an outgoing call, but note that the
video capability will be known only after the call is answered. Consider a scenario where A calls B, B answers
the call, the multimedia capabilities of the calling and called party will be exposed on the CiscoCall on terminal
A after the call is answered by terminal B. The APIs getCallingTerminalMultiMediaCapabilityInfo() and
getCalledTerminalMultiMediaCapabilityInfo() return CiscoMultiMediaCapabilityInfo.

Exposing Multimedia Streams Information on CiscoTerminal
The new JTAPI terminal event CiscoMultiMediaStreamsInfoEv will be delivered to a terminal observer to
indicate multimedia streams information of a call. The multimedia streams information is exposed on the
interface CiscoMultiMediaProperties, via the API getProperties() on CiscoMultiMediaStreamsInfoEv. The

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
208

Features Supported by Cisco Unified JTAPI
Exposing Changes in Multimedia Capability Via a New Provider Event

Cisco JTAPI provides the multimedia streams information of the terminal after a call is connected. A
MultiMedia Stream may include a video stream, a presentation stream, or both.

A video capable device is a device that can do any of the following:

• receive video (Video capability enabled in Admin Device Configuration pages and Cisco Camera not
plugged in)

• send video (Video capability enabled in Admin Device Configuration pages and Cisco Camera plugged
in)

• both send and receive video (Video capability enabled on Admin Device Configuration pages and Cisco
Camera plugged in)

The following table describes the video capabilities that is provided by Cisco JTAPI for currently supported
devices.

Dynamic Video
Capability Change

Supports Multimedia
Streams Information

Supports Multimedia
Capabilities on
CiscoCall

Support Initial
Device Multimedia
Capability on
CiscoTerminal

ProtocolPhone Model

YesNoYesYesSCCP8945

YesYesYesYesSIP8945

YesYesYesYesSIP9951/9971

N/AYesYesYesSIPEX60/90

N/ANoYesN/ASCCPCTIPort

N/ANoYesN/ASCCPCTIRoutePoint

N/AYesYesYesSIPCTS 500-32

N/AYesYesYesSIPJabber
(CSF/softphone
mode)

Supported Features (Within the Same Cluster)
JTAPI will provide video capability information for same cluster calls involved in the following features:

• Originating Call and Consult Call

• Redirect

• Call Forward

• Hold and Resume

• Hunt List

• Transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
209

Features Supported by Cisco Unified JTAPI
Supported Features (Within the Same Cluster)

• Super Provider

• Extension Mobility

Supported Features (Across Clusters)
JTAPI will provide video capability information for across-cluster calls involved in the following features:

• Originating Call and Consult Call

• Redirect

• Call Forward

• Hold and Resume

• Hunt List

• Super Provider

• Extension Mobility

Limitations
The following are the limitations of the Video Capabilities and Multi-Media Information feature:

• Outgoing call - Applications observing only calling party will have calling and called party multimedia
capabilities as UNKNOWN until the called party answers the call. Refer to Scenario Eleven, on page
1551.

• Shared Line - Incoming call - calling and called party multimedia capabilities only if at least one of the
terminal connections on the cisco call is not in passive state. Refer to Scenario Nine, on page 1547.

• Shared Line - Incoming Call - Called party multimedia capabilities will not have correct multimedia
capabilities when more than one terminal connection is in ringing state. Refer to Scenario Ten, on page
1549.

• MultiMedia Streams Information - Cisco JTAPI will not deliver CiscoMultiMediaStreamsInfoEv on a
CiscoTerminal which is a SCCP phone.

• Incoming Call - If an outbound call is initiated over SIP Trunk configured with Early Offer then the
called party will just respond back with the capabilities it was offered during the initial offer and not its
complete capabilities. Refer to Scenario Fifteen, on page 1564.

• Change in called party - In scenarios like Shared Lines or redirect, where the called party changes, the
application will be notified of the new called party capability only if they configure the called party with
unique display names.

• HuntList - Cisco JTAPI will not deliver correct multimedia capabilities for calls involving huntlist in
broadcast mode.

Interface Changes

See the following sections for interface changes:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
210

Features Supported by Cisco Unified JTAPI
Supported Features (Across Clusters)

• CiscoCall, on page 330

• CiscoMasterKeyIndicator, on page 442

• CiscoMultiMediaCapabilityInfo, on page 466

• CiscoMultiMediaConnectionMode, on page 468

• CiscoMultiMediaEncryptionKeyInfo, on page 468

• CiscoMultiMediaProperties, on page 469

• CiscoMultiMediaStreamsInfoEv, on page 470

• CiscoMultiMediaType, on page 471

• CiscoProvTerminalMultiMediaCapabilityChangedEv, on page 487

• CiscoRTPPayload, on page 575

• CiscoRTPProperties, on page 576

• CiscoTermEvFilter, on page 612

• CiscoTerminal, on page 615

Message Sequences

See Video Capabilities and Multi-Media Information, on page 1540.

Backward Compatibility

This feature is backward compatible.

Video On Hold Support
In Cisco Unified Communications Manager Release 10.01, existing CiscoTerminalConnection.hold() API is
enhanced to take an additional parameter - contentID. This enhancement was designed/developed for the
Remote Expert solution. This newly added contentID is a pass through from application (JTAPI) to CCM.
JTAPI will not process or manipulate this value. The contentID will reference a VoH stream to be played
when the call is placed on hold.

The VoH files are housed externally on a media sense server. To have video on hold capability, the video on
hold server must be configured in CCMAdmin. This server coincides to the media sense server which houses
all the VoH files.

Backward Compatibility

This feature is backward compatible and existing applications will not be affected by this enhancement.

Voice MailBox Support
This feature exposes voice mailbox numbers, which let Cisco Unified Communications Manager JTAPI
applications forward calls from a directory number to the correct voice mailbox.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
211

Features Supported by Cisco Unified JTAPI
Video On Hold Support

The Cisco Unified CommunicationsManager Administrator can associate a voicemail profile for each directory
number. When the voicemail option is enabled for any forward setting, and if the corresponding forward is
enabled, the call rolls down to the voicemail pilot number that is associated with the voicemail profile.

The voicemail profile contains voicemail pilot number and voice mailbox mask fields. Voice mailbox mask
specifies themask that is used to format the voicemailbox number for auto-registered phones.When forwarding
a call to a voice messaging system from a directory line on an auto-registered phone, Cisco Unified
Communications Manager applies this mask to the number that is configured in the Voice Mail Box field for
that directory line.

For example, if you specify a mask of 972813XXXX, the voice mailbox number for directory number 7253
becomes 9728137253. If you do not enter a mask, the voice mailbox number matches the directory number
(7253 in this example).

Cisco Unified Communications Manager JTAPI Support

To support this feature, Cisco Unified Communications Manager JTAPI exposes voice mailbox numbers for
called party, lastRedirected party and originalCalled party. These voice mailbox fields are exposed on
CiscoPartyInfo, which is exposed on CiscoCall object. If voicemail is not configured for a party, then Cisco
Unified Communications Manager JTAPI will return empty Strings for voice mailbox fields.

In prior releases Cisco Unified Communications Manager JTAPI did not expose voice mailbox fields to
applications, so CiscoUnified CommunicationsManager JTAPI voicemailbox applications could not determine
whether a voice mailbox mask was configured for a voicemail profile, which could result in a voice mailbox
number that differs from the directory number.

Performance and Scalability

This feature does not increase the traffic from the Cisco Unified Communications Manager JTAPI layer to
the application layer. However, small performance impact could occur because of additional fields that are
passed over the network.

XSI Object Pass Through
Applications can pass XML objects through JTAPI and CTI interfaces to the phone. The XML object can
contain display updates, softkey update/enable/disable, and other types of updates on the phone that are
available through IP phone services features. This allows applications to access IP phone service capabilities
through JTAPI and CTI interfaces without maintaining independent connections to the phones.

CiscoTerminal Method
Applications can send an XSI object in the byte format to the Cisco Unified IPPhone through the CiscoTerminal
interface method. The system limits the payload to 2000 bytes of data with this interface.

CiscoTerminal must be in the <CODE>CiscoTerminal.REGISTERED</CODE> state; its provider must be
in the <CODE>Provider.IN_SERVICE</CODE> state. Successful response indicates that the data that was
pushed has arrived at the phone; however, the application cannot receive any XML, including the
CiscoIPPhoneResponse object from the push, back from the phone. If the application request is not successful,
a PlatformException is thrown. Any request with more than 2000 bytes of data is rejected.

public String sendData (String terminalData) throws InvalidStateException,MethodNotSupportedException;

Before the application can make use of this feature, it must add TerminalObserver on the terminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
212

Features Supported by Cisco Unified JTAPI
XSI Object Pass Through

Authentication and Mechanism
Sending an HTTP POST request to the phone web server, which requires the phone IP address, performs an
object push. The web server parses the request, authorizes the request through the HTTP that is returned to
the Cisco Unified CommunicationsManager, executes the request, and returns an XML response that indicates
the success or failure of the request to the application.

With XSI, the IP phone services object gets sent directly to the phone by the Skinny Client Control Protocol
(SCCP). The phone does not authenticate the request, because the JTAPI client is trusted and does not require
the phone IP address. For more information on actual XML contents, refer to the Cisco IPPhone Services
Application Development Notes.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
213

Features Supported by Cisco Unified JTAPI
Authentication and Mechanism

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
214

Features Supported by Cisco Unified JTAPI
Authentication and Mechanism

C H A P T E R 4
Cisco Unified JTAPI Installation

This chapter describes how to install and configure the Cisco Unified JavaTelephonyAPI (JTAPI) client
software for Cisco Unified Communications Manager.

• Overview, on page 215
• Required Software, on page 216
• Supported Platforms, on page 216
• Installing the Cisco Unified JTAPI Software, on page 216
• Using Cisco Unified CM JTAPI, on page 225
• Cisco Unified JTAPI Configuration Settings, on page 225
• Managing the Cisco Unified CM JTAPI, on page 238
• Administering User Information for JTAPI Applications, on page 239
• Fields in the jtapi.ini File, on page 239

Overview
The Cisco Java Telephony API (JTAPI) implementation comprises Java classes that reside on all client
machines that run JTAPI applications. Installation of the Cisco Unified JTAPI client must take place before
these applications can function correctly. Make sure that the Cisco Unified JTAPI classes are installed wherever
JTAPI applications run, whether on Cisco Unified Communications Manager Administration, a separate
machine, or both.

Starting from Release 11.5(1)SU9, Release 12.5(1), and any subsequent SU or ES releases in this release
train, Cisco JTAPI Client for Linux, and Windows will be available as the zip file (.zip) which includes the
JTAPI packages for Linux (32 and 64 bit) or Windows (32 and 64 bit), documentation, and sample codes.
You can download the zip files (CiscoJTAPIWindows.zip or CiscoJTAPILinux.zip), by clicking theDownload
link corresponding to the Cisco JTAPI Client for Linux (32 and 64 bit) or Cisco JTAPI Client for Windows
(32 and 64 bit) available in the Cisco Unified CM Administration interface, Find and List Plugins window
(Application > Plugins).

The JTAPI Installer provides a unified installation/uninstallation process for the JTAPI client for Linux and
Windows, as listed in the following table. For Cisco Unified CommunicationsManager 8.6(1) and later, Cisco
JTAPI is also supported on 64-bit platforms. For Linux versions, the installer generates a binary file (.bin),
and for the Windows version, it generates an executable file (.exe).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
215

Supported JVM Versions for Cisco Unified Communications Manager Administration

For a detailed breakdown of supported JVM versions for this release of Cisco Unified Communications
Manager, see https://developer.cisco.com/site/jtapi/documents/cisco-unified-jtapi-supported-jvm-versions/.

If you have upgraded from Cisco Unified Communications Manager Administration 4.x to 5.0 or later, you
must upgrade the JTAPI client software on any application server or client workstation on which JTAPI
applications are installed. If you do not upgrade the JTAPI client, your application fails to initialize.

Upgraded JTAPI client software does not work with previous releases of Cisco Unified Communications
Manager.

Note

Required Software
Cisco JTAPI requires the following software:

• Cisco Unified Communications Manager

• Supported Operating System Platform

Supported Platforms
For a detailed breakdown of supported Windows, Linux, and VMware platforms for Cisco Unified JTAPI,
see https://developer.cisco.com/site/jtapi/documents/cisco-unified-jtapi-supported-jvm-versions/.

For additional information on virtualization within a Unified Communications environment, see
http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_Unified_Communications_Manager_(CUCM).

Installing the Cisco Unified JTAPI Software

Installation Procedures
The following sections describe the installation procedures for the Linux and Windows platforms.

From Release 11.5(1)SU9, the following installers are replaced with .zip files (CiscoJTAPIWindows.zip and
CiscoJTAPILinux.zip).

• CiscoJTAPIClient-linux.bin

• CiscoJTAPIClient.exe

• CiscoJTAPIx64-Windows.exe

• CiscoJTAPIx64-Linux.bin

The following table lists the default JTAPI zip directory details. Classpath must be set accordingly to refer to
the new jars.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
216

Cisco Unified JTAPI Installation
Required Software

https://developer.cisco.com/site/jtapi/documents/cisco-unified-jtapi-supported-jvm-versions/
https://developer.cisco.com/site/jtapi/documents/cisco-unified-jtapi-supported-jvm-versions/
http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_Unified_Communications_Manager_(CUCM)

LD_LIBRARY_PATHCLASSPATH – Till 14SU2CLASSPATH – 14SU2Sample
applications,
documentation,
and JTPrefs

JTAPI
Libraries

Name/ Type of
Client

Not Applicable{Unzip
Location}\CiscoJTAPIx32\lib\cryptojcommon.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\cryptojce.jar;

{Unzip Location}\
CiscoJTAPIx32\lib\jcmFIPS.jar;

{Unzip Location}\
CiscoJTAPIx32\lib\sslj.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\jtapi.jar

{Unzip
Location}\CiscoJTAPIx32\lib\bc-fips.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\bcpkix-fips.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\bctls-fips.jar;

{UnzipLocation}\CiscoJTAPIx32\lib\jtapi.jar

{Unzip
Location}\
CiscoJTAPIx32

{Unzip
Location}\
CiscoJTAPIx32\lib

CiscoJTAPIWindows.zip

Not Applicable{Unzip
Location}\CiscoJTAPIx64\lib\cryptojcommon.jar;

{Unzip Location}\
CiscoJTAPIx64\lib\cryptojce.jar;

{Unzip Location}\
CiscoJTAPIx64\lib\jcmFIPS.jar;

{Unzip Location}\
CiscoJTAPIx64\lib\sslj.jar;

{Unzip Location}\
CiscoJTAPIx64\lib\jtapi.jar

{Unzip Location}\CiscoJTAPIx64\lib\
bc-fips.jar;

{Unzip
Location}\CiscoJTAPIx64\lib\bcpkix-fips.jar;

{Unzip
Location}\CiscoJTAPIx64\lib\bctls-fips.jar;

{Unzip Location}\CiscoJTAPIx64
\lib\jtapi.jar

{Unzip
Location}\
CiscoJTAPIx64

{Unzip
Location}\
CiscoJTAPIx64\lib

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
217

Cisco Unified JTAPI Installation
Installation Procedures

LD_LIBRARY_PATHCLASSPATH – Till 14SU2CLASSPATH – 14SU2Sample
applications,
documentation,
and JTPrefs

JTAPI
Libraries

Name/ Type of
Client

export
LD_LIBRARY_PATH=

$LD_LIBRARY_PATH:

{Unzip Location}/
CiscoJTAPIx32/lib

The
LD_LIBRARY_PATH
need not be set from
Release 14SU2.

Note

export CLASSPATH=$CLASSPATH:

{Unzip Location}/
CiscoJTAPIx32/lib/CiscoJCEProvider.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/libCiscoJCEJNI.so:

{Unzip Location}/
CiscoJTAPIx32/lib/libssl.so:

{Unzip Location}/
CiscoJTAPIx32/lib/libssl.so.1.0.1:

{Unzip Location}/
CiscoJTAPIx32/lib/log4j-1.2.17.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/libciscosafec.so:

{Unzip Location}/
CiscoJTAPIx32/lib/libciscosafec.so.3:

{Unzip Location}/
CiscoJTAPIx32/lib/libciscosafec.so.3.0.1:

{Unzip Location}/
CiscoJTAPIx32/lib/libcrypto.so:

{Unzip Location}/
CiscoJTAPIx32/lib/libcrypto.so.1.0.1:

{Unzip Location}/
CiscoJTAPIx32/lib/slf4j-api-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/slf4j-log4j12-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/slf4j-simple-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/jtapi.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/bcpkix-jdk15on-154.jar:

{Unzip Location}/
CiscoJTAPIx32/lib/bcprov-jdk15on-154.jar

Starting from release
12.5(1)SU5, 14SU1 and
any subsequent SU or ES
releases in this release
train, the JTAPI Linux
plugin will bundle
bcpkix-jdk15on.jar and
bcprov-jdk15on.jar
instead of
bcpkix-jdk15on-154.jar
and
bcprov-jdk15on-154.jar.
Classpath must be set
accordingly to refer to
the new jars.

Note

export CLASSPATH=$CLASSPATH:

{Unzip Location}\CiscoJTAPIx32\lib\
bc-fips.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\bcpkix-fips.jar;

{Unzip
Location}\CiscoJTAPIx32\lib\bctls-fips.jar;

{Unzip Location}\CiscoJTAPIx32
\lib\jtapi.jar

{Unzip
Location}\
CiscoJTAPIx32

{Unzip
Location}\
CiscoJTAPIx32\lib

CiscoJTAPILinux.zip

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
218

Cisco Unified JTAPI Installation
Installation Procedures

LD_LIBRARY_PATHCLASSPATH – Till 14SU2CLASSPATH – 14SU2Sample
applications,
documentation,
and JTPrefs

JTAPI
Libraries

Name/ Type of
Client

export
LD_LIBRARY_PATH=

$LD_LIBRARY_PATH:

{Unzip Location}/
CiscoJTAPIx64/lib

export CLASSPATH=$CLASSPATH:

{Unzip Location}/
CiscoJTAPIx64/lib/CiscoJCEProvider.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/libCiscoJCEJNI.so:

{Unzip Location}/
CiscoJTAPIx64/lib/libssl.so:

{Unzip Location}/
CiscoJTAPIx64/lib/libssl.so.1.0.1:

{Unzip Location}/
CiscoJTAPIx64/lib/log4j-1.2.17.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/libciscosafec.so:

{Unzip Location}/
CiscoJTAPIx64/lib/libciscosafec.so.3:

{Unzip Location}/
CiscoJTAPIx64/lib/libciscosafec.so.3.0.1:

{Unzip Location}/
CiscoJTAPIx64/lib/libcrypto.so

{Unzip Location}/
CiscoJTAPIx64/lib/libcrypto.so.1.0.1:

{Unzip Location}/
CiscoJTAPIx64/lib/slf4j-api-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/slf4j-log4j12-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/slf4j-simple-1.7.24.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/jtapi.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/bcpkix-jdk15on-154.jar:

{Unzip Location}/
CiscoJTAPIx64/lib/bcprov-jdk15on-154.jar

Starting from release
12.5(1)SU5, 14SU1 and
any subsequent SU or ES
releases in this release
train, the JTAPI Linux
plugin will bundle
bcpkix-jdk15on.jar and
bcprov-jdk15on.jar
instead of
bcpkix-jdk15on-154.jar
and
bcprov-jdk15on-154.jar.
Classpath must be set
accordingly to refer to
the new jars.

Note

export CLASSPATH=$CLASSPATH:

{Unzip
Location}\CiscoJTAPIx64\lib\bc-fips.jar;

{Unzip
Location}\CiscoJTAPIx64\lib\bcpkix-fips.jar;

{Unzip
Location}\CiscoJTAPIx64\lib\bctls-fips.jar;

{Unzip Location}\CiscoJTAPIx64
\lib\jtapi.jar

{Unzip
Location}\
CiscoJTAPIx64

{Unzip
Location}\
CiscoJTAPIx64\lib

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
219

Cisco Unified JTAPI Installation
Installation Procedures

Linux Platforms
Cisco Unified JTAPI supports multiple languages for the installation and JTAPI Preferences user interface.

The Cisco Unified JTAPIInstaller installs the following items on the local disk drive:

• JTAPI java classes in $HOME/.jtapi/lib

• JTAPI Preferences in $HOME/.jtapi/bin

• JTAPI sample applications (makecall, jtrace) in $HOME/.jtapi/bin

• JTAPI documentation in $HOME/.jtapi/bin/doc

Applicable from 8.6 release:

For 64-bit JTAPI Installer on 64-bit OS:

• JTAPI java classes in $HOME/.jtapi64/lib

• JTAPI Preferences in $HOME/.jtapi64/bin

• JTAPI sample applications (makecall, jtrace) in $HOME/.jtapi64/bin

• JTAPI documentation in $HOME/.jtapi64/bin/doc

Perform the following steps to install the Cisco Unified JTAPI software on a Linux platform:

1. Log in to the computer where you want to install the Cisco Unified JTAPI client software.

2. Locate the appropriate ISMP/IA installer and launch it:

Applicable from 8.6 release::

For 64-bit JTAPI Installer on 64-bit OS,

• CiscoJTAPIx64-Linux.bin - for Linux OS

1. Log in to the computer where you want to install the Cisco Unified JTAPI client software.

2. Locate the appropriate ISMP/IA installer and launch it:

3. Follow the instructions that the Cisco Unified JTAPI Installer presents.

Applicable for 11.5(1)SU9 and any subsequent SU or ES releases in this release train and also 12.5(1)
release onwards.

Perform the following steps to install the Cisco Unified JTAPI software on a Linux platform:

Before you begin

• If you are using Cisco JTAPI version earlier to release 11.5(1)SU9, then uninstall the earlier version.

Procedure

Step 1 Log in to the computer where you want to install the Cisco Unified JTAPI client software.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
220

Cisco Unified JTAPI Installation
Linux Platforms

Step 2 Click Download link to download the required JTAPI client from the Unified Communications Manager
Administrative interface Plugins page (Application > Plugins). Save the zipped file on the CTI application
server where JTAPI is used.

Step 3 Un-zip the downloaded folder to extract the files. The files include the JTAPI packages for Linux (32-bit and
64-bit), documentation, and sample code. Update the classpath variable. Go to Step 6.

Step 4 Alternatively, run install32.sh or install64.sh depending on the platform . Follow the instructions mentioned
in the scripts to install and update classpath.

Step 5 After installation, go to the installed location.
Step 6 Run the jtprefs.bat file.

The Cisco Unified Communications Manager Jtapi Preferences <version number> Release dialog box
is displayed.

JTPrefs is an application, which provides a user interface to configure the jtapi.ini parameters.
JTprefs is used to create the jtapi.ini file if one does not exist and to configure or modify the trace
settings. In Linux Machines after installation the session must be logged out and logged in again
for the changes to take effect.

In Linux, for example, the default directory is unzipped
folder\CiscoJTAPILinux\CiscoJTAPIx64\lib or unzipped
folder\CiscoJTAPILinux\CiscoJTAPIx32\lib.

Note

The installation software installs the Cisco Unified JTAPI software on the default drive.

In Linux, for example, the default directory is $HOME/.jtapi/lib(for 32 bit installer);
$HOME/.jtapi64/lib(for 64 bit installers).

Note

Verifying Linux Installation
To ensure that the JTAPI installation has been done properly, perform the following steps:

Procedure

Step 1 Check that the .jtapiver.ini file is created in the $HOME directory.
Step 2 Check that the JTAPI Program files and documentation are present under the folder $HOME/.jtapi/bin.

Look for the makecall, jtrace, Locale_files, and doc folders.

Step 3 Check that the JTAPI Library is present under the folder $HOME/.jtapi/lib.
Look for the jtapi.jar, jtracing.jar, and updater.jar files.

Step 4 After ensuring that jtapi.jar is present in the classpath, run the following command from the command line
prompt of $HOME/.jtapi/bin ./_jvm/bin/java:
com.cisco.services.jtprefs.jtprefsFrame

The JTAPI Preferences dialog box appears.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
221

Cisco Unified JTAPI Installation
Verifying Linux Installation

In the absence of the JTPrefs application, you can generate the jtapi.ini file by entering:

< jview | java > CiscoJtapiVersion -parms

This command generates a jtapi.ini file in the current directory.

Note

For Cisco Unified Communications Manager 8.6(1) and later, for 64 bit installer on a 64 bit OS, the default
install directory is $HOME/.jtapi64/.

After installation, CLASSPATH is updated with the location of jtapi.jar. For linux a file .jtapiver.ini is updated
with the install location in user home directory. For classpath changes to take effect, you need to log off and
login again.

During installation, you can choose a different folder than $HOME to install JTAPI. In this case, the system
creates a folder called .jtapi within the specified folder and creates the bin and lib folders within that folder
for copying the corresponding files. For example, if you choose the folder name /home/jtapiuser, the folder
structure would be

/home/jtapiuser/.jtapi/bin (for 32 bit installers)—Contains the makecall, jtrace, Locale_files, and doc folders.

or

/home/jtapiuser/.jtapi64/bin (for 64 bit installers)

/home/jtapiuser/.jtapi/lib(for 32 bit installers)—Contains the jtapi.jar, jtracing.jar, and updater.jar files

or

/home/jtapiuser/.jtapi64/lib (for 64 bit installers)

In this case, run the command at Step4 from the /home/jtapiuser/.jtapi/bin folder (for 32 bit installer) or
/home/jtapiuser/.jtapi64/bin folder (for 64 bit installer).

Windows Platforms
Cisco Unified JTAPI supports multiple languages for the installation and JTAPI Preferences user interface.

The Cisco Unified JTAPI Installer installs the following items on the local disk drive:

Applicable from 8.6 release:

• JTAPI Java classes in %SystemRoot%\java\lib

• JTAPI Preferences in Program Files\JTAPITools

• JTAPI sample applications (makecall, jtrace) in Program Files\JTAPITools

• JTAPI documentation in Program Files\JTAPITools\doc

For 64-bit JTAPI Installer on 64-bit OS,

• JTAPI Java Preferences in Program Files\Cisco\JTAPI64Tools

• JTAPI Java classes in Program Files\Cisco\JTAPI64Tools\lib

• JTAPI sample applications (makecall, jtrace) in Program Files\Cisco\JTAPI64Tools

• JTAPI documentation in Program Files\Cisco\JTAPI64Tools\doc

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
222

Cisco Unified JTAPI Installation
Windows Platforms

Post installation, CLASSPATH is updated with the location of jtapi.jar. For windows, registry is updated,
[HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc.\JTAPI\Client\Tools

HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc.\JTAPI\Client\Tools\Lib]

To install the Cisco Unified JTAPI software on a Windows platform, perform the following steps:

1. Log in to the computer where you want to install the Cisco Unified JTAPI client software.

2. Close all Windows programs.

3. Locate the Cisco Unified JTAPI installer (CiscoJTAPIClient.exe) and launch it.

4. Follow the installer instructions.

Applicable for 11.5(1)SU9 and any subsequent SU or ES releases in this release train and also 12.5(1)
release onwards.

Perform the following steps to install the Cisco Unified JTAPI software on a Windows platform:

Before you begin

• If you are using Cisco JTAPI version earlier to release 11.5(1)SU9, then uninstall the earlier version.

Procedure

Step 1 Log in to the computer where you want to install the Cisco Unified JTAPI client software.
Step 2 Click Download link to download the required JTAPI client from the Unified Communications Manager

Administrative interface Plugins page (Application > Plugins). Save the zipped file on the CTI application
server where JTAPI is used..

Step 3 Un-zip the downloaded folder to extract the files. The files include the JTAPI packages for Windows (32-bit
and 64-bit), documentation, and sample code. Update the classpath variable. Go to Step 6.

Step 4 Alternatively, run install32.bat or install64.bat depending on the platform . Follow the instructions mentioned
in the scripts to install and update classpath.

Step 5 After installation, go to the installed location.
Step 6 Run the jtprefs.bat file.

The Cisco Unified Communications Manager Jtapi Preferences <version number> Release dialog box
is displayed.

JTPrefs is an application, which provides a user interface to configure the jtapi.ini parameters.
JTprefs is used to create the jtapi.ini file if one does not exist and to configure or modify the trace
settings.

In Windows, for example, the default directory is unzipped
folder\CiscoJTAPIWindows\CiscoJTAPIx64\lib or unzipped
folder\CiscoJTAPIWindows\CiscoJTAPIx32\lib.

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
223

Cisco Unified JTAPI Installation
Windows Platforms

Verifying Windows Installation
To verify the JTAPI Windows installation, you can use the makecall application that allows you to place a
call via JTAPI. Perform the following steps to use the makecall application.

Procedure

Step 1 From the Windows command line, navigate to the directory where you installed Cisco Unified JTAPI Tools.
By default, this directory is C:\ProgramFiles\JTAPITools (for 32 bit installers) and
C:\ProgramFiles\JTAPI64Tools (for 64 bit installers).

Step 2 Execute the following command:

java CiscoJtapiVersion

Step 3 Execute the following command:

java makecall <server name> <login> <password> 1000 <phone1> <phone2>

The server name variable specifies the hostname or IP address of the Cisco Unified
Communications Manager (for example, 192.168.1.100 or Subscriber2).

Note

The phone1 and phone2 variables designate directory numbers of IP phones or virtual phones that the user
controls according to the user configuration. Refer to the chapter ‘Directory Number Configuration’ in Cisco
Unified Communications Manager Administration Guide for details.

For the login and password variables, use the user ID and password that you configured in the Cisco Unified
Communications Manager User Configuration window.

Linux and Windows Installation

Reinstall or Upgrade or Downgrade

This feature provides a uniform install and uninstall procedure for the Cisco Unified JTAPI Client on Linux
and Windows platforms.

Starting from Release 11.5(1)SU9, Release 12.5(1), and any subsequent SU or ES releases, the Linux and
Windows versions generate the zip file (.zip) which includes the JTAPI packages for Linux (32 and 64 bit)
or Windows (32 and 64 bit), documentation, and sample codes.

You can download the zip files (CiscoJTAPIWindows.zip or CiscoJTAPILinux.zip), by clicking theDownload
link available in the CiscoUnified CMAdministration interface,Find and List Pluginswindow (Application >
Plugins).

From the Unified Communications Manager release 12.5(1) to the 14SU2 plugin URL, you can download
the CiscoJ Libraries of Linux (32 and 64 bit):

• https://<IP address>/plugins/lib_ciscoj_x32.zip

• https://<IP address>/plugins/lib_ciscoj_x64.zip

To reinstall or upgrade, replace the existing files with the newly extracted files downloaded from the Cisco
Unified CM Administration interface. For more details, see the "Installation Procedure" chapter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
224

Cisco Unified JTAPI Installation
Verifying Windows Installation

To reinstall or downgrade or install the JTAPI version earlier to release 12.5(1), excluding 11.5(1)SU9 ESs
and SU releases, refer to the "Cisco Unified JTAPI Installation chapter.

To determine the JTAPI version for both Windows and Linux platforms, run the following command:

• java CiscoJtapiVersion

Using Cisco Unified CM JTAPI
The following section describes the program group and program elements created by the installation of Cisco
JTAPI.

Program Group and Program Elements
After the installation of Cisco JTAPI, a program group called CiscoJTAPI is created which contains the
following elements:

• Cisco Unified Communications Manager JTAPI Javadocs — Opens the Javadocs reference guide for
Cisco JTAPI.

• Cisco Unified Communications Manager JTAPI Preferences — Launches the JTAPI Preferences
application.

• ReadMe — Launches the readme.htm file in the default web browser.

• Updater Javadocs — Opens the Javadocs Updater package that is bundled with Cisco JTAPI.

Cisco Unified JTAPI Configuration Settings
You can use the Cisco Unified JTAPI Preferences application to configure trace levels and trace destinations
as well as several other system parameters.

When using Windows 7 and Windows 2008 Server, you must run the JTAPI Preferences application in
AdministrativeMode when the User Access Control (UAC) service is running. If the UAC service is disabled,
the JTAPI Preference application can run without administrative privileges.

Note

This section, which describes how to use the Cisco Unified JTAPI Preferences application, includes the
following topics:

• JTAPI Tracing Tab, on page 226

• Log Destination Tab, on page 227

• Cisco Unified CM Tab, on page 230

• Advanced Tab, on page 231

• Security Tab, on page 234

• Language Tab, on page 236

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
225

Cisco Unified JTAPI Installation
Using Cisco Unified CM JTAPI

JTAPI Tracing Tab
The JTAPI Tracing tab lets you change trace settings for the JTAPI layer. The following figure illustrates the
JTAPI Tracing tab of the Cisco Unified JTAPI Preferences application. The window title shows the JTAPI
version number.

Figure 14: JTAPI Tracing Tab

The JTAPI Tracing tab lets you enable or disable JTAPI trace levels as listed in the following table.

Table 10: JTAPI Trace Levels

DescriptionJtapi.ini fields

Trace Levels

Low-level warning eventsWARNING

Status eventsINFORMATIONAL

Highest level debugging eventsDEBUG

Debug Levels

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
226

Cisco Unified JTAPI Installation
JTAPI Tracing Tab

DescriptionJtapi.ini fields

JTAPI methods and events traceJTAPI_DEBUGGING

Internal JTAPI implementation traceJTAPIIMPL_DEBUGGING

Trace Cisco Unified Communications Manager events that are
sent to JTAPI

CTI_DEBUGGING

Internal CTICLIENT implementation traceCTIIMPL_DEBUGGING

Full CTI protocol decodingPROTOCOL_DEBUGGING

Miscellaneous low-level debug traceMISC_DEBUGGING

Log Destination Tab
The Log Destination tab allows you to configure how JTAPI creates traces and where they are stored. The
following figure illustrates the Log Destination tab of the Cisco Unified JTAPI preferences application. The
following table contains descriptions of the log destination fields.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
227

Cisco Unified JTAPI Installation
Log Destination Tab

Figure 15: Log Destination Tab

Table 11: Log Destination Fields

DescriptionMaxMinDefaultField name

When this option is enabled, JTAPI alarms go to
an alarm service that is running on the specified
machine. You must specify the host name and
port number when you enable this option.

NANotApplicable
(NA)

0Enable Alarm
Service(UseAlarmService)

When this option is enabled, traces go to a UDP
port as specified in the Collector and Port
Number fields. Syslog collector service collects
traces and directs them to the Cisco Operations
Manager Suite server.

NANAFALSEUse Syslog

(UseSyslog)

Alarm Service Settings

Use this field to specify the host name of the
alarm service server.

NANAHost Name

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
228

Cisco Unified JTAPI Installation
Log Destination Tab

DescriptionMaxMinDefaultField name

Use this field to specify the host port of the alarm
service server.

NANAHost Port

Syslog Settings

Use this field to specify the Syslog collector
service that collects traces.

NANA0Collector

Use this field to specify the UDP port of the
collector.

NANA514Port Number

This field allows you to direct traces to a specific
path and folder. No fewer than two log files and
no more than 99 files can exist. Cisco Unified
JTAPI rotates through the log files in numerical
order, returning to the first log file after filling
the last. Log files increase in size in 1-megabyte
increments.

NANAFALSEUse Rotating Log Files

(SyslogCollector)

When this option is enabled, tracing goes to the
standard output or console (command) window.

NANAFALSEUse Java Console

(UseSystemDotOut)

Log File Settings

This setting lets you specify the maximum
number of log files to be written.

1000210MaximumNumber of Log Files

(NumTraceFiles)

This setting lets you specify the maximum size
of log files to be written.

NP10485761048576Maximum Log File Size

(TraceFileSize)

This setting lets you specify whether the same
folder name should be used for each instance of
an application.

When this option is enabled, JTAPI traces the
log files to the same directory. In this case,
successive instances of a JTAPI application will
restart the log files, starting at index 01.

When this option is disabled, each instance of
the application, whether successive or
simultaneous, will cause trace files to be placed
in a new folder sequential to the last folder that
was written. Cisco Unified JTAPI detects the last
folder present in the trace path and automatically
increments the numeric index.

NANA1Use the Same Directory

(UseSameDirectory)

This setting lets you specify the path name to
which trace files are written. When the path is
not specified, JTAPI defaults to the application
path.

NANA.Trace Path

(TracePath)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
229

Cisco Unified JTAPI Installation
Log Destination Tab

DescriptionMaxMinDefaultField name

This setting lets you specify a folder name where
the trace files will be contained.

NANA.Directory Name Base

(Directory)

Use this value to create the trace file name.NANACisco JtapiFile Name Base

(FileNameBase)

This setting lets you specify a numerical index
to append to the file base name indicates the order
in which trace files are created.

If you enter “jtapiTrace” in the File Name Base
field and “log” in the File Name Extension field,
the system names the trace files jtapiTrace01.log,
jtapiTrace02.log, and so on. If the File Name
Base and File Name Extension fields are left
blank, JTAPI picks the trace files names as
CiscoJtapi01.log, CiscoJtapi02.log, and so on.

NANAlogFile Name Extension

(FileNameExtension)

Cisco Unified CM Tab
This tab allows you to define a list of IP addresses for Cisco Unified Communications Manager Subscribers
where CTIManager is enabled. Applications can query JTAPI for this list and use it to find the IP addresses
to connect to. You can define a maximum 10 IP addresses.

The following figure illustrates the Cisco Unified CM tab of the preferences application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
230

Cisco Unified JTAPI Installation
Cisco Unified CM Tab

Figure 16: Cisco Unified CM Tab

Advanced Tab
You can configure the parameters in the table in this section through the Advanced tab in the JTAPI Preferences
application. These low-level parameters are used for troubleshooting and debugging purposes only.

The following figure illustrates the Advanced tab of the preferences application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
231

Cisco Unified JTAPI Installation
Advanced Tab

Figure 17: Advanced Tab

Cisco strongly recommends that you not modify the parameters in the following table unless the Cisco
Technical Assistance Center (TAC) instructs you to do so.

Note

Table 12: Advanced Configuration Fields

DescriptionMaxMinDefaultField

Enables (or disables) a heartbeat in the
internal message queue that JTAPI uses. If
JTAPI has not received a message in the
time that is defined in
PeriodicWakeupInterval, it causes the
thread to wake up and creates a log event.

NANot
Applicable
(NA)

FALSEEnable Periodic
Wakeup(PeriodicWakeupEnabled)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
232

Cisco Unified JTAPI Installation
Advanced Tab

DescriptionMaxMinDefaultField

Allows you to define a period of inactivity
in the JTAPI internal message thread (in
seconds). If JTAPI has not received a
message during this time, the thread wakes
up and logs an event.

NPNot Present
(NP)

50Periodic Wakeup
Interval(PeriodicWakeupInterval)

Causes JTAPI to log the max queue depth
over the specified number of messages that
are queued to JTAPI main event thread.

For every x messages processed, JTAPI
logs aDEBUGGING level trace that reports
the maximum queue depth over that
interval, where x represents the number of
messages that are specified in Queue Size
Threshold.

NANAFALSE

(disabled)

Enable Queue Stats(QueueStatsEnabled)

Specifies the number of messages that
define the interval over which JTAPI will
report the maximum queue depth.

NP1025Queue Size
Threshold(QueueSizeThreshold)

Specifies the number of seconds that JTAPI
will wait for a response from a CTI request.

NP1015CTI Request Timeout(CtiRequestTimeout)

Specifies the number of seconds that JTAPI
will wait for a response to a Provider Open
Request.

NP10200Provider Open Request
Timeout(ProviderOpenRequestTimeout)

Specifies the number of seconds that JTAPI
will retry opening connection to a Cisco
Unified Communications Manager cluster
in case of system failure.

NP530Provider Retry
Interval(ProviderRetryInterval)

Specifies the interval at which the
connection between JTAPI and the Cisco
Unified Communications Manager cluster
will get verified (in seconds).

If JTAPI fails to receive heartbeats, it will
establish a connection via the second
CTIManager that is specified in the
provider open request.

NP>030Server Heartbeat
Interval(DesiredServerHeartbeatInterval)

Specifies the interval in milliseconds that
JTAPI will wait for the application to
respond to the Route event. If the
application does not respond in this time,
JTAPI ends the route and sends the
corresponding RouteEnd event.

NP05000Route Select Timeout(RouteSelectTimeout)

Specifies the timeout.NP015Post Condition Timeout

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
233

Cisco Unified JTAPI Installation
Advanced Tab

Security Tab
The following figure illustrates the Security tab of the preferences application.

Figure 18: Security Tab

Administrators need to configure the User Name, Instance ID, Authorization Code, TFTP Server IP-Address,
and CAPF Server IP-Address parameters through the JTAPI Preferences application before invoking the
JTAPI API or JTAPI Preferences to download/install certificates on the application server.

You can use JTAPI Preferences to configure security profiles for one or more User Name/Instance ID pairs.
If an application user has previously configured a security profile for a User Name/Instance ID pair, the
security profile automatically populates when the user enters the User Name/Instance ID and clicks any of
the other edit boxes.

Apart from the GUI that is provided through JTAPI Preferences, an application can also install a client
certificate by calling the interface that is provided at CiscoJtapiProperties. When Interface UpdateCertificate
is called, the JTAPI client connects to the TFTP server to download the CTL file and extract certificates to
the given certificate path. It then connects to the CAPF server to download the client certificate and installs
it into the given certificate path.

The jtapi.ini files store user security records in comma separated value (CSV) format. Semicolons separate
individual records. An example of a users security record is as follows:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
234

Cisco Unified JTAPI Installation
Security Tab

SecurityProperty = user, 123, 12345, 172.19.242.37, 3804, 172.19.242.37, 69, .\\, true, false;<next record>;
…

You can configure the following parameters on the Security tab:

Table 13: JTAPI Security Configuration Fields

DescriptionMaxMinDefaultField

You can enable (or disable) tracing for
certificate install operations by checking
this check box and choosing the desired
trace level.

NANot
Applicable
(NA)

FALSEEnable Security
Tracing(SecurityTraceEnabled)

You can choose one of three different trace
levels:

• Error = 0 — Logs error events
• Debug = 1 — Logs debugging events
• Detailed = 2 — Logs all events

200Select Trace Level(SecurityTraceLevel)

If application users have previously
configured a security profile for a User
Name/Instance ID pair, that security profile
automatically populates when the user
enters the User Name/Instance ID and
clicks any of the other edit boxes.

NANANAUser Name(Username)

This field specifies the application instance
identifier. If an application is connecting to
CTIManager with the same user, it needs
to define an instanceID for each instance
of the application to download the
certificate Authorization String.

NANANAInstance ID(instanceID)

This field specifies a one-time string that
is used to download a certificate.

NANANAAuthentication String(authcode)

This field specifies the IP address of the
TFTP server (normally the Cisco Unified
Communications Manager IP Address).

NANANATFTP Server IP Address

The TFTP Server Port defaults to 69. Do
not change this value unless the System
Administrator advises you to do so.

NPNot Present
(NP)

69TFTP Server Port

This field specifies the IP address of the
CAPF server in dotted decimal.

NANANACAPF Server IP Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
235

Cisco Unified JTAPI Installation
Security Tab

DescriptionMaxMinDefaultField

The CAPF Server Port number defaults to
3804; however, you can also configure this
number in the Cisco Unified
CommunicationsManager Administration.
Ensure that the value that is entered through
the JTAPI Preferences matches the one that
is configured in Cisco Unified
CommunicationsManager Administration.

NPNP3804CAPF Server Port

This field specifies the path where the
application wants server and client
certificates to be installed. If this field is
blank, the system installs certificates in the
ClassPath of JTAPI.jar.

NANAJTAPI.
jarlocation

Certificate Path

Check this option to enable a secure TLS
connection to Cisco Unified
CommunicationsManager. If this option is
not checked, JTAPI cannot make a
nonsecure connection to CTI even if the
certificate is updated/installed.

NANAFALSEEnable Secure Connection

This field provides information on whether
the certificate has been updated.

NANANACertificate Update Status

This button deletes the existing certificate.NANANADelete Certificate

This button updates the existing certificate
with the changed parameters.

NANANAUpdate Certificate

Check this option to enable JTAPI to be
FIPS compliant.

NANAFALSEFIPS Compliant

Language Tab
The following figure illustrates the Language tab of the preferences application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
236

Cisco Unified JTAPI Installation
Language Tab

Figure 19: Language Tab

The Language tab allows you to select one of the installed languages to view the configuration settings in that
language.

You must install the language pack on the TFTP server before using this feature.Note

You can select the following languages:

CzechCroatianChinese TaiwanBrazilian PortugueseArabic

FrenchFinnishEnglishDutchDanish

ItalianHungarianHebrewGreekGerman

PortuguesePolishNorwegianNederlandsJapanese

SwedishSpanishSlovakSimplified ChineseRussian

Select a language, and the tabs display with text in that language.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
237

Cisco Unified JTAPI Installation
Language Tab

Managing the Cisco Unified CM JTAPI
You can perform the following actions on all the Cisco JTAPI clients.

Reinstalling, Upgrading or Downgrading the Cisco JTAPI
Applicable from 11.5(1)SU9 and 12.5(1) ES and SU releases only.

Use the following procedure to reinstall or upgrade or downgrade the Cisco JTAPI client on all supported
platforms from release 12.5(1) and later versions.

Before you begin

To reinstall or upgrade the JTAPI version earlier to release 12.5(1), refer to the “Cisco Unified JTAPI
Installation”.

Note

Procedure

Step 1 Delete the contents of the previous zip folder present in the system and clear the classpath variables .
Alternatively, you can run the Uninstall Script present in the installed folder to delete the files and update
classpath.

Step 2 Click Download link to download the required JTAPI client from the Unified Communications Manager
Administrative interface Plugins page (Application > Plugins). Save the zipped file on the CTI application.

Step 3 Un-zip the downloaded folder to extract the files . Manually update the classpath variables. Additionally, you
can run the Install Script present in the extracted folder to install Cisco JTAPI and update the classpath.

You can keep a copy of the jtapi.ini file present in [{Unzip Location}\lib\jtapi.ini] location and
replace the same in the newly extracted Zip folder if you want to keep the previous Jtapi settings.
It is applicable only for upgrading/downgrading/reinstallation.l

In Linux Machines, after uninstallation the session must be logged out and logged in again for
the changes to take effect.

Note

Uninstalling the Cisco JTAPI

Uninstalling the Cisco JTAPI

To remove the JTAPI version release 12.5(1), delete the folder (CiscoJTAPIWindows or CiscoJTAPILinux)
and its extracted files from the system.

1. Delete the contents of the previous zip folder present in the system and clear the classpath variables.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
238

Cisco Unified JTAPI Installation
Managing the Cisco Unified CM JTAPI

2. You can also run the Uninstall Script present in the extracted folder to delete the files and update classpath.
Run uninstall32.bat or uninstall32.sh for 32-bit machines and uninstall64.bat or uninstall64.sh for 64-bit
machines.

3. Follow the instructions mentioned in the script.

To uninstall the JTAPI version earlier to release 12.5(1), refer to the “Cisco Unified JTAPI Installation”
chapter of the Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release
11.5(1), at https://www.cisco.com/c/en/us/support/unified-communications/
unified-communications-manager-callmanager/products-programming-reference-guides-list.html.

Administering User Information for JTAPI Applications
The JTAPI application requires that users be given the privilege to control one or more devices. Follow the
procedures for adding an application user and assigning devices to an application user in the “Application
user setup” chapter of the Cisco Unified Communications Manager Administration Guide before using the
JTAPI application. The list of devices that are assigned to the user represents the phones that the user needs
to control from the application (for example, make calls and answer calls).

Fields in the jtapi.ini File
Applications that run in non-GUI based platforms, where the JTAPI Preferences application cannot be invoked,
can write their own jtapi.ini file and place it along with jtapi.jar based on the values that are provided here.
JTAPI will make use of these values.

Applications should ensure that they provide valid data as described in the following table. Applications are
responsible for errors that are caused in JTAPI behavior due to improper jtapi.ini file values.

Table 14: Fields in jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

This field specifies status eventsNANot
Applicable
(NA)

0INFORMATIONAL

This field specifies highest level debugging
events

NANA0DEBUG

This field specifies low-level warning
events

NANA0WARNING

This field specifies JTAPI methods and
events trace

NANA0JTAPI_DEBUGGING

This field specifies internal JTAPI
implementation trace

NANA0JTAPIIMPL_DEBUGGING

This field specifies trace Cisco Unified
Communications Manager events that are
sent to the JTAPI implementation

NANA0CTI_DEBUGGING

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
239

Cisco Unified JTAPI Installation
Administering User Information for JTAPI Applications

https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-programming-reference-guides-list.html
https://www.cisco.com/c/en/us/support/unified-communications/unified-communications-manager-callmanager/products-programming-reference-guides-list.html

DescriptionMaxMinDefaultJtapi.ini fields

This field specifies internal CTICLIENT
implementation trace

NANA0CTIIMPL_DEBUGGING

This field specifies full CTI protocol
decoding

NANA0PROTOCOL_DEBUGGING

This field specifies miscellaneous low-level
debug trace

NANA0MISC_DEBUGGING

This field specifies how often, in seconds,
the connection between JTAPI and the
Cisco Unified Communications Manager
cluster will be verified. If JTAPI fails to
receive heartbeats, it will establish a
connection via the second CTIManager that
is specified in the provider open request.

Not Present
(NP)

>030DesiredServerHeartbeatInterval

This field specifies the path name to which
the trace files are written. When the path is
not specified, JTAPI makes the application
path as the default.

NANA.TracePath

This field specifies a numerical index that
is appended to the file base name to indicate
the order in which the files are created. For
example, if you enter jtapiTrace in the File
Name Base field and log in the File Name
Extension field, the trace files would rotate
between jtapiTrace01.log, jtapiTrace02.log,
and jtapiTrace10.log. If the File Name Base
and File Name Extension fields are left
blank, Cisco Unified JTAPI picks the trace
files names as CiscoJtapi01.log,
CiscoJtapi02.log, and so on.

NANAlogFileNameExtension

This field specifies you to direct the traces
to a specific path and folder in the system.
No fewer than two log files and no more
than 99 files can exist. Cisco Unified JTAPI
rotates through the log files in numerical
order, and returns to the first log file after
filling the last. Log files increase in size in
1-megabyte increments.

NANAFALSESyslogCollector

This field allows you to specify the
maximum size of log files to be written.

NP10485761048576TraceFileSize

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
240

Cisco Unified JTAPI Installation
Fields in the jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

When this option is enabled, JTAPI alarms
go to an alarm service that is running on
the specified machine. You must specify
the host name and port number if you
enable this option.

NANA0UseAlarmService

This field specifies the time in seconds that
JTAPI will wait for a response for the
Provider Open Request. The default is 10
seconds.

NP10200ProviderOpenRequestTimeout

JTAPI has post conditions for events, and
if the post condition is not met before a
timeout, JTAPI will throw exceptions. Use
this field to set the timeout value of such
conditions.

201015JtapiPostConditionTimeout

This field prioritizes multiple provider open
requests. Currently, JTAPI only sends a
default value.

NANA2ApplicationPriority

This field enables tracing for
security-related messages.

You can enable (or disable) tracing for
certificate install operations by selecting
this check box and selecting the desired
trace level.

NANAFALSESecurityTraceEnabled

This field is used for sending alarms to a
different server. Users can select the alarm
server host name and port on which the
service is running, and JTAPI will send the
alarms to the specified server and port.

NPNP1444AlarmServicePort

This field displays the alarm server host
name.

NANAnullAlarmServiceHostname

This field specifies the time, in
milliseconds, that JTAPI waits for the
application to respond to the Route event.
If the application does not respond in this
time, JTAPI ends the route and sends the
corresponding RouteEnd event.

NP05000RouteSelectTimeout

This field specifies the time, in seconds,
that JTAPI will retry opening a connection
to the Cisco Unified Communications
Manager cluster in case of system failure.

NP530ProviderRetryInterval

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
241

Cisco Unified JTAPI Installation
Fields in the jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

This field is used by JTAPI to log the max
queue depth over the specified number of
messages that are queued to JTAPI main
event thread. In other words, for every x
messages processed, JTAPI logs a
DEBUGGING level trace that reports the
maximum queue depth over that interval,
where x represents the number of messages
that are specified in Queue Size Threshold.

NANAFALSEQueueStatsEnabled

This field specifies a value to create the
trace file name.

NANACiscoJtapiFileNameBase

This field enables (or disables) a heartbeat
in the internal message queue that JTAPI
uses. If JTAPI has not received a message
in the time that is defined in
PeriodicWakeupInterval, it causes the
thread to wake up and creates a log event.

NANAFALSEPeriodicWakeupEnabled

This field specifies the Port through which
the JTAPI parameter changes are
communicated to JTAPI applications during
runtime.

NP12789JTAPINotificationPort

This field allows you to define a time of
inactivity in the JTAPI internal message
thread. If JTAPI does not received a
message during this time, the thread wakes
up and logs an event.

NPNP50PeriodicWakeupInterval

This field allows you to specify the number
of messages that define the time over which
JTAPI will report the maximum queue
depth.

NP1025QueueSizeThreshold

This field is used to display traces on the
console.

NANAFALSEUseSystemDotOut

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
242

Cisco Unified JTAPI Installation
Fields in the jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

This field allows you to specify whether
the same folder namemust be used for each
instance of an application.

When this option is enabled, JTAPI traces
the log files to the same directory. In this
case, successive instances of a JTAPI
application will restart the log files, starting
at index 01.

When this option is disabled, each instance
of the application, whether successive or
simultaneous, will cause the trace files to
be placed in a new folder sequential to the
last folder that was written. Cisco Unified
JTAPI detects the last folder in the trace
path and automatically increments the
numeric index.

NANA1UseSameDirectory

This field allows you to specify the
maximum number of log files to be written.

1000210NumTraceFiles

This field, when enabled, allows the traces
go to a UDP port as specified in the
Collector and Port Number fields. Syslog
collector service collects traces and directs
them to the CiscoOperationsManager Suite
server.

NANAFALSEUseSyslog

This field specifies trace level for security
messages 0 = Error, 1 = debug, 2 = detailed

200SecurityTraceLevel

This field enables the writing of logs to
logFile Trace Writer.

NANATRUEUseTraceFile

This field specifies the feature ID that is
assigned to the application. Cisco Unified
Communications Manager preassigns this
ID.

NANA0CMAssignedAppID

This field specifies the list of CTIManagers
for which tracing needs to be collected.

NANAnullCtiManagers

This field allows you to specify a folder
name where the trace files will be
contained.

NANA.Directory

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
243

Cisco Unified JTAPI Installation
Fields in the jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

This field specifies the users security record
(username, instanceId, authcode, tftp ip
address, tftp port, capf ip address, capf port,
certificate path, security option, certificate
status, fips compliance), that will be stored
in jtapi.ini files in a comma separated
string. A semicolon separates the records.

SecurityProperty = user, 123, 12345,
172.19.242.37, 3804, 172.19.242.37, 69,
.\\, true, false, false; <next record>;…

NANANASecurity Property

SecurityProperty = username, instanceId,
authcode,

tftp ip address, tftp port,

capf ip address, capf port, certificate path,
security option, certificate status, fips
compliant

Security Property Entries

This field automatically populates the
security profile of an application user who
has previously configured a User
Name/Instance ID pair and clicks any of
the other edit boxes.

NANANAUsername

This field specifies the application instance
identifier. If an application is connecting to
CTIManager with the same user, it needs
to define an Instance ID for each instance
of the application to download the
certificate Authorization String.

NANANAinstanceId

This field specifies authorization string that
is configured in the Cisco Unified
Communications Manager database. This
can be used only once for getting certificate.

NANANAauthcode

This field specifies the TFTP Address of
Cisco Unified Communications Manager
(normally, the Cisco Unified
Communications Manager IP Address)

NANANACommunicationsManager TFTP IP address

This field displays the default value of the
CallManager TFTP port.Do not change the
default value of 69 unless advised to do so
by the System Administrator.

NPNP69CallManager TFTP port

This field specifies CAPF Server IP
Address

NANANACommunicationsManager CAPF IP server
address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
244

Cisco Unified JTAPI Installation
Fields in the jtapi.ini File

DescriptionMaxMinDefaultJtapi.ini fields

This field displays the default value (3804)
for CAPF server port. Be aware, you can
configure this value in Cisco Unified
Communications Manager Administration
service parameters. Ensure that the value
you enter through this interface should
match the value configured on Cisco
Unified Communications Manager
Administration window.

NPNP3804Communications Manager CAPF server
port

This field specifies the location where
application wants sever and client
certificates to be installed. If this field is
left blank, the system installs certificates in
the ClassPath of JTAPI.jar

NANAJTAPI.jar

location

Certificate path

This field, if set to TRUE then JTAPI will
make a nonsecure connection to CTI even
if certificates are updated/installed.

NANATRUEEnable secure connection

The JTAPI Preferences dialog box is used
to configure the security profile for one or
more User Name/Instance ID pairs.

NANANACertificate Update Status

This field, if set to TRUE, will enable the
use of FIPS compliant cryptography
algorithms and libraries in JTAPI.

NANAFALSEFIPS Compliance

Sample jtapi.ini File with Default Values

#Cisco Unified JTAPI version 7.0(1.1000)-1 Release ini parameters
#Wed Sep 14 16:55:30 PDT 2008
INFORMATIONAL = 0
DesiredServerHeartbeatInterval = 30
TracePath = .
FileNameExtension = log
SyslogCollector =
TraceFileSize = 1048576
UseAlarmService = 0
ProviderOpenRequestTimeout = 200
JtapiPostConditionTimeout = 15
ApplicationPriority = 2
SecurityTraceEnabled = 0
AlarmServicePort = 1444
RouteSelectTimeout = 5000
ProviderRetryInterval = 30
QueueStatsEnabled = 0
FileNameBase = CiscoJtapi
JTAPI_DEBUGGING = 0
PeriodicWakeupEnabled = 0
CTI_DEBUGGING = 0
JTAPINotificationPort = 2789

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
245

Cisco Unified JTAPI Installation
Sample jtapi.ini File with Default Values

Traces = WARNING;INFORMATIONAL;DEBUG
PeriodicWakeupInterval = 50
AlarmServiceHostname =
QueueSizeThreshold = 25
Debugging = JTAPI_DEBUGGING;JTAPIIMPL_DEBUGGING;CTI_DEBUGGING;CTIIMPL_DEBUGGING;
PROTOCOL_DEBUGGING;MISC_DEBUGGING
PROTOCOL_DEBUGGING = 0
UseSystemDotOut = 0
MISC_DEBUGGING = 0
UseSameDirectory = 1
NumTraceFiles = 10
UseSyslog = 0
DEBUG = 0
SecurityTraceLevel = 0
UseTraceFile = 1
WARNING = 0
CMAssignedAppID = 0
UseProgressAsDisconnectedDuringErrorEnabled = 0
CtiManagers = ;;;;;;;;;
Directory =
CTIIMPL_DEBUGGING = 0
CtiRequestTimeout = 30
JTAPIIMPL_DEBUGGING = 0
SyslogCollectorUDPPort = 514
SecurityProperty = cisco, 123, 12345, A.B.C.D, 3804, A.B.C.D, 69,
/C\:/Program Files/JTAPITools/./, false, false;

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
246

Cisco Unified JTAPI Installation
Sample jtapi.ini File with Default Values

C H A P T E R 5
Cisco Unified JTAPI Extensions

The Cisco Unified JTAPI extension consists of a set of classes and interfaces that expose the additional
functionality not readily exposed in JTAPI 1.2 specification but are available in Cisco Unified Communications
Manager. Developers can use the extensions to create new applications or modify existing extensions to create
new methods.

This chapter describes the extensions (interfaces and classes) that are available for implementation in a Cisco
Unified Communications Manager.

• Class Hierarchy, on page 251
• CiscoAddressCallInfo, on page 251
• CiscoG711MediaCapability, on page 253
• CiscoG723MediaCapability, on page 254
• CiscoG729MediaCapability, on page 256
• CiscoGSMMediaCapability, on page 257
• CiscoJtapiVersion, on page 259
• CiscoMediaCapability, on page 260
• CiscoMultiMediaCapabilityInfo, on page 262
• CiscoRegistrationException, on page 263
• CiscoRTPParams, on page 265
• CiscoUnregistrationException, on page 266
• CiscoWideBandMediaCapability, on page 267
• Interface Hierarchy, on page 269
• CiscoAddrActivatedEv, on page 275
• CiscoAddrActivatedOnTerminalEv, on page 279
• CiscoAddrAddedToTerminalEv, on page 281
• CiscoAddrAutoAcceptStatusChangedEv, on page 282
• CiscoAddrCreatedEv, on page 284
• CiscoAddrMonitorTerminatedEv, on page 286
• CiscoAddress, on page 287
• CiscoAddressObserver, on page 301
• CiscoAddrEv, on page 302
• CiscoAddrEvFilter, on page 303
• CiscoAddrInServiceEv, on page 306
• CiscoAddrIntercomInfoChangedEv, on page 308
• CiscoAddrIntercomInfoRestorationFailedEv, on page 309

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
247

• CiscoAddrPickupGroupChangedEv, on page 311
• CiscoAddrOutOfServiceEv, on page 312
• CiscoAddrParkStatusEv, on page 314
• CiscoAddrRecordingConfigChangedEv, on page 316
• CiscoAddrRemovedEv, on page 317
• CiscoAddrRemovedFromTerminalEv, on page 319
• CiscoAddrRestrictedEv, on page 321
• CiscoAddrRestrictedOnTerminalEv, on page 323
• CiscoAddrVoiceMailPilotChangedEv, on page 324
• CiscoAnnouncementStartedEv, on page 326
• CiscoAnnouncementEndedEv, on page 326
• CiscoAnnouncementErrorEv, on page 327
• CiscoBaseMediaTerminal, on page 327
• CiscoCall, on page 330
• CiscoCallChangedEv, on page 343
• CiscoCallConsultCancelledEv, on page 347
• CiscoCallCtlConnOfferedEv, on page 348
• CiscoCallCtlTermConnHeldReversionEv, on page 350
• CiscoCallEv, on page 352
• CiscoCallFeatureCancelledEv, on page 363
• CiscoCallID, on page 364
• CiscoMediaCallSecurityIndicator, on page 365
• CiscoCallSecurityStatusChangedEv, on page 366
• CiscoConferenceChain, on page 369
• CiscoConferenceChainAddedEv, on page 370
• CiscoConferenceChainRemovedEv, on page 373
• CiscoConferenceEndEv, on page 376
• CiscoConferenceStartEv, on page 380
• CiscoConnection, on page 384
• CiscoConnectionID, on page 396
• CiscoConnectionUniqueIDChangedEv, on page 397
• CiscoConsultCall, on page 398
• CiscoConsultCallActiveEv, on page 401
• CiscoEv, on page 405
• CiscoFeatureReason, on page 406
• CiscoHuntConnection, on page 409
• CiscoIntercomAddress, on page 409
• CiscoIsacMediaCapability, on page 413
• CiscoJtapiException, on page 414
• CiscoMediaStreamStartedEv, on page 429
• CiscoMediaStreamEndedEv, on page 430
• CiscoJtapiPeer, on page 431
• CiscoJtapiPeerImpl, on page 432
• CiscoJtapiProperties, on page 433
• CiscoLocales, on page 440
• CiscoMasterKeyIndicator, on page 442

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
248

Cisco Unified JTAPI Extensions

• CiscoMediaConnectionMode, on page 443
• CiscoMediaEncryptionAlgorithmType, on page 444
• CiscoMediaEncryptionKeyInfo, on page 444
• CiscoMediaOpenIPPortEv, on page 445
• CiscoMediaOpenLogicalChannelEv, on page 447
• CiscoMediaSecurityIndicator, on page 451
• CiscoMediaTerminal, on page 452
• CiscoMonitorInitiatorInfo, on page 463
• CiscoMonitorTargetInfo, on page 464
• CiscoMultiForkingRecorderInfo, on page 465
• CiscoMultiMediaCapabilityInfo, on page 466
• CiscoMultiMediaConnectionMode, on page 468
• CiscoMultiMediaEncryptionKeyInfo, on page 468
• CiscoMultiMediaProperties, on page 469
• CiscoMultiMediaStreamsInfoEv, on page 470
• CiscoMultiMediaType, on page 471
• CiscoObjectContainer, on page 472
• CiscoOutOfServiceEv, on page 473
• CiscoPartyInfo, on page 474
• CiscoPickupGroup, on page 476
• CiscoProvCallParkEv, on page 477
• CiscoProvEv, on page 479
• CiscoProvFeatureEv, on page 481
• CiscoProvFeatureID, on page 483
• CiscoProvPickupCallAlertEv, on page 485
• CiscoProvTerminalIPAddressChangedEv, on page 486
• CiscoProvTerminalMultiMediaCapabilityChangedEv, on page 487
• CiscoProvTerminalRegisteredEv, on page 488
• CiscoProvTerminalUnRegisteredEv, on page 489
• CiscoProvider, on page 490
• CiscoProviderCapabilities, on page 502
• CiscoProviderCapabilityChangedEv, on page 504
• CiscoProviderObserver, on page 506
• CiscoProvTerminalCapabilityChangedEv, on page 507
• CiscoProvTerminalRemoteDestinationChangedEv, on page 509
• CiscoRecorderInfo, on page 509
• CiscoRemoteDestinationInfo, on page 511
• CiscoRemoteTerminal, on page 512
• CiscoRestrictedEv, on page 517
• CiscoRouteAddress, on page 519
• CiscoRouteEvent, on page 520
• CiscoRouteSession, on page 521
• CiscoRouteTerminal, on page 540
• CiscoRouteUsedEvent, on page 549
• CiscoRTPBitRate, on page 550
• CiscoRTPHandle, on page 551

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
249

Cisco Unified JTAPI Extensions

• CiscoRTPInputKeyEv, on page 552
• CiscoRTPInputProperties, on page 554
• CiscoRTPInputStartedEv, on page 555
• CiscoRTPInputStoppedEv, on page 557
• CiscoRTPOutputKeyEv, on page 559
• CiscoRTPOutputProperties, on page 561
• CiscoRTPOutputStartedEv, on page 563
• CiscoRTPOutputStoppedEv, on page 565
• CiscoRTPOutputKeyEv, on page 567
• CiscoRTPOutputProperties, on page 569
• CiscoRTPOutputStartedEv, on page 570
• CiscoRTPOutputStoppedEv, on page 573
• CiscoRTPPayload, on page 575
• CiscoRTPProperties, on page 576
• CiscoSynchronousObserver, on page 578
• CiscoTermActivatedEv, on page 579
• CiscoTermButtonPressedEv, on page 580
• CiscoTermConnMonitoringEndEv, on page 582
• CiscoTermConnMonitoringStartEv, on page 584
• CiscoTermConnMonitorInitiatorInfoEv, on page 585
• CiscoTermConnMonitorTargetInfoEv, on page 587
• CiscoTermConnPrivacyChangedEv, on page 589
• CiscoTermConnRecordingEndEv, on page 589
• CiscoTermConnRecordingStartEv, on page 591
• CiscoTermConnRecordingTargetInfoEv, on page 592
• CiscoTermConnRecordingFailedEv, on page 593
• CiscoTermConnSelectChangedEv, on page 594
• CiscoTermCreatedEv, on page 596
• CiscoTermDataEv, on page 597
• CiscoTermDeviceStateActiveEv, on page 599
• CiscoTermDeviceStateAlertingEv, on page 600
• CiscoTermDeviceStateHeldEv, on page 602
• CiscoTermDeviceStateIdleEv, on page 604
• CiscoTermDeviceStateWhisperEv, on page 605
• CiscoTermDNDOptionChangedEv, on page 607
• CiscoTermDNDStatusChangedEv, on page 608
• CiscoTermEv, on page 610
• CiscoTermEvFilter, on page 612
• CiscoTerminal, on page 615
• CiscoTerminalConnection, on page 634
• CiscoTerminalObserver, on page 641
• CiscoTerminalProtocol, on page 641
• CiscoTermInServiceEv, on page 642
• CiscoTermOutOfServiceEv, on page 645
• CiscoTermRegistrationFailedEv, on page 646
• CiscoTermRemovedEv, on page 649

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
250

Cisco Unified JTAPI Extensions

• CiscoTermRestrictedEv, on page 651
• CiscoTermSnapshotCompletedEv, on page 652
• CiscoTermSnapshotEv, on page 654
• CiscoTone, on page 656
• CiscoToneChangedEv, on page 657
• CiscoTransferEndEv, on page 660
• CiscoTransferStartEv, on page 663
• CiscoUrlInfo, on page 667
• ComponentUpdater, on page 668
• ProviderPickupNotificationRegistrationClosedEv, on page 669
• CiscoTermHuntLogStatusChangedEv, on page 670
• CiscoProvConnToLeastPriorCtiServerEv, on page 670
• CiscoProvFallbackToPrimNwCompltdEv, on page 671
• CiscoProvPrimNwReachableEv, on page 672

Class Hierarchy
The following class hierarchy is contained in the com.cisco.jtapi.extensions package.

hierarchy.java.lang.Object
com.cisco.jtapi.extensions.CiscoAddressCallInfo
com.cisco.jtapi.extensions.CiscoJtapiVersion
com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoG711MediaCapability
com.cisco.jtapi.extensions.CiscoG723MediaCapability
com.cisco.jtapi.extensions.CiscoG729MediaCapability
com.cisco.jtapi.extensions.CiscoGSMMediaCapability
com.cisco.jtapi.extensions.CiscoWideBandMediaCapability

com.cisco.jtapi.extensions.CiscoRTPParams
java.lang.Throwable (implements java.io.Serializable)

java.lang.Exception
com.cisco.jtapi.extensions.CiscoRegistrationException
com.cisco.jtapi.extensions.CiscoUnregistrationException

CiscoAddressCallInfo
Class History

DescriptionCisco Unified Communications Manager Release

Added the history table to track changes.7.1 (2)

Declaration
public class CiscoAddressCallInfo extends java.lang.Object

java.lang.Object

com.cisco.jtapi.extensions.CiscoAddressCallInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
251

Cisco Unified JTAPI Extensions
Class Hierarchy

Constructors
CiscoAddressCallInfo (int inumActiveCalls, int imaxActiveCalls, int inumCallsOnHold, int imaxCallsOnHold)

CiscoAddressCallInfo (int inumActiveCalls, int imaxActiveCalls, int inumCallsOnHold, int imaxCallsOnHold,
CiscoCall[] icalls)

Fields
None

Methods
Table 15: Methods in CiscoAddressCallInfo

DescriptionMethodInterface

Returns the array of Cisco calls on the CiscoAddress.getCalls()CiscoCall[]

Returns the terminal on which the address got activated
(i.e. marked unrestricted)

getTerminal()CiscoCall[]

Returns the maximum number of active calls supported
on the CiscoAddress, as an integer.

getMaxActiveCalls()int

Returns the maximum number of calls that can be put
on hold on the CiscoAddress, as an integer.

getMaxCallsOnHold()int

Returns the number of active calls on the CiscoAddress,
as an integer.

getNumActiveCalls()int

Returns the number of held calls on the CiscoAddress,
as an integer.

getNumCallsOnHold()int

Inherited Methods

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Related Documentation
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
252

Cisco Unified JTAPI Extensions
Constructors

CiscoG711MediaCapability
The CiscoG711MediaCapability object specifies the properties for a G.711 encoded RTP stream. Applications
that support G.711 media termination use this object to specify their preferred packet size when registering a
CiscoMediaTerminal. The default packet size is thirty milliseconds.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1(x)

Declaration
public class CiscoG711MediaCapability extends CiscoMediaCapability

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoG711MediaCapability

Constructors
Table 16: Constructors in CiscoG711MediaCapability

DescriptionConstructorInterface

Constructs a CiscoG711MediaCapability.CiscoG711MediaCapability(intrtpPacketFrameSize)public

Constructs a CiscoG711MediaCapability.CiscoG711MediaCapability()public

Fields
Table 17: Fields in CiscoG711MediaCapability

DescriptionFieldInterface

RTP Packet Framesize: Twenty millisecond RTP
packet.

FRAMESIZE_TWENTY_MILLISECOND_PACKETpublic static final int

RTP Packet Framesize: Thirty millisecond RTP
packet.

FRAMESIZE_THIRTY_MILLISECOND_PACKETpublic static final int

RTP Packet Framesize: Sixty millisecond RTP
packet.

FRAMESIZE_SIXTY_MILLISECOND_PACKETpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
253

Cisco Unified JTAPI Extensions
CiscoG711MediaCapability

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, WIDEBAND_256K_10_MILLISECONDS

Methods
None

Inherited Methods

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See Constant Field Values, on page 1665.

CiscoG723MediaCapability
The CiscoG723MediaCapability object specifies the properties for a G.723 encoded RTP stream. Applications
that support G.723 media termination use this object to specify their preferred packet size and bit rate when
registering a CiscoMediaTerminal. The default packet size is thirty milliseconds and the default bit rate is
6.4k.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoG723MediaCapability extends CiscoMediaCapability

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoG723MediaCapability

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
254

Cisco Unified JTAPI Extensions
Inherited Fields

Constructors
Table 18: Constructors in CiscoG723MediaCapability

DescriptionConstructorInterface

Constructs a CiscoG723MediaCapability.CiscoG723MediaCapability
(intrtpPacketFrameSize, intbitRate)

public

Fields
Table 19: Fields in CiscoG723MediaCapability

DescriptionFieldInterface

RTP Packet Framesize: Twenty
millisecond RTP packet.

FRAMESIZE_TWENTY_MILLISECOND_PACKETpublic static final int

RTP Packet Framesize: Thirty
millisecond RTP packet.

FRAMESIZE_THIRTY_MILLISECOND_PACKETpublic static final int

RTP Packet Framesize: Sixty
millisecond RTP packet.

FRAMESIZE_SIXTY_MILLISECOND_PACKETpublic static final int

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, WIDEBAND_256K_10_MILLISECONDS

Methods
Table 20: Methods in CiscoG723MediaCapability

DescriptionMethodInterface

Returns the bit rate specified by this capability object.
Returns: a bit rate from the RTPBitRate interface.

getBitRate()public int

Overwrites the Object.toString() method. Overrides:
toString in class CiscoMediaCapability.

toString()public
java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
255

Cisco Unified JTAPI Extensions
Constructors

Inherited Methods

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See Constant Field Values, on page 1665.

CiscoG729MediaCapability
The CiscoG729MediaCapability object specifies the properties for a G.729 encoded RTP stream. Applications
that support G.729 media termination use this object to specify their preferred packet size when registering a
CiscoMediaTerminal. The default packet size is thirty milliseconds.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoG729MediaCapability extends CiscoMediaCapability

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoG729MediaCapability

Constructors
Table 21: Constructors in G729MediaCapability

DescriptionConstructor

Constructs a CiscoG729MediaCapability.CiscoG729MediaCapability(int payload, int rtpPacketFrameSize)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
256

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
Table 22: Fields in CiscoG729MediaCapability

DescriptionFieldsInterface

RTP Packet Framesize: Sixty
millisecond RTP packet.

FRAMESIZE_SIXTY_MILLISECOND_PACKETstaticint

RTP Packet Framesize: Thirty
millisecond RTP packet.

FRAMESIZE_THIRTY_MILLISECOND_PACKETstaticint

RTP Packet Framesize: Twenty
millisecond RTP packet.

FRAMESIZE_TWENTY_MILLISECOND_PACKETstaticint

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, WIDEBAND_256K_10_MILLISECONDS

Methods
None

Inherited Methods

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See Constant Field Values, on page 1665.

CiscoGSMMediaCapability
The CiscoGSMMediaCapability object specifies the properties for a GSM encoded RTP stream. Applications
that support GSM media termination use this object to specify their preferred packet size when registering a
CiscoMediaTerminal. The default packet size is thirty milliseconds.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
257

Cisco Unified JTAPI Extensions
Fields

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoGSMMediaCapability extends CiscoMediaCapability

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoGSMMediaCapability

Constructors
Table 23: Constructors in CiscoGSMMediaCapability

DescriptionConstructorInterface

Constructs a CiscoGSMMediaCapabilityCiscoGSMMediaCapability()public

Constructs a CiscoGSMMediaCapability.CiscoGSMMediaCapability(int
rtpPacketFrameSize)

public

Fields
Table 24: Fields in CiscoGSMMediaCapability

DescriptionFieldInterface

RTP Packet Framesize: Eighty millisecond RTP
packet

FRAMESIZE_EIGHTY_MILLISECOND_PACKETstaticint

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, WIDEBAND_256K_10_MILLISECONDS

Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
258

Cisco Unified JTAPI Extensions
Declaration

Inherited Methods

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
None

CiscoJtapiVersion
This class gives the version information of the installed Cisco JTAPI. Programs can get the version number
using the accessor methods. Cisco Jtapi Version is in a.b(x.y) format where “a” indicates the major version,
“b” indicates the minor version, “x” indicates the revision number, and “y” indicates the build number .

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoJtapiVersion extends java.lang.Object

java.lang.Object

com.cisco.jtapi.extensions.CiscoJtapiVersion

Constructors
publicCiscoJtapiVersion()None

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
259

Cisco Unified JTAPI Extensions
Inherited Methods

Methods
Table 25: Methods in CiscoJtapiVersion

DescriptionMethodInterface

Returns “release” if it is a release version or debug if it
is not a release version.

getBuildDescription()java.lang.String

Returns the build number of the version.getBuildNumber()int

Returns the extended build number of the version.getExtendedBuildNumber()int

Returns the major version number.getMajorVersion()int

Returns the minor version number.getMinorVersion()int

Returns the revision number of the version.getRevisionNumber()int

Returns the version information in a.b(x.y)-z format
without a name.

getVersion()public
java.lang.String

Returns the version information in a.b(x.y)-z format.
Overrides toString in class java.lang.Object.

toString()public
java.lang.String

Inherited Methods

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
None

CiscoMediaCapability
The CiscoMediaCapability object specifies the properties of a particular media format that an application can
support for CiscoMediaTerminals that it registers. Because CiscoMediaCapability is an abstract class,
applications may only construct its subclasses directly.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
260

Cisco Unified JTAPI Extensions
Methods

Declaration
public class CiscoMediaCapability extends java.lang.Object

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

Subclasses
CiscoG711MediaCapability, CiscoG723MediaCapability, CiscoG729MediaCapability,
CiscoGSMMediaCapability, CiscoWideBandMediaCapability

Constructors
Table 26: Constructors in CiscoMediaCapability

DescriptionConstructorInterface

Constructs a CiscoMediaCapability object
for the specified payload type and packet
size (in milliseconds).

CiscoMediaCapability(intpayloadType,
intmaxFramesPerPacket)

public

Fields
Table 27: Fields in CiscoMediaCapability

DescriptionFieldInterface

G.711 capability with default parameters.G711_64K_30_MILLISECONDSstatic

G.723 capability with default parameters.G723_6K_30_MILLISECONDSstatic

G.729 capability with default parameters.G729_30_MILLISECONDSstatic

GSM capability with default parameters.GSM_80_MILLISECONDSstatic

Wideband capability with default
parameters.

WIDEBAND_256K_10_MILLISECONDSstatic

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
261

Cisco Unified JTAPI Extensions
Declaration

Methods
Table 28: Methods in CiscoMediaCapability

DescriptionMethodInterface

Returns the packet size (in milliseconds) that this object
specifies.The maxFramesPerPacket parameter is a
carryover from the H.245 protocol definition.

Cisco Unified Communications Manager does not use
this field as the number of frames per RTP packet, but
rather as the number of milliseconds of audio per RTP
packet that the device can receive.

Third-party IP phones may use different (higher) rates
even though these rates may not be exceeded to and or
from Cisco Unified IP phones.

getMaxFramesPerPacket(int

Returns a payload type from the RTPPayload interface
that this object specifies.

getPayloadType()int

Returns whether the payload of this object is supported
or not. True if the payloadType is supported, or
otherwise false

isSupported()boolean

Overrides toString in class java.lang.Object.toString()java.lang.String

Inherited Methods

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See CiscoG711MediaCapability, CiscoG723MediaCapability, CiscoG729MediaCapability,
CiscoGSMMediaCapability, CiscoWideBandMediaCapability, CiscoRTPBitRate, and CiscoRTPPayload.

CiscoMultiMediaCapabilityInfo
CiscoMultiMediaCapabilityInfo interface contains the multimedia capabilities of a terminal. Applications can
get the video capability, number of screens, and telepresence interoperability of the terminal using this API.

Declaration
public interface CiscoMultiMediaCapabilityInfo

com.cisco.jtapi.extensions.CiscoMultiMediaCapabilityInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
262

Cisco Unified JTAPI Extensions
Methods

Fields
Table 29: Fields in CiscoMultiMediaCapabilityInfo

DescriptionFieldInterface

Indicates that the
CiscoMultiMediaCapabilityInfo.getVideoCapability
() for this terminal is NONE.

NONEstatic final int

CiscoMultiMediaCapabilityInfo.getVideoCapability
() for this terminal is VIDEO_ENABLED.

VIDEO_ENABLEDstatic final int

Indicates that the
CiscoMultiMediaCapabilityInfo.getTelepresenceInfo()
for this terminal is
TELEPRESENCEINTEROP_NONE.

TELEPRESENCEINTEROP_NONEstatic final int

CiscoMultiMediaCapabilityInfo.
getTelepresenceInfo () for this terminal is
TELEPRESENCEINTEROP_ENABLED

TELEPRESENCEINTEROP_ENABLEDstatic final int

Methods
Table 30: Methods in MultiMediaCapabilityInfo

DescriptionMethodInterface

Returns the video capability of the Terminal. The video
capability can be NONE or VIDEO_ENABLED

getVideoCapability()int

Returns the telepresence capability of the Terminal. The
telepresence capability can be
TELEPRESENCEINTEROP_NONE or
TELEPRESENCEINTEROP_ENABLED

getTelepresenceInfo()int

Returns the number of screens present on the Terminal.getScreenCount()int

CiscoRegistrationException
The CiscoMediaTerminal.register method throws this exception when the registration process fails for any
reason. For example, registration would fail if the Provider were OUT_OF_SERVICE or if the device were
already registered.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
263

Cisco Unified JTAPI Extensions
Fields

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoRegistrationException extends java.lang.Exception

java.lang.Object

java.lang.Throwable

java.lang.Exception

com.cisco.jtapi.extensions.CiscoRegistrationException

Implemented Interfaces
java.io.Serializable

Constructors
Table 31: Constructors in CiscoRegistrationException

DescriptionConstructorInterface

Takes the description of the exception as a
parameter.

CiscoRegistrationException
(java.lang.Stringdescription)

public

Methods
None

Inherited Methods

From Class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
SeeCiscoMediaTerminal.register(java.net.InetAddress, int, com.cisco.jtapi.extensions.CiscoMediaCapability[]).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
264

Cisco Unified JTAPI Extensions
Declaration

CiscoRTPParams
You can use the CiscoRTPParams class to specify a dynamic RTP address and port number for a media
terminal on a per-call basis. Applications can pass this object in setRTPParams() of CiscoMediaTerminal.
These parameters are only valid for a particular call.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoRTPParams extends java.lang.Object

java.lang.Object

Constructors
CiscoRTPParams (java.net.InetAddress, rtpAddress, int rtpPort)

Fields
None

Methods
Table 32: Methods in CiscoRTPParams

DescriptionMethodInterface

Returns the Internet address for the inbound RTP stream
of the associated call.

getRTPAddress()java.net.InetAddress

Returns the IP host name for the inbound RTP stream
of the associated call.

getRTPAddressHostName()java.lang.String

Returns the Internet address in byte format for the
inbound RTP stream.

getRTPByteAddress()byte[]

Returns the UDP port for the inbound RTP stream.getRTPPort()int

Returns a String in the format “IP address/port number.”
Overrides toString in class java.lang.Object.

toString()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
265

Cisco Unified JTAPI Extensions
CiscoRTPParams

Inherited Methods

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See CiscoTerminal and CiscoMediaTerminal.

CiscoUnregistrationException
The CiscoMediaTerminal.unregister method throws this exception when the unregistration process fails. For
example, registration fails if the Provider is OUT_OF_SERVICE or the Terminal is already unregistered.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoUnregistrationException extends java.lang.Exception

java.lang.Object

java.lang.Throwable

java.lang.Exception

com.cisco.jtapi.extensions.CiscoUnregistrationException

Implemented Interfaces
java.io.Serializable

Constructors
Table 33: Constructors in CiscoUnregistrationException

DescriptionConstructorInterface

NoneCiscoUnregistrationException
()(java.lang.Stringdescription)

public

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
266

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
None

Methods
None

Inherited Methods

From Class java.lang.Throwable

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace,
printStackTrace, printStackTrace, setStackTrace, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See CiscoMediaTerminal.unregister(), Serialized Form.

CiscoWideBandMediaCapability
The CiscoWideBandMediaCapability object specifies the properties for a wide band encoded RTP stream.
Applications that support wide band media termination use this object to specify their preferred packet size
when registering a CiscoMediaTerminal. The default packet size is ten milliseconds.

Class History

DescriptionCisco Unified Communications Manager Release

Added history table to track changes.7.1x

Declaration
public class CiscoWideBandMediaCapability extends CiscoMediaCapability

java.lang.Object

com.cisco.jtapi.extensions.CiscoMediaCapability

com.cisco.jtapi.extensions.CiscoWideBandMediaCapability

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
267

Cisco Unified JTAPI Extensions
Fields

Constructors
Table 34: Constructors in CiscoWideBandMediaCapability

DescriptionConstructorInterface

Constructs a CiscoWideBandMediaCapability object
with the specified packet size. The default is
ten–millisecond packet size.

Parameters

• packetsize—The RTP packet Framesize.

CiscoWideBandMediaCapability(intpacketsize)public

Fields
Table 35: Fields in CiscoWideBandMedicaCapability

DescriptionFieldInterface

RTP Packet Framesize: Ten
millisecond RTP packet

FRAMESIZE_TEN_MILLISECOND_PACKETstaticint

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, WIDEBAND_256K_10_MILLISECONDS

Methods
None

Inherited Methods

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported, toString

From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Related Documentation
See Constant Field Values, on page 1665.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
268

Cisco Unified JTAPI Extensions
Constructors

Interface Hierarchy
The following interface hierarchy is contained in the com.cisco.jtapi.extensions package hierarchy.

javax.telephony.Address
com.cisco.jtapi.extensions.CiscoAddress (also extends

com.cisco.jtapi.extensions.CiscoObjectContainer)
com.cisco.jtapi.extensions.CiscoIntercomAddress

javax.telephony.callcenter.RouteAddress
com.cisco.jtapi.extensions.CiscoRouteAddress

javax.telephony.AddressObserver
com.cisco.jtapi.extensions.CiscoAddressObserver

javax.telephony.Call
javax.telephony.callcontrol.CallControlCall

com.cisco.jtapi.extensions.CiscoCall (also extends
com.cisco.jtapi.extensions.CiscoObjectContainer)

com.cisco.jtapi.extensions.CiscoConsultCall

com.cisco.jtapi.extensions.CiscoCallCtlTermConnHeldReversionEv

com.cisco.jtapi.extensions.CiscoConferenceChain

com.cisco.jtapi.extensions.CiscoFeatureReason

com.cisco.jtapi.extensions.CiscoJtapiException

com.cisco.jtapi.extensions.CiscoJtapiProperties

com.cisco.jtapi.extensions.CiscoLocales

com.cisco.jtapi.extensions.CiscoMediaSecurityIndicator

com.cisco.jtapi.extensions.CiscoMediaConnectionMode

com.cisco.jtapi.extensions.CiscoMediaEncryptionAlgorithmType

com.cisco.jtapi.extensions.CiscoMediaEncryptionKeyInfo

com.cisco.jtapi.extensions.CiscoMediaSecurityIndicator

com.cisco.jtapi.extensions.CiscoMonitorInitiatorInfo

com.cisco.jtapi.extensions.CiscoMonitorTargetInfo

com.cisco.jtapi.extensions.CiscoObjectContainer
com.cisco.jtapi.extensions.CiscoAddress (also extends javax.telephony.Address)
com.cisco.jtapi.extensions.CiscoIntercomAddress

com.cisco.jtapi.extensions.CiscoCall (also extends
javax.telephony.callcontrol.CallControlCall)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
269

Cisco Unified JTAPI Extensions
Interface Hierarchy

com.cisco.jtapi.extensions.CiscoConsultCall
com.cisco.jtapi.extensions.CiscoCallID
com.cisco.jtapi.extensions.CiscoConnection (also extends

javax.telephony.callcontrol.CallControlConnection)
com.cisco.jtapi.extensions.CiscoConnectionID
com.cisco.jtapi.extensions.CiscoConsultCall
com.cisco.jtapi.extensions.CiscoIntercomAddress
com.cisco.jtapi.extensions.CiscoJtapiPeer (also extends javax.telephony.JtapiPeer,

com.cisco.services.tracing.TraceModule)
com.cisco.jtapi.extensions.CiscoMediaTerminal
com.cisco.jtapi.extensions.CiscoProvider
com.cisco.jtapi.extensions.CiscoRouteTerminal
com.cisco.jtapi.extensions.CiscoTerminal (also extends javax.telephony.Terminal)

com.cisco.jtapi.extensions.CiscoMediaTerminal
com.cisco.jtapi.extensions.CiscoRouteTerminal

com.cisco.jtapi.extensions.CiscoTerminalConnection (also extends
javax.telephony.callcontrol.CallControlTerminalConnection)

com.cisco.jtapi.extensions.CiscoPartyInfo

com.cisco.jtapi.extensions.CiscoProvFeatureID

com.cisco.jtapi.extensions.CiscoProviderCapabilityChangedEv

com.cisco.jtapi.extensions.CiscoRecorderInfo

com.cisco.jtapi.extensions.CiscoRTPBitRate

com.cisco.jtapi.extensions.CiscoRTPHandle

com.cisco.jtapi.extensions.CiscoRTPInputProperties

com.cisco.jtapi.extensions.CiscoRTPOutputProperties

com.cisco.jtapi.extensions.CiscoRTPPayload

com.cisco.jtapi.extensions.CiscoSynchronousObserver

com.cisco.jtapi.extensions.CiscoTermConnPrivacyChangedEv

com.cisco.jtapi.extensions.CiscoTermEvFilter

com.cisco.jtapi.extensions.CiscoTerminalProtocol

com.cisco.jtapi.extensions.CiscoTone

com.cisco.jtapi.extensions.CiscoUrlInfo

javax.telephony.Connection
javax.telephony.callcontrol.CallControlConnection

com.cisco.jtapi.extensions.CiscoConnection (also extends
com.cisco.jtapi.extensions.CiscoObjectContainer)

javax.telephony.events.Ev

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
270

Cisco Unified JTAPI Extensions
Interface Hierarchy

javax.telephony.events.AddrEv
com.cisco.jtapi.extensions.CiscoAddrEv (also extends

com.cisco.jtapi.extensions.CiscoEv)
com.cisco.jtapi.extensions.CiscoAddrAutoAcceptStatusChangedEv
com.cisco.jtapi.extensions.CiscoAddrInServiceEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoChangedEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoRestorationFailedEv
com.cisco.jtapi.extensions.CiscoAddrOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoOutOfServiceEv)
com.cisco.jtapi.extensions.CiscoAddressRecordingConfigChangedEv
javax.telephony.callcontrol.events.CallCtlEv

javax.telephony.callcontrol.events.CallCtlCallEv (also extends
javax.telephony.events.CallEv)

javax.telephony.callcontrol.events.CallCtlConnEv (also extends
javax.telephony.events.ConnEv)

javax.telephony.callcontrol.events.CallCtlConnOfferedEv
com.cisco.jtapi.extensions.CiscoCallCtlConnOfferedEv

javax.telephony.events.CallEv
javax.telephony.events.CallActiveEv

com.cisco.jtapi.extensions.CiscoConsultCallActiveEv (also extends
com.cisco.jtapi.extensions.CiscoCallEv)

javax.telephony.callcontrol.events.CallCtlCallEv (also extends
javax.telephony.callcontrol.events.CallCtlEv)

javax.telephony.callcontrol.events.CallCtlConnEv (also extends
javax.telephony.events.ConnEv)

javax.telephony.callcontrol.events.CallCtlConnOfferedEv
com.cisco.jtapi.extensions.CiscoCallCtlConnOfferedEv
com.cisco.jtapi.extensions.CiscoCallEv (also extends

com.cisco.jtapi.extensions.CiscoEv)
com.cisco.jtapi.extensions.CiscoCallChangedEv
com.cisco.jtapi.extensions.CiscoCallSecurityStatusChangedEv
com.cisco.jtapi.extensions.CiscoConferenceChainAddedEv
com.cisco.jtapi.extensions.CiscoConferenceChainRemovedEv
com.cisco.jtapi.extensions.CiscoConferenceEndEv
com.cisco.jtapi.extensions.CiscoConferenceStartEv
com.cisco.jtapi.extensions.CiscoConsultCallActiveEv (also extends

javax.telephony.events.CallActiveEv)
com.cisco.jtapi.extensions.CiscoToneChangedEv
com.cisco.jtapi.extensions.CiscoTransferEndEv
com.cisco.jtapi.extensions.CiscoTransferStartEv
javax.telephony.events.ConnEv

javax.telephony.callcontrol.events.CallCtlConnEv (also extends
javax.telephony.callcontrol.events.CallCtlCallEv)

javax.telephony.callcontrol.events.CallCtlConnOfferedEv
com.cisco.jtapi.extensions.CiscoCallCtlConnOfferedEv
javax.telephony.events.TermConnEv

com.cisco.jtapi.extensions.CiscoTermConnMonitoringEndEv
com.cisco.jtapi.extensions.CiscoTermConnMonitoringStartEv
com.cisco.jtapi.extensions.CiscoTermConnMonitorInitiatorInfoEv
com.cisco.jtapi.extensions.CiscoTermConnMonitorTargetInfoEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingEndEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingStartEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingTargetInfoEv
com.cisco.jtapi.extensions.CiscoTermConnSelectChangedEv

com.cisco.jtapi.extensions.CiscoEv
com.cisco.jtapi.extensions.CiscoAddrActivatedEv
com.cisco.jtapi.extensions.CiscoAddrActivatedOnTerminalEv
com.cisco.jtapi.extensions.CiscoAddrAddedToTerminalEv
com.cisco.jtapi.extensions.CiscoAddrAutoAcceptStatusChangedEv
com.cisco.jtapi.extensions.CiscoAddrCreatedEv
com.cisco.jtapi.extensions.CiscoAddrEv (also extends

javax.telephony.events.AddrEv)
com.cisco.jtapi.extensions.CiscoAddrAutoAcceptStatusChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
271

Cisco Unified JTAPI Extensions
Interface Hierarchy

com.cisco.jtapi.extensions.CiscoAddrInServiceEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoChangedEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoRestorationFailedEv
com.cisco.jtapi.extensions.CiscoAddrOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoAddrEv,
com.cisco.jtapi.extensions.CiscoOutOfServiceEv)

com.cisco.jtapi.extensions.CiscoAddressRecordingConfigChangedEv
com.cisco.jtapi.extensions.CiscoAddrInServiceEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoChangedEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoRestorationFailedEv
com.cisco.jtapi.extensions.CiscoAddrOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoAddrEv)
com.cisco.jtapi.extensions.CiscoAddressRecordingConfigChangedEv

com.cisco.jtapi.extensions.CiscoAddrRemovedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedFromTerminalEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoCallChangedEv
com.cisco.jtapi.extensions.CiscoCallEv (also extends

javax.telephony.events.CallEv)
com.cisco.jtapi.extensions.CiscoCallChangedEv
com.cisco.jtapi.extensions.CiscoCallSecurityStatusChangedEv
com.cisco.jtapi.extensions.CiscoConferenceChainAddedEv
com.cisco.jtapi.extensions.CiscoConferenceChainRemovedEv
com.cisco.jtapi.extensions.CiscoConferenceEndEv
com.cisco.jtapi.extensions.CiscoConferenceStartEv
com.cisco.jtapi.extensions.CiscoConsultCallActiveEv (also extends

javax.telephony.events.CiscoCallEv)
com.cisco.jtapi.extensions.CiscoToneChangedEv
com.cisco.jtapi.extensions.CiscoTransferEndEv
com.cisco.jtapi.extensions.CiscoTransferStartEv

com.cisco.jtapi.extensions.CiscoCallSecurityStatusChangedEv

com.cisco.jtapi.extensions.CiscoConferenceChainAddedEv

com.cisco.jtapi.extensions.CiscoConferenceChainRemovedEv

com.cisco.jtapi.extensions.CiscoConferenceEndEv

com.cisco.jtapi.extensions.CiscoConferenceStartEv

com.cisco.jtapi.extensions.CiscoConsultCallActiveEv (also extends
javax.telephony.events.CallActiveEv,

com.cisco.jtapi.extensions.CiscoCallEv)

com.cisco.jtapi.extensions.CiscoMediaOpenLogicalChannelEv

com.cisco.jtapi.extensions.CiscoOutOfServiceEv
com.cisco.jtapi.extensions.CiscoAddrOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoAddrEv)
com.cisco.jtapi.extensions.CiscoTermOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoTermEv)

com.cisco.jtapi.extensions.CiscoProvCallParkEv

com.cisco.jtapi.extensions.CiscoProvFeatureEv (also extends
javax.telephony.events.ProvEv)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
272

Cisco Unified JTAPI Extensions
Interface Hierarchy

com.cisco.jtapi.extensions.CiscoAddrActivatedEv
com.cisco.jtapi.extensions.CiscoAddrActivatedOnTerminalEv
com.cisco.jtapi.extensions.CiscoAddrAddedToTerminalEv
com.cisco.jtapi.extensions.CiscoAddrCreatedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedFromTerminalEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoProvCallParkEv
com.cisco.jtapi.extensions.CiscoProvFeatureEv

com.cisco.jtapi.extensions.CiscoProvCallParkEv
com.cisco.jtapi.extensions.CiscoRestrictedEv

com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoTermActivatedEv
com.cisco.jtapi.extensions.CiscoTermCreatedEv
com.cisco.jtapi.extensions.CiscoTermRemovedEv
com.cisco.jtapi.extensions.CiscoTermRestrictedEv
com.cisco.jtapi.extensions.CiscoProvFeatureEv
com.cisco.jtapi.extensions.CiscoProvCallParkEv

com.cisco.jtapi.extensions.CiscoRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv

com.cisco.jtapi.extensions.CiscoRTPInputKeyEv
com.cisco.jtapi.extensions.CiscoRTPInputStartedEv
com.cisco.jtapi.extensions.CiscoRTPInputStoppedEv
com.cisco.jtapi.extensions.CiscoRTPOutputKeyEv
com.cisco.jtapi.extensions.CiscoRTPOutputStartedEv
com.cisco.jtapi.extensions.CiscoRTPOutputStoppedEv
com.cisco.jtapi.extensions.CiscoTermActivatedEv
com.cisco.jtapi.extensions.CiscoTermButtonPressedEv
com.cisco.jtapi.extensions.CiscoTermCreatedEv
com.cisco.jtapi.extensions.CiscoTermDataEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateActiveEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateAlertingEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateHeldEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateWhisperEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateWhisperEv
com.cisco.jtapi.extensions.CiscoTermDNDStatusChangedEv
com.cisco.jtapi.extensions.CiscoTermEvFilter (also extends

javax.telephony.events.TermEv)
com.cisco.jtapi.extensions.CiscoMediaOpenLogicalChannelEv
com.cisco.jtapi.extensions.CiscoRTPInputKeyEv
com.cisco.jtapi.extensions.CiscoRTPInputStartedEv
com.cisco.jtapi.extensions.CiscoRTPInputStoppedEv
com.cisco.jtapi.extensions.CiscoRTPOutputKeyEv
com.cisco.jtapi.extensions.CiscoRTPOutputStartedEv
com.cisco.jtapi.extensions.CiscoRTPOutputStoppedEv
com.cisco.jtapi.extensions.CiscoTermButtonPressedEv
com.cisco.jtapi.extensions.CiscoTermDataEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateActiveEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateAlertingEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateHeldEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateIdleEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateWhisperEv
com.cisco.jtapi.extensions.CiscoTermDNDStatusChangedEv
com.cisco.jtapi.extensions.CiscoTermInServiceEv
com.cisco.jtapi.extensions.CiscoTermOutOfServiceEv(also extends

com.cisco.jtapi.extensions.CiscoOutOfServiceEv)
com.cisco.jtapi.extensions.CiscoTermRegistrationFailedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotCompletedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotEv

com.cisco.jtapi.extensions.CiscoTermInServiceEv
com.cisco.jtapi.extensions.CiscoTermOutOfServiceEv (also extends

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
273

Cisco Unified JTAPI Extensions
Interface Hierarchy

com.cisco.jtapi.extensions.CiscoOutOfServiceEv,
com.cisco.jtapi.extensions.CiscoTermEv)

com.cisco.jtapi.extensions.CiscoTermRegistrationFailedEv
com.cisco.jtapi.extensions.CiscoTermRemovedEv
com.cisco.jtapi.extensions.CiscoTermRestrictedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotCompletedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotEv
com.cisco.jtapi.extensions.CiscoToneChangedEv
com.cisco.jtapi.extensions.CiscoTransferEndEv
com.cisco.jtapi.extensions.CiscoTransferStartEv

javax.telephony.events.ProvEv
com.cisco.jtapi.extensions.CiscoProvEv (also extends

com.cisco.jtapi.extensions.CiscoEv)
com.cisco.jtapi.extensions.CiscoAddrActivatedEv
com.cisco.jtapi.extensions.CiscoAddrActivatedOnTerminalEv
com.cisco.jtapi.extensions.CiscoAddrAutoAcceptStatusChangedEv
com.cisco.jtapi.extensions.CiscoAddrCreatedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedFromTerminalEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoProvCallParkEv
com.cisco.jtapi.extensions.CiscoProvFeatureEv

com.cisco.jtapi.extensions.CiscoProvCallParkEv
com.cisco.jtapi.extensions.CiscoRestrictedEv

com.cisco.jtapi.extensions.CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoTermActivatedEv
com.cisco.jtapi.extensions.CiscoTermCreatedEv
com.cisco.jtapi.extensions.CiscoTermRemovedEv
com.cisco.jtapi.extensions.CiscoTermRestrictedEv

javax.telephony.events.TermEv
com.cisco.jtapi.extensions.CiscoTermEv (also extends

com.cisco.jtapi.extensions.CiscoEv)
com.cisco.jtapi.extensions.CiscoMediaOpenLogicalChannelEv
com.cisco.jtapi.extensions.CiscoRTPInputKeyEv
com.cisco.jtapi.extensions.CiscoRTPInputStartedEv
com.cisco.jtapi.extensions.CiscoRTPInputStoppedEv
com.cisco.jtapi.extensions.CiscoRTPOutputKeyEv
com.cisco.jtapi.extensions.CiscoRTPOutputStartedEv
com.cisco.jtapi.extensions.CiscoRTPOutputStoppedEv
com.cisco.jtapi.extensions.CiscoTermButtonPressedEv
com.cisco.jtapi.extensions.CiscoTermDataEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateActiveEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateAlertingEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateHeldEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateIdleEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateWhisperEv
com.cisco.jtapi.extensions.CiscoTermDNDStatusChangedEv
com.cisco.jtapi.extensions.CiscoTermInServiceEv
com.cisco.jtapi.extensions.CiscoTermOutOfServiceEv (also extends

com.cisco.jtapi.extensions.CiscoOutOfServiceEv)
com.cisco.jtapi.extensions.CiscoTermRegistrationFailedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotCompletedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotEv

javax.telephony.JtapiPeer
com.cisco.jtapi.extensions.CiscoJtapiPeer (also extends

com.cisco.jtapi.extensions.CiscoObjectContainer,
com.cisco.services.tracing.TraceModule)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
274

Cisco Unified JTAPI Extensions
Interface Hierarchy

javax.telephony.Provider
com.cisco.jtapi.extensions.CiscoProvider (also extends

com.cisco.jtapi.extensions.CiscoObjectContainer)

javax.telephony.capabilities.ProviderCapabilities
com.cisco.jtapi.extensions.CiscoProviderCapabilities

javax.telephony.ProviderObserver
com.cisco.jtapi.extensions.CiscoProviderObserver

javax.telephony.callcenter.RouteSession
com.cisco.jtapi.extensions.CiscoRouteSession

javax.telephony.callcenter.events.RouteSessionEvent
javax.telephony.callcenter.events.RouteEvent

com.cisco.jtapi.extensions.CiscoRouteEvent
javax.telephony.callcenter.events.RouteUsedEvent

com.cisco.jtapi.extensions.CiscoRouteUsedEvent

javax.telephony.Terminal
com.cisco.jtapi.extensions.CiscoTerminal (also extends

com.cisco.jtapi.extensions.CiscoObjectContainer)
com.cisco.jtapi.extensions.CiscoMediaTerminal
com.cisco.jtapi.extensions.CiscoRouteTerminal

javax.telephony.TerminalConnection
javax.telephony.callcontrol.CallControlTerminalConnection

com.cisco.jtapi.extensions.CiscoTerminalConnection (also extends
com.cisco.jtapi.extensions.CiscoObjectContainer)

javax.telephony.TerminalObserver
com.cisco.jtapi.extensions.CiscoTerminalObserver

com.cisco.services.tracing.TraceModule
com.cisco.jtapi.extensions.CiscoJtapiPeer (also extends

com.cisco.jtapi.extensions.CiscoObjectContainer,
javax.telephony.JtapiPeer)

CiscoAddrActivatedEv
If an address is controlled and the restriction status changes to active, the system sends the
CiscoAddrActivatedEv event to the application. Applications see this event whenever an Address or associated
Terminal is in the control list. If any observers exist on the address already, applications see
CiscoAddrInServiceEv. If no observers are present, applications can try to add observers, and the address will
go in service.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
275

Cisco Unified JTAPI Extensions
CiscoAddrActivatedEv

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrActivatedEv extends CiscoProvEv

Fields
FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 36: Methods in CiscoAddrActivatedEv

DescriptionMethodInterface

Returns the Address which is activated.getAddress()javax.telephony.Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
276

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.ProvEv

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

Superinterfaces
javax.telephony.callcontrol.events.CallCtlCallEv, javax.telephony.callcontrol.events.CallCtlConnEv,
javax.telephony.callcontrol.events.CallCtlConnOfferedEv, javax.telephony.callcontrol.events.CallCtlEv,
javax.telephony.events.CallEv, javax.telephony.events.ConnEv, javax.telephony.events.Ev

Declaration
public interface CiscoCallCtlConnOfferedEv extends javax.telephony.callcontrol.events.CallCtlConnOfferedEv

Fields
None

Inherited Fields

From Interface javax.telephony.callcontrol.events.CallCtlConnOfferedEv

None

From Interface javax.telephony.callcontrol.events.CallCtlEv

CAUSE_ALTERNATE, CAUSE_BUSY, CAUSE_CALL_BACK, CAUSE_CALL_NOT_ANSWERED,
CAUSE_CALL_PICKUP, CAUSE_CONFERENCE, CAUSE_DO_NOT_DISTURB, CAUSE_PARK,
CAUSE_REDIRECTED, CAUSE_REORDER_TONE, CAUSE_TRANSFER, CAUSE_TRUNKS_BUSY,
CAUSE_UNHOLD

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
277

Cisco Unified JTAPI Extensions
Inherited Methods

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 37: Methods in CiscoCallCtlConnOfferedEv

DescriptionMethodInterface

Returns the IP address of the calling party, or 0 (or null)
if the IP Address is not available.

getCallingPartyIpAddr()java.net.InetAddress

Inherited Methods

From Interface javax.telephony.callcontrol.events.CallCtlCallEv

getCalledAddress, getCallingAddress, getCallingTerminal, getLastRedirectedAddress

From Interface javax.telephony.callcontrol.events.CallCtlEv

getCallControlCause

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
278

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ConnEv

getConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
None

CiscoAddrActivatedOnTerminalEv
The CiscoAddrActivatedOnTerminalEv event gets sent when a shared line gets activated or a Terminal which
has shared line gets activated.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrActivatedOnTerminalEv extends CiscoProvEv

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
279

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 38: Methods in CiscoAddrActivatedOnTerminalEv

DescriptionMethodInterface

Returns the address that is marked unrestricted on the
terminal.

getAddress()javax.telephony.Address

Returns the terminal on which the address got activated
(i.e. marked unrestricted).

getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
280

Cisco Unified JTAPI Extensions
Inherited Fields

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddrAddedToTerminalEv
The system sends CiscoAddrAddedToTerminalEv when:

• A user adds a Terminal into the control list that contains a shared line, the system sends this event to the
application. If a user has an address in the control list, and you add a new Terminal with the same address
in control list, this event gets sent.

• An Extension Mobility (EM) user logs into a Terminal with a profile that contains a shared line, this
event notifies that a new Terminal has been added to an already existing address.

• A new shared line gets added to a Terminal in a user control list, the system sends this event to the
application.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrAddedToTerminalEv extends CiscoProvEv

Fields
Table 39: Fields in CiscoAddrAddedToTerminalEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
281

Cisco Unified JTAPI Extensions
Related Documentation

CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 40: Methods in CiscoAddrAddedToTerminalEv

DescriptionMethodInterface

Returns the address on which the new terminal is added.getAddress()javax.telephony.Address

Returns the terminal that gets added to the Address.getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddrAutoAcceptStatusChangedEv
The system sends CiscoAddrAutoAcceptStatusChangedEv to applications whenever the AutoAccept status
for the Address on the Terminal changes. If an Address has multiple Terminals, this event gets sent for the
Address AutoAccept status on each individual Terminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
282

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrAutoAcceptStatusChangedEv extends CiscoAddrEv

Fields
Table 41: Fields in CiscoAddrAutoAcceptStatusChangedEv

FieldInterface

IDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUTUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_R_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
283

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 42: Methods for CiscoAddrAutoAcceptStatusChangedEv

DescriptionMethodInterface

Returns the AutoAccept Status of the Address on the
Terminal. Returns CiscoAddress.AUTOACCEPT_OFF
or CiscoAddress.AUTOACCEPT_ON

getAutoAcceptStatus()int

Returns the Terminal at which the AutoAccept status
for this address is changing.

getTerminal()CiscoTerminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See getAutoAcceptStatus and CiscoAddress.getAutoAcceptStatus(Terminal terminal).

CiscoAddrCreatedEv
The CiscoAddrCreatedEv event gets sent when an Address gets added to the provider domain.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
284

Cisco Unified JTAPI Extensions
Methods

Declaration
public interface CiscoAddrCreatedEv extends CiscoProvEv

Fields
Table 43: Fields in CiscoAddrCreatedEv

FieldInterface

static final int IDID

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 44: Methods in CiscoAddrCreatedEv

DescriptionMethodInterface

Returns the address which got added to the provider
domain. Returns the address that is added to the provider
domain.

javax.telephony.Address getAddress()getAddress

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
285

Cisco Unified JTAPI Extensions
Declaration

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoAddrMonitorTerminatedEv
When a monitor session is terminated, the Supervisor who had initiated the session will be notified with this
event.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface8.0(1)

Declaration
pubic interface CiscoAddrMonitorTerminatedEv extends CiscoAddrEv

Methods
Table 45: Methods in CiscoAddrMonitorTerminatedEv

DescriptionMethodInterface

Returns the transaction ID for the session termination.getTransactionID()Int

Returns the target address that was being monitored.getMonitorTargetAddress()Address

Returns the monitored device name.getMonitorTargetDevieName()String

Returns the call leg identifier for the monitored target.getMonitorTargetCalllegHandle()Int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
286

Cisco Unified JTAPI Extensions
Inherited Methods

DescriptionMethodInterface

Returns the device name for the device that initiated the
monitoring session.

getMonitorInitiatorDeviceName()String

Returns the reason that the monitoring session was
terminated.

getCause()Int

Related Documentation

CiscoAddress
The CiscoAddress interface extends the Address interface with additional Cisco Unified Communications
Manager capabilities.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added voice and fax message counts for the Enhanced Message
Waiting Indication (MWI) feature for supported phones only.

7.1(1, 2)

Updated for Terminal and Address Capability settings changes.7.1(3)

Enhanced with the following:

• New APIs getPickupGroup() to enable applications to get
information about the Pickup Group the Address belongs to

• New address type to indicate that the address represents hunt
pilot.

• New field that will represent a new kind of recording type,
device-based recording.

8.0(1)

A new constant, SELECTIVE_RECORDING, is added. Two
constants, APPLICATION_CONTROLLED_RECORDING, and
DEVICE_CONTROLLED_RECORDING, are deprecated.
Applications that upgrade to Release 9.0 or later releases should
use the new SELECTIVE_RECORDING constant and not the
deprecatedAPPLICATION_CONTROLLED_RECORDINGand
DEVICE_CONTROLLED_RECORDING constants. In Release
9.0 or later releases Unified CM and JTAPI never return the
DEVICE_CONTROLLED_RECORDING constant.

9.0(1)

Enhanced with the following:

• New APIs to create a persistent call and to retrieve the
connection object associated to the persistent call.

• a new API to create an announcement call in order to play
announcements to the remote destinations.

10.0(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
287

Cisco Unified JTAPI Extensions
Related Documentation

Superinterfaces
javax.telephony.Address, CiscoObjectContainer, on page 472

Subinterfaces
CiscoIntercomAddress

Fields
Table 46: Fields in CiscoAddress

DescriptionFieldInterface

Application controlled Recording is configured on
the Address.

APPLICATION_CONTROLLED_RECORDINGStatic int

Auto Recording is configured on the Address.AUTO_RECORDINGStatic int

AutoAnswer is off.AUTOANSWER_OFFStatic int

AutoAnswer status is unknown.AUTOANSWER_UNKNOWNStatic int

AutoAnswer is allowed with a headset.AUTOANSWER_WITHHEADSETStatic int

AutoAnswer is allowed with a speaker set.AUTOANSWER_WITHSPEAKERSETstatic int

This value will be used to specify a new recording
type. This type is used when the recording profile
is configured on the device, and is thus “device
controlled”

DEVICE_CONTROLLED_RECORDINGpublic static final int

This represents an external address with a valid
name.

EXTERNALstatic int

This represents an external address with an unknown
name.

EXTERNAL_UNKNOWNstatic int

The address is in service.IN_SERVICEstatic int

This is an internal address.INTERNALstatic int

This represents an address with a monitoring target
or agent.

MONITORING_TARGETstatic int

Recording is off on the Address.NO_RECORDINGstatic int

The address is out-of-service.OUT_OF_SERVICEstatic int

Sets the ringer status to the configured value.RINGER_DEFAULTstatic int

Disables the ringer for the address.RINGER_DISABLEstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
288

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

Enables the ringer for the address.RINGER_ENABLEstatic int

This constant is added to replace the deprecated
constants
APPLICTION_CONTROLLED_RECORDINGand
DEVICE_CONTROLLED_RECORDING

SELECTIVE_RECORDINGstatic int

This represents an address with an unknown name.UNKNOWNstatic int

Methods
Table 47: Methods in CiscoAddress

DescriptionMethodInterface

Use this interface to clear any phantom calls on the
address.

Throws

javax. telephony. PrivilegeViolationException—Use
this interface to clear any phantom calls on the address.

clearCallConnections ()void

This interface creates a persistent call for this address
and will return the call object for the newly created call.
Note that CiscoProvider and the address must be in
IN_SERVICE state, otherwise InvalidStateException
will be thrown. This API cannot be invoked on external
addresses. Doing so will result in
MethodNotSupportedException to be thrown. If while
trying to allocate a globalCallId for the persistent call
and an error occurs, ResourceUnavailableExceptionwill
be thrown. All other errors encountered will result in
PlatformException to be thrown.

createPersistentCall (Terminal
terminal, String callerIDNumber,
String callerIDName)

CiscoCall

This interface creates an announcement call for this
address in order to play announcements to the remote
destination. It returns the call object for the newly
created call. Note that CiscoProvider and the address
must be in IN_SERVICE state, otherwise
InvalidStateException is thrown. This API cannot be
invoked on external addresses. Doing so results in
MethodNotSupportedException being thrown. If while
trying to allocate a globalCallId for the announcement
call and an error occurs, ResourceUnavailableException
ise thrown. All other errors encountered results in
PlatformException being thrown.

startAnnouncement (Terminal
terminal, String announcementID)

Use this interface to get information about calls that are
present at the Terminal.

getAddressCallInfo (javax.
telephony. Terminal terminal)

CiscoAddressCallInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
289

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method returns the ASCII label configured for this
address on Terminal term.

Throws InvalidStateException,
MethodNotSupportedException,
InValidParameterException.

getAsciiLabel (Terminal term)String

Returns the AutoAccept status of the Address on the
Terminal.

Throws

javax. telephony. PlatformException, javax. telephony.
InvalidStateException, javax. telephony.
MethodNotSupportedException

Returns the AutoAccept status of the Address on the
Terminal. It may return one of the following constants:

• CiscoAddress. AUTOACCEPT_OFF
• CiscoAddress. AUTOACCEPT_ON

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

(getState () = = IN_SERVICE

Parameters

• terminal - The Terminal on which the AutoAccepts

getAutoAcceptStatus (javax.
telephony. Terminal terminal)

int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
290

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This interface returns the AutoAnswer status of this
Address on given Terminal.

Throws

javax. telephony. PlatformException, javax. telephony.
InvalidStateException, javax. telephony.
MethodNotSupportedException

If return value is AUTOANSWER_OFF, that means
AutoAnswer is disabled. If return value is
AUTOANSWER_WITHHEADSET, that means
AutoAnswer is enabled with HEADSET. If return value
is AUTOANSWER_WITHSPEAKERSET, that means
AutoAnswer is enabled with SPEAKERSET. If return
value is AUTOANSWER_UNKNOWN, that means
AutoAnswer status is UNKNOWN.

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

(getState () = = IN_SERVICE

Parameters

• term - Terminal at which AutoAnswer is checked

Returns one of the following values:

• CiscoAddress. AUTOANSWER_OFF
• CiscoAddress.AUTOANSWER_WITHHEADSET
• CiscoAddress.
AUTOANSWER_WITHSPEAKERSET

• CiscoAddress. AUTOANSWER_UNKNOWN

Throws

javax. telephony. InvalidStateException - The Provider
or Address is not"IN_SERVICE".

javax. telephony. PlatformException - If Address is not
on Terminal term

javax. telephony. MethodNotSupportedException - If
Address is an External Address

getAutoAnswerStatus (javax.
telephony. Terminal term)

int

This method returns the busy trigger configured for this
address on terminal term.

Throws InvalidStateException,
InvalidArgumentException,
MethodNotSupportedException.

getBusyTrigger (Terminal term)int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
291

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method returns the button position of the address
on terminal term.

Throws InvalidStateException,
InvalidArgumentException,
MethodNotSupportedException.

getButtonPosition (Terminal term)int

Use this interface to find out which Shared Lines are in
service. In Shared Lines, the same Address appears on
different Terminals.

Returns: Terminal[]—An array of Terminals on which
the Address is in service.

getInServiceAddrTerminals ()javax. telephony. Terminal[]

This newmethod returns the maximum calls configured
for an address on a terminal. This method throws
InvalidStateException if the associated terminal is not
registered to Cisco Unified Communication Manager.
It throws InvalidArgumentException if terminal does
not have this address. MethodNotSupportedException
is be thrown if address is not in Provider

getMaxCalls (Terminal term)int

It returns the partition associated with an Address.getPartition ()java. lang. String

This interface will return the connection object that is
associated with the persistent call. It returns null if there
is no persistent call. This API cannot be invoked on
external addresses. Doing so will result in
MethodNotSupportedException to be thrown.

getPersistentConnection (Terminal
terminal)

Connection

This method returns a CiscoPickupGroup object that
represents the Pickup Group DN and Partition that this
Address belongs to.

getPickupGroup ()CiscoPickupGroup

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
292

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the configured recording type on this Address.

Throws

javax. telephony. PlatformException, javax. telephony.
InvalidStateException, javax. telephony.
MethodNotSupportedException

Returns

• int—The configured recording type on this
Address.

• CiscoAddess.NO_RECORDING—The call cannot
be recorded.

• CiscoAddress. AUTO_RECORDING—Cisco
Unified Communications Manager records all
answered calls to/from this address.

• CiscoAddress.
APPLICATION_CONTROLLED_RECORDING—Calls
get recorded only when the application initiates
recording.

Throws

javax. telephony. InvalidStateException - The Provider
or Address is not"IN_SERVICE".

javax. telephony. PlatformException - If Address is not
on Terminal term

javax. telephony. MethodNotSupportedException - If
Address is an External Address

getRecordingConfig (javax.
telephony. Terminal term)

int

Deprecated.

This method has been replaced by the getState () method.
Returns the state of this address can be any of the
following constants:

• CiscoAddress. OUT_OF_SERVICE
• CiscoAddress. IN_SERVICE

getRegistrationState ()int

Returns the array of Terminals on which this Address
is restricted. In shared lines, few lines on Terminals may
be restricted.

Applications cannot see any call events for restricted
Addresses. If a restricted Address is involved in a call
with any other controlled Terminal, the system creates
a Connection for the restricted Address, but there is not
any TerminalConnection for the restricted Address.

Returns: Terminal[]—An array of Terminals on which
this Address is restricted. If none is restricted, this
method returns null.

getRestrictedAddrTerminals ()javax. telephony. Terminal[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
293

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the state of this address. The state may be any
of the following constants:

• CiscoAddress. OUT_OF_SERVICE
• CiscoAddress. IN_SERVICE

getState ()int

Returns the following address constants:

• CiscoAddress. INTERNAL
• CiscoAddress. EXTERNAL
• CiscoAddress. EXTERNAL_UNKNOWN
• CiscoAddress. UNKNOWN
• CiscoAddress. MONITORING_TARGET
• CiscoAddress. HUNT_PILOT, if address is in a
CiscoHuntConnection.

• CiscoAddress. HUNT_PILOT, if address represents
hunt pilot.

getType ()int

This method returns the Unicode label configured for
this address on Terminal term.

Throws InvalidStateException,
MethodNotSupportedException,
InValidParameterException.

getUnicodeLabel (Terminal term)String

This method returns the voice mail pilot of the address.

Throws InvalidStateException,
MethodNotSupportedException.

getVoiceMailPilot ()int

This method returns true if this Address on Terminal is
restricted. ; false if not restricted.

isRestricted (javax. telephony.
Terminal terminal)

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
294

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method lets an application enable AutoAccept for
this Address on CiscoMediaTerminal and/or
CiscoRouteTerminal.

Addresses on CiscoTerminal other than
CiscoMediaTerminal or CiscoRouteTerminal will always
have AutoAccept on. If the Terminal passed in the
parameter is not a CiscoMediaTerminal or
CiscoRouteTerminal, this method throws an exception.

For a CiscoMediaTerminal that shares an Address with
CiscoTerminal, Cisco recommends enablingAutoAccept
on CiscoMediaTerminal.

Throws

javax. telephony. PlatformException, javax. telephony.
InvalidStateException, javax. telephony.
MethodNotSupportedException

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

(getState () = = IN_SERVICE

Post-conditions

Enables or Disables auto accept status

Parameters

• autoAcceptStatus - can be either CiscoAddress.
AUTOACCEPT_OFF or CiscoAddress.
AUTOACCEPT_ON. If autoAcceptStatus is
AUTOACCEPT_ON, it will enable AutoAccept
for Address on Terminal. If autoAcceptStatus is
AUTOACCEPT_OFF, it will disable AutoAccept
for Address on Terminal.

• terminal - The Terminal on which AutoAccept will
be enabled

Throws

javax. telephony. InvalidStateException - The Provider
or Address is not "In_Service".

javax. telephony. PlatformException - The Terminal
does not have this Address.

javax. telephony. MethodNotSupportedException - If
the Terminal is not CiscoMediaTerminal or
CiscoRouteTerminal.

setAutoAcceptStatus (int
autoAcceptStatus, javax. telephony.
Terminal terminal)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
295

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Specifies whether the message-waiting indicator should
be activated or deactivated for the Address specified by
the destination. If enable is true, message-waiting gets
activated if not already activated. If enable is false,
message-waiting gets deactivated if not already
deactivated.

Throws

javax. telephony.MethodNotSupportedException, javax.
telephony. InvalidStateException, javax. telephony.
PrivilegeViolationException

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

Post-conditions

Enables or disables the Message Waiting Indicator
depending on the enable status.

This implementation currently does not
enforce the post-conditions as specified in
CallControlAddress as follows: this.
getMessageWaiting () = = enable

Note

CallCtlAddrMessageWaitingEv gets delivered for this
Address.

Parameters

• destination - DN/Address message-waiting
indicator is activated/deactivated

• enable - True to activate message-waiting, false to
deactivate

Throws

• javax. telephony.
MethodNotSupportedException—This method is
not supported by the given implementation.

javax. telephony. InvalidStateException

The Provider is not“in service. ”Note

javax. telephony. PrivilegeViolationException

The Provider user has insufficient
privileges to invoke the message-waiting
indicator for this destination.

Note

setMessageWaiting (java. lang.
String destination, boolean enable)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
296

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Changes the ringer status on this address.

Throws

javax. telephony.MethodNotSupportedException, javax.
telephony. InvalidStateException, javax. telephony.
InvalidArgumentException

Accepts one of the following constants:

• CiscoAddress. RINGER_DEFAULT
• CiscoAddress. RINGER_DISABLE
• CiscoAddress. RINGER_ENABLE

setRingerStatus (int status)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
297

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

setMessageSummary (boolean
enable, boolean voiceCounts, int
totalNewVoiceMsgs, int
totalOldVoiceMsgs, boolean
highPriorityVoiceCounts, int
newHighPriorityVoiceMsgs, int
oldHighPriorityVoiceMsgs, boolean
faxCounts, int totalNewFaxMsgs, int
totalOldFaxMsgs, boolean
highPriorityFaxCounts, int
newHighPriorityFaxMsgs, int
oldHighPriorityFaxMsgs)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
298

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Use this interface to set the message-waiting indicator
along with voice/fax message waiting counts If enable
is true, message-waiting gets activated if not already
activated. If enable is false, message-waiting gets
deactivated if not already deactivated.

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

Post-conditions

Enables or disables the Message Waiting Indicator and
sets message waiting counts.

Parameters

• enable - True to activate message-waiting, false to
deactivate

• voiceCounts - indicates if voice message counts
are provided

• totalNewVoiceMsgs - specifies the total number
of new voice messages waiting

• totalOldVoiceMsgs - specifies the total number of
old voice messages waiting

• highPriorityVoiceCounts - indicates if high priority
voice message counts are provided

• newHighPriorityVoiceMsgs - specifies the number
of new high priority voice messages waiting

• oldHighPriorityVoiceMsgs - specifies the number
of old high priority voice messages waiting

• faxCounts - indicates if fax message counts are
provided

• totalNewFaxMsgs - specifies the total number of
new fax messages waiting

• totalOldFaxMsgs - specifies the total number of
old fax messages waiting

• highPriorityFaxCounts - indicates if high priority
fax message counts are provided

• newHighPriorityFaxMsgs - specifies the number
of new high priority fax messages waiting

• oldHighPriorityFaxMsgs - specifies the number of
old high priority fax messages waiting

Throws

javax. telephony.MethodNotSupportedException - This
method is not supported by the given implementation.

javax. telephony. InvalidStateException - The Provider
is not "in service. "

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
299

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

javax. telephony. PrivilegeViolationException - The
Provider user has insufficient privileges to set the
message-waiting indicator or message counts for this
destination.

Use this interface to set the message-waiting indicator
along with voice/fax message waiting counts for the
Address specified by the destination

Pre-conditions

(this. getProvider ()). getState () = = Provider.
IN_SERVICE

Post-conditions

Enables or disables the Message Waiting Indicator and
sets message waiting counts.

Parameters

• destination - DN/Address whose message-waiting
indicator should be activated/deactivated

• enable - True to activate message-waiting, false to
deactivate

• voiceCounts - indicates if voice message counts
are provided

• totalNewVoiceMsgs - specifies the total number
of new voice messages waiting

• totalOldVoiceMsgs - specifies the total number of
old voice messages waiting

• highPriorityVoiceCounts - indicates if high priority
voice message counts are provided

• newHighPriorityVoiceMsgs - specifies the number
of new high priority voice messages waiting

• oldHighPriorityVoiceMsgs - specifies the number
of old high priority voice messages waiting

• faxCounts - indicates if fax message counts are
provided

• totalNewFaxMsgs - specifies the total number of
new fax messages waiting

• totalOldFaxMsgs - specifies the total number of
old fax messages waiting

• highPriorityFaxCounts - indicates if high priority
fax message counts are provided

• newHighPriorityFaxMsgs - specifies the number
of new high priority fax messages waiting

• oldHighPriorityFaxMsgs - specifies the number of
old high priority fax messages waiting

setMessageSummary (java. lang.
String destination, boolean enable,
boolean voiceCounts, int
totalNewVoiceMsgs, int
totalOldVoiceMsgs, boolean
highPriorityVoiceCounts, int
newHighPriorityVoiceMsgs, int
oldHighPriorityVoiceMsgs, boolean
faxCounts, int totalNewFaxMsgs, int
totalOldFaxMsgs, boolean
highPriorityFaxCounts, int
newHighPriorityFaxMsgs, int
oldHighPriorityFaxMsgs)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
300

Cisco Unified JTAPI Extensions
Methods

Inherited Methods

From Interface javax.telephony.Address

addCallObserver, addObserver, getAddressCapabilities, getCallObservers, getCapabilities, getConnections,
getName, getObservers, getProvider, getTerminals, removeCallObserver, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Parameters
• Terminal terminal: The terminal object you want to create the persistent call for.

• String callerIDNumber: The number you wish to show up on the remote destination's Caller ID.

• String callerIDName: The name you wish to show up on the remote destination's Caller ID.

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddressObserver
Applications implement this interface to receive CiscoAddrEv events such as CiscoAddrInServiceEv 0
CiscoAddrOutOfServiceEv when observing Addresses via the Address.addObserver method.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.AddressObserver

Declaration
public interface CiscoAddressObserver extends javax.telephony.AddressObserver

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
301

Cisco Unified JTAPI Extensions
Inherited Methods

Methods
None

Inherited Methods

From Interface javax.telephony.AddressObserver

addressChangedEvent

Related Documentation
See CiscoAddrInServiceEv, CiscoAddrOutOfServiceEv for more information.

CiscoAddrEv
The CiscoAddrEv interface extends the JTAPI core javax.telephony.events.AddrEv interface and serves as
the base interface for all Cisco extended JTAPI Address events. Every Address related event in this package
extends this interface, directly or indirectly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoEv, javax.telephony.events.Ev

Subinterfaces
CiscoAddrAutoAcceptStatusChangedEv, CiscoAddrInServiceEv, CiscoAddrIntercomInfoChangedEv,
CiscoAddrIntercomInfoRestorationFailedEv, CiscoAddrOutOfServiceEv,
CiscoAddrRecordingConfigChangedEv

Declaration
public interface CiscoAddrEv extends CiscoEv, javax.telephony.events.AddrEv

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
302

Cisco Unified JTAPI Extensions
Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See javax.telephony.events.AddrEv for more information.

CiscoAddrEvFilter
CiscoAddrEvFilter provided for applications to set filters for address events. The application can use the
following APIs to enable/disable the filters to receive the event notifications on address or to check the value

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
303

Cisco Unified JTAPI Extensions
Inherited Fields

set of the filter. Application can enable the filter, if it wishes to receive the new event (CiscoAddrParkStatusEv),
for the rest of the events the filter values are true by default.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added this event for ParkMonitoring and Assisted DPark Support
feature.

7.1(1)

Interface is enhanced to allow application set filter on address to
enable and disable CiscoAddrVoiceMailPilotChangedEv.

7.1.(3)

Enhanced with the following:

• getCiscoAddrMonitoringTerminatedEvFilter()
• setCiscoAddrMonitoringTerminatedEvFilter()

By default the filter will be set to ‘true’ and
CiscoMonitoringTerminatedEv will be delivered. To stop
receiving this event applications need to set the filter to false.

8.0(1)

Fields
None

Methods
Table 48: Methods in CiscoAddrEvFilter

DescriptionMethodInterface

Application can invoke this API to know status of the
filter for CiscoAddrParkStatusEv. Default value
returned is false.

getCiscoAddrParkStatusEvFilter ()boolean

Application can invoke this API to know the stutus of
the filter for CiscoAddrIntercomInfoChangedEv.
Default value is true.

getCiscoAddrIntercomInfoChangedEvFilter ()boolean

Application can invoke this API to know the status of
the filter for
CiscoAddrIntercomInfoRestorationFailedEv. Default
value is true.

getCiscoAddrIntercomInfoRestorationFailedEvFilter
()

boolean

Application can invoke this API to know the status of
the filter for CiscoAddrMonitorTerminatedEv. Default
value is true.

getCiscoAddrMonitorTerminatedEvFilter ()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
304

Cisco Unified JTAPI Extensions
Fields

DescriptionMethodInterface

Application can invoke this API to get the status of
the filter for the
CiscoAddrRecordingConfigChangedEv. The default
value is true.

getCiscoAddrRecordingConfigChangedEvFilter ()boolean

This method returns true if voice mail pilot changed
event filter is turned on else false.

getCiscoAddrVoiceMailPilotChangedEvFilter ()boolean

Application can invoke this API to set the status of the
filter for CiscoAddrIntercomInfoChangedEv.

setCiscoAddrIntercomInfoChangedEvFilter (boolean
filter value)

void

Application can invoke this API to set the status of the
filter for CiscoAddrIntercomInfoRestorationFailedEv.

setCiscoAddrIntercomInfoRestorationFailedEvFilter
(boolean filter value)

void

Parameter

Boolean

setCiscoAddrMonitorTerminatedEvFilter (Boolean
filterValue)

void

Application can invoke this API to set the status of the
filter for CiscoAddrParkStatusEv.

setCiscoAddrParkStatusEvFilter (Boolean filterValue)Void

Application can invoke this API to set the value of the
filter for CiscoAddrRecordingConfigChangedEv.

setCiscoAddrRecordingConfigChangedEvFilter
(boolean filter value)

void

This method enables or disables the address voice mail
changed event. When this filter is turned on
CiscoAddrVoiceMailPilotChangedEv is delivered to
address observer when voice mail configuration is
changed.

setCiscoAddrVoiceMailPilotChangedEvFilter (boolean
filterValue)

void

Sample Code

CiscoAddress caddr = (CiscoAddress) provider.getAddress("2000");
If (caddr ! = null){

CiscoAddrEvFilter filter = caddr.getFilter();
filter.setCiscoAddrVoiceMailPilotChangedEvFilter(true);
caddr.addObserver(myAddrObserver);

}

try {
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
MyProviderObserver providerObserver = new MyProviderObserver ();
provider = peer.getProvider (ipaddress;login = useid;passwd = password);
if (provider ! = null) {

provider.addObserver (providerObserver);
provInService.waitTrue();
CiscoAddrEvFilter filter;
CiscoAddress addr = provider.getAddress(S1, S1p);
filter.setCiscoAddrMonitoringTerminatedEvFilter(false);
addr.setFilter(filter);
System.out.println(“ Current filter value is : “+
addr.getFilter().getCiscoAddrMonitoringTerminatedEvFilter());

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
305

Cisco Unified JTAPI Extensions
Methods

Inherited Methods
None

Parameters
The set methods take a Boolean value as the parameter.

Value Range
The get methods return a Boolean value (true or false).

Related Documentation
See Constant Field Values, on page 1665.

CiscoAddrInServiceEv
The CiscoAddrInServiceEv indicates that the Address is now IN_SERVICE. With Shared Lines (where the
same Address appears on different Terminals), applications may receive multiple CiscoAddressInService
events for all the Terminals. Applications can use this interface to find out the Terminal on which the Address
(or Shared Line) is going IN_SERVICE.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrInServiceEv extends CiscoAddrEv

Fields
Table 49: Fields in CiscoAddrInService

FieldInterface

IDStatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
306

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 50: Methods in CiscoAddrInService

DescriptionMethodInterface

Returns the Terminal at which this Address is going
IN_SERVICE.

CiscoTerminal getTerminal()getTerminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Related Documentation, on page 287.getInServiceAddrTerminals() and Constant Field Values, on page
1665 for more information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
307

Cisco Unified JTAPI Extensions
Inherited Fields

CiscoAddrIntercomInfoChangedEv
The system sends the CiscoAddrIntercomInfoChangedEv event to the application whenever the target DN or
intercom target label changes for a CiscoIntercomAddress. The system provides this event to all of the
application observers that have been added to the CiscoIntercomAddress.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrIntercomInfoChangedEv extends CiscoAddrEv

Fields
Table 51: Fields in CiscoAddrIntercomInfoChangedEv

FieldInterface

IDStatic Int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
308

Cisco Unified JTAPI Extensions
CiscoAddrIntercomInfoChangedEv

META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 52: Methods in CiscoAddrIntercomInfoChangedEv

DescriptionMethodInterface

Returns the intercom address for which the information
changed.

getIntercomAddress()getIntercomAddress

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoAddrEv and Constant Field Values, on page 1665 for more information.

CiscoAddrIntercomInfoRestorationFailedEv
The system sends the CiscoAddrIntercomInfoRestorationFailedEv event to the application when JTAPI cannot
restore the application set intercom target DN or the intercom target label for the CiscoIntercomAddress during
failover or fallback. The system provides this event on the application observer for the application that set the
intercom target DN or the intercom target label.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
309

Cisco Unified JTAPI Extensions
Methods

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrIntercomInfoRestorationFailedEv extends CiscoAddrEv

Fields
Table 53: Fields in CiscoAddrIntercomInfoRestorationFailedEv

FieldInterface

IDStatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 54: Methods in CiscoAddrIntercomInfoRestorationFailedEv

DescriptionMethodInterface

This interface returns the Cisco IntercomAddress for
which intercom information restoration failed.

getIntercomAddress()CiscoIntercomAddress

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
310

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 and CiscoAddrEv for additional information.

CiscoAddrPickupGroupChangedEv
CiscoAddrPickupGroupChangedEv is a new interface being added with Call Pickup feature development.
This event is fired whenever a pickup group’s information changes, and the line info gets updated. The line
info will only be updated when the line is updated with the “apply config” button in the CUCM.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface8.0(1)

Declaration
public interface CiscoAddrPickupGroupChangedEv extends CiscoProvEv

Methods
Table 55: Methods in CiscoAddrPickupGroupChangedEv

DescriptionMethodInterface

This method returns the old Pickup Group information
for this event.

getOldPickupGroup()CiscoPickupGroup

This method returns the new Pickup Group information
for this event, what the pickup group has changed to.

getNewPickupGroup()CiscoPickupGroup

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
311

Cisco Unified JTAPI Extensions
Inherited Methods

New Error Code
CTIERR_PICKUPGROUP_CHANGED

CTIERR_PICKUPGROUP_DELETED

CiscoAddrOutOfServiceEv
The CiscoAddrOutOfServiceEv event notifies applications that an Address has gone OUT_OF_SERVICE.
With Shared Lines(where the same Address appears on different Terminals), applications may receive multiple
CiscoAddrOutOfServiceEv events for all the Terminals. Applications can use this interface to find out the
Terminal on which the Address(or Shared Line) is going OUT_OF_SERVICE.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, CiscoOutOfServiceEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrOutOfServiceEv extends CiscoAddrEv, CiscoOutOfServiceEv

Fields
Table 56: Fields in CiscoAddrOutOfServiceEv

FieldInterface

IDStatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
312

Cisco Unified JTAPI Extensions
New Error Code

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface com.cisco.jtapi.extensions.CiscoOutOfServiceEv

CAUSE_CALLMANAGER_FAILURE,CAUSE_CTIMANAGER_FAILURE,CAUSE_DEVICE_FAILURE,
CAUSE_DEVICE_RESTRICTED, CAUSE_DEVICE_UNREGISTERED, CAUSE_LINE_RESTRICTED,
CAUSE_NOCALLMANAGER_AVAILABLE, CAUSE_REHOME_TO_HIGHER_PRIORITY_CM,
CAUSE_REHOMING_FAILURE

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 57: Methods in CiscoAddrOutOfServiceEv

DescriptionMethodInterface

Returns the Terminal at which this Address is going
OUT_OF_SERVICE.

getTerminal()CiscoTerminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
313

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant FieldValues, on page 1665 andRelatedDocumentation, on page 287.getInServiceAddrTerminals()
for more information.

CiscoAddrParkStatusEv
When parking a call using the Cisco Unified IP Phone, JTAPI reports park states by using this event. It is
provided to all the applications, which have address observers added on the address, which has invoked park.
This event gets delivered only when park gets invoked from Cisco Unified IP Phones.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added interface for ParkMonitoring and Assisted DPark feature.7.1(1 and 2)

Declaration
public interface CiscoAddrParkStatusEv extends CiscoAddrEv

Fields
Table 58: Fields in CiscoAddrParkStatusEv

DescriptionFieldInterface

Park status when the call is parked.PARKEDstatic int

Park status when the park monitoring
reversion timer expires.

REMINDERstatic int

Park status when the parked call is retrieved
by the parker or a third party.

RETRIEVEDstatic int

Park status when the parked call is
forwarded when the park monitoring
forward- no-retrieve timer expires.

FORWARDEDstatic int

Park status when the parked call is
disconnected.

ABANDONEDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
314

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields
None

Methods
Table 59: Methods in CiscoAddrParkStatusEv

DescriptionMethodInterface

Returns the current park state of the parked call.getParkState()int

Returns an id which is unique for a particular parked
call. Transaction ID would remain the same in the
different park states for the same parked call.

getTransactionID()int

Returns CiscoCallID.getCiscoCallID()CiscoCallID

Returns the DN where call is parked.getParkDN()String

Returns the partition of the Park DN.getParkDNPartition()String

Returns the DN of the parked party.getParkedParty()String

Returns the partition of the Parked party.getParkedPartyPartition()String

Returns the terminal on whose address this event is
delivered.

getTerminal()Terminal

Value Ranges
The following are values of fields:

• PARKED: 2

• REMINDER: 3

• RETRIEVED: 4

• ABANDONED: 5

• FORWARDED: 6

Related Documentation
See Constant Field Values, on page 1665 for more information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
315

Cisco Unified JTAPI Extensions
Inherited Fields

CiscoAddrRecordingConfigChangedEv
The system delivers the CiscoAddrRecordingConfigChangedEv event to the Address Observer if the recording
setting on the Address changes.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.AddrEv, CiscoAddrEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoAddrRecordingConfigChangedEv extends CiscoAddrEv

Fields
Table 60: Fields in CiscoAddrRecordingConfigChangedEv

FieldInterface

IDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
316

Cisco Unified JTAPI Extensions
CiscoAddrRecordingConfigChangedEv

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 61: Methods in CiscoAddrRecordingConfigChangedEv

DescriptionMethodInterface

Returns the new recording configuration on this Address. The
value is one of the following:

• CiscoAddress.NO_RECORDING
• CiscoAddress.AUTO_RECORDING
• CiscoAddress.APPLICATION_CONTROLLED_RECORDING

getRecordingConfig()Int

Returns the Terminal on which the recording configuration
changed.

getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.AddrEv

getAddress

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 and CiscoAddrEv for more information.

CiscoAddrRemovedEv
JTAPI sends the CiscoAddrRemovedEv event when an Address gets removed from the Provider domain.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
317

Cisco Unified JTAPI Extensions
Methods

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrRemovedEv extends CiscoProvEv

Fields
Table 62: Fields in CiscoAddrRemovedEv

FieldInterface

IDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 63: Methods in CiscoAddrRemovedEv

DescriptionMethodField

Returns the Address that is removed from provider
domain and the address which is removed from the user
control list.

getAddress()javax.telephony.Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
318

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddrRemovedFromTerminalEv
The system sends the CiscoAddrRemovedFromTerminalEv event under the following conditions:

• When an Administrator removes a Terminal from the user control list that contains a Shared Line.

• When an Extension Mobility (EM) user logs out from a Terminal with a profile that contains a Shared
Line, this event notifies that one of the Terminals got removed from an existing Address.

• When a Shared Line is removed from a Terminal that is in a user control list.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrRemovedFromTerminalEv extends CiscoProvEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
319

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
Table 64: Fields in CiscoAddrRemovedFromTerminalEv

FieldInterface

IDStatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 65: Methods in CiscoAddrRemovedFromTerminalEv

DescriptionMethodInterface

Returns the Address from which the Terminal got
removed.

getAddress()javax.telephony.Address

Returns the Terminal that got removed from the Address.getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
320

Cisco Unified JTAPI Extensions
Fields

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See also Constant Field Values, on page 1665 for more information.

CiscoAddrRestrictedEv
If an Address is observed and the restriction status is changed to restricted, the system sends this event to the
application.

Applications will see this event whenever an Address or an associated Terminal is Restricted from Cisco
Unified CommunicationsManagerAdministration. For restricted lines, theAddresswill goOUT_OF_SERVICE
and will not come back IN_SERVICE until it is activated again. If an Address is restricted, addCallObserver
and addObserver will throw an exception.

For shared lines, if a few shared lines are restricted, and others are not, the system does not throw an exception
but the restricted shared lines will not receive any events. If all shared lines are restricted, an exception is
thrown when application try adding observers. If an Address gets restricted after observers are added,
applications will see CiscoAddrOutOfServiceEv, and when the Address is activated, the Address will go
IN_SERVICE.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, CiscoRestrictedEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrRestrictedEv extends CiscoRestrictedEv

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
321

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoRestrictedEv

CAUSE_UNKNOWN, CAUSE_UNSUPPORTED_DEVICE_CONFIGURATION,
CAUSE_UNSUPPORTED_PROTOCOL, CAUSE_USER_RESTRICTED

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

Methods
Table 66: Methods in CiscoAddrRestrictedEv

DescriptionMethodInterface

Returns the Address which is changed to Restricted on
Cisco Unified Communications Manager.

getAddress()javax.telephony.Address

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
322

Cisco Unified JTAPI Extensions
Inherited Fields

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddrRestrictedOnTerminalEv
If the user has Shared lines in the control list, and one of those lines is marked restricted on Cisco Unified
Communications Manager, the system sends this event.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoEv, CiscoProvEv, CiscoRestrictedEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoAddrRestrictedOnTerminalEv extends CiscoRestrictedEv

Fields
Table 67: Fields in CiscoAddrRestrictedOnTerminalEv

FieldInterface

IDStatic int

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoRestrictedEv

CAUSE_UNKNOWN, CAUSE_UNSUPPORTED_DEVICE_CONFIGURATION,
CAUSE_UNSUPPORTED_PROTOCOL, CAUSE_USER_RESTRICTED

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
323

Cisco Unified JTAPI Extensions
Related Documentation

META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

Methods
Table 68: Methods in CiscoAddrRestricedOnTerminalEv

DescriptionMethodInterface

Returns the Address that is restricted.getAddress()javax.telephony.Address

Returns the Terminal on which the Address is restricted.getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAddrVoiceMailPilotChangedEv
This event indicates that the voice mail pilot configuration on address is changed and is delivered to address
observer. Application needs to enable the corresponding filter in CiscoAddrEvFilter to receive this event.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
324

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.7.1(3)

Sample Code:

class myAddrObserver extends CiscoAddressObserver {
public synchronized void addressChangedEvent (AddrEv [] eventList) {
if (eventList[i] instanceof CiscoAddrVoiceMailPilotChangedEv){

CiscoAddrVoiceMailPilotChangedEv ev = (CiscoAddrVoiceMailPilotChangedEv)

eventList[i];
Address cAddr = ev.getAddress();
String newVoiceMailPilot = ev.getVoiceMailPilot();
System.out.println(" New voice mail pilot for " +
ev.getAddress() + " is " + newVoiceMailPilot);

}
}

}

Superinterfaces
NA

Declaration
NA

Fields
Table 69: Fields in CiscoAddrVoiceMailPilotChangedEv

FieldInterface

Inherited Fields

Methods
Table 70: Methods in CiscoAddrVoiceMailPilotChangedEv

DescriptionMethodInterface

This method returns the new voice mail pilot of the
address.

getVoiceMailPilot()String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
325

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoAnnouncementStartedEv
CiscoAnnouncementStartedEv is a new JTAPI event that is delivered to applications as a Call Event. This
new event is delivered to call observers added by applications to notify when a play announcement starts.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes10.01

Declaration
Public interface CiscoAnnouncementStartedEv extends CiscoCallEv.

Methods
DescriptionMethodInterface

This interface returns the name of the
announcement identifier.

getAnnouncementID ()String

CiscoAnnouncementEndedEv
CiscoAnnouncementEndedEv is a new JTAPI event that is delivered to applications as a Call Event. This new
event is delivered to call observers added by applications to notify when play announcement ends.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes10.01

Declaration
Public interface CiscoAnnouncementEndedEv extends CiscoCallEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
326

Cisco Unified JTAPI Extensions
Inherited Methods

Methods
DescriptionMethodInterface

This interface returns whether or not the play
announcement was successful. Returns true if there are
no errors with the play announcement, or returns false
indicating error.

getSuccess()boolean

This interface returns the error code indicating the cause
of the failure/error with play announcment. This maps to
one of the values defined in CiscoJtapiException.

getErrorCode()int

This interface returns the string corresponding to what
the error code maps to.

getErrorDescription()String

CiscoAnnouncementErrorEv
CiscoAnnouncementErrorEv is a new JTAPI event that is delivered to applications as a Call Event. This new
event is delivered to call observers added by applications to notify when an error occurs during play
announcement.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes10.01

Declaration
Public interface CiscoAnnouncementErrorEv extends CiscoCallEv.

Methods
DescriptionMethodInterface

This interface returns the error code indicating the cause
for the failure/error with play announcment. This maps
to one of the values defined in CiscoJtapiException.

getErrorCode()Int

This interface returns the string corresponding to what
the error code maps to.

getErrorDescription()String

CiscoBaseMediaTerminal
The CiscoBaseMediaTerminal interface extends the CiscoTerminal interface.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
327

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.8.5(1)

Declaration
public interface CiscoBaseMediaTerminal extends CiscoTerminal

Superinterfaces
NA

Fields
Table 71: Fields in CiscoBaseMediaTerminal

FieldInterface

NO_MEDIA_REGISTRATIONFinal static int

DYNAMIC_MEDIA_REGISTRATIONFinal static int

DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORTFinal static int

STATIC_MEDIA_REGISTRATIONFinal static int

STATIC_MEDIA_REGISTRATION_FOR_GET_PORT SUPPORTFinal static int

Inherited Fields
NA

Methods
Table 72: Methods in CiscoBaseMediaTerminal

MethodInterface

getRegistrationType()int

register(java.net.InetAddress address, int port, CiscoMediaCapability[] capabilities, int
registrationType), int[] algorithmIDs, java.net.InetAddress address_v6, int activeAddressingMode)

throws CiscoRegistrationException, PrivilegeViolationException;

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
328

Cisco Unified JTAPI Extensions
Declaration

Inherited Methods
NA

Parameters
• register()

• Java.net.InteAddress address

• int port

• CiscoMediaCapability[] capabilities

• int[] algorithmIDs

• Java.net.InteAddress address_v6

• int activeAddressingMode

• int registrationType

Data Types
• Java.net.InteAddress address

• int port

• CiscoMediaCapability[] capabilities

• int[] algorithmIDs

• Java.net.InteAddress address v6

• int activeAddressingMode

• int registrationType

Range of Values
• activeAddressingMode:

• CiscoTerminal.IP_ADDRESSING_MODE_IPv4 or
• CiscoTerminal.IP_ADDRESSING_MODE_IPv6 or
• CiscoTerminal.IP_ADDRESSING_MODE_IPv4_v6

• registrationType:

• CiscoTerminal.NO_MEDIA_REGISTATION (applicable only for route points)

• CiscoTerminal.DYNAMIC_MEDIA_REGISTRATION

• CiscoTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT

• CiscoTerminal.STATIC_MEDIA_REGISTRATION

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
329

Cisco Unified JTAPI Extensions
Inherited Methods

• CiscoTerminal.STATIC_MEIDA_TERMINAL_FOR_GET_PORT_SUPPORT

CiscoCall
The CiscoCall interface extends the CallControlCall interface with additional Cisco Unified Communications
Manager specific capabilities.

In Cisco Unified CommunicationsManager, every Call object comprises a set of call legs that share a common
identifier: the global call handle. Connection objects represent call legs in JTAPI, and the Call object that
relates a set of connections contains the global call handle that the underlying call legs share.

The global call handle within a CiscoCall is accessible by using CallManagerID and CallID properties. Taken
together, the CallManagerID and CallID form the global call handle that Cisco Unified Communications
Manager maintains. Consider this pair of properties as guaranteed to be unique among all ACTIVE Call
objects, but when an ACTIVE call becomes INACTIVE, its CallManagerID and CallID may be reused to
identify a newly created Call object. Therefore, an INACTIVE Call can have identical CallManagerID and
CallID properties to those of a currently ACTIVE Call object.

Interface History

DescriptionCisco Unified
Communications
Manager Release
Number

Two new APIs:

CiscoMultiMediaCapabilityInfogetCallingTerminalMultiMediaCapabilityInfo() Returns the calling party
terminal multimedia capability.

CiscoMultiMediaCapabilityInfogetCalledTerminalMultiMediaCapabilityInfo() Returns the called party
terminal multimedia capability.

Three new constants:

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_NONE

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_G

10.0(1)

Five new constants: CALL_RECORDING_TYPE_NONE,CALL_RECORDING_TYPE_AUTOMATIC,
CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT,
CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATION, and
CALL_RECORDING_TYPE_USER_INITIATED_FROM_DEVICE, are added.

9.0(1)

Enhanced with the following:

New methods that allow applications to get the Terminals associated with the current calling and current
called parties on the call.

New API to indicate whether the call is created due to CallFwdAll key press or not.

Three new constants, CFWD_ALL_NONE, CFWD_ALL_SET, and CFWD_ALL_CLEAR, have been
introduced for CiscoCall interface.

8.0(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
330

Cisco Unified JTAPI Extensions
CiscoCall

DescriptionCisco Unified
Communications
Manager Release
Number

Added new method called isConference() for Drop Any Party feature.7.1(1)

Superinterfaces
javax.telephony.Call, javax.telephony.callcontrol.CallControlCall, CiscoObjectContainer

Subinterfaces
CiscoConsultCall

Declaration
public interface CiscoCall extends javax.telephony.callcontrol.CallControlCall, CiscoObjectContainer

Fields
Table 73: Fields in CiscoCall

DescriptionFieldInterface

This constant is used when silent is the
recording invocation type. Silent
recording is the default value in releases
prior to Release 9.0.

CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENTstatic int

This constant is used when recording is
invoked automatically by Unified CM,
as a result of the line configuration.

CALL_RECORDING_TYPE_AUTOMATICstatic int

This constant is used when a call is not
recorded.

CALL_RECORDING_TYPE_NONEstatic int

This constant is used when user is the
recording invocation type, and the
request was invoked by an application.

CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATIONstatic int

This constant is used when recording
was invoked on the Cisco IP device.

CALL_RECORDING_TYPE_USER_INITIATED_FROM_DEVICEstatic int

Call security status is authenticated.CALLSECURITY_AUTHENTICATEDStatic int

Call security status is encrypted.CALLSECURITY_ENCRYPTEDStatic int

Call security status is not authenticated.CALLSECURITY_NOTAUTHENTICATEDStatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
331

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

Call security status is unknown.CALLSECURITY_UNKNOWNStatic int

When call is not created due to
CallFwdAll soft key press. Value is 0.

CFWD_ALL_NONEpublic static final
int

When call is created due to CallFwdAll
key press to set CFA. Value is 64.

CFWD_ALL_SETpublic static final
int

When call is created to CallFwdAll key
press to clear/cancel CFA. Value is 128.

CFWD_ALL_CLEARpublic static final
int

Feature priority is emergencyFEATUREPRIORITY_EMERGENCYStatic int

Feature priority is normalFEATUREPRIORITY_NORMALStatic int

Feature priority is urgentFEATUREPRIORITY_URGENTStatic int

This interface indicates if call is created
due to callFWDAll Key press. It returns
one of the following:

• CiscoCall.CFWD_ALL_NONE

• CiscoCall.CFWD_ALL_SET

• CiscoCall.CFWD_ALL_CLEAR

getCFwdAllKeyPressIndicator()int

A tone plays to both the caller and the
monitor target (agent) when this option
gets used.

PLAYTONE_BOTHLOCALANDREMOTEStatic int

A tone plays only to the monitor target
(agent) when this option gets used.

PLAYTONE_LOCALONLYStatic int

When this option is used no tone plays
to the monitor target (agent) or the
caller.

PLAYTONE_NOLOCAL_OR_REMOTEStatic int

A tone plays only to the caller when this
option gets used.

PLAYTONE_REMOTEONLYStatic int

This option indicates that silent monitor
is requested.

SILENT_MONITORStatic int

This option indicates that there is no
Media Forking Device for recording on
this call.

Range of value = 0

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_NONEstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
332

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This option indicates that the Media
Forking Device type for recording on
this call is Phone (BIB Recording).

Range of value = 1

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONEstatic final int

This option indicates that the Media
Forking Device type for recording on
this call is Gateway (GW Recording).

Range of value = 2

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GWstatic final int

Inherited Fields

From Interface javax.telephony.Call

ACTIVE, IDLE, INVALID

Sample Code

public class MyCallObserver implements implements CallObserver,
CallControlCallObserver, MediaCallObserver {

public void callChangedEvent (CallEv[] evlist) {
for(int i = 0; evlist ! = null && i < evlist.length; i++){

…
…

If (evlisth[i] instance of TermConnActiveEv){
CiscoCall thisCall = (CiscoCall) ((TermConnActiveEv)

evlist[i]).getCall();
int cfaStatus = thisCall.getCFWDAllKeyPressIndicator();
If (cfaStatus = = CiscoCall.CFWD_ALL_SET ||

cfaStatus = = CiscoCall.CFWD_ALL_CLEAR){
System.out.println(“Call is created due to CallFwdAll soft key press”);

}else {
System.out.println(“Call is NOT created due to CallFwdAll soft key

press”);
}

}
}

…
…

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
333

Cisco Unified JTAPI Extensions
Inherited Fields

Methods
Table 74: Methods in CiscoCall

DescriptionMethodInterface

This interface conferences multiple calls together,
resulting in the union of the participants of all the calls
being placed on a single call.

conference (javax. telephony. Call[]otherCalls)Void

Returns True if it is a conference call, false or otherwise.isConference ()java. lang.
boolean

This method overloads Call. connect (). It takes a new
parameter featurePriority. The featurePriority parameter
may be:

CiscoCall. FEATUREPRIORITY_NORMAL

CiscoCall. FEATUREPRIORITY_URGENT

CiscoCall. FEATUREPRIORITY_EMERGENCY

Throws: javax. telephony.
ResourceUnavailableException, javax. telephony.
PrivilegeViolationException, javax. telephony.
InvalidPartyException, javax. telephony.
InvalidArgumentException, javax. telephony.
InvalidStateException, javax. telephony.
MethodNotSupportedException

connect (javax. telephony. Terminal origterm, javax.
telephony. Addressorigaddr java. lang. String.
dialedDigits int featurePriority)

javax. telephony.
Connection[]

Returns the Presentation Indicator (PI) that is associated
with getCalledAddressPI.

getCalledAddressPI ()boolean

Returns the PartyInfo of the called party of the call.getCalledPartyInfo ()CiscoPartyInfo

CallID is a unique identifier among all ACTIVE calls
with the same CallManagerID.

getCallID ()CiscoCallID

Returns the Presentation Indicator (PI) that is associated
with getCallingAddressPI.

getCallingAddressPI ()boolean

This interface returns the SecurityStatus of the Call.getCallSecurityStatus ()int

This interface returns a CiscoConferenceChain object
if this Call is a chained conference Call.

getConferenceChain ()CiscoConference
Chain

Returns the current called Address for the call.getCurrentCalledAddress ()javax. telephony.
Address

Returns the Presentation Indicator (PI) that is associated
with CurrentCalledAddress.

getCurrentCalledAddressPI ()boolean

Returns the Presentation Indicator (PI) that is associated
with getCurredCalledDisplayNamePI.

getCurrentCalledDisplayNamePI ()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
334

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This interface returns the display name of the called
party in the call.

getCurrentCalledPartyDisplayName ()java. lang. String

Returns the PartyInfo of the current called party of the
call.

getCurrentCalledPartyInfo ()CiscoPartyInfo

Returns the Unicode display name of the called party in
the call.

getCurrentCalledPartyUnicodeDisplayName ()java. lang. String

Returns the locale of the current called party Unicode
display name.

getCurrentCalledPartyUnicodeDisplayNamelocale ()int

Returns the current calling Address for the call.getCurrentCallingAddress ()javax. telephony.
Address

Returns the Presentation Indicator (PI) that is associated
with getCurrentCallingAddressPI.

getCurrentCallingAddressPI ()boolean

Returns the Presentation Indicator (PI) that is associated
with getCurrentCalledDisplayNamePI.

getCurrentCallingDisplayNamePI ()boolean

This interface returns the display name of the calling
party.

getCurrentCallingPartyDisplayName ()java. lang. String

Returns the PartyInfo of the current calling party of the
call.

getCurrentCallingPartyInfo ()CiscoPartyInfo

Returns the Unicode display name of the calling party
in the call.

getCurrentCallingPartyUnicodeDisplayName ()java. lang. String

Returns the locale of the current called party Unicode
display name.

getCurrentCallingPartyUnicodeDisplayNamelocale ()int

This method returns a Terminal object that represents
the terminal of the calling party on the call.

By default, if the terminal is not defined, these will
return null. An example of when this would occur is
when a phoen goes offhook, and a one-sided call is
created. The CalledTerminal would be null in this
scenario. The terminal for the called party is only set
AFTER the called party answers a call.

getCurrentCallingTerminal ()Terminal

This method returns a Terminal object that represents
the terminal of the called party on the call.

By default, if the terminal is not defined, these will
return null. An example of when this would occur is
when a phoen goes offhook, and a one-sided call is
created. The CalledTerminal would be null in this
scenario. The terminal for the called party is only set
AFTER the called party answers a call.

getCurrentCalledTerminal ()Terminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
335

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This will return the globalizedCallingPartygetGlobalizedCallingParty ()java. lang. String

Returns the PartyInfo of the last redirecting party of the
call.

getLastRedirectedPartyInfo ()CiscoPartyInfo

Returns the Presentation Indicator (PI) that is associated
with getLastRedirectingAddressPI.

getLastRedirectingAddressPI ()boolean

Deprecated. - use getLastRedirectedPartyInfo ();getLastRedirectingPartyInfo ()CiscoPartyInfo

This interface returns the modified called Address for
the call if called party is modified by using called party
transformation pattern or other means.

getModifiedCalledAddress ()javax. telephony.
Address

This interface returns the modified calling Address for
the call if an application modifies its calling party by
using the selectRoute API or other means.

getModifiedCallingAddress ()javax. telephony.
Address

This interface returns true if the call is a persistent call
and false if the call is a normal call.

isPersistentCall ()boolean

If the application has the information about the call at
the monitor target, the application can use this interface
to monitor calls.

startMonitor (javax. telephony.
TerminalMonitorInitiatorterminal, javax. telephony.
AddressMonitorInitiatoraddress, intmonitorTargetcallid,
java. lang. StringmonitorTargetDN, java. lang.
StringmonitorTargetTerminalName, intmonitorType,
intplayToneDirection)

javax. telephony.
Connection[]

If the application is observing the monitor target (agent)
Address, the application can use the Terminal connection
of the monitor target (agent) to initiate a monitor request.

startMonitor (javax. telephony.
TerminalMonitorInitiatorterminal, javax. telephony.
AddressMonitorInitiatoraddress, javax. telephony.
TerminalConnectiontermConnofMonitorTarget,
intmonitorType, intPlayToneDirection)

javax. telephony.
Connection[]

This method is similar to the CallControlCall. transfer
(String address) interface except that it also takes
facCode (Forced Authorization Code) and cmcCode
(Client Matter Code) if the transfer Address requires
these codes to offer the call.

transfer (java. lang. Stringaddress, java. lang.
StringfacCode, java. lang. StringcmcCode)

javax. telephony.
Connection

Returns the calling party terminal multimedia capability.getCallingTerminalMultiMediaCapabilityInfo ()CiscoMultiMedia
CapabilityInfo

Returns the called party terminal multimedia capability.getCalledTerminalMultiMediaCapabilityInfo ()CiscoMultiMedia
CapabilityInfo

In Cisco Unified JTAPI implementation, CallControlCall.getCalledAddress() returns the first called party of
the call which is the original called party.

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
336

Cisco Unified JTAPI Extensions
Methods

Inherited Methods

From Interface javax.telephony.callcontrol.CallControlCall

addParty, conference, consult, consult, drop, getCalledAddress, getCallingAddress, getCallingTerminal,
getConferenceController, getConferenceEnable, getLastRedirectedAddress, getTransferController,
getTransferEnable, offHook, setConferenceController, setConferenceEnable, setTransferController,
setTransferEnable, transfer, transfer

From Interface javax.telephony.Call

addObserver, connect, getCallCapabilities, getCapabilities, getConnections, getObservers, getProvider,
getState, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Parameters
• origterm -

• origaddr -

• dialedDigits -

• featurePriority -

Conference Controller
For the conferencing feature to happen, a common participant must belong to all the Calls, as represented
TerminalConnection of common participants on controller Terminal. These TerminalConnections are known
as the conference controllers. At the most, only one of TerminalConnection on the Calls at controller Terminal
would be in CallControlTerminalConnection.TALKING state, and hence, the TerminalConnection on the
secondary Call should be in the CallControlTerminalConnection.HELD state. As a result of invokation of
this method, all the conference controller TerminalConnection merge into one TerminalConnection.

Applications can set which Terminal would acts as the conference controller when a conference call gets set
up by setting up Conference controller TerminalConnection via invoking
CallControlCalll.setConferenceController() method. The CalControlCall.getConferenceController() method
returns the current conference controller, or null if there is none. If no conference controller is set initially,
the implementation chooses a suitable TerminalConnection when the conferencing feature is invoked.

Telephone Call Argument
All participants from the secondary Calls, passed as the argument to this method, move to the Call on which
this method was invoked. That is, new Connections and TerminalConnections for the participant in the
secondary Calls are created on this Call. The Connections and TerminalConnections on the secondary Calls
get removed from the Call, and the Call moves to the Call.INVALID state.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
337

Cisco Unified JTAPI Extensions
Inherited Methods

Other Shared Participants
There may exist other Addresses and Terminals that are part of some calls in addition to the designated
conference controller. In these instances, those participants that are shared between both Calls are merged
into one. That is, the Connections and TerminalConnections on this Calls stay unchanged. The corresponding
Connections and TerminalConnections on the secondary Calls get removed from that Call.

Pre-Conditions

1. Let tc1 be the conference controller on this Call

2. Let connection1 = tc1.getConnection()

3. Let tc2 to tcN be the conference controllers on otherCalls

4. (this.getProvider()).getState() = = Provider.IN_SERVICE

5. this.getState() = = Call.ACTIVE

6. tc1.getTerminal() = = tc2.getTerminal()... = tcN.getTerminal

7. tc1.getCallControlState() = = CallControlTerminalConnection.TALKING/HELD

8. tc2-tcN.getCallControlState() = = CallControlTerminalConnection.HELD/TALKING

9. this ! = otherCalls

Post-Conditions

1. (this.getProvider()).getState() = = Provider.IN_SERVICE

2. this.getState() = = Call.ACTIVE

3. otherCall.getState() = = INVALID

4. Let c[] be the Connections to be merged from otherCall

5. Let tc[] be the TerminalConnections to be merged from otherCall

6. Let new(c) be the set of new Connections created on this Call

7. Let new(tc) be the set of new TerminalConnections created on this Call

8. new(c) element of this.getConnections()

9. new(c).getCallState() = = c.getCallState()

10. new(tc) element of (this.getConnections()).getTerminalConnections()

11. new(tc).getCallState() = = tc.getCallState()

12. c[i].getCallControlState() = = CallControlConnection.DISCONNECTED for all i

13. tc[i].getCallControlState() = = CallControlTerminalConnection.DROPPED for all i

14. CallInvalidEv is delivered for otherCall

15. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for all c[i]

16. CallCtlTermConnDroppedEv/TermConnDroppedEv is delivered for all tc[i]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
338

Cisco Unified JTAPI Extensions
Other Shared Participants

17. ConnCreatedEv is delivered for all new(c)

18. TermConnCreatedEv is delivered for all new(tc)

19. Appropriate events are delivered for all new(c) and new(tc)

Parameters

otherCalls - The Other Calls which are to be merged with this Call object.

Throws

javax.telephony.InvalidArgumentException - The Call object that is provided is not valid for the conference.

javax.telephony.InvalidStateException - Thismeans that the Provider is not "in service, " the Call is not "active,
" or the conference controllers are not in the proper state.

javax.telephony.MethodNotSupportedException - The implementation does not support this method.

javax.telephony.PrivilegeViolationException - The application does not have the proper authority to invoke
this method.

javax.telephony.ResourceUnavailableException - This means that an internal resource that is necessary for
the successful invocation of this method is not available.

See Also

ConnCreatedEv, TermConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEv, CallInvalidEv,
CallCtlConnDisconnectedEv, CallCtlTermConnDroppedEv

javax.telephony.Connection transfer(java.lang.Stringaddress java.lang.StringfacCode, java.lang.StringcmcCode)

Throws for connect(Terminal, Address, String, CiscoRTPParams)

javax.telephony.InvalidArgumentException, javax.telephony.InvalidStateException,
javax.telephony.InvalidPartyException, javax.telephony.MethodNotSupportedException,
javax.telephony.PrivilegeViolationException, javax.telephony.ResourceUnavailableExceptionThis method
is similar to the CallControlCall.transfer(String address) interface except that it also takes facCode (Forced
Authorization Code) and cmcCode (Client Matter Code) if the transfer Address requires these codes to offer
the call. If only one of the codes is required, the other code may need to be a null value.

If the user enters no codes, or invalid codes, the call may not be offered and platformException may contain
the following error codes:

CiscoJTAPIException.CTIERR_FAC_CMC_REASON_FAC_NEEDED
CiscoJTAPIException.CTIERR_FAC_CMC_REASON_CMC_NEEDED
CiscoJTAPIException.CTIERR_FAC_CMC_REASON_FAC_CMC_NEEDED
CiscoJTAPIException.CTIERR_FAC_CMC_REASON_FAC_INVALID
CiscoJTAPIException.CTIERR_FAC_CMC_REASON_CMC_INVALID

This overloaded version of this method transfers all participants currently on this Call, with the exception of
the transfer controller participant, to another Address. This is often called a "single-step transfer" because the
transfer feature places another call and performs the transfer simultaneously. The Address string argument to
this method must be valid and complete.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
339

Cisco Unified JTAPI Extensions
Other Shared Participants

The Transfer Controller
The transfer controller for this version of this method represents the participant on this Call around which the
transfer is taking place and who drops off the Call after the transfer has completed. The transfer controller is
a TerminalConnection that must be in the CallControlTerminalConnection.TALKING state.

Applications may control which TerminalConnection acts as the transfer controller via the
CallControlCall.setTransferController() method. The CallControlCall.getTransferController() method returns
the current transfer controller, or null if there is none. If no transfer controller is set, the implementation
chooses a suitable TerminalConnection when the transfer feature gets invoked.

When the transfer feature gets invoked, the transfer controller moves into the
CallControlTerminalConnection.DROPPED state. If it is the only TerminalConnection associated with its
Connection, then its Connection moves into the CallControlConnection.DISCONNECTED state as well.

The New Connection
This method creates and returns a new Connection representing the party to which the Call was transferred.
This Connection may be null if the Call has been transferred outside of the Provider domain and can no longer
be tracked. This Connection must at least be in the CallControlConnection.IDLE state. The Connection state
may have progressed beyond "idle" before this method returns, and should be reflected by an event. This new
Connection will progress as any normal destination Connection on a call. Typical scenarios for this Connection
are described by the Call.connect() method.

Pre-Conditions

1. Let tc be the transfer controller on this Call

2. (this.getProvider()).getState() = = Provider.IN_SERVICE

3. this.getState() = = Call.ACTIVE

4. tc.getCallControlState() = = CallControlTerminalConnection.TALKING

Post-Conditions

1. Let newconnection be the Connection created and returned

2. Let connection = = tc.getConnection()

3. (this.getProvider()).getState() = = Provider.IN_SERVICE

4. this.getState() = = Call.ACTIVE

5. tc.getCallControlState() = = CallControlTerminalConnection.DROPPED

6. If connection.getTerminalConnections().length = = 1, then connection.getCallControlState() = =
CallControlConnection.DISCONNECTED

7. newconnection is an element of this.getConnections(), if not null.

8. newconnection.getCallControlState() at least CallControlConnection.IDLE, if not null.

9. ConnCreatedEv is delivered for newconnection

10. CallCtlTermConnDroppedEv/TermConnDroppedEv is delivered for tc

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
340

Cisco Unified JTAPI Extensions
The Transfer Controller

11. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for connection if no other
TerminalConnections

Parameters

• address - The destination Address string(dialedDigits) to which the Call is being transferred.

• facCode - The Force Authorization Code

• cmcCode - The Client Matter Code

Returns

The new Connection associated with the destination, or null.

Throws

javax.telephony.InvalidArgumentException - The TerminalConnection provided as controlling the transfer
is not valid or not part of this Call.

javax.telephony.InvalidStateException - This means that the Provider is not "in service, " the Call is not
"active, " or the transfer controller is not "talking."

javax.telephony.InvalidPartyException - The destination Address is not valid or complete.

javax.telephony.MethodNotSupportedException - The implementation does not support this method.

javax.telephony.PrivilegeViolationException - The application does not have the proper authority to invoke
this method.

javax.telephony.ResourceUnavailableException - An internal resource necessary for the successful invocation
of this method is unavailable.

See Also

ConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEv, CallCtlConnDisconnectedEv,
CallCtlTermConnDroppedEv

getCurrentCalledAddressPIboolean getCurrentCalledAddressPI()Returns the Presentation Indicator(PI) that
is associated with CurrentCalledAddress. If it returns true, the application can display this Address name to
the end users. If it returns false, the application should not display this Address name to end users.

getCurrentCalledDisplayNamePIboolean getCurrentCalledDisplayNamePI()Returns the Presentation
Indicator(PI) that is associated with getCurredCalledDisplayNamePI. If it returns true, the application can
display this DisplayName to the end users. If it returns false, the application should not display this
DisplayName to the end users.

getCurrentCallingAddressPIboolean getCurrentCallingAddressPI()Returns the Presentation Indicator(PI) that
is associated with getCurrentCallingAddressPI. If it returns true, the application can display this Address
name to the end users. If it returns false, the application should not display this Address name to the end users.

getCurrentCallingDisplayNamePIboolean getCurrentCallingDisplayNamePI()Returns the Presentation
Indicator(PI) that is associated with getCurrentCalledDisplayNamePI. If it returns true, the application can
display this DisplayName to the end users. If it returns false, the application should not display this
DisplayName to the end users.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
341

Cisco Unified JTAPI Extensions
The New Connection

getLastRedirectingAddressPIboolean getLastRedirectingAddressPI()Returns the Presentation Indicator(PI)
that is associated with getLastRedirectingAddressPI. If it returns true, the application can display this Address
name to the end users. If it returns false, the application should not display this Address name to the end users.

getCalledAddressPIboolean getCalledAddressPI()Returns the Presentation Indicator(PI) that is associated
with getCalledAddressPI. If it returns true, the application can display this Address name to the end users If
it returns false, the application should not display this Address name to the end users.

getCallingAddressPIboolean getCallingAddressPI()Returns the Presentation Indicator(PI) that is associated
with getCallingAddressPI. If it returns true, the application can display this Address name to the end users.
If it returns false, the application should not display this Address name to the end users.

getCurrentCalledPartyUnicodeDisplayNamejava.lang.String
getCurrentCalledPartyUnicodeDisplayName()Returns the Unicode display name of the called party in the
call. It returns null if the display name is unknown.

getCurrentCalledPartyUnicodeDisplayNamelocaleint
getCurrentCalledPartyUnicodeDisplayNamelocale()Returns the locale of the current called party Unicode
display name. CiscoLocale interface lists the supported locales.

getCurrentCallingPartyUnicodeDisplayNamejava.lang.String
getCurrentCallingPartyUnicodeDisplayName()Returns the Unicode display name of the calling party in the
call. It returns null if the display name is unknown.

getCurrentCallingPartyUnicodeDisplayNamelocaleint
getCurrentCallingPartyUnicodeDisplayNamelocale()Returns the locale of the current called party Unicode
display name.

getCurrentCallingPartyInfoCiscoPartyInfo getCurrentCallingPartyInfo()Returns the PartyInfo of the current
calling party of the call.

getCurrentCalledPartyInfoCiscoPartyInfo getCurrentCalledPartyInfo()Returns the PartyInfo of the current
called party of the call.

getLastRedirectingPartyInfoCiscoPartyInfo getLastRedirectingPartyInfo()Deprecated.- use
getLastRedirectedPartyInfo();

Returns the PartyInfo of the last redirecting party of the call.

getLastRedirectedPartyInfoCiscoPartyInfo getLastRedirectedPartyInfo()Returns the PartyInfo of the last
redirecting party of the call.

getCalledPartyInfoCiscoPartyInfo getCalledPartyInfo()Returns the PartyInfo of the called party of the call.

javax.telephony.Connection[]startMonitor(javax.telephony.TerminalMonitorInitiatorterminal,
javax.telephony.AddressMonitorInitiatoraddress,
javax.telephony.TerminalConnectiontermConnofMonitorTarget, intmonitorType, intPlayToneDirection)

throws

javax.telephony.ResourceUnavailableException, javax.telephony.PrivilegeViolationException,
javax.telephony.InvalidPartyException, javax.telephony.InvalidArgumentException,
javax.telephony.InvalidStateException, javax.telephony.MethodNotSupportedException

If the application is observing the monitor target (agent) Address, the application can use the Terminal
connection of the monitor target (agent) to initiate a monitor request. This interface places a call from an
originating endpoint to monitor the call at the monitor target.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
342

Cisco Unified JTAPI Extensions
The New Connection

Pre-Conditions

1. (this.getProvider()).getState() = = Provider.IN_SERVICE

2. this.getState() = = Call.IDLE

3. ((CiscoProviderCapabilities)(this.getTerminal().getProvider().getProviderCapabilities()).canMonitor() =
= TRUE

4. TerminalConnection.getProvider() = = this.getProvider()

Parameters

• MonitorInitiatorterminal - - The originating Terminal

• MonitorInitiatoraddress - - The originating Address

• termConnofMonitorTarget - - The TerminalConnection of the target

• monitorType - - The type of monitor. Use CiscoCall.SILENT_MONITOR.

• PlayToneDirection - - Indicates whether the tone needs to be played to the target, the initiator, or both.
This should be one of CiscoCall.PLAYTONE_NOLOCAL_OR_REMOTE,
CiscoCall.PLAYTONE_LOCALONLY, CiscoCall.PLAYTONE_REMOTEONLY, or
CiscoCall.PLAYTONE_BOTHLOCALANDREMOTE

Throws

javax.telephony.ResourceUnavailableException

javax.telephony.PrivilegeViolationException

javax.telephony.InvalidPartyException

javax.telephony.InvalidArgumentException

javax.telephony.InvalidStateException

javax.telephony.MethodNotSupportedException

Related Documentation
See CallControlCall for more information.

CiscoCallChangedEv
The system delivers the CiscoCallChangedEv event to the call observer for all supported features whenever
the Global Call ID (GCID) of the call changes. CiscoCallChangedEv gets delivered when the GCID of the
call changes due to path replacement (QSIG_PR) and for other features, including transfer, conference, barge,
cbarge, and unpark. In the case of shared lines, multiple CiscoCallChangedEv events get delivered.

The system also delivers this event when two or more calls get merged into one. Transfer, conference, unpark,
Barge, and CBarge will trigger this event. Application can invoke CiscoCallEv.getCiscoFeatureReason() to
find the feature code that caused this event.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
343

Cisco Unified JTAPI Extensions
Related Documentation

The system reports this event via the CallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoCallChangedEv extends CiscoCallEv

Fields
Table 75: Fields in CiscoCallChangedEv

FieldInterface

IDstatic int

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
344

Cisco Unified JTAPI Extensions
Superinterfaces

CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,
CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
345

Cisco Unified JTAPI Extensions
Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 76: Methods in CiscoCallChangedEv

DescriptionMethodInterface

Returns the CiscoConnection to the Address where the
change occurred.

getConnection()Interface

Returns the call that will go to INVALID state.getOriginalCall()CiscoConnection

Returns the call that will remain active after the callID
change.

getSurvivingCall()CiscoCall

Returns the TerminalConnection where the change
occurred. This value could be null if the call ID changes
before the TerminalConnection gets created on the
Address.

getTerminalConnection()CiscoCall

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
346

Cisco Unified JTAPI Extensions
Methods

CiscoCallConsultCancelledEv
This event notifies applications that a cancel operation has been invoked.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New event for the Swap/Cancel - Transfer/Conference Behavior
Change feature.

7.1(1 and 2)

Superinterfaces
None

Declaration
public interface CiscoCallConsultCancelledEv

Fields
None

Inherited Fields
None

Methods
Table 77: Methods in CiscoCallConsultCancelledEv

DescriptionMethodInterface

Returns the consult call for which consult operation is
cancelled. If the consult call does not exist, it returns
NULL.

The getCall() API on this call event returns the parent
call.

getConsultCall()CiscoCall

Inherited Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
347

Cisco Unified JTAPI Extensions
CiscoCallConsultCancelledEv

Related Documentation
None.

CiscoCallCtlConnOfferedEv
The CiscoCallCtlConnOfferedEv interface extends the CallCtlConnOfferedEv interface to let applications
obtain the IP Address of the calling party Terminal. The IP Address information might not be available for
all calling party devices. A return value of 0 (or null) indicates that the information is not available.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.callcontrol.events.CallCtlCallEv, javax.telephony.callcontrol.events.CallCtlConnEv,
javax.telephony.callcontrol.events.CallCtlConnOfferedEv, javax.telephony.callcontrol.events.CallCtlEv,
javax.telephony.events.CallEv, javax.telephony.events.ConnEv, javax.telephony.events.Ev

Declaration
public interface CiscoCallCtlConnOfferedEv extends javax.telephony.callcontrol.events.CallCtlConnOfferedEv

Fields
None

Inherited Fields

From Interface javax.telephony.callcontrol.events.CallCtlConnOfferedEv

None

From Interface javax.telephony.callcontrol.events.CallCtlEv

CAUSE_ALTERNATE, CAUSE_BUSY, CAUSE_CALL_BACK, CAUSE_CALL_NOT_ANSWERED,
CAUSE_CALL_PICKUP, CAUSE_CONFERENCE, CAUSE_DO_NOT_DISTURB, CAUSE_PARK,
CAUSE_REDIRECTED, CAUSE_REORDER_TONE, CAUSE_TRANSFER, CAUSE_TRUNKS_BUSY,
CAUSE_UNHOLD

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
348

Cisco Unified JTAPI Extensions
Related Documentation

CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 78: Methods in CiscoCallCtlConnOfferedEv

DescriptionMethodInterface

Returns the IP address of the calling party, or 0 (or null)
if the IP Address is not available.

getCallingPartyIpAddr()java.net.InetAddress

Inherited Methods

From Interface javax.telephony.callcontrol.events.CallCtlCallEv

getCalledAddress, getCallingAddress, getCallingTerminal, getLastRedirectedAddress

From Interface javax.telephony.callcontrol.events.CallCtlEv

getCallControlCause

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
349

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ConnEv

getConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
None

CiscoCallCtlTermConnHeldReversionEv
The CiscoCallCtlTermConnHeldReversionEv event indicates that hold reversion notification has been received
on the TerminalConnection from Cisco Unified Communications Manager.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.callcontrol.events.CallCtlCallEv, javax.telephony.callcontrol.events.CallCtlEv,
javax.telephony.callcontrol.events.CallCtlTermConnEv, javax.telephony.events.CallEv,
javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoCallCtlTermConnHeldReversionEv extends
javax.telephony.callcontrol.events.CallCtlTermConnEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
350

Cisco Unified JTAPI Extensions
Related Documentation

Fields
Table 79: Fields in CiscoCallCtlTermConnHeldReversionEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.callcontrol.events.CallCtlEv

CAUSE_ALTERNATE, CAUSE_BUSY, CAUSE_CALL_BACK, CAUSE_CALL_NOT_ANSWERED,
CAUSE_CALL_PICKUP, CAUSE_CONFERENCE, CAUSE_DO_NOT_DISTURB, CAUSE_PARK,
CAUSE_REDIRECTED, CAUSE_REORDER_TONE, CAUSE_TRANSFER, CAUSE_TRUNKS_BUSY,
CAUSE_UNHOLD

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
351

Cisco Unified JTAPI Extensions
Fields

Inherited Methods

From Interface javax.telephony.callcontrol.events.CallCtlCallEv

getCalledAddress, getCallingAddress, getCallingTerminal, getLastRedirectedAddress

From Interface javax.telephony.callcontrol.events.CallCtlEv

getCallControlCause

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoCallEv
The CiscoCallEv interface, which extends the JTAPI core javax.telephony.events.CallEv interface, serves as
the base interface for all Cisco-extended JTAPI Call events. Every Call-related event in this package extends
this interface, directly or indirectly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
352

Cisco Unified JTAPI Extensions
Inherited Methods

Superinterfaces
javax.telephony.events.CallEv, CiscoEv, javax.telephony.events.Ev

Subinterfaces
CiscoCallChangedEv, CiscoCallSecurityStatusChangedEv, CiscoConferenceChainAddedEv,
CiscoConferenceChainRemovedEv, CiscoConferenceEndEv, CiscoConferenceStartEv,
CiscoConsultCallActiveEv, CiscoToneChangedEv, CiscoTransferEndEv, CiscoTransferStartEv

Declaration
public interface CiscoCallEv extends CiscoEv, javax.telephony.events.CallEv

Fields
Table 80: Fields in CiscoCallEv

DescriptionFieldInterface

This cause indicates that the network could not deliver
access information to the remote user as requested.

CAUSE_ACCESSINFORMATIONDISCARDEDStatic int

It indicates the call is a BARGE call.CAUSE_BARGEStatic int

This cause indicates that the user has requested a bearer
capability which is implemented by the equipment which
generated this cause but which is not available at this
time.

CAUSE_BCBPRESENTLYAVAILstaticint

This cause indicates that the user has requested a bearer
capability which is implemented by the equipment which
generated this cause but the user is not authorized to
use.

CAUSE_BCNAUTHORIZEDstatic int

This cause indicates that the equipment sending this
cause does not support the bearer capability requested.

CAUSE_BEARERCAPNIMPLstatic int

This cause indicates that the user has been awarded the
incoming call and that the incoming call is being
connected to a channel already established to that user
for similar calls.

CAUSE_CALLBEINGDELIVEREDstatic int

This cause indicates that the network has received a call
suspended request containing a call identity (including
the null call identity) which is already in use for a
suspended call within the domain of interfaces over
which the call might be resumed.

CAUSE_CALLIDINUSEstatic int

This cause indicates the failure due to CALL Manager
Failure.

CAUSE_CALLMANAGER_FAILUREstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
353

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

This cause indicates that the equipment sending this
cause does not wish to accept this call.

CAUSE_CALLREJECTEDstatic int

This cause indicates the call split, it could mean
conference or transfer.

CAUSE_CALLSPLITstatic int

This cause indicates that the equipment sending this
cause does not support the channel type requested.

CAUSE_CHANTYPENIMPLstatic int

This cause indicates that the channel most recently
identified is not acceptable to the sending entity for use
in this call.

CAUSE_CHANUNACCEPTABLEstatic int

This cause indicates the call is rejected due to bad
request.

CAUSE_CTICCMSIP400BADREQUESTstatic int

This cause indicates the request is valid but is not
authorized.

CAUSE_CTICCMSIP401UNAUTHORIZEDstatic int

This cause indicates the payment is required for usage.CAUSE_CTICCMSIP402PAYMENTREQUIREDstatic int

This cause indicates the server understood the request,
but is refusing to fulfill it..

CAUSE_CTICCMSIP403FORBIDDENstatic int

This cause indicates the request URI cannot be located
by the server.

CAUSE_CTICCMSIP404NOTFOUNDstatic int

This cause indicates the method specified in the
Request-Line is understood, but not allowed for the
address identified by the Request-URI.

CAUSE_CTICCMSIP405METHODNOTALLOWEDstatic int

This cause indicates the request cannot be proccessed
due to requirements in the request cannot be met.

CAUSE_CTICCMSIP406NOTACCEPTABLEstatic int

This cause indicates that requset is not authorized and
proxy authentication is required for the operation.

CAUSE_CTICCMSIP407PROXY
AUTHENTICATIONREQUIRED

static int

This cause indicates the time out error for the request.CAUSE_CTICCMSIP408REQUESTTIMEOUTstatic int

This cause indicates the requested resource is no longer
available at the server and no forwarding address is
known.

CAUSE_CTICCMSIP410GONEstatic int

This cause indicates that an interworkingmessage length
is required.

CAUSE_CTICCMSIP411LENGTHREQUIREDstatic int

This cause indicates that the server is refusing to process
a request because the request entity-body is larger than
the server is willing or able to process.

CAUSE_CTICCMSIP413REQUESTENTITY
TOOLONG

static int

This cause indicates that the server is refusing to service
the request because the Request-URI is longer than the
server is willing to interpret.

CAUSE_CTICCMSIP414REQUESTURI TOOLONGstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
354

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates the server is refusing to service the
request because the message body of the request
indicates the Media Type which is not supported by the
server for the requested method.

CAUSE_CTICCMSIP415UNSUPPORTED
MEDIATYPE

static int

This cause indicates the server cannot process the request
because the scheme of the URI in the Request-URI is
unknown to the server.

CAUSE_CTICCMSIP416UNSUPPORTED
URISCHEME

static int

This cause indicates the server did not understand the
protocol extension specified in a Proxy-Require or
Require header field.

CAUSE_CTICCMSIP420BADEXTENSIONstatic int

This cause indicates the UAS needs a particular
extension to process the request, but this extension is
not listed in a Supported header field in the request.

CAUSE_CTICCMSIP421EXTENSTIONREQUIREDstatic int

This cause indicates that the server is rejecting the
request because the expiration time of the resource
refreshed by the request is too short.

CAUSE_CTICCMSIP423INTERVALTOOBRIEFstatic int

This cause indicates the callee's end system was
contacted successfully but the callee is currently
unavailable (for example, is not logged in, logged in but
in a state that precludes communication with the callee,
or has activated the "do not disturb" feature).

CAUSE_CTICCMSIP480TEMPORARILY
UNAVAILABLE

static int

This cause indicates the the UAS received a request that
does not match any existing dialog or transaction.

CAUSE_CTICCMSIP481CALLLEGDOESNOTEXISTstatic int

This cause indicates that the server has detected a loop.CAUSE_CTICCMSIP482LOOPDETECTEDstatic int

This cause indicates the server received a request that
contains a Max-Forwards header field with the value
zero (or less than actual hops).

CAUSE_CTICCMSIP483TOOMANYHOOPSstatic int

This cause indicates that the server received a request
with a Request-URI that was incomplete.

CAUSE_CTICCMSIP484ADDRESS INCOMPLETEstatic int

This cause indicates that the Request-URI was
ambiguous.

CAUSE_CTICCMSIP485AMBIGUOUSstatic int

This indicates that the callee's end systemwas contacted
successfully, but the callee is currently not willing or
able to take additional calls at this end system.

CAUSE_CTICCMSIP486BUSYHEREstatic int

This cause indicates the request was terminated by a
BYE or CANCEL request.

CAUSE_CTICCMSIP487REQUEST TERMINATEDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
355

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates the same meaning as 606 (Not
Acceptable), but only applies to the specific resource
addressed by the Request-URI and the request may
succeed elsewhere.

CAUSE_CTICCMSIP488NOTACCEPTABLE HEREstatic int

This cause indicates the request was received by a UAS
that had a pending request within the same dialog.

CAUSE_CTICCMSIP491REQUESTPENDINGstatic int

This cause indicates that the request was received by a
UAS that contained an encryptedMIME body for which
the recipient does not possess or will not provide an
appropriate decryption key.

CAUSE_CTICCMSIP493UNDECIPHERABLEstatic int

This cause indicates the server encountered an
unexpected condition that prevented it from fulfilling
the request.

CAUSE_CTICCMSIP500SERVERINTERNALERRORstatic int

This cause indicates the server does not support the
functionality required to fulfill the request.

CAUSE_CTICCMSIP501NOTIMPLEMENTEDstatic int

This cause indicates the server, while acting as a gateway
or proxy, received an invalid response from the
downstream server it accessed in attempting to fulfill
the request.

CAUSE_CTICCMSIP502BADGATEWAYstatic int

This cause indicates the server is temporarily unable to
process the request due to a temporary overloading or
maintenance of the server.

CAUSE_CTICCMSIP503SERVICEUNAVAILABLEstatic int

This cause indicates the server did not receive a timely
response from an external server it accessed in
attempting to process the request.

CAUSE_CTICCMSIP504SERVERTIMEOUTstatic int

This cause indicates the server does not support, or
refuses to support, the SIP protocol version that was
used in the request.

CAUSE_CTICCMSIP505SIPVERSIONNOT
SUPPORTED

static int

This cause indicates the server was unable to process
the request since the message length exceeded its
capabilities.

CAUSE_CTICCMSIP513MESSAGETOOLARGEstatic int

This cause indicates the callee's end system was
contacted successfully but the callee is busy and does
not wish to take the call at this time.

CAUSE_CTICCMSIP600BUSYEVERYWHEREstatic int

This cause indicates the callee's machine was
successfully contacted but the user explicitly does not
wish to or cannot participate.

CAUSE_CTICCMSIP603DECLINEstatic int

This cause indicates the server has authoritative
information that the user indicated in the Request-URI
does not exist anywhere.

CAUSE_CTICCMSIP604DOESNOTEXIST
ANYWHERE

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
356

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates the user's agent was contacted
successfully but some aspects of the session description
such as the requested media, bandwidth, or addressing
style were not acceptable.

CAUSE_CTICCMSIP606NOTACCEPTABLEstatic int

This cause indicates the Conference Call is full and no
more participants can be added to it.

CAUSE_CTICONFERENCEFULLstatic int

This cause indicates that the device cannot be preempted.CAUSE_CTIDEVICENOTPREEMPTABLEstatic int

This cause indicates the disconnection because the party
was dropped from conference.

CAUSE_CTIDROPCONFEREEstatic int

This cause indicates the failure due to CTI Manager
Failure.

CAUSE_CTIMANAGER_FAILUREstatic int

This cause indicates that there are no predictable circuits
or that the called user is busy with a call of equal or
higher preventable level.

CAUSE_CTIPRECEDENCECALLBLOCKEDstatic int

This cause indicates that the precedence level of the call
has exceeded the authorized level.

CAUSE_CTIPRECEDENCELEVELEXCEEDEDstatic int

This cause indicates the precedence call has hit low
bandwidth and cannot proceed.

CAUSE_CTIPRECEDENCEOUTOFBANDWIDTHstatic int

This cause indicates that the call is being preempted and
the circuit is reserved for reuse by the preempting
exchange.

CAUSE_CTIPREEMPTFORREUSEstatic int

This cause indicates the call is being preempted.CAUSE_CTIPREEMPTNOREUSEstatic int

This cause indicates that the destination indicated by the
user cannot be reached because the interface to the
destination is not functioning correctly.

CAUSE_DESTINATIONOUTOFORDERstatic int

This cause indicates that the specified CUG does not
exist.

CAUSE_DESTNUMMISSANDDCNOTSUBstatic int

It indicates the call is Directed-Parked call.CAUSE_DPARKstatic int

It indicates the call is Directed Park Reminder call.CAUSE_DPARK_REMINDERstatic int

It indicates that Directed Parked call is now unparked.CAUSE_DPARK_UNPARKstatic int

This cause indicates that the exchange couldnt route the
call to specified destination.

CAUSE_EXCHANGEROUTINGERRORstatic int

It indicates the FAC(Force Authorization Code) or
CMC(Client Matter Code) is needed to route the call.

CAUSE_FAC_CMCstatic int

This cause is returned when a supplementary service
requested by the user cannot be provided by the network.

CAUSE_FACILITYREJECTEDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
357

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates that the equipment sending this
cause has received a request to use a channel not
activated on the interface for a call.

CAUSE_IDENTIFIEDCHANDOESNOTEXISTstatic int

This cause indicates that the equipment sending this
cause has received amessagewhich includes information
element(s)/parameter(s) not recognized because the
information element(s)/parameter name(s) are not
defined or are defined but not implemented by the
equipment sending the cause.

CAUSE_IENIMPLstatic int

It indicates the call is IN bound Blind Transfer call.CAUSE_INBOUNDBLINDTRANSFERstatic int

It indicates the call is IN bound Conference call.CAUSE_INBOUNDCONFERENCEstatic int

It indicates the call is IN bound Transfer call.CAUSE_INBOUNDTRANSFERstatic int

This cause indicates that the incoming calls for that
number is barred.

CAUSE_INCOMINGCALLBARREDstatic int

This cause indicates that the equipment sending this
cause has received a request to establish a call which
has low layer compatibility.

CAUSE_INCOMPATABLEDDESTINATIONstatic int

This cause indicates that an interworking call has ended.CAUSE_INTERWORKINGUNSPECIFIEDstatic int

This cause indicates that the equipment sending this
cause has received amessage with a call reference which
is not currently in use on the user-network interface.

CAUSE_INVALIDCALLREFVALUEstatic int

This cause indicates that the equipment sending this
cause has received and information element which it has
implemented; however, one or more of the fields in the
information element are coded in such a way which has
not been implemented by the equipment sending this
cause.

CAUSE_INVALIDIECONTENTSstatic int

This cause is used to report an invalid message event
only when no other cause in the invalid message class
applies.

CAUSE_INVALIDMESSAGEUNSPECIFIEDstatic int

This cause indicates that the called party cannot be
reached because the called party number is not in a valid
format or is not complete.

CAUSE_INVALIDNUMBERFORMATstatic int

This cause indicates that a transit network identification
was received which is of an incorrect format.

CAUSE_INVALIDTRANSITNETSELstatic int

This cause indicates that the equipment sending this
cause has received a message which is missing an
information element which must be present in the
message before that message can be processed.

CAUSE_MANDATORYIEMISSINGstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
358

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates that a message has been received
which is incompatible with the call state.

CAUSE_MSGNCOMPATABLEWCSstatic int

This cause indicates that the equipment sending this
cause has received a message such that the procedures
do not indicate that this is a permissible message to
receive while in the call state, or a STATUS message
was received indicating an incompatible call state.

CAUSE_MSGTYPENCOMPATWCSstatic int

This cause indicates that the equipment sending this
cause has received a message with a message type it
does not recognize either because this is a message not
defined or defined but not implemented by the
equipment sending this cause.

CAUSE_MSGTYPENIMPLstatic int

This cause indicates that the network is not functioning
correctly and that the condition is likely to last a
relatively long period of time.

CAUSE_NETOUTOFORDERstatic int

This cause is used when the called party has been alerted
but does not respond with a connect indication within a
prescribed period of time.

CAUSE_NOANSWERFROMUSERstatic int

This cause indicates that the network has received a call
resume request containing a call identity information
element which presently does not indicate any suspended
call within the domain of interfaces over which calls
may be resumed.

CAUSE_NOCALLSUSPENDEDstatic int

This cause indicates that there is no appropriate
circuit/channel presently available to handle the call.

CAUSE_NOCIRCAVAILstatic int

This is usually given when there is no error and
operation completes successfuly.

CAUSE_NOERRORstatic int

This cause indicates that the user has not been awarded
the incoming call.

CAUSE_NONSELECTEDUSERCLEARINGstatic int

This cause indicates that the call is being cleared because
one of the users involved in the call has requested that
the call be cleared.

CAUSE_NORMALCALLCLEARINGstatic int

This cause is used to report a normal event only when
no other cause in the normal class applies.

CAUSE_NORMALUNSPECIFIEDstatic int

This cause indicates that the called party cannot be
reached because the network through which the call has
been routed does not serve the destination desired.

CAUSE_NOROUTETODDESTINATIONstatic int

This cause indicates that the equipment sending this
cause has received a request to route the call through a
particular transit network which it does not recognize.

CAUSE_NOROUTETOTRANSITNETstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
359

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause is used when a called party does not respond
to a call establishment message with either an alerting
or connect indication within the prescribed period of
time allocated.

CAUSE_NOUSERRESPONDINGstatic int

This cause is returned to a calling party when the called
party number indicated by the calling party is no longer
assigned.

CAUSE_NUMBERCHANGEDstatic int

This cause indicates that the calling party has requested
an unrestricted bearer service but the equipment sending
this cause only supports the restricted version of the
requested bearer capability.

CAUSE_ONLYRDIVEARERCAPAVAILstatic int

It indicates the call is OUT bound Conference call.CAUSE_OUTBOUNDCONFERENCEstatic int

It indicates the call is OUT bound Transfer callCAUSE_OUTBOUNDTRANSFERstatic int

This cause indicates that the call could not proceed
because of Low Bandwidth.

CAUSE_OUTOFBANDWIDTHstatic int

This cause is used to report a protocol error event only
when no other cause in the protocol error class applies.

CAUSE_PROTOCOLERRORUNSPECIFIEDstatic int

It indicates the QSIG Path Replacement in the call.CAUSE_QSIG_PRstatic int

This cause is used to report that the requested Quality
of Service, as defined in Recommendation X.213.

CAUSE_QUALOFSERVNAVAILstatic int

It indicates the Call is cleared as Call Manager has gone
down, but media between endpoints remain connected.

CAUSE_QUIET_CLEARstatic int

This cause indicates that a procedure has been initiated
by the expiration of a timer in association with error
handling procedures.

CAUSE_RECOVERYONTIMEREXPIRYstatic int

This cause indicates the call is being redirected to
different party.

CAUSE_REDIRECTEDstatic int

This cause indicates that the network has received a call
resume request containing a call identity information
element indicating a suspended call that has in the
meantime been cleared while suspended (either by
network time-out or by the remote user).

CAUSE_REQCALLIDHASBEENCLEAREDstatic int

This cause is returned when the circuit or channel
indicated by the requesting entity cannot be provided
by the other side of the interface.

CAUSE_REQCIRCNAVILstatic int

This cause indicates that the equipment sending this
cause does not support the requested.

CAUSE_REQFACILITYNIMPLstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
360

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This cause indicates that the user has requested a
supplementary service which is implemented by the
equipment which generated this cause but the user is not
authorized to use.

CAUSE_REQFACILITYNOTSUBSCRIBEDstatic int

This cause is used to report a resource unavailable event.CAUSE_RESOURCESNAVAILstatic int

This cause is included in the STATUS message when
the reason for generating the STATUS message was the
prior receipt of a STATUS INQUIRY.

CAUSE_RESPONSETOSTATUSENQUIRYstatic int

This cause is used to report a service or option not
available event only when no other cause in the service
or option not available class applies.

CAUSE_SERVNOTAVAILUNSPECIFIEDstatic int

This cause indicates that although the calling party is a
member of the CUG for the outgoing CUG call.

CAUSE_SERVOPERATIONVIOLATEDstatic int

This cause is used to report a service or option not
implemented event only when no other cause in the
service or option not implemented class applies.

CAUSE_SERVOROPTNAVAILORIMPLstatic int

This cause value is used when a mobile station has
logged off.

CAUSE_SUBSCRIBERABSENTstatic int

This cause indicates that a call resume has been
attempted with a call identity which differs from that in
use for any presently suspended call(s).

CAUSE_SUSPCALLBUTNOTTHISONEstatic int

This cause indicates that the switching equipment
generating this cause is experiencing a period of high
traffic.

CAUSE_SWITCHINGEQUIPMENTCONGESTIONstatic int

This cause indicates that the network is not functioning
correctly and that the condition is not likely to last a
long period of time; e.g., the user may wish to try
another call attempt almost immediately.

CAUSE_TEMPORARYFAILUREstatic int

This cause indicates that the destination requested by
the calling user cannot be reached because, it is an
invalid number.

CAUSE_UNALLOCATEDNUMBERstatic int

This cause is used to indicate that the called party is
unable to accept another call because the user busy
condition has been encountered.

CAUSE_USERBUSYstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
361

Cisco Unified JTAPI Extensions
Fields

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Methods
Table 81: Methods in CiscoCallEv

DescriptionMethodInterface

Returns the Cisco Unified Communications Manager cause for
this event. To function properly, some applications need to know
the reason why an event happened at an endpoint that the
application is observing. For example, a Connection may be
disconnected because the call was not answered
(CAUSE_NOANSWERFROMUSER), or whether the caller it
was disconnected because it was rejected
(CAUSE_CALLREJECTED). Returns: The Cisco Unified
Communications Manager cause for this event

getCiscoCause()Int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
362

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

Returns the Cisco Unified Communications Manager Feature
Reason for this event. To function properly, some applications
need to know the reason why an event happened. This interface
provides the CiscoFeatureReason in JTAPI Call events for current
and new features. Existing features, such as transfer, continue to
receive the CiscoCause provided by the older interface
CiscoCallEv.getCiscoCause(), while this interface will provide
REASON_TRANSFER for transfer. Caution: Applications should
make sure to handle unrecognized reasons and provide default
behavior, because new reasons could be added in the future and
this interface may not be backward compatible. The possible
values are defined in the CiscoFeatureReason interface. Returns:
The Cisco Unified CommunicationsManager Feature Reason for
this event

getCiscoFeatureReason()Int

Related Documentation
See Constant Field Values, on page 1665 and CallEv for more information.

CiscoCallFeatureCancelledEv
This event notifies applications that the cancel operation has been invoked

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(2)

Declaration
public interface CiscoCallFeatureCancelledEv

Methods
Table 82: Methods in CiscoCallFeatureCancelledEv

DescriptionMethodInterface

Returns the Consult Call for which consult operation is
cancelled, if the consult call doesn't exist it will return
NULL.

getConsultCall()CiscoCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
363

Cisco Unified JTAPI Extensions
Related Documentation

Related Documentation
See Constant Field Values, on page 1665.

CiscoCallID
The CiscoCallID object represents a unique object that is associated with each call. Applications may use the
object itself or the integer representation of the object that the intValue() method returns.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
CiscoObjectContainer

Declaration
Public interface CiscoCallID extends CiscoObjectContainer

Fields
None

Methods
Table 83: Methods in CiscoCallID

DescriptionMethodInterface

Returns an integer representation of this object. Returns:
Int An integer representation of this object

intValue()Int

Returns the CiscoCall corresponding to this CiscoCallID.getCall()CiscoCall

Returns the Cisco Unified Communications Manager
NodeID of the call associated with this CiscoCallID.

getCallManagerID()int

Returns the GlobalCallID of the call associated with this
CiscoCallID.

getGlobalCallID()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
364

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
None

CiscoMediaCallSecurityIndicator
CiscoMediaCallSecurityIndicator lets you retrieve the security indicator for a call.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoMediaCallSecurityIndicator

Fields
None

Methods
Table 84: Methods in CiscoMediaCallSecurityIndicator

DescriptionMethodInterface

Returns the CiscoCallID.getCallID()CiscoCallID

Returns the media security indicator, one of the following
constants:

CiscoMediaSecurityIndicator.
MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

CiscoMediaSecurityIndicator. MEDIA_NOT_ENCRYPTED

getCiscoMediaSecurityIndicator()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
365

Cisco Unified JTAPI Extensions
Inherited Methods

DescriptionMethodInterface

Returns a CiscoRTPHandle object.Applications can get a call
reference by using CiscoProvider.getCall. If there is no call
observer or there was no call observer when this event was
delivered, CiscoProvider.getCall may return null.

getCiscoRTPHandle()CiscoRTPHandle

Related Documentation
See CiscoRTPParams.

CiscoCallSecurityStatusChangedEv
Applications receive CiscoCallSecurityStatusChangedEv when the overall Call security status changes.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoCallSecurityStatusChangedEv extends CiscoCallEv

Fields
Table 85: Fields in CiscoCallSecurityStatusChangedEv

FieldInterface

IDStatic int

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
366

Cisco Unified JTAPI Extensions
Related Documentation

CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,
CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
367

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 86: Methods in CiscoCallSecurityStatusChangedEv

DescriptionMethodInterface

Specified by: getID in interface
javax.telephony.events.Ev

getID()javax.telephony.events.Ev

Returns the call security status. This interface can return:
CiscoCall.CALLSECURITY_UNKNOWN,
CiscoCall.CALLSECURITY_NOTAUTHENTICATED,
CiscoCall.CALLSECURITY_AUTHENTICATED,
CiscoCall.CALLSECURITY_ENCRYPTED

getCallSecurityStatus()getCallSecurityStatus

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
368

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See also Constant Field Values, on page 1665 for more information.

CiscoConferenceChain
This interface provides links to conference chain connections for the conference calls that are linked together
in a conference chain. You can obtain this object from CiscoConferenceChainAddedEv and
CiscoConferenceChainRemovedEv.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Declaration
public interface CiscoConferenceChain

Fields
None

Methods
Table 87: Methods in CiscoConferenceChain

DescriptionMethodInterface

Returns an array of Connections for Conference
Calls that are chained together in a single
conference. Applications can use this list to get
all the Conference Calls that are linked together.
To get the list of Connections for all the Calls
that are chained together in the Conference, the
provider must have an observer on at least one
party in every conference call.

getChainedConferenceConnections()javax.telephony.Connection[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
369

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionMethodInterface

Returns an array of Calls that are chained
together in a single conference. This interface
returns only the Calls in the conference chain
that are observed in the provider.

getChainedConferenceCalls()CiscoCall[]

Related Documentation
See CiscoConferenceChainAddedEv and CiscoConferenceChainRemovedEv for more information.

CiscoConferenceChainAddedEv
The system sends a CiscoConferenceChainAddedEv event when a conference chain connection gets added
to a call. This event gets sent every time a new conference chain connection gets added. This event gets
reported via theCallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

All Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoConferenceChainAddedEv extends CiscoCallEv

Fields
Table 88: Fields in CiscoConferenceChainAddedEv

FieldInterface

IDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
370

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
371

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 89: Methods in CiscoConferenceChainAddedEv

DescriptionMethodInterface

Returns the conference chain Connection that was added
to the call.

getAddedConnection()javax.telephony.Connection

Returns a CiscoConferenceChain that contains all of the
conference connections for the calls that are chained
together.

getConferenceChain()CiscoConferenceChain

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
372

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoConferenceChainRemovedEv
The system sends a CiscoConferenceChainRemovedEv event when a conference chain connection gets
removed from a call. This event gets sent whenever a conference chain connection gets removed. This event
gets reported via theCallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoConferenceChainRemovedEv extends CiscoCallEv

Fields
Table 90: Fields in CiscoConferenceChainRemovedEv

FieldInterface

IDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
373

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
374

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 91: Methods in CiscoConferenceChainRemovedEf

DescriptionMethodInterface

Returns a CiscoConferenceChain that contains all of the
conference connections for the calls that are chained
together. Returns: Connection.

getConferenceChain()CiscoConferenceChain

Returns the conference chain Connection that was
removed from the call. Returns: CiscoConferenceChain.

getRemovedConnection()javax.telephony.Connection

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
375

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoConferenceEndEv
The CiscoConferenceEndEv event indicates that a Conference operation completed. The system reports this
event via the CallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoConferenceEndEv extends CiscoCallEv

Fields
Table 92: Fields in CiscoConferenceEndEv

FieldInterface

IDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
376

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
377

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 93: Methods in CiscoConferenceEndEv

DescriptionMethodInterface

Returns the Address that currently acts as
the conference controller for this call, the
initiating call.

getConferenceControllerAddress()javax.telephony.Address

Returns the call that merged. This call is in
the Call.INVALID state.

getConferencedCall()javax.telephony.Call

Returns list of Calls that could not be
Conferenced.

getFailedCalls()javax.telephony.Call[]

Returns the call that remains active after
the conference completes.

getFinalCall()javax.telephony.Call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
378

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the TerminalConnection that
currently acts as the conference controller
for this call -- the final call. This is the
TerminalConnection that was in HELD
state when the conference got initiated. This
method returns null or TerminalConnection
if the conference controller is not being
observed.

getHeldConferenceController()javax.telephony.TerminalConnection

Returns the TerminalConnection that
currently acts as the conference controller
for this call -- the initiating call.This is the
TerminalConnection that was in TALKING
state. This method returns null or
TerminalConnection if the conference
controller is not being observed.

getTalkingConferenceController()javax.telephony.TerminalConnection

Returns Boolean True or False depending
on whether the conference succeeded or
failed. The application can use this interface
to determine whether a Conference is
successful.

Conferences will fail in these situations:

• If the application issues the request
Call.conference(otherCalls[]), the
system considers the conference as
failed if one or more than one Calls
could not Join into Conference. Use
getFailedCalls() to find the failed calls.

• If no conference bridge is available,
and the conference could not
complete. Use getFailedCalls() to get
a list of the calls that could not join
the conference.

• If the party being conferenced drops
out before the conference could
complete.

isSuccess()boolean

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
379

Cisco Unified JTAPI Extensions
Inherited Methods

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665

See also isSuccess()

CiscoConferenceStartEv
The CiscoConferenceStartEv event indicates that a conference operation started. The CallControlCallObserver
interface reports this event.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added getControllerTerminalName() method for Join Across
Lines/Connected Conference feature.

7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoConferenceStartEv extends CiscoCallEv

Fields
Table 94: Fields in CiscoConferenceStartEv

FieldInterface

IDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
380

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
381

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 95: Methods in CiscoConferenceStartEv

DescriptionMethodInterface

Returns the Address that currently acts as
the conference controller for this call, the
initiating call.

getConferenceControllerAddress()javax.telephony.Address

Returns the call that will be conferenced.
This is the call that will be merged into the
initiating call. This interface returns the first
call from the list of calls that are joining
into conference.

getConferencedCall()javax.telephony.Call

Returns the list of the calls that will be
conferenced. These calls are the ones that
will be merged into the final call.

getConferencedCalls()javax.telephony.Call[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
382

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the call that will remain active after
the conference completes. This is the call
into which all the calls will merge.

getFinalCall()javax.telephony.Call

Returns the TerminalConnection that
currently acts as the conference controller
for this call, the initiating call. This is the
TerminalConnection that was in HELD
state. This method returns null if the
conference controller is not being observed.
This method returns the first held controller
for a multiple call join scenario.

getHeldConferenceController()javax.telephony.TerminalConnection

Returns all TerminalConnections on
Conference Controller Terminal that are
joining together and are in HELD State.

getHeldConferenceControllers()javax.telephony.TerminalConnection[]

Returns the Address of the participant that
initiated the conference.

getOriginalConferenceControllerAddress()javax.telephony.Address

Returns the TerminalConnection that
currently acts as the conference controller
for this call, the initiating call. This is the
TerminalConnection that was in TALKING
state. This method returns null if the
conference controller is not being observed.
This method returns null if there is no
controller in talking state. Calls can be
joined into a conference without any talking
controller.

getTalkingConferenceController()javax.telephony.TerminalConnection

Returns the terminal name of the controllers
across which a conference is done.

getControllerTerminalName()String

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
383

Cisco Unified JTAPI Extensions
Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoConnection
The CiscoConnection interface extends the CallControlConnection interface with additional Cisco specific
capabilities. Applications can use the getReason method to obtain the reason for the creation of a connection.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added two new methods: getPartyInfo and
disconnect(CiscoPartyInfopartyInfo for Drop Any Party feature.

7.1(1 and 2)

Enhanced with the following:

• New method to get the associated CiscoHuntConnection. If
application is observing hunt list member, applications can
use this method to find out if call is routed through HuntPilot.

• New interface getUniqueID(Terminal term) is added which
will return the uniqueID as string.

• New method that allows an application to determine if the
connection is associated with a chaperone device on a
chaperone call. Chapone devices have a limited feature set,
and knowing that a connection is associated with a chaperone
device can allow the application to better handle the
connections.

8.0(1)

Added redirect method with deviceName.11.5(1)

All Superinterfaces
javax.telephony.callcontrol.CallControlConnection, CiscoObjectContainer, javax.telephony.Connection

Declaration
public interface CiscoConnection extends javax.telephony.callcontrol.CallControlConnection,
CiscoObjectContainer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
384

Cisco Unified JTAPI Extensions
Related Documentation

Fields
Table 96: Fields in CiscoConnection

DescriptionFieldInterface

The redirect should be done by
using the redirect controller
address search space.

ADDRESS_SEARCH_SPACEstatic int

The default behavior for Cisco
JTAPI should apply.

CALLED_ADDRESS_DEFAULTstatic int

The original called Address
should be set to the value
present in
preferredOriginalCalledParty
field.

CALLED_ADDRESS_SET_TO_PREFERREDCALLEDPARTYstatic int

The called Address should be
reset to the redirect destination.

CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATIONstatic int

The called Address should
remain unchanged after the
redirect operation.

CALLED_ADDRESS_UNCHANGEDstatic int

The redirect should be done by
using the calling address search
space.

CALLINGADDRESS_SEARCH_SPACEstatic int

The redirect should be done by
using the default search space
for the implementation.

DEFAULT_SEARCH_SPACEstatic int

This Connection results from a
direct call.

REASON_DIRECTCALLstatic int

This Connection results from
unconditional forwarding.

REASON_FORWARDALLstatic int

This Connection results from a
forwarding on busy.

REASON_FORWARDBUSYstatic int

This Connection results from a
forwarding on no answer.

REASON_FORWARDNOANSWERstatic int

This Connection is an
originating Connection, not a
destination Connection.

REASON_OUTBOUNDstatic int

This Connection results from a
redirection.

REASON_REDIRECTstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
385

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This Connection results from a
transfer.

REASON_TRANSFERREDCALLstatic int

This redirect mode instructs the
implementation to perform
redirect without checking the
validity or availability of the
destination.

REDIRECT_DROP_ON_FAILUREstatic int

This redirect mode instructs the
implementation to perform
redirect if the destination is
valid and available.

REDIRECT_NORMALstatic int

Inherited Fields

From Interface javax.telephony.callcontrol.CallControlConnection

ALERTING, DIALING, DISCONNECTED, ESTABLISHED, FAILED, IDLE, INITIATED,
NETWORK_ALERTING, NETWORK_REACHED, OFFERED, OFFERING, QUEUED, UNKNOWN

From Interface javax.telephony.Connection

CONNECTED, INPROGRESS

Methods
Table 97: Methods in CiscoConnection

Method and DescrptionInterface

getAddressPI()Boolean

Returns Presentation Indicator (PI) associated with the Address on which the
connection is created.

getCiscoHuntConnection()CiscoHuntConnection

This method returns the associated CiscoHuntConnection or null.

getConnectionID()CiscoConnectionID

Returns CiscoConnectionID for this CiscoConnection

getDParkPrefixCode()java.lang.String

Returns the prefix code that needs to be dialed with the DPark DN to retrieve
the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
386

Cisco Unified JTAPI Extensions
Inherited Fields

Method and DescrptionInterface

getReason()int

Returns the reason for the creation of this Connection. To function properly,
some applications need to know the reason for the creation of the connection
is created at an endpoint.

The reason for a Connection creation may be any of the following constants:

• CiscoConnection. REASON_DIRECTCALL CiscoConnection.
REASON_TRANSFERREDCALL

• CiscoConnection. REASON_FORWARDNOANSWER
• CiscoConnection. REASON_FORWARDBUSY
• CiscoConnection. REASON_FORWARDALL
• CiscoConnection. REASON_REDIRECT
• CiscoConnection. REASON_NORMAL

getRequestController()javax.telephony.TerminalConnection

Returns the current request Controller for the Connection.

getUniqueID(Terminal term)String

This method returns the updated uniqueID of the connection.

In case if there are no shared lines associated with this connection, application
can just pass null object as parameter to this interface to get the Unique
Identifier.

Unique Identifier will be same for all the shared lines, but if it’s a barge
scenario, different terminals would have different identifier.The returnedUnique
Identifier will be 32-character hex string. Please refer to End to End Call
Tracing, on page 902End to EndCall Tracing, on page 902, formore information.

Throws: PrivilegeVoilationException , InvalidStateException

Parameters: Terminal

isChaperone()boolean

This method returns true if the connection is associated with a Chaperone call,
and false if not.

park()java.lang.String

This method parks the call at a system park DN and returns the address of the
park DN.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
387

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(java.lang.String destinationAddress, int mode)javax.telephony.Connection

This method overloads the CallControlConnection.redirect() method.

Throws

javax.telephony. InvalidStateException
javax.telephony. InvalidPartyException
javax.telephony. MethodNotSupportedException
javax.telephony. PrivilegeViolationException
javax.telephony. ResourceUnavailableException

Parameter

Mode - This parameter can take one of the following two values:

• CiscoConnection. REDIRECT_DROP_ON_FAILURE: This mode
instructs the implementation to perform a redirect without checking the
validity or availability of the destination. The original call gets dropped
if the destination is invalid or busy.

• CiscoConnection. REDIRECT_NORMAL: This mode instructs the
implementation to perform a redirect only after checking the validity or
availability of the destination. This matches the behavior of the
CallControlConnection.redirect() method. The system does not drop the
original call on failure.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
388

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(java.lang.String destinationAddress, int mode, int callingSearchSpace)javax.telephony.Connection

This method overloads the CallControlConnection.redirect() method. It takes
two new parameters: redirectMode and callingSearchSpace.

The redirectMode selects which type of redirect to perform. The
callingSearchSpace tells the implementation to use either the calling party
search space or the redirect controller search space.

Parameters

mode - One of the following:

• CiscoConnection.REDIRECT_DROP_ON_FAILURE:Thismode instructs
the implementation to perform a redirect without checking the validity or
availability of the destination. The original call gets dropped if the
destination is invalid or busy.

• CiscoConnection.REDIRECT_NORMAL: This mode instructs the
implementation to perform a redirect only after checking the validity or
availability of the destination. This matches the behavior of the
CallControlConnection.redirect() method. The system does not drop the
original call on failure.

callingSearchSpace - One of the following:

• CiscoConnection. DEFAULT_SEARCH_SPACE

• CiscoConnection. CALLINGADDRESS_SEARCH_SPACE

• CiscoConnection. ADDRESS_SEARCH_SPACE

Throws

javax.telephony. InvalidStateException
javax.telephony. InvalidPartyException
javax.telephony. MethodNotSupportedException
javax.telephony. PrivilegeViolationException
javax.telephony. ResourceUnavailableException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
389

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(java.lang.String destinationAddress, int mode, int callingSearchSpace,
int calledAddressOption)

javax.telephony.Connection

This method overloads the CallControlConnection.redirect() method.

It takes three new parameters: mode, callingSearchSpace, and
calledAddressOption. The redirectMode selects the type of redirect to perform.
The callingSearchSpace tells the implementation to use either the calling party
search space or the redirect controller search space. The calledAddressOption
parameter controls whether to reset the original called fields.

Parameters

mode - One of the following:

• CiscoConnection. REDIRECT_DROP_ON_FAILURE
• CiscoConnection. REDIRECT_NORMAL

callingSearchSpace -

One of the following:

• CiscoConnection. DEFAULT_SEARCH_SPACE

• CiscoConnection. CALLINGADDRESS_SEARCH_SPACE

• CiscoConnection. ADDRESS_SEARCH_SPACE

calledAddressOption: One of the following:

• CiscoConnection. CALLED_ADDRESS_DEFAULT

• CiscoConnection. CALLED_ADDRESS_UNCHANGED

• CiscoConnection.
CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATION

Throws

javax.telephony. InvalidStateException
javax.telephony. InvalidPartyException
javax.telephony. MethodNotSupportedException
javax.telephony. PrivilegeViolationException
javax.telephony. ResourceUnavailableException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
390

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(java.lang.String destinationAddress, int mode, int callingSearchSpace,
int calledAddressOption, java.lang.String preferredOriginalCalledParty,
java.lang.String facCode, java.lang.String cmcCode)

javax.telephony.Connection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
391

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

This method overloads the CallControlConnection.redirect() method. It takes
three new parameters: mode, callingSearchSpace, and calledAddressOption.

The redirectMode selects the type of redirect to perform. The
callingSearchSpace tells the implementation to use either the calling party
search space or the redirect controller search space. The calledAddressOption
parameter controls whether to reset the original called fields.

If the FAC and CMC codes are missing or invalid, the call might not get offered
and platformException may contain one of the following error codes:

• CiscoJTAPIException. CTIERR_FAC_CMC_REASON_FAC_NEEDED
• CiscoJTAPIException.CTIERR_FAC_CMC_REASON_CMC_NEEDED
• CiscoJTAPIException. CTIERR_FAC_CMC
_REASON_FAC_CMC_NEEDED

• CiscoJTAPIException. CTIERR_FAC_CMC_REASON_FAC_INVALID
• CiscoJTAPIException.CTIERR_FAC_CMC_REASON_CMC_INVALID

Parameters

mode - One of the following:

• CiscoConnection.REDIRECT_DROP_ON_FAILURE

• CiscoConnection. REDIRECT_NORMAL

callingSearchSpace - One of the following:

• CiscoConnection. DEFAULT_SEARCH_SPACE

• CiscoConnection. CALLINGADDRESS_SEARCH_SPACE

• CiscoConnection. ADDRESS_SEARCH_SPACE

• preferredOriginalCalledParty - may be a DN that will be the
originalCalledParty field when call is offered to destinationAddress. If
this field * needs to be used, applications must set calledAddressOption
as CALLED_ADDRESS_SET_TO_PREFERREDCALLEDPARTY. If
applications are not interested in this field, you must pass the default value
of null.

calledAddressOption - One of the following:

• CiscoConnection. CALLED_ADDRESS_DEFAULT
• CiscoConnection. CALLED_ADDRESS_UNCHANGED
• CiscoConnection.
CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATION

preferredOriginalCalledParty - may be a DN that will be the originalCalledParty
field when call is offered to destinationAddress. If this field * needs to be used,
applications must set calledAddressOption as
CALLED_ADDRESS_SET_TO_PREFERREDCALLEDPARTY. If
applications are not interested in this field, you must pass the default value of
null.

facCode - required if the destinationAddress requires a forced authorization

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
392

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

code to offer the call. Pass the FAC in this parameter. Pass the default value
of null if the destinationAddress does not require a FAC code.

cmcCode - required if the destinationAddress requires a client matter code to
offer the call. Pass the CMC in this parameter. Pass the default value of null if
the destinationAddress does not require a CMC code.

redirect(java.lang.String destinationAddress, int mode, int callingSearchSpace,
int calledAddressOption, java.lang.String preferredOriginalCalledParty,
java.lang.String facCode, java.lang.String cmcCode, int featurePriority)

javax.telephony.Connection

This method overloads CallControlConnection.redirect(). It takes a new
parameter, featurePriority, that sets the call priority. The featurePriority
parameter may be:

• CiscoCall.FEATUREPRIORITY_NORMAL
• CiscoCall.FEATUREPRIORITY_URGENT
• CiscoCall.FEATUREPRIORITY_EMERGENCY

Returns

Connection

Throws

javax.telephony.InvalidStateException
javax.telephony.InvalidPartyException
javax.telephony.MethodNotSupportedException
javax.telephony.PrivilegeViolationException
javax.telephony.ResourceUnavailableException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
393

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(java.lang.String destinationAddress, int mode, int callingSearchSpace,
java.lang.String preferredOriginalCalledParty)

javax.telephony.Connection

This method overloads the CallControlConnection.redirect() method. It takes
three new parameters: mode, callingSearchSpace, and
preferredOriginalCalledParty.

The redirectMode selects the type of redirect to perform. The
callingSearchSpace tells the implementation to use either the calling party
search space or the redirect controller search space.

Parameters

mode - One of the following:

• CiscoConnection.REDIRECT_DROP_ON_FAILURE

• CiscoConnection.REDIRECT_NORMAL

callingSearchSpace - One of the following:

• CiscoConnection.DEFAULT_SEARCH_SPACE

• CiscoConnection.CALLINGADDRESS_SEARCH_SPACE

• CiscoConnection.ADDRESS_SEARCH_SPACE

preferredOriginalCalledParty -May be a DN that will be the originalCalledParty
field when the call gets offered to the destinationAddress.

Throws

javax.telephony.InvalidStateException
javax.telephony.InvalidPartyException
javax.telephony.MethodNotSupportedException
javax.telephony.PrivilegeViolationException
javax.telephony.ResourceUnavailableException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
394

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

redirect(String destinationAddress, int mode, int callingSearchSpace, int
calledAddressOption, String preferredOriginalCalledParty, String facCode,
String cmcCode, int featurePriority, byte[] applicationXMLData)

javax.telephony.Connection

This method is similar to the existing redirect method on the CiscoConnection
object, except this one takes an additional parameter, applicationXMLData.

Parameters

applicationXMLData

This parameter was added, and it allows an application to send message header
point like SIP contact header info to the receiving end point. The parameter
takes xml format as mentioned below.

<data>

<item>

<type>contact</type>

<operation>append</operation>

<protocol>SIP</protocol>

<value>;+sip.instance = "<urn:uuid = *guid*>"</value>

</item>

</data>

This version only supports: contact, operation: append, protocol:
SIP. It can be enhanced to support other protocols and operations
in the future.

Note

If applications are not interested in this field, you must pass the default value
of null.

redirect(String destinationAddress, int mode, int callingSearchSpace, int
calledAddressOption, String preferredOriginalCalledParty, String facCode,
String cmcCode, int featurePriority, byte[] applicationXMLData, String
deviceName)

javax.telephony.Connection

This method is similar to the above method, but it adds the deviceName
parameter, which allows you to send the redirect to a specific device. Even in
situations where the target device shares a line with another device, the
redirected call goes only to the target device and not to the other device that
shares the phone line.

setRequestController(javax.telephony.TerminalConnection tc)void

This interface gets provided to a requesting TerminalConnection.

getPartyInfo()com.cisco.jtapi.extensions.CiscoPartyInfo[]

Returns a list of participants.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
395

Cisco Unified JTAPI Extensions
Methods

Method and DescrptionInterface

disconnect(CiscoPartyInfopartyInfo)java.lang.void

Disconnects participant with whose CiscoPartyInfo matches the passed
parameter value; throws exception otherwise.

Throws

PrivilegeViolationException
InvalidStateException

This method takes a Terminal connection object of the connection and returns
the Local Universal Unique Identifier of the party associated with both
connection and the terminal connection.

getLocalUUID(TerminalConnection termConn)

This method takes a Terminal connection object of the connection and returns
the Local Universal Unique Identifier of the party on the other side of the call.
It is a part of both connection and the terminal connection.

getPeerUUID(TerminalConnection termConn)

Inherited Methods

From Interface javax.telephony.callcontrol.CallControlConnection

accept, addToAddress, getCallControlState, park, redirect, reject

From Interface javax.telephony.Connection

disconnect, getAddress, getCall, getCapabilities, getConnectionCapabilities, getState, getTerminalConnections

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Documentation
None

CiscoConnectionID
The CiscoConnectionID object represents a unique object that is associated with each connection. Applications
may use the object itself or the integer representation of the object that the intValue() method returns.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
396

Cisco Unified JTAPI Extensions
Inherited Methods

Superinterfaces
CiscoObjectContainer

Declaration
public interface CiscoConnectionID extends CiscoObjectContainer

Fields
None

Methods
Table 98: Methods in CiscoConnectionID

DescriptionMethodInterface

Returns the CiscoConnection for the
CiscoConnectionID.

getConnection()CiscoConnection

Returns an integer representation of this object.intValue()Int

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
None

CiscoConnectionUniqueIDChangedEv
It’s a new event to highlight that uniqueID of the connection has changed.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New event8.0(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
397

Cisco Unified JTAPI Extensions
Superinterfaces

Declaration
public interface CiscoConnectionUniqueIDChangedEv extends ConnEv

Methods
Table 99: Methods in CiscoConnectionUniqueIDChangedEv

DescriptionMethodInterface

This method returns the old uniqueID of the connection
which has just changed. The returned value is a Unique
Identifier as 32-character hex string.

getOldUniqueID()String

This method returns the Terminal for which this ConnEv
is delivered.

getTerminal()Terminal

This method returns the updated uniqueID of the
connection. The returned value is a Unique Identifier as
32-character hex string.

getUniqueID()String

Related Documentation

CiscoConsultCall
The CiscoConsultCall interface extends the CiscoCall interface to expose certain properties of calls that have
been created as part of a consultative transfer or consultative conference.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.Call, javax.telephony.callcontrol.CallControlCall, CiscoCall, CiscoObjectContainer

Declaration
public interface CiscoConsultCall extends CiscoCall

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
398

Cisco Unified JTAPI Extensions
Declaration

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCall

CALLSECURITY_AUTHENTICATED, CALLSECURITY_ENCRYPTED,
CALLSECURITY_NOTAUTHENTICATED, CALLSECURITY_UNKNOWN,
FEATUREPRIORITY_EMERGENCY, FEATUREPRIORITY_NORMAL,FEATUREPRIORITY_URGENT,
PLAYTONE_BOTHLOCALANDREMOTE, PLAYTONE_LOCALONLY,
PLAYTONE_NOLOCAL_OR_REMOTE, PLAYTONE_REMOTEONLY, SILENT_MONITOR

From Interface javax.telephony.Call

ACTIVE, IDLE, INVALID

Methods
Table 100: Methods in CiscoConsultCall

DescriptionMethodInterface

Returns the consulting TerminalConnection that was
used to create this CiscoConsultCall. If this Call was
created as part of a consultative transfer or consultative
conference, the getConsultingTerminalConnection
method returns the TerminalConnection that was used
to perform the consultation on the original call. This
method lets you correlate a ConsultCall with its original
call. The original call itself does not have any methods
that you can use determine the ConsultCall, if any, to
which it is related. Returns: Null if this Call does not
result from a consultation, or the consulting
TerminalConnection of the original Call if this call
resulted from a consultation.

getConsultingTerminalConnection()javax.telephony.TerminalConnection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
399

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

Provides applications ability to initiate a consultative
call without setting up media for it. This interface may
be invoked when application is creating a consult call
and completing transfer before media establishes for
consult call.

CiscoUnified CommunicationManagermay some times
run into erroneous race condition when consult call is
answered, and application completes transfer in the
middle of media setup for consult call.

To avoid this problem, application that does not wait
for media setup completion for consult call, may use
this method to setup consult call.

FromCallEvent perspective, this method behaves similar
to CallControlCall.consult(TerminalConnection tc,
String dialedDigits).

Creates a consultation between this Call and an active
Call without establishing the media. This consult call
may only be transferred, not conferenced. Cisco JTAPI
does not support this method with
CallControlCall.setConferenceEnable(). Cisco JTAPI
only supports this method with
CallControlCall.setTransferEnable().

Throws

javax.telephony. InvalidStateException
javax.telephony. InvalidArgumentException
javax.telephony. MethodNotSupportedException
javax.telephony. ResourceUnavailableException
javax.telephony. PrivilegeViolationException
javax.telephony. InvalidPartyException

consultWithoutMedia(javax.telephony.
TerminalConnection tc,
java.lang.String dialedDigits)

javax.telephony.Connection[]

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCall

conference, connect, getCalledAddressPI, getCalledPartyInfo, getCallID, getCallingAddressPI,
getCallSecurityStatus, getConferenceChain, getCurrentCalledAddress, getCurrentCalledAddressPI,
getCurrentCalledDisplayNamePI, getCurrentCalledPartyDisplayName, getCurrentCalledPartyInfo,
getCurrentCalledPartyUnicodeDisplayName, getCurrentCalledPartyUnicodeDisplayNamelocale,
getCurrentCallingAddress, getCurrentCallingAddressPI, getCurrentCallingDisplayNamePI,
getCurrentCallingPartyDisplayName, getCurrentCallingPartyInfo, getCurrentCallingPartyUnicodeDisplayName,
getCurrentCallingPartyUnicodeDisplayNamelocale, getGlobalizedCallingParty, getLastRedirectedPartyInfo,
getLastRedirectingAddressPI, getLastRedirectingPartyInfo, getModifiedCalledAddress,
getModifiedCallingAddress, startMonitor, startMonitor, transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
400

Cisco Unified JTAPI Extensions
Inherited Methods

From Interface javax.telephony.callcontrol.CallControlCall

addParty, conference, consult, consult, drop, getCalledAddress, getCallingAddress, getCallingTerminal,
getConferenceController, getConferenceEnable, getLastRedirectedAddress, getTransferController,
getTransferEnable, offHook, setConferenceController, setConferenceEnable, setTransferController,
setTransferEnable, transfer, transfer

From Interface javax.telephony.Call

addObserver, connect, getCallCapabilities, getCapabilities, getConnections, getObservers, getProvider,
getState, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
See CiscoCall for more information.

CiscoConsultCallActiveEv
The CiscoConsultCallActiveEv event interface extends the JTAPI CallActiveEv event. This event indicates
that the state of the call object changed to Call.ACTIVE and that the call was initiated as a result of a
consultative transfer or consultative conference operation (manual or programmatic). Applications can obtain
the consulting TerminalConnection on the original (consulting) call by using the
CiscoConsultCall.getConsultingTerminalConnection method.

The system reports this event to applications via the CallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallActiveEv, javax.telephony.events.CallEv, CiscoCallEv, CiscoEv,
javax.telephony.events.Ev

Declaration
public interface CiscoConsultCallActiveEv extends CiscoCallEv, javax.telephony.events.CallActiveEv

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
401

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
402

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
javax.telephony.TerminalConnectiongetHeldTerminalConnection() Deprecated. Replaced by
CiscoConsultCall.getConsultingTerminalConnection()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
403

Cisco Unified JTAPI Extensions
Methods

Table 101: Methods in CiscoConsultCallActiveEv

DescriptionMethodInterface

Deprecated method.

Replaced by CiscoConsultCall.
GetConsultingTerminalConnection().

Returns the consulting TerminalConnection that was
used to create this CiscoConsultCall. You can use this
method to correlate a consultation call with its original
call. The original call does not have any methods that
you can use to determine the consultation call, if any,
to which it is related. Returns: The consulting
TerminalConnection of the call that created the call that
is referenced by this event

getHeldTerminalConnection()javax.telephony.TerminalConnection

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Call, CallObserver, CallActiveEv and Constant Field Values, on page 1665 for more information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
404

Cisco Unified JTAPI Extensions
Inherited Methods

CiscoEv
The CiscoEv interface extends this code JTAPI javax.telephony.events.Ev interface and serves as the base
interface for all Cisco-extended JTAPI events. Every event in this package extends this interface, directly or
indirectly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.Ev

Subinterfaces
CiscoAddrActivatedEv, CiscoAddrActivatedOnTerminalEv, CiscoAddrAddedToTerminalEv,
CiscoAddrAutoAcceptStatusChangedEv, CiscoAddrCreatedEv, CiscoAddrEv, CiscoAddrInServiceEv,
CiscoAddrIntercomInfoChangedEv, CiscoAddrIntercomInfoRestorationFailedEv, CiscoAddrOutOfServiceEv,
CiscoAddrRecordingConfigChangedEv, CiscoAddrRemovedEv, CiscoAddrRemovedFromTerminalEv,
CiscoAddrRestrictedEv, CiscoAddrRestrictedOnTerminalEv, CiscoCallChangedEv, CiscoCallEv,
CiscoCallSecurityStatusChangedEv, CiscoConferenceChainAddedEv, CiscoConferenceChainRemovedEv,
CiscoConferenceEndEv, CiscoConferenceStartEv, CiscoConsultCallActiveEv,
CiscoMediaOpenLogicalChannelEv, CiscoOutOfServiceEv, CiscoProvCallParkEv, CiscoProvEv,
CiscoProvFeatureEv, CiscoProvTerminalCapabilityChangedEv, CiscoRestrictedEv, CiscoRTPInputKeyEv,
CiscoRTPInputStartedEv, CiscoRTPInputStoppedEv, CiscoRTPOutputKeyEv, CiscoRTPOutputStartedEv,
CiscoRTPOutputStoppedEv, CiscoTermActivatedEv, CiscoTermButtonPressedEv, CiscoTermCreatedEv,
CiscoTermDataEv, CiscoTermDeviceStateActiveEv, CiscoTermDeviceStateAlertingEv,
CiscoTermDeviceStateHeldEv, CiscoTermDeviceStateIdleEv, CiscoTermDeviceStateWhisperEv,
CiscoTermDNDOptionChangedEv, CiscoTermDNDStatusChangedEv, CiscoTermEv, CiscoTermInServiceEv,
CiscoTermOutOfServiceEv, CiscoTermRegistrationFailedEv, CiscoTermRemovedEv, CiscoTermRestrictedEv,
CiscoTermSnapshotCompletedEv, CiscoTermSnapshotEv, CiscoToneChangedEv, CiscoTransferEndEv,
CiscoTransferStartEv

Declaration
public interface CiscoEv extends javax.telephony.events.Ev

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
405

Cisco Unified JTAPI Extensions
CiscoEv

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Ev for more information.

CiscoFeatureReason
The CiscoFeatureReason interface specifies the feature reason that is associated with each delivered event.

Interface History

DescriptionCisco Unified Communications Manager Release

Added new reason, FORWARD_NO_RETRIEVE, for the Park
Monitoring and Assisted DPark feature.

7.1(1 and 2)

A new reason code, REASON_SAF_CCD_PSTN_FAILOVER,
has been added to convey the proper reason for a PSTN failover
to the application.

8.0(1)

A new feature reason, REASON_MEDIA_STREAMING, is
added.

8.5(1)

A new feature reason, REASON_PLAY_ANNOUNCEMENT,
is added.

10.0.1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
406

Cisco Unified JTAPI Extensions
Inherited Fields

Declaration
public interface CiscoFeatureReason

Fields
Table 102: Fields in CiscoFeatureReason

DescriptionFieldInterface

Indicates that the reason for the event is BARGE feature.REASON_BARGEstatic int

Indicates that reason is single step transferREASON_BLINDTRANSFERstatic int

Indicates that the reason for the events is PICKUPREASON_CALLPICKUPstatic int

Indicates that the reason for the events is SIP 3xx feature.REASON_CCM_REDIRECTIONstatic int

Indicates that connections have been added or removed
by using the Click to Conference feature

REASON_CLICK_TO_CONFERENCEstatic int

Indicates that the reason for the event is CONFERENCEREASON_CONFERENCEstatic int

Indicates that the reason for events is DPARK featureREASON_DPARK_CALLPARKstatic int

Indicates that the event is gererated because the call has
got de-queued under the Native Queuing Feature.

REASON_DEQUEUINGpublic static final
int

Indicates that the event is generated because the call is
de-queued under the Native Queuing Feature as the
maximum queue timer expired.

REASON_DEQUEUING_TIMER_EXPIREDpublic static final
int

Indicates that the event has been gererated because the
call has got de-queued under the Native Queuing Feature
as the agents were busy and the queue was full.

REASON_DEQUEUING_AGENTS_BUSYpublic static final
int

Indicates that the event is gererated because the call has
got de-queued under the Native Queuing Feature as the
agents were either not logged-in or were unregistered.

REASON_DEQUEUING_AGENTS_UNAVAILABLEpublic static final
int

Indicates that the reason for events in DPARKReversionREASON_DPARK_REVERSIONstatic int

Indicates that the reason for events in DPARKUNPARKREASON_DPARK_UNPARKstatic int

Indicates that the reason for the events is FAC, CMC
feature

REASON_FAC_CMCstatic int

Indicates that reason for the event is FORWARDREASON_FORWARDALLstatic int

Indicates that the reasons for the event is forward busyREASON_FORWARDBUSYstatic int

Indicates that the reasons for the event is forward no
answer

REASON_FORWARDNOANSWERstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
407

Cisco Unified JTAPI Extensions
Declaration

DescriptionFieldInterface

Indications that the reason for the event is forward no
retrieve

REASON_FORWARD_NO_RETRIEVEstatic int

Indicates that the reason for the events is imm divertREASON_IMMDIVERTstatic int

Indicates that the event received is related to an Agent
Greeting call

REASON_MEDIA_STREAMINGstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITYstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITY_CELLPICKUPstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITY_FOLLOWMEstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITY_HANDINstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITY_HANDOUTstatic int

Indicates that the reason for events caused by Mobility
Manager feature

REASON_MOBILITY_IVRstatic int

Indicates that the reason for the event is NORMALREASON_NORMALstatic int

Indicates that the reason for the event is PARK featureREASON_PARKstatic int

Indicates that the reasons for the event is park remainderREASON_PARKREMAINDERstatic int

This interface indicates that the event was generated
because of a play announcement.

REASON_PLAY_ANNOUNCEMENTpublic static final
int

Indicates that the reason for the event is QSIG path
replacement

REASON_QSIG_PRstatic int

Indicates that the event is generated due to the Native
Queuing feature.

REASON_QUEUINGpublic static final
int

Indicates that the reason for event is REDIRECTREASON_REDIRECTstatic int

Returned for events sent for REFER done at Cisco
Unified Communications Manager

REASON_REFERstatic int

REASON_REPLACE : This reason will be returned for
events send for REPLACE feature done at Cisco Unified
Communications Manager

REASON_REPLACEstatic int

Indicates that the reason for events in SILENT
MONITORING

REASON_SILENTMONITORINGstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
408

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

Indicates that the reason for the event is TRANSFERREASON_TRANSFERstatic int

Indicates that the reason for the event is unparkREASON_UNPARKstatic int

Indicates the reason for PSTN failover to the applicationREASON_SAF_CCD_PSTN_FAILOVERstatic final int

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoHuntConnection
A CiscoHuntConnection in a call indicates that the call is routed through a hunt pilot.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface8.0(1)

Declaration
public interface CiscoHuntConnection extends CiscoConnection.

Methods
Table 103: Methods in CiscoHuntConnection

DescriptionMethodInterface

This method returns an array of connections to the hunt
group member or null.

getAgentConnections()Connection[]

Related Documentation

CiscoIntercomAddress
The CiscoIntercomAddress interface extends the CiscoAddress interface with additional Cisco Unified
CommunicationsManager-specific capabilities for intercom addresses. This interface lets applications initiate
intercom calls and take advantage of other intercom-specific features.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
409

Cisco Unified JTAPI Extensions
Related Documentation

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.Address, CiscoAddress, CiscoObjectContainer

Declaration
public interface CiscoIntercomAddress extends CiscoAddress

Fields
None

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoAddress

APPLICATION_CONTROLLED_RECORDING, AUTO_RECORDING, AUTOACCEPT_OFF,
AUTOACCEPT_ON, AUTOANSWER_OFF, AUTOANSWER_UNKNOWN,
AUTOANSWER_WITHHEADSET, AUTOANSWER_WITHSPEAKERSET, EXTERNAL,
EXTERNAL_UNKNOWN, IN_SERVICE, INTERNAL, MONITORING_TARGET, NO_RECORDING,
OUT_OF_SERVICE, RINGER_DEFAULT, RINGER_DISABLE, RINGER_ENABLE, UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
410

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 104: Methods in CiscoIntercomAddress

DescriptionMethodInterface

Sets the intercom target DN, intercom target label, and
intercom target Unicode label that appears next to the
intercom line on the phone. The phone displays the
Unicode label if the phone has that capability; otherwise,
the phone displays the ASCII target label.

Throws

javax. telephony. InvalidPartyException means that the
target DN is invalid.

javax. telephony. InvalidStateException means that the
address, terminal, or provider are not in service.

Parameters

• targetDN—Destination DN for the intercom call

• targetAsciiLabel—ASCII display label shown next
to the intercom line on the phone target

• UnicodeLabel—Unicode display label shown on
the phone

setIntercomTarget(java. lang. String targetDNjava. lang.
String targetAsciiLabel, java. lang. String
targetUnicodeLabel)

void

Returns true if an application has overridden the current
value, or false if the current value matches the default
value configured in the database.

isIntercomTargetSet()Boolean

Resets the intercom target DN, intercom target label,
and intercom target Unicode label to their default values.

Throws

javax. telephony. InvalidPartyException
javax. telephony. InvalidStateException

resetIntercomTarget()void

Returns the current intercom target DN that the
application set. If the application has not set the intercom
target DN, this interface returns the default intercom
target DN that is configured in Cisco Unified
CommunicationsManager Administration. Returns: The
intercom target DN number, as a string.

getIntercomTargetNumber()java. lang. String

Returns the current intercom target label that the
application set. If the application has not set the intercom
target label, this interface returns the default intercom
target label that is configured in Cisco Unified
CommunicationsManager Administration. Returns: The
intercom target label string.

getIntercomTargetAsciiLabel()java. lang. String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
411

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the current intercom target Unicode label that
the application set. If the application has not set the
Unicode label, this interface returns the default intercom
target Unicode label that is configured in Cisco Unified
CommunicationsManager Administration. Returns: The
intercom Unicode target label string.

getIntercomTargetUnicodeLabel()java. lang. String

Returns the default intercom target DN that is configured
through Cisco Unified Communications Manager
Administration. Returns: The default intercom target
DN number, as a string.

getDefaultIntercomTargetNumber()java. lang. String

Returns the default intercom target label that is
configured through Cisco Unified Communications
Manager Administration. Returns: The default intercom
target label string.

getDefaultIntercomTargetAsciiLabel()java. lang. String

Returns the default intercom target label that is
configured through Cisco Unified Communications
Manager Administration. Returns: The default unicode
intercom target label string.

getDefaultIntercomTargetUnicodeLabel()java. lang. String

Places an intercom call from an originating intercom
address to a destination intercom address. Returns:A
connection list for the calling and called intercom
addresses.

Throws

javax. telephony. InvalidPartyException—The target
DN is not a valid number.

javax. telephony. InvalidArgumentException—The
address is not a CiscoIntercomAddress or the terminal
is not a Terminal.

javax. telephony. InvalidStateException—The address,
terminal, or provider is not in service.

javax. telephony. ResourceUnavailableException—A
resource is not available to complete the operation.

javax. telephony. PrivilegeViolationException—The
application does not have sufficient privileges to execute
this operation.

connectIntercom(javax. telephony. Terminal terminal,
java. lang. String targetNumber)

javax. telephony.
Connection[]

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoAddress

clearCallConnections, getAddressCallInfo, getAutoAcceptStatus, getAutoAnswerStatus,
getInServiceAddrTerminals, getPartition, getRecordingConfig, getRegistrationState,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
412

Cisco Unified JTAPI Extensions
Inherited Methods

getRestrictedAddrTerminals, getState, getType, isRestricted, setAutoAcceptStatus, setMessageWaiting,
setRingerStatus

From Interface javax.telephony.Address

addCallObserver, addObserver, getAddressCapabilities, getCallObservers, getCapabilities, getConnections,
getName, getObservers, getProvider, getTerminals, removeCallObserver, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
See CiscoAddress for additional information.

CiscoIsacMediaCapability
The CiscoIsacMediaCapability object specifies the properties for a iSAC encoded RTP stream. Applications
that support iSAC media termination use this object when registering a CiscoMediaTerminal.

The packet size and bit rate are variable.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Interface added in this release for iSac codec which can be used
by application to register a CiscoMediaTerminal or
CiscoRouteTerminal if they want to use this newMediaCapability.

8.0(1)

Superinterfaces
None

Declaration
public class CiscoIsacMediaCapabilityextends CiscoMediaCapability

Constuctors
Table 105: Constructor in CiscoIsacMediaCapability

DescriptionConstructorInterface

Constructs a CiscoIsacMediaCapabilityCiscoIsacMediaCapability()public

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
413

Cisco Unified JTAPI Extensions
Related Documentation

Fields
None

Inherited Fields

From Class com.cisco.jtapi.extensions.CiscoMediaCapability

G711_64K_30_MILLISECONDS, G723_6K_30_MILLISECONDS, G729_30_MILLISECONDS,
GSM_80_MILLISECONDS, ISAC, WIDEBAND_256K_10_MILLISECONDS

Methods
None

Inherited Methods

Inherited From Class com.cisco.jtapi.extensions.CiscoMediaCapability

getMaxFramesPerPacket, getPayloadType, isSupported, toString

Inherited From Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

CiscoJtapiException
The CiscoJtapiException interface defines error codes that CTI requests may return. Cisco JTAPI extends all
of the JTAPI exceptions to implement this interface. You can get the error codes by casting the exception to
CiscoJtapiException and calling the method getErrorCode().

For example, if “e” is any exception caught by an application, the following code checks whether the exception
is an instance of CiscoJtapiException.

try {
// some code here

}
catch (Exception e) {

if(e instanceof CiscoJtapiException){
CiscoJtapiException ce =

com.cisco.cti.client.CTIFAILURE.(CiscoJtapiException) e
int errorCode = com.cisco.cti.client.CTIFAILURE.ce.getErrorCode()

//returns the ErrorCode.
}

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
414

Cisco Unified JTAPI Extensions
Fields

Interface History

DescriptionCisco Unified Communications Manager
Release Number

Added this interface.7.0

Added new error codes for the Logical Partition feature called:
CiscoJtapiException.CTIERR_REDIRECT_CALL_PARTITIONING_POLICY and
CiscoJtapiException.CTIERR_FEATURE_NOT_AVAILABLE.

7.1(1 and 2)

A new error code is added which will be exposed when the monitoring/recording request
is rejected when the supervisor/recorder does not meet the security capabilities of the
agent.

New error code, OPERATION_NOT_AVAILABLE_IN_CURRENT_STATE, has also
been added.

8.0(1)

The following new error codes are added:CTIERR_MEDIA_CONNECTION_FAILED,
CTIERR_REQUEST_ALREADY_PENDING,
CTIERR_START_STREAM_MEDIA_FAILED,
CTIERR_STOP_STREAM_MEDIA_FAILED,
CTIERR_NO_STREAMING_MEDIA_SESSION,
CTIERR_EXISTING_STREAMING_MEDIA_SESSIONCTIERR_
MEDIA_ALREADY_TERMINATED_STATIC_GETPORT_SUPPORT,
CTIERR_MEDIA_ALREADY_TERMINATED_DYNAMIC_GETPORT_SUPPORT,
CTIERR_SSO_DISABLED, CTIERR_SSO_AUTH_SERVER_DOWN.

8.5(1)

The following new error codes are
added:CTIERR_INVALID_REMOTE_DESTINATION_NUMBER

CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER

CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDED

CTIERR_REMOTE_DEVICE_REQUEST_FAILED_ACTIVE_RD_NOT_SET

CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE

CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTEND

CTIERR_MEDIA_ALREADY_TERMINATED_EXTEND

CTIERR_INVALID_REMOTE_DESTINATION_NAME

CTIERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING

9.0(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
415

Cisco Unified JTAPI Extensions
CiscoJtapiException

DescriptionCisco Unified Communications Manager
Release Number

The following new error codes are added:

CTIERR_AUTHENTICATION_TYPE_ON_UNSUPPORTED_PORT

CTIERR_NO_PERSISTENT_CALL_EXISTS

CTIERR_ANNOUNCEMENT_ALREADY_IN_PROGRESS

CTIERR_ERROR_PLAYING_ANNOUNCEMENT

CTIERR_PLAY_ANNOUNCEMENT_FAILED

CTIERR_EXTEND_AND_CONNECT_DESTINATION_NOT_REACHABLE

CTIERR_CREATE_PERSISTENT_CALL_FAILED

CTIERR_PERSISTENT_CALL_EXISTS

CTIERR_OPERATION_NOT_ALLOWED_ON_PERSISTENT_CALL

CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_CALL_ACTIVE

CTIERR_PERSISTENT_CALL_BEING_SETUP

CTIERR_INVALID_SSO_TOKEN_SIZE

10.0(1)

Declaration
public interface CiscoJtapiException

Fields
Table 106: Fields in CiscoJtapiException

DescriptionFieldInterface

This error indicates that the request is issued on a
line, which is not open

ASSOCIATED_LINE_NOT_OPENstatic int

This error indicates that another call already exists
on the line

CALL_ALREADY_EXISTSstatic int

The call dropped after the feature request (hold,
unhold, transfer, or conference) but before the
request was completed.

CALL_DROPPEDstatic int

This error indicates that an attempt is made to answer
a call that either does not exist or is not in the correct
state

CALLHANDLE_NOTINCOMINGCALLstatic int

This error indicates that attempt to redirect call that
was unknown to line control

CALLHANDLE_UNKNOWN_TO_
LINECONTROL

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
416

Cisco Unified JTAPI Extensions
Declaration

DescriptionFieldInterface

This error indicates that device open failed because
the associated device is unregistering

CANNOT_OPEN_DEVICEstatic int

This error indicates that media cannot be terminated
by an application when the device is a physical
phone (the phone always terminates the media)

CANNOT_TERMINATE_MEDIA_ON_PHONEstatic int

This error indicates that attempt to set CFWALL
while it is already set

CFWDALL_ALREADY_SETstatic int

This error indicates that attempt to CFWALL to an
invalid destination

CFWDALL_DESTN_INVALIDstatic int

This error indicates that link to one of the cisco
unified communications managers failed in the
cluster (network error)

CLUSTER_LINK_FAILUREstatic int

This error indicates that device does not support the
command.

COMMAND_NOT_IMPLEMENTED_ON_DEVICEstatic int

This error indicates that attempt to conference a party
that is already in conference

CONFERENCE_ALREADY_PRESENTstatic int

This error indicates that conference completion was
not successful.

CONFERENCE_FAILEDstatic int

This error indicates that all conference bridges are
busy.

CONFERENCE_FULLstatic int

This error indicates that attempt to complete
conference while consult conference is not active

CONFERENCE_INACTIVEstatic int

This error indicates that an attempt to conference to
self or an invalid participant

CONFERENCE_INVALID_PARTICIPANTstatic int

This error indicates that the access to device is
denied.

CTIERR_ACCESS_TO_DEVICE_DENIEDstatic int

This error indicates that the announcement is already
in progress.

CTIERR_ANNOUNCEMENT_ALREADY_
IN_PROGRESS

public static final int

This error indicates that the application softkeys are
already controlled by another application

CTIERR_APP_SOFTKEYS_ALREADY_
CONTROLLED

static int

This error indicates that application data size has
exceeded limit

CTIERR_APPLICATION_DATA_SIZE_
EXCEEDED

static int

This error indicates that the port does not support
the authentication type that is used to create the
provider.

CTIERR_AUTHENTICATION_TYPE_
ON_UNSUPPORTED_PORT

static int

This error indicates built in bridge is not configuredCTIERR_BIB_NOT_CONFIGUREDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
417

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that built in bridge resource not
available

CTIERR_BIB_RESOURCE_NOT_ AVAILABLEstatic int

This error indicates that Communications Manager
is not available currently

CTIERR_CALL_MANAGER_NOT_AVAILABLEstatic int

This error indicates that call does not existCTIERR_CALL_NOT_EXISTEDstatic int

This error indicates no call park DNCTIERR_CALL_PARK_NO_DNstatic int

This error indicates call request already outstandingCTIERR_CALL_REQUEST_ALREADY_
OUTSTANDING

static int

This error indicates that call unpark did not succeedCTIERR_CALL_UNPARK_FAILEDstatic int

This error indicates that capabilities do not matchCTIERR_CAPABILITIES_DO_NOT_MATCHstatic int

This error indicates that the close delay is not
supported with this registration type

CTIERR_CLOSE_DELAY_NOT_
SUPPORTED_WITH_REG_TYPE

static int

This error indicates that conference already existsCTIERR_CONFERENCE_ALREADY_EXISTEDstatic int

This error indicates that conference does not existCTIERR_CONFERENCE_NOT_EXISTEDstatic int

This error indicates application is trying to connect
to invalid port

CTIERR_CONNECTION_ON_INVALID_PORTstatic int

This error indicates consult call failureCTIERR_CONSULT_CALL_FAILUREstatic int

This error indicates that consult call already
outstanding

CTIERR_CONSULTCALL_ALREADY_
OUTSTANDING

static int

This error indicates that device registration failed as
device crypto algorithms does not matchwith current
device registration

CTIERR_CRYPTO_CAPABILITY_MISMATCHstatic int

This error indicates that CTIHandler process creation
failed

CTIERR_CTIHANDLER_PROCESS_
CREATION_FAILED

static int

This error indicates DB initialization errorCTIERR_DB_INITIALIZATION_ERRORstatic int

This error indicates that device is already openedCTIERR_DEVICE_ALREADY_OPENEDstatic int

This error indicates that device is not yet openedCTIERR_DEVICE_NOT_OPENED_YETstatic int

This error indicates that there is a device registration
failure

CTIERR_DEVICE_OWNER_ALIVE_
TIMER_STARTED

static int

This error indicates an invalid media type, CTIPort
need to be registered with Dynamic media port
registation if it has an intercom line

CTIERR_DEVICE_REGISTRATION_FAILED_
NOT_SUPPORTED_ MEDIATYPE

static int

This error indicates that the device is restrictedCTIERR_DEVICE_RESTRICTEDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
418

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that device is shutting downCTIERR_DEVICE_SHUTTING_DOWNstatic int

This error indicates that there is a directory login
time out

CTIERR_DIRECTORY_LOGIN_TIMEOUTstatic int

This error indicates duplicate call referenceCTIERR_DUPLICATE_CALL_REFERENCEstatic int

This indicates registration failure when Cisco
Media/Route Terminal is already registered with
different Addressing mode.

CTIERR_DYNREG_IPADDRMODE_
MISMATCH

static int

This error indicates that there was an error playing
the announcement.

CTIERR_ERROR_PLAYING_public static final int

This error occurs if an application attempts to invoke
anAgent GreetingAPIwhile another request is made
and accepted.

JTAPI throws InvalidStateException with a
description as “There is an existing streaming media
session”.

CTIERR_EXISTING_STREAMING_
MEDIA_SESSION

static int

This error occurs if the extend and connect
destination is not reachable.

CTIERR_EXTEND_AND_CONNECT_
DESTINATION_NOT_REACHABLE

public static final int

Client Matter Code (CMC) entered is invalidCTIERR_FAC_CMC_REASON_CMC_ INVALIDstatic int

CMC is required to offer the callCTIERR_FAC_CMC_REASON_CMC_NEEDEDstatic int

Forced Authorization Code (FAC) and CMC are
required to offer call

CTIERR_FAC_CMC_REASON_FAC_
CMC_NEEDED

static int

FAC entered is invalidCTIERR_FAC_CMC_REASON_FAC_INVALIDstatic int

FAC is required to offer the callCTIERR_FAC_CMC_REASON_FAC_ NEEDEDstatic int

This error indicates feature already registeredCTIERR_FEATURE_ALREADY_REGISTEREDstatic int

This error indicates feature data rejectCTIERR_FEATURE_DATA_REJECTstatic int

This error indicates that feature select failedCTIERR_FEATURE_SELECT_FAILEDstatic int

This error indicates that the device type is illegalCTIERR_ILLEGAL_DEVICE_TYPEstatic int

This error indicates that auto install protocol version
is incompatible

CTIERR_INCOMPATIBLE_AUTOINSTALL_
PROTOCOL_VERSION

static int

Device registration failed due to incorrect media
capability.

CTIERR_INCORRECT_MEDIA_CAPABILITYstatic int

This error indicates that information is not availableCTIERR_INFORMATION_NOT_AVAILABLEstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
419

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that intercom target value is
already configured, application is trying to make call
with Intercom target DN

CTIERR_INTERCOM_SPEEDDIAL_
ALREADY_CONFIGURED

static int

This error indicates that intercom request failed as
intercom target value is already set, application is
trying to set again

CTIERR_INTERCOM_SPEEDDIAL_
ALREADY_SET

static int

This error indicates that intercomm request failed as
intercom target value in not in the intercom group

CTIERR_INTERCOM_SPEEDDIAL_
DESTN_INVALID

static int

This error indicates that intercom talk back request
is already pending

CTIERR_INTERCOM_TALKBACK_
ALREADY_PENDING

static int

This error indicates that talkback request failed for
some reason.

CTIERR_INTERCOM_TALKBACK_FAILUREstatic int

This error indicates there is a CTI internal failureCTIERR_INTERNAL_FAILUREstatic int

This error indicates the call ID is invalidCTIERR_INVALID_CALLIDstatic int

This error indicates that the device name is not validCTIERR_INVALID_DEVICE_NAMEstatic int

Play DTMF request failed because it is an invalid
DTMF digit.

CTIERR_INVALID_DTMFDIGITSstatic int

This error indicates that filter size is invalidCTIERR_INVALID_FILTER_SIZEstatic int

This error indicates that the media device is not validCTIERR_INVALID_MEDIA_DEVICEstatic int

This error indicates media parameter is inavlidCTIERR_INVALID_MEDIA_PARAMETERstatic int

This error indicates that there is an invalid media
process

CTIERR_INVALID_MEDIA_PROCESSstatic int

This error indicates media resource ID is not validCTIERR_INVALID_MEDIA_RESOURCE_IDstatic int

This error indicates that the header info is not validCTIERR_INVALID_MESSAGE_HEADER_INFOstatic int

This error indicates that message length is invalidCTIERR_INVALID_MESSAGE_LENGTHstatic int

This error indicates monitoring request failed due
to invalid monitoring destination

CTIERR_INVALID_MONITOR_DESTNstatic int

This error indicates an invalid monitor DN typeCTIERR_INVALID_MONITOR_DN_TYPEstatic int

This error indicates monitor request failed due to an
invalid monitor mode

CTIERR_INVALID_MONITORMODEstatic int

This error indicates that the parameter is not validCTIERR_INVALID_PARAMETERstatic int

This error indicates that the DN is an invalid park
DN

CTIERR_INVALID_PARK_DNstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
420

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that the handle is an invalid park
registration handle

CTIERR_INVALID_PARK_REGISTRATION_
HANDLE

static int

This error indicates an invalid resource typeCTIERR_INVALID_RESOURCE_TYPEstatic int

This indicates the registration failure due to IP
Addressing Mode mismatch.

CTIERR_IPADDRMODE_MISMATCHstatic int

This error indicates that line is out of service.CTIERR_LINE_OUT_OF_SERVICEstatic int

This error indicates that the line is restrictedCTIERR_LINE_RESTRICTEDstatic int

This error indicates that maximum call limit has
reached

CTIERR_MAXCALL_LIMIT_REACHEDstatic int

This error indicates that device registration failed as
device is registered with Dynamicmedia termination

CTIERR_MEDIA_ALREADY_TERMINATED_
DYNAMIC

static int

This error indicates that the application tries to
register a terminal, which is already registered with
get port support, with a different registration type.

CTIERR_MEDIA_ALREADY_TERMINATED_
DYNAMIC_GETPORT_SUPPORT

Final static int

This error indicates that device registration failed as
device is already registered with media termination
none

CTIERR_MEDIA_ALREADY_TERMINATED_
NONE

static int

This error indicates that device registration failed as
device is registered with Static media termination

CTIERR_MEDIA_ALREADY_TERMINATED_
STATIC

static int

This error indicates that the application tries to
register a terminal, which is already registered with
get port support, with a different registration type.

CTIERR_MEDIA_ALREADY_TERMINATED_
STATIC_GETPORT_SUPPORT

Final static int

This error indicates that device registration failed as
media capability of device does not match with
current device registration

CTIERR_MEDIA_CAPABILITY_MISMATCHstatic int

This error indicates that there is a general failure
with the Agent Greeting feature. JTAPI throws
InvalidStateException with a description as “The
connection to the media has failed”.

CTIERR_MEDIA_CONNECTION_FAILEDstatic int

This error indicates that media resource name size
has exceeded limit

CTIERR_MEDIA_RESOURCE_NAME_
SIZE_EXCEEDED

static int

This error indicates that media registration types do
not match

CTIERR_MEDIAREGISTRATIONTYPE_
DO_NOT_MATCH

static int

This error indicates that message is too bigCTIERR_MESSAGE_TOO_BIGstatic int

This error indicates that there are more active calls
than reserved

CTIERR_MORE_ACTIVE_CALLS_THAN_
RESERVED

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
421

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates there are no existing callsCTIERR_NO_EXISTING_CALLSstatic int

This error indicates that there is no existing
conference

CTIERR_NO_EXISTING_CONFERENCEstatic int

This error indicates that no persistent call exists.CTIERR_NO_PERSISTENT_CALL_EXISTSpublic static final int

This error indicates recording request failed as there
is no recording session

CTIERR_NO_RECORDING_SESSIONstatic int

This error indicates no response frommedia resourceCTIERR_NO_RESPONSE_FROM_MPstatic int

This error occurs if an application attempts to invoke
a stop request while there is no existingmedia stream
to stop. JTAPI throws InvalidStateException with a
description as “There is no streaming media session
active”.

CTIERR_NO_STREAMING_MEDIA_SESSIONstatic int

This error indicates that the call is not preservedCTIERR_NOT_PRESERVED_CALLstatic int

This error indicates that feature unavailable for this
call due to temporary failure

CTIERR_OPERATION_FAILED_QUIETCLEARstatic int

This error indicates that this operation is not allowedCTIERR_OPERATION_NOT_ALLOWEDstatic int

This error indicates out of bandwidth errorCTIERR_OUT_OF_BANDWIDTHstatic int

This error indicates a failure during registering the
device

CTIERR_OWNER_NOT_ALIVEstatic int

This error indicates that there is a pending accept or
answer request

CTIERR_PENDING_ACCEPT_OR_
ANSWER_REQUEST

static int

This error indicates there is a pending start
monitoring request

CTIERR_PENDING_START
_MONITORING_REQUEST

static int

This error indicates there is a pending start recording
request

CTIERR_PENDING_START_RECORDING_
REQUEST

static int

This error indicates there is a pending stop recording
request

CTIERR_PENDING_STOP_RECORDING_
REQUEST

static int

This error indicates that the play announcement
failed.

CTIERR_PLAY_ANNOUNCEMENT_FAILEDpublic static final int

This error indicates that primary call in monitoring
request in invalid or gone idle

CTIERR_PRIMARY_CALL_INVALIDstatic int

This error indicates that primary call in monitoring
request is in invalid state

CTIERR_PRIMARY_CALL_STATE_INVALIDstatic int

This error indicates recording request failed that
recording is already in progress

CTIERR_RECORDING_ALREADY_
INPROGRESS

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
422

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates recording configuration does
not match

CTIERR_RECORDING_CONFIG_NOT_
MATCHING

static int

This error indicates recording request failed because
recording session is inactive

CTIERR_RECORDING_SESSION_INACTIVEstatic int

This error indicates a redirect unauthorized command
usage

CTIERR_REDIRECT_UNAUTHORIZED_
COMMAND_USAGE

static int

This error indicates that register feature activation
failed

CTIERR_REGISTER_FEATURE_
ACTIVATION_FAILED

static int

Register feature application was already registeredCTIERR_REGISTER_FEATURE_APP_
ALREADY_REGISTERED

static int

Register feature provider was not registered.CTIERR_REGISTER_FEATURE_PROVIDER_
NOT_REGISTERED

static int

This error occurs if an application attempts to invoke
an Agent Greeting API while another request is
made. JTAPI throws InvalidStateException with a
description as “The request was rejected because
there is a similar request already pending”.

CTIERR_REQUEST_ALREADY_PENDINGstatic int

This error indicates that resource is not available to
fulfil the request

CTIERR_RESOURCE_NOT_AVAILABLEstatic int

This error code is exposed when the
monitoring/recording request is rejected when the
supervisor/recorder does not meet the security
capabilities of the agent.

CTIERR_SECURITY_CAPABILITY_MISMATCHpublic static final int

This error code is returned if authorization server is
down.

CTIERR_SSO_AUTH_SERVER_DOWNint

This error code is returned if the Single Sign-On
feature is not enabled on Cisco Unified
Communications Manager.

CTIERR_SSO_DISABLEDint

This error indicates that start monitoring request
failed

CTIERR_START_MONITORING_FAILEDstatic int

This error indicates that start recording request failedCTIERR_START_RECORDING_FAILEDstatic int

This error occurs if there is a general failure with
the Agent Greeting feature, that is not covered by
any of the other error codes.JTAPI throws
InvalidStateException with a description as “Start
streaming media request failed”.

CTIERR_START_STREAM_MEDIA_FAILEDstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
423

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error occurs if there is a general failure with
the Agent Greeting feature, that is not covered by
any of the other error codes.

JTAPI throws InvalidStateException with a
description as “Stop streamingmedia request failed”.

CTIERR_STOP_STREAM_MEDIA_FAILEDstatic int

This error indicates that there is a station shutdownCTIERR_STATION_SHUT_DOWNstatic int

This error indicates CTI system errorCTIERR_SYSTEM_ERRORstatic int

This error indicates UDP data passthrough not
supported

CTIERR_UDP_PASS_THROUGH_NOT_
SUPPORTED

static int

This error indicates an unknown exception occuredCTIERR_UNKNOWN_EXCEPTIONstatic int

This error indicates that call park type is not
supported

CTIERR_UNSUPPORTED_CALL_PARK_TYPEstatic int

This error indicates that the call forward type is
unsupported

CTIERR_UNSUPPORTED_CFWD_TYPEstatic int

This error indicates user is not authorized for secure
connection

CTIERR_USER_NOT_AUTH_FOR_SECURITYstatic int

This error indicates redirect is not authorizedCTIERR_REDIRECT_CALL_PARTITIONING_
POLICY

static int

This error indicates that the feature is unavailableCTIERR_FEATURE_NOT_AVAILABLEstatic int

This error indicates that there is an internal call
processing error: DaRes invalid request type

DARES_INVALID_REQ_TYPEstatic int

This error indicates that XML data object size is
bigger than allowed.

DATA_SIZE_LIMIT_EXCEEDEDstatic int

This error indicates that the device query contained
an illegal device type

DB_ERRORstatic int

This error indicates illegal device type in DBDB_ILLEGAL_DEVICE_TYPEstatic int

This error is no longer used.DB_NO_MORE_DEVICESstatic int

This error indicates that destination is busyDESTINATION_BUSYstatic int

This error indicates that destination is not foundDESTINATION_UNKNOWNstatic int

This error indicates that device registration attempt
failed, because the device is already registered

DEVICE_ALREADY_REGISTEREDstatic int

This error indicates that an attempt to open a line
failed, as the device is not opened or the device is
not registered.

DEVICE_NOT_OPENstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
424

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that device is out of service.DEVICE_OUT_OF_SERVICEstatic int

This error indicates that digit generation is already
in progress.

DIGIT_GENERATION_ALREADY_IN_
PROGRESS

static int

This error indicates that call state is invalid to
continue.

DIGIT_GENERATION_CALLSTATE_
CHANGED

static int

This error indicates that call handle is invalid and
call may be gone.

DIGIT_GENERATION_WRONG_CALL_
HANDLE

static int

This error indicates that call state is not valid to
generate digits.

DIGIT_GENERATION_WRONG_CALL_STATEstatic int

This error indicates that directory login failed:
directory not initialized

DIRECTORY_LOGIN_FAILEDstatic int

This error indicates that directory login failedDIRECTORY_LOGIN_NOT_ALLOWEDstatic int

This error indicates that directory is temporarily
unavailable.

DIRECTORY_TEMPORARY_UNAVAILABLEstatic int

This error indicates that there is already a device
controlling media.

EXISTING_FIRSTPARTYstatic int

This error indicates that the hold was rejected by
line control or call control layers

HOLDFAILEDstatic int

This error indicates that an attempt was made to
originate call using a calling party that is not on the
device

ILLEGAL_CALLINGPARTYstatic int

This error indicates line is not in a legal state to
invoke the request

ILLEGAL_CALLSTATEstatic int

This error indicates the handle is not validILLEGAL_HANDLEstatic int

This error indicates that there is a QBE protocol errorILLEGAL_MESSAGE_FORMATstatic int

This error indicates that JTAPI and CTI versions are
not compatible : CTI Error Protocol version not
supported

INCOMPATIBLE_PROTOCOL_VERSIONstatic int

This error indicates that attempt to perform a line
operation on an invalid line handle.

INVALID_LINE_HANDLEstatic int

This error indicates that the ring option is invalidINVALID_RING_OPTIONstatic int

This error indicates that line is greater than the
maximum available lines on this device

LINE_GREATER_THAN_MAX_LINEstatic int

This error indicates that line information does not
exist in the database.

LINE_INFO_DOES_NOT_EXISTstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
425

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that internal error returned from
call control.

LINE_NOT_PRIMARYstatic int

This error indicates line control refuses to allow a
new call to be initiated because of its current state.

LINECONTROL_FAILUREstatic int

The maximum number of CTI connections was
reached.

MAX_NUMBER_OF_CTI_CONNECTIONS_
REACHED

static int

This error indicates that attempt to set message
waiting lamp for an invalid DN; Message Waiting
Destination not found.

MSGWAITING_DESTN_INVALIDstatic int

This error indicates there is no active device for
thirdparty

NO_ACTIVE_DEVICE_FOR_THIRDPARTYstatic int

This error indicates that no conference bridge
available

NO_CONFERENCE_BRIDGEstatic int

This error indicates that attempt is made to open a
provider before CTI initialization completes

NOT_INITIALIZEDstatic int

This error indicates that the operation is not available
in Current state.

OPERATION_NOT_AVAILABLE_IN_
CURRENT_STATE

static int

Internal error returned from call controlPROTOCOL_TIMEOUTstatic int

This error indicates that an attempt is made to reopen
provider

PROVIDER_ALREADY_OPENstatic int

Attempt to close provider while it is already closedPROVIDER_CLOSEDstatic int

This error indicates that device list incomplete or
device list query timeout or query aborted

PROVIDER_NOT_OPENstatic int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_CALL_TABLE_FULLstatic int

This error indicates that the redirect destination is
busy

REDIRECT_CALL_DESTINATION_BUSYstatic int

This error indicates that redirect destination is out
of order

REDIRECT_CALL_DESTINATION_OUT_
OF_ORDER

static int

This error indicates a digit analyss time out, this is
an internal error returned from call control

REDIRECT_CALL_DIGIT_ANALYSIS_
TIMEOUT

static int

This error indicates that an attempt is made to
redirect a call that does not exist or is not longer
active

REDIRECT_CALL_DOES_NOT_EXISTstatic int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_INCOMPATIBLE_STATEstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
426

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates media connection failure, this
is an internal error returned from call control

REDIRECT_CALL_MEDIA_CONNECTION_
FAILED

static int

This error indicates that redirect failed because of
normal call clearing

REDIRECT_CALL_NORMAL_CLEARINGstatic int

This error indicates that far end hung up on the call
being redirected

REDIRECT_CALL_ORIGINATOR_
ABANDONED

static int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_PARTY_TABLE_ FULLstatic int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_PENDING_REDIRECT_
TRANSACTION

static int

This error indicates a protocol error, this is an
internal error returned from call control

REDIRECT_CALL_PROTOCOL_ERRORstatic int

This error indicates that an attempt is made to
redirect to an unknown destination

REDIRECT_CALL_UNKNOWN_DESTINATIONstatic int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_UNKNOWN_ERRORstatic int

This error indicates an unknown party is detected,
this is an internal error returned from call control

REDIRECT_CALL_UNKNOWN_PARTYstatic int

This error indicates that internal error is returned
from call control

REDIRECT_CALL_UNRECOGNIZED_
MANAGER

static int

This error indicates that internal error is returned
from call control

REDIRECT_CALLINFO_ERRstatic int

This error indicates that internal error is returned
from call control

REDIRECT_ERRstatic int

This error indicates that retrieval of call was rejected
by line control or call control

RETRIEVEFAILEDstatic int

This error indicates that error occurred in retrieving
held call; because there is already another active call
on the line

RETRIEVEFAILED_ACTIVE_CALL_ON_LINEstatic int

This error indicates that the redirect command was
issued when the internal supporting interface was
not initialized; either CTI has not yet finished its
initialization or an internal error occurred

SSAPI_NOT_REGISTEREDstatic int

This error indicates that the request has timed out.TIMEOUTstatic int

This error indicates that attempt to complete transfer,
while consult tranfer is not there

TRANSFER_INACTIVEstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
427

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This error indicates that the transfer failed probably
because one of the call legs was hung up or
disconnected from the far end

TRANSFERFAILEDstatic int

This error indicates that expected response from call
control not received during a transfer

TRANSFERFAILED_CALLCONTROL_
TIMEOUT

static int

This error indicates that an attempt is made to
transfer call to a busy destination

TRANSFERFAILED_DESTINATION_BUSYstatic int

This error indicates an attempt is made to to transfer
call to a directory number that is not registered

TRANSFERFAILED_DESTINATION_
UNALLOCATED

static int

This error indicates that existing transfer is still in
progress

TRANSFERFAILED_OUTSTANDING_
TRANSFER

static int

This error indicates that the line that was specified,
is not found on the device

UNDEFINED_LINEstatic int

This error indicates that the global call handle is
unknown

UNKNOWN_GLOBAL_CALL_HANDLEstatic int

This error indicates that there is a QBE protocol errorUNRECOGNIZABLE_PDUstatic int

This error indicates that an unspecified error has
occured.

UNSPECIFIEDstatic int

Inherited Fields
None

Methods
Table 107: Methods in CiscoJtapiException

DescriptionMethodInterface

Returns the errorCode as an integer for this exception.getErrorCode()int

Returns the detailed description of the errorCodegetErrorDescription()java.lang.String

Deprecated

Use String getErrorDescription (); instead. Returns the
detailed description of the errorCode.

getErrorDescription(int errorCode)java.lang.String

Returns an exception in string format.getErrorName()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
428

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

Deprecated

Use String getErrorName (); instead. Returns an
exception in string format.

getErrorName(int errorCode)java.lang.String

Inherited Methods
None

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoMediaStreamStartedEv
Applications receive the event when they observe a device that is the target of a “addMediaStream()” invocation.
This is the Agent device. This event is sent when the media begins to play on the call.

This event is only deliviered to the device that invokes the original request. Multiple observers on the same
address receive the events. Shared lines of the invoking device will not receive this event.

Declaration
public interface CiscoMediaStreamStartedEv extends CiscoCallEv

Fields
None

Inherited Fields
None

Methods
None

Inherited Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
429

Cisco Unified JTAPI Extensions
Inherited Methods

CiscoMediaStreamEndedEv
Applications receive the event when they observe a device that is the target of a “addMediaStream()” invocation.
This is the Agent device. This event is sent when the media has finished playing on the call. It contains a field
that it exposes if the media is played successfully, or if the end event is the result of an error.

This event is only delivered to the device that invokes the original request. Shared lines of the invoking device
will not receive this event.

Declaration
public interface CiscoMediaStreamEndedEv extends CiscoCallEv

Fields
Table 108: Fields in CiscoMediaStreamEndedEv

DescriptionFieldInterface

This result code indicates that the
CiscoMediaStreamEndedEv is received due
to some failure with the request that caused
it to end early.

RESULT_FAILEDstatic int

This result code indicates that the
CiscoMediaStreamEndedEv is received as
a result of successful media streaming.

RESULT_SUCCESSstatic int

This result code indicates that the
CiscoMediaStreamEndedEv is received due
to the primary call.

RESULT_PRIMARY_CALL_DROPPEDstatic int

Inherited Fields
None

Methods
Table 109: Fields in CiscoMediaStreamEndedEv

DescriptionMethodInterface

Returns one of the above result codes, which allows the
applications to figure out if the
CiscoMediaStreamEndedEv is received due to an error,
or upon a successful request.

getResult()boloean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
430

Cisco Unified JTAPI Extensions
CiscoMediaStreamEndedEv

Inherited Methods
None

CiscoJtapiPeer
By extending the com.cisco.services.tracing.TraceModule interface, CiscoJtapiPeer exposes trace information
to applications. All instances of JtapiPeer objects that the Cisco JTAPI implementation creates implement
this interface. Applications that want to manipulate the trace settings of the Cisco JTAPI implementation may
use the CiscoJtapiPeer.getTraceManager method to obtain its TraceManager object. Applications can then
manipulate the TraceManager object as described in the com.cisco.services.tracing package.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Added a new API getprovider().8.5(1)

Superinterfaces
CiscoObjectContainer, javax.telephony.JtapiPeer, TraceModule

Declaration
public interface CiscoJtapiPeer extends TraceModule, javax.telephony.JtapiPeer, CiscoObjectContainer

Fields
None

Methods
Table 110: Methods in CiscoJtapiPeer

DescriptionMethodInterface

Defines the various methods that applications can use
to modify the parameters that the JTAPI layer will use.

getJtapiProperties ()CiscoJtapiProperties

Provides applications ability to save changes made to
CiscoJtapiProperties in jtapi.ini file and activate these
changes in properties for the providers in JTAPIPeer.

setJtapiProperties
(CiscoJtapiProperties jtapiproperties)

void

Enhanced to read the singlesignon ticket as ssoticket =
"ssoticketfromAD".

getprovider ()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
431

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Methods

From Interface com.cisco.services.tracing.TraceModule

getTraceManager, getTraceModuleName

From Interface javax.telephony.JtapiPeer

getName, getProvider, getServices

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
See CiscoJtapiProperties and TraceModule for more information.

CiscoJtapiPeerImpl
This interface has a method called “getProvider(), ” which is the primary way for applications to open a JTAPI
provider. This method takes a “provider string, ” and it was enhanced to take a new argument.

Declaration
public interface CiscoJtapiPeerImpl extends ObjectContainerImpl implements CiscoJtapiPeer

Fields

Methods
Table 111: Methods in CiscoJtapiPeerImpl

DescriptionMethodInterface

The provider string argument is a string of key or value
pairs . A new key was added to this method to allow
applications to specify whether to run in FIPS compliant
mode. The new argument is “FIPSCompliant, ” and
applications should specify “true” or “false.”

Specifying any value for the FIPSCompliant parameter
in the Provider String will have no affect if the provider
is not configured as a secured connection.

getProvider(String providerString)provider

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
432

Cisco Unified JTAPI Extensions
Inherited Methods

CiscoJtapiProperties
Cisco Unified JTAPI behavior and functionality is tailored by many parameters which are read in from the
jtapi.ini file when an instance of CiscoJtapiPeer is instantiated. These parameters are now exposed to
applications for control via this CiscoJtapiproperties interface.

Applications can query the CiscoJtapiproperties properties object and change these parameters to better suit
the application functionality. Exposing these properties via the CiscoJtapiproperties interface also allows
applications to have a single point of administration (at the application end) for these parameters. The most
visible parameters are those describing the tracing levels and tracing destinations.

Usage

JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
if(peer instanceof CiscoJtapiPeer)
{
CiscoJtapiProperties jProps = ((CiscoJtapiPeer)peer).getJtapiProperties();
jProps.setTracePath("\\D:\\Traces\\WorkFlow");
jProps.setUseJavaConsoleTrace(false);
MyProviderObserver providerObserver = new MyProviderObserver ();
provider = peer.getProvider (providerName);
}

In the above example an application has set the Java console tracing to off and set the trace path to
D:\Traces\WorkFlowApp1.When the peer is obtained an object implementing CiscoJtapiProperties is created
by reading parameters set in the jtapi.ini file. If no jtapi.ini file exists in the classpath default settings are used
to create this object. The parameters used by Cisco Jtapi are read in and frozen when the first getProvider ()
call is made.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Enhanced with methods to enable/disable the HuntList feature.8.0(1)

Enhanced with methods for applications to specify a desired level
of FIPS compliance when they download certificates.

8.6(1)

Declaration
public interface CiscoJtapiProperties

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
433

Cisco Unified JTAPI Extensions
CiscoJtapiProperties

Sample Code

try
{
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
MyProviderObserver providerObserver = new MyProviderObserver ();
provider = peer.getProvider (ipaddress;login = useid;passwd = password);
if (provider ! = null)
{
provider.addObserver (providerObserver);
provInService.waitTrue();
boolean hlenabled =

((CiscoJtapiPeer)peer).getJtapiProperties().getHuntListEnabled();
System.out.Println(“Initial state of HuntList = “ + hlenabled);
CiscoJtapiProperties cjp = ((CiscoJtapiPeer)peer).getJtapiProperties();
cjp.setHuntListEnabled(true);
((CiscoJtapiPeer)peer).setJtapiProperties(cjp);
boolean hlenabled =

((CiscoJtapiPeer)peer).getJtapiProperties().getHuntListEnabled();
System.out.Println(“Final state of HuntList = “ + hlenabled);
}

Methods
Table 112: Methods in CiscoJtapiProperties

DescriptionMethodInterface

Deletes X.509 client certificate installed for USER
Instance in certificate store.

deleteCertificates(java.lang.String username,
java.lang.String instanceID, java.lang.String
ccmCAPFAddress, java.lang.String certificatePath)

void

Deletes security properly from jtapi.ini file and also
delete certificate previously installed for
username/instanceId.

deleteSecurityPropertyForInstance(java.lang.String
username, java.lang.String instanceID, java.lang.String
capfIp, java.lang.String certPath)

void

Gets the alarm service host name.getAlarmServiceHostname()java.lang.String

Gets the port number for the alarm service.getAlarmServicePort()int

Advises the application if it would receive the event
CallSecurityStatusChangedEv when applicable.

getCallSecurityStatusChangedEv()boolean

Gets the timout for cti requests, other than the provider
open (seconds).

getCtiRequestTimeout()int

Get names of supported debugging level jtapi traces.getDebuggingNames()java.lang.String[]

Get the enabled or disabled state of a debugging level
trace.

getDebuggingValue(java.lang.String debuggingName)boolean

Get the desired interval at which the CTI Manager must
send heartbeats to JTAPI (seconds).

getDesiredServerHeartbeatInterval()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
434

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Controls the event order for the scenario when only
redirected party in observed by Application This
interface returns True if ConnDisconnectedEv is send
before ConnCreatedEv, False otherwise.

getDiscConnBeforeCreatingInCPIC()boolean

Gets the filename for individual log files.getFileNameBase()java.lang.String

Gets the filename extension for log files.getFileNameExtension()java.lang.String

Returns true if HuntList is enabled else false.getHuntListEnabled()Boolean

Returns the value of service parameter for SOCKET
CONNECT TIMEOUT in seconds.

getJavaSocketConnectTimeout()int

Gets the number of trace files before rollover.getNumTraceFiles()int

Gets the enabled state of periodic wake up.getPeriodicWakeupEnabled()boolean

Gets the interval for periodic wakeup (milliseconds).getPeriodicWakeupInterval()int

Retrieves the boolean value for the jtapi.ini parameter
ProcessOfferringAfterNewcallEvent'. By default this
interface returns false.

getProcessOfferingAfterNewcallevent()boolean

Gets the timout for a provider open request (seconds).getProviderOpenRequestTimeout()int

Returns the value of service parameter for maximum
number of reconnect attempts to CTI Manager.

getProviderOpenRetryAttempts()int

Gets the interval at which the connection to the CTI
Manager will ge retried (seconds).

getProviderRetryInterval()int

Gets the threshold for the event queue size to trigger
alarms.

getQueueSizeThreshold()int

Gets the enabled state of event queue stats.getQueueStatsEnabled()boolean

Gets the route select timeout (milliseconds).getRouteSelectTimeout()int

Returns a Hash table with all the parameters set for users
and InstanceIDs.

See User/InstanceID Hash Table, on page 439 for key
and value pairs.

getSecurityPropertyForInstance()java.util.Hashtable

Teturn a Hash table with all the parameters set for users
and InstanceIDs.

See User/InstanceID Hash Table, on page 439 for key
and value pairs.

getSecurityPropertyForInstance(java.lang.String user,
java.lang.String instanceID)

java.util.Hashtable

Returns the services that this implementation supports.getServices()java.lang.String[]

Gets the syslog collector hostname.getSyslogCollector()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
435

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Gets the syslog collector UDP port.getSyslogCollectorUDPPort()int

Path directory where trace files will be written.getTraceDirectory()java.lang.String

Trace file size before rollover.getTraceFileSize()int

Gets the names of supported jtapi traces.getTraceNames()java.lang.String[]

Gets the path where the trace files will be located.getTracePath()java.lang.String

Gets the enabled or disabled state of a trace.getTraceValue(java.lang.String traceName)boolean

Queries the parameter setting that changes Jtapi behavior
on updating called address.

getUpdateJtapiCalledWithOriginalCalled()boolean

gets the enabled/disabled state of the alarm service.getUseAlarmService()boolean

Gets the enabled or disabled state of jtapi log file tracing.getUseFileTrace()boolean

Gets the enabled or disabled state of jtapi console
tracing.

getUseJavaConsoleTrace()boolean

Causes the traces to go to a single directory if
UseSameDir is true.

getUseSameDir()boolean

Gets the enabled or disabled state of syslog tracing.getUseSyslog()boolean

Provides information about where Client and Server
certificates are updated for a given user/instanceID or
if the Client and Server certificates are not updated.

IsCertificateUpdated(java.lang.String user,
java.lang.String instanceID)

boolean

Sets the alarm service host name.setAlarmServiceHostname(java.lang.String hostname)void

Sets the port number the alarm service is listening on.setAlarmServicePort(int portNumber)void

Enables applications to set the filter to receive
CallSecurityStatusChangedEv to true or false.

setCallSecurityStatusChangedEv(boolean val)void

Sets the time out for CTI requests other than provider
open (seconds).

setCtiRequestTimeout(int seconds)void

Enables or disables a particular debugging level trace.setDebuggingValue(java.lang.String debuggingName,
boolean value)

void

Sets the desired interval at which the CTIManager must
send heartbeats to JTAPI (seconds).

setDesiredServerHeartbeatInterval(int seconds)void

Sets event order, sent Disconnect before Connection
created during redirect at redirted party.

setDiscConnBeforeCreatingInCPIC(boolean val)void

Sets the filename for log files.setFileNameBase(java.lang.String base)void

Sets the filename extension for log files.setFileNameExtension(java.lang.String extn)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
436

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Enables the Hunt List Feature in Cisco Unified JTAPI.setHuntListEnabled (boolean)void

Allows application to set the SOCKET CONNECT
TIMEOUT in seconds.

setJavaSocketConnectTimeout(int timeout)void

Sets the number of trace files before rollover.setNumTraceFiles(int val)void

Sets the enable/disable state for periodic wake up.setPeriodicWakeupEnabled(boolean enabled)void

Sets the periodic wake up interval (milliseconds).setPeriodicWakeupInterval(int milliseconds)void

Controls the event order for the transfer scenario when
only transfer destination observed by Application and
transfer is completed in offering state.

setProcessOfferingAfterNewcallevent(boolean val)void

Sets the timeout for a provider open request (seconds).setProviderOpenRequestTimeout(int seconds)void

Allows application to set the JTAPI Reconnect Attempts
to CTI Manager.

setProviderOpenRetryAttempts(int retryAttempts)void

Sets the interval at which the connection to the CTI
Manager will ge retried (seconds).

setProviderRetryInterval(int seconds)void

Sets the threshold for the event queue size to trigger
alarms.

setQueueSizeThreshold(int size)void

Enables and disables event queue statistics.setQueueStatsEnabled(boolean enabled)void

Sets the route select timeout milliseconds.setRouteSelectTimeout(int milliseconds)void

Deprecated

This method is replaced by overloaded method
setSecurityPropertyForInstance which takes an extra
parameter certStorePassphrase, a passphrase for java
key store. This method might have some security
vulnerability.

setSecurityPropertyForInstance(java.lang.String user,
java.lang.String instanceID, java.lang.String authCode,
java.lang.String tftp, java.lang.String tftpPort,
java.lang.String capf, java.lang.String capfPort,
java.lang.String certPath, boolean securityOption)

void

Provides the application ability to downloading
server/client cerfiticate and set security property for
application instance in jtapi.ini file of JTAPI.

setSecurityPropertyForInstance(java.lang.String user,
java.lang.String instanceID, java.lang.String authCode,
java.lang.String tftp, java.lang.String tftpPort,
java.lang.String capf, java.lang.String capfPort,
java.lang.String certPath, boolean securityOption,
java.lang.String certstorePassphrase)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
437

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method provides applications the ability to
download server/client certificate and set the security
property for this application instance in the jtapi.ini file.

Specifying any value of fipsCompliant for this method
will have no effect unless the securityOption is set to
true.

It should be noted that this method will call
updateCertificate() and updateServerCertificate(). This
is the preferred way to acquire certificates.

setSecurityPropertyForInstance(String user, String
instanceID, String authCode, String tftp, String tftpPort,
String capf, String capfPort, String certPath, boolean
securityOption, String certstorePassphrase, boolean
fipsCompliant)

void

Sets a list of available services.setServices(java.lang.String[] services)void

Sets the syslog collector hostname.setSyslogCollector(java.lang.String value)void

Sets the syslog collector UDP port.setSyslogCollectorUDPPort(int port)void

Sets the directory where jtapi trace files should be
written.

setTraceDirectory(java.lang.String dir)void

Sets the size of the trace file.setTraceFileSize(int val)void

Sets the directory root where jtapi traces will be written.setTracePath(java.lang.String path)void

Enables or disables a particular trace.setTraceValue(java.lang.String traceName, boolean
value)

void

Updates Jtapi Called information with original called
once the parameter is set to true always.

setUpdateJtapiCalledWithOriginalCalled(boolean val)void

Enables or disables the alarm service.setUseAlarmService(boolean value)void

Enables or disables jtapi log file tracing.setUseFileTrace(boolean value)void

Enables or disables jtapi console tracing.setUseJavaConsoleTrace(boolean value)void

Causes the traces to go to a single directory if
UseSameDir is true.

setUseSameDir(boolean value)void

Enables or disables syslog tracing.setUseSyslog(boolean value)void

Deprecated

This method is replaced by overloaded method
updateCertifcate which takes an extra parameter
certStorePassphrase, a passphrase for java key store.
This method might have some security vulnerability.

updateCertificate(java.lang.String user, java.lang.String
intanceID, java.lang.String authcode, java.lang.String
ccmTFTPAddress, java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress, java.lang.String
ccmCAPFPort, java.lang.String certificatePath)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
438

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Installs an X.509 client certificate for USER Instance
in cerfiticate store.

updateCertificate(java.lang.String user, java.lang.String
intanceID, java.lang.String authcode, java.lang.String
ccmTFTPAddress, java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress, java.lang.String
ccmCAPFPort, java.lang.String certificatePath,
java.lang.String certStorePassphrase)

void

This method downloads the client and server certificates
for the specified parameters.

updateCertificate(String user, String intanceID, String
authcode, String ccmTFTPAddress, String
ccmTFTPPort, String ccmCAPFAddress, String
ccmCAPFPort, String certificatePath, String
certStorePassphrase, boolean fipsCompliant) throws
Exception, IOException, UnknownHostException;

void

Deprecated

This method is replaced by overloaded method
updateServerCertifcate which takes an extra parameter
certStorePassphrase, a passphrase for java key store.
This method might have some security vulnerability.

updateServerCertificate(java.lang.String
ccmTFTPAddress, java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress, java.lang.String
ccmCAPFPort, java.lang.String certificatePath)

void

Installs an X.509 server certificate given certificate path.updateServerCertificate(java.lang.String userName,
java.lang.String instanceID, java.lang.String
ccmTFTPAddress, java.lang.String ccmTFTPPort,
java.lang.String ccmCAPFAddress, java.lang.String
ccmCAPFPort, java.lang.String certificatePath,
java.lang.String certStorePassphrase)

void

This method downloads the server certificates for the
specified parameters. It is called by updateCertificate().

updateServerCertificate(String userName, String
instanceID, String ccmTFTPAddress, String
ccmTFTPPort, String ccmCAPFAddress, String
ccmCAPFPort, String certificatePath, String
certStorePassphrase, boolean fipsCompliant) throws
Exception, IOException, UnknownHostException;

void

User/InstanceID Hash Table

Table 113: User/InstanceID Hash Table

ValueKey

userName“user”

InstanceIDString "instanceID"

authCodeString"AuthCode"

capfServerIP-AddressString "CAPF"

capfServer IP-Address portString "CAPFPort"

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
439

Cisco Unified JTAPI Extensions
User/InstanceID Hash Table

ValueKey

tftpServer IP-AddressString "TFTP"

tftpServer IP-Address portString "TFTPPort"

certificate PathString "CertPath"

Boolean security option (true for enable/ false for disabled)String "securityOption"

Boolean certificate status (true for updated/ false for not updated)String "certificateStatus"

Related Documentation

CiscoLocales
This interface lists all the locales that Cisco Unified JTAPI supports.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoLocales

Fields
Table 114: Fields in CiscoLocales

FieldInterface

LOCALE_ARABIC_ALGERIAstatic int

LOCALE_ARABIC_BAHRAINstatic int

LOCALE_ARABIC_EGYPTstatic int

LOCALE_ARABIC_IRAQstatic int

LOCALE_ARABIC_JORDANstatic int

LOCALE_ARABIC_KUWAITstatic int

LOCALE_ARABIC_LEBANONstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
440

Cisco Unified JTAPI Extensions
Related Documentation

FieldInterface

LOCALE_ARABIC_MOROCCOstatic int

LOCALE_ARABIC_OMANstatic int

LOCALE_ARABIC_QATARstatic int

LOCALE_ARABIC_SAUDI_ARABIAstatic int

LOCALE_ARABIC_TUNISIAstatic int

LOCALE_ARABIC_UNITED_ARAB_EMIRATESstatic int

LOCALE_ARABIC_YEMENstatic int

LOCALE_BULGARIAN_BULGARIAstatic int

LOCALE_CATALAN_SPAINstatic int

LOCALE_CHINESE_HONG_KONGstatic int

LOCALE_CROATIAN_CROATIAstatic int

LOCALE_CZECH_CZECH_REPUBLICstatic int

LOCALE_DANISH_DENMARKstatic int

LOCALE_DUTCH_NETHERLANDstatic int

LOCALE_ENGLISH_UNITED_KINGDOMstatic int

LOCALE_ENGLISH_UNITED_STATESstatic int

LOCALE_FINNISH_FINLANDstatic int

LOCALE_FRENCH_FRANCEstatic int

LOCALE_GERMAN_GERMANYstatic int

LOCALE_GREEK_GREECEstatic int

LOCALE_HEBREW_ISRAELstatic int

LOCALE_HUNGARIAN_HUNGARYstatic int

LOCALE_ITALIAN_ITALYstatic int

LOCALE_JAPANESE_JAPANstatic int

LOCALE_KOREAN_KOREAstatic int

LOCALE_NORWEGIAN_NORWAYstatic int

LOCALE_POLISH_POLANDstatic int

LOCALE_PORTUGUESE_BRAZILstatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
441

Cisco Unified JTAPI Extensions
Fields

FieldInterface

LOCALE_PORTUGUESE_PORTUGALstatic int

LOCALE_ROMANIAN_ROMANIAstatic int

LOCALE_RUSSIAN_RUSSIAstatic int

LOCALE_SERBIAN_REPUBLIC_OF_MONTENEGROstatic int

LOCALE_SERBIAN_REPUBLIC_OF_SERBIAstatic int

LOCALE_SIMPLIFIED_CHINESE_CHINAstatic int

LOCALE_SLOVAK_SLOVAKIAstatic int

LOCALE_SLOVENIAN_SLOVENIAstatic int

LOCALE_SPANISH_SPAINstatic int

LOCALE_SWEDISH_SWEDENstatic int

LOCALE_THAI_THAILANDstatic int

LOCALE_TRADITIONAL_CHINESE_CHINAstatic int

Methods
None

Related Documentation
See Constant Field Values, on page 1665.

CiscoMasterKeyIndicator
This interface lists the constants for Master Key Indicator.

Table 115: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMasterKeyIndicator

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
442

Cisco Unified JTAPI Extensions
Methods

Methods
Table 116: Methods in CiscoMonitorInitiatorInfo

DescriptionMethodInterface

Indicates that MKI (Master Key Indicator)
is not present.

NOT_AVAILABLEstatic final int

Indicates that MKI (Master Key Indicator)
is present.

AVAILABLEstatic final int

CiscoMediaConnectionMode
The CiscoMediaConnectionMode interface lists all of the media connection modes.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoMediaConnectionMode

Fields
Table 117: Fields in CiscoMediaConnectionMode

DescriptionFieldInterface

There is no active transmit or receive
channel.

NONEstatic int

Only the receive channel is active.RECEIVE_ONLYstatic int

Both the transmit and the receive channels
are active.

TRANSMIT_AND_RECEIVEstatic int

Only the transmit channel is active.TRANSMIT_ONLYstatic int

Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
443

Cisco Unified JTAPI Extensions
Methods

Related Documentation
See Constant Field Values, on page 1665.

CiscoMediaEncryptionAlgorithmType
The CiscoMediaEncryptionAlgorithmType interface indicates the SRTP algorithm type used for encryption.
This interface lists all of the security indicator values that an application can get in CiscoRTPInputKeyEv and
CiscoRTPOutputKeyEv. If an application is terminating its own media on CTIPorts and Media Terminated
RPs, only one of the following algorithms needs to be provided in the register API.

Interface History

DescriptionCisco Unified Communications Manager Release

Added the extension.3.x

Superinterfaces
public interface CiscoMediaEncryptionAlgorithmType

Fields
Table 118: Fields in CiscoMediaEncryptionAlgorithmType

DescriptionFieldInteface

The algorithm used is based on Advanced
Encryption Standard (AES), which is a
computer security standard. The
cryptography scheme is a symmetric block
cipher that encrypts and decrypts 128-bit
blocks of data.

AES_128_COUNTERstaticint

Related Documentation
See Constant Field Values, on page 1665 for additional information.

CiscoMediaEncryptionKeyInfo
The CiscoMediaEncryptionKeyInfo interface lets applications get information about SRTP keys.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
444

Cisco Unified JTAPI Extensions
Related Documentation

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoMediaEncryptionKeyInfo

Fields
None

Methods
Table 119: Methods in CiscoMediaEncryptionKeyInfo

DescriptionMethodInterface

Returns the media encryption algorithm ID for the
current stream.

getAlgorithmID()int

Indicates whether MKI is present.getIsMKIPresent()int

Returns the master key for the stream.getKey()byte[]

Returns the keyLength of the key.getKeyLength()int

Returns the salt key for the stream.getSalt()byte[]

Returns the saltLength of the salt.getSaltLength()int

Indicates the SRTP key derivation rate for this session.keyDerivationRate()int

Related Documentation
See CiscoRTPInputKeyEv, CiscoRTPOutputKeyEv.

CiscoMediaOpenIPPortEv
CiscoMediaOpenIPPortEv event is delivered only if the terminal is registered with registration type as
CiscoBaseTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT or
CiscoBaseTerminal.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
445

Cisco Unified JTAPI Extensions
Declaration

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.8.5(1)

Sample Code

public class MyTermObserver implements implements TerminalObserver,
CallControlTerminalObserver, AgentTerminalObserver, PhoneTerminalObserver

{
public void termChangedEvent (TermEv[] evlist)
{
for(int i = 0; evlist ! = null && i < evlist.length; i++)
{
…
…
If (evlisth[i] instanceof CiscoMediaOpenIPPortEv)
{
CiscoMediaOpenIPPortEv ev = (CiscoMediaOpenIPPortEv)evlist[i];
if(((CiscoBaseMediaTerminal)(ev.getTerminal()))).getRegistrationType

= = CiscoTerminal.DYNAMIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT)

{
System.out.println("Set RTP parameters");
System.out.println("open the port");
} else {
System.out.println("Open port");
}

}
}
…
…

}

Declaration
public interface CiscoMediaOpenIPPortEv

Superinterfaces
NA

Fields
NA

Inherited Fields
NA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
446

Cisco Unified JTAPI Extensions
Declaration

Methods
Table 120: Methods in CiscoMediaOpenIPPortEv

MethodInterface

getMediaIPAddressingMode()int

getCiscoRTPHandle()CiscoRTPHandle

Inherited Methods
NA

CiscoMediaOpenLogicalChannelEv
The system sends a CiscoMediaOpenLogicalChannelEv event each time that media gets established for a
dynamically registered CiscoMediaTerminal or CiscoRouteTerminal. Upon receiving this event, applications
must invoke setRTPParams on CiscoMediaTerminal or CiscoRouteTerminal and pass in the IP address and
port number where they want to terminate the media, along with the rtpHandle that this event delivers.

Applications can get a call reference by using CiscoProvider.getCall(CiscoRTPHandle). Applications must
be aware that the far end and local end may not be able to invoke features unless the setRTPParams method
is invoked. If applications fail to respond to this event within the specified time, the call may get disconnected.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added the getAddressingModeForMedia() method.7.0(1)

Added the isRTPRequired() method.8.5(1)

Sample Code

public class MyTermObserver implements implements TerminalObserver,
CallControlTerminalObserver, AgentTerminalObserver, PhoneTerminalObserver

{
public void termChangedEvent (TermEv[] evlist)
{
for(int i = 0; evlist ! = null && i < evlist.length; i++){
…
…
If (evlisth[i] instanceof CiscoMediaOpenLogicalChannelEv)
{
CiscoMediaOpenLogicalChannelEv ev =

(CiscoMediaOpenLogicalChannelEv)evlist[i];
if(ev.isRTPRequired())
{
System.out.println("Set RTP parameters");

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
447

Cisco Unified JTAPI Extensions
Methods

} else {
System.out.println("Do not set RTP parameters");
}

}
}

…
…

}

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoMediaOpenLogicalChannelEv extends CiscoTermEv

Fields
Table 121: Fields in CiscoMediaOpenLogicalChannelEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
448

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 122: Methods in CiscoMediaOpenLogicalChannelEv

DescriptionMethodInterface

Returns int Application and could get following value
for required IP Addressing Mode:

• CiscoTerminal.IP_ADDRESSING_IPv4—Means
application needs to provide IPv4 format for the IP
Address in setRTPParams request.

• CiscoTerminal.IP_ADDRESSING_IPv6: Means
application need to provide IPv6 format IP Address
in set RTP Params request.

getAddressingModeForMedia()int

Returns CiscoRTPHandle object. Applications should
pass this handle along with RTPParameters to
CiscoMediaTerminal or CiscoRouteTerminal.
Applications can get call reference using
CiscoProvider.getCall If there is no callobserver or there
was no callobserver when this event is delivered, then
CiscoProvider.getCall may return null

getCiscoRTPHandle()CiscoRTPHandle

Returns a CiscoMediaConnectionMode. Applications
could get one of the following values:

• CiscoMediaConnectionMode.RECEIVE_ONLY—
Means one-way media receive only.

• CiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE—Means two-way
media.

Applications should never see a value of NONE;
however, if that happens, applications should ignore the
event and log an error.

getMediaConnectionMode()int

Returns the packet size of the far end, in milliseconds.

getPacketSize

getPacketSize()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
449

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the payload format of the far end, one of the
following constants:

• CiscoRTPPayload.NONSTANDARD
• CiscoRTPPayload.G711ALAW64K
• CiscoRTPPayload.G711ALAW56K
• CiscoRTPPayload.G711ULAW64K
• CiscoRTPPayload.G711ULAW56K
• CiscoRTPPayload.G722_64K
• CiscoRTPPayload.G722_56K
• CiscoRTPPayload.G722_48K
• CiscoRTPPayload.G7231
• CiscoRTPPayload.G728
• CiscoRTPPayload.G729
• CiscoRTPPayload.G729ANNEXA
• CiscoRTPPayload.IS11172AUDIOCAP
• CiscoRTPPayload.IS13818AUDIOCAP
• CiscoRTPPayload.ACY_G729AASSN
• CiscoRTPPayload.DATA64
• CiscoRTPPayload.DATA56
• CiscoRTPPayload.GSM
• CiscoRTPPayload.ACTIVEVOICE

getPayLoadType()int

Indicates if the application must set the RTP parameters
upon receiving this event.

isRTPRequired()boolean

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 and CiscoRTPParams

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
450

Cisco Unified JTAPI Extensions
Inherited Methods

CiscoMediaSecurityIndicator
CiscoMediaSecurityIndicator gets sent in CiscoRTPInputKeyEv, CiscoRTPOutputKeyEv, and
CiscoSnapShotRTPEv. It shows the call security status.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoMediaSecurityIndicator

Fields
Table 123: Fields in CiscoMediaSecurityIndicator

DescriptionFieldInterface

Terminates the media in secure
mode, and keys are available.

MEDIA_ENCRYPT_KEYS_AVAILABLEstaticint

Terminates the media in secure
mode, but keys are not available
because SRTP is not enabled in
Cisco Unified Communications
Manager Administration.

MEDIA_ENCRYPT_KEYS_UNAVAILABLEstaticint

Terminates the media in secure
mode, but keys are not available
because the user is not
authorized to get the keys.

MEDIA_ENCRYPT_USER_NOT_AUTHORIZEDstaticint

The media is not encrypted for
this call.

MEDIA_NOT_ENCRYPTEDstaticint

Related Documentation
See Constant Field Values, on page 1665.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
451

Cisco Unified JTAPI Extensions
CiscoMediaSecurityIndicator

CiscoMediaTerminal
A CiscoMediaTerminal is a special kind of CiscoTerminal that allows applications to terminate RTP media
streams. Unlike a CiscoTerminal, a CiscoMediaTerminal does not represent a physical telephony endpoint,
which is observable and controllable in a third-party manner. Instead, a CiscoMediaTerminal is a logical
telephony endpoint, which may be associated with any application that wants to terminate media. Such
applications include voice messaging systems, interactive voice response (IVR), and softphones.

Only CTIPorts appear as CiscoMediaTerminals through Cisco Unified JTAPI.Note

Terminating media is a two-step process. To terminate media for a particular terminal, an application first
adds an observer that implements the CiscoTerminalObserver interface using the Terminal.addObserver
method. Finally, the application registers the IP address and port number to which incoming RTP streams for
the terminal should be directed, by using the CiscoMediaTerminal.register method.

To supply an IP address and port number dynamically on a per-call basis, applications must register by only
providing the capabilities that they support. Applications must react to the CiscoMediaOpenLogicalChannelEv
that gets sent whenever media gets established. Applications registering with this type must be aware that,
when this event is received, the far end and the local end may not be able to perform any feature operation
unless media is established. If applications fail to respond to this event within the specified time, the call may
get dropped.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Support added for IPv6.7.1x

Superinterfaces
CiscoObjectContainer, CiscoTerminal, javax.telephony.Terminal

Declaration
public interface CiscoMediaTerminal extends CiscoTerminal

Fields
None

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoTerminal

ASCII_ENCODING, DEVICESTATE_ACTIVE, DEVICESTATE_ALERTING, DEVICESTATE_HELD,
DEVICESTATE_IDLE, DEVICESTATE_UNKNOWN, DEVICESTATE_WHISPER,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
452

Cisco Unified JTAPI Extensions
CiscoMediaTerminal

DND_OPTION_CALL_REJECT, DND_OPTION_NONE, DND_OPTION_RINGER_OFF, IN_SERVICE,
IP_ADDRESSING_MODE_IPV4, IP_ADDRESSING_MODE_IPV4_V6, IP_ADDRESSING_MODE_IPV6,
IP_ADDRESSING_MODE_UNKNOWN, IP_ADDRESSING_MODE_UNKNOWN_ANATRED,
NOT_APPLICABLE, OUT_OF_SERVICE, UCS2UNICODE_ENCODING, UNKNOWN_ENCODING

Methods
Table 124: Methods in CiscoMediaTerminal

DescriptionMethodInterface

This method registers the MediaTerminal and returns
successfully when the MediaTerminal is registered.

The CiscoMediaTerminal must be in the
CiscoTerminal.UNREGISTERED state and its Provider
must be in the Provider.IN_SERVICE state.

This method has three arguments:

• The first argument specifies the internet address at
which the RTP media stream for this Terminal will
terminate.

• The second indicates the UDP port at which RTP
packets will be directed.

• The final argument indicates the type of RTP
encodings that the application is willing to support
for this Terminal.

Parameters

• address—The internet address at which inbound
IPv4 RTP streams on this terminal will terminate

• port—The UDP port for inbound RTP streams on
this terminal

• capabilities—The list of the types of RTP
encodings that the application supports for this
terminal.

Throws

CiscoRegistrationException

register(java.net.InetAddressaddress, intport,
CiscoMediaCapability[]capabilities)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
453

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Deprecated

Registers a Terminal with the specified address and port,
defaulting to G.711 64 kHz u-law encoding with a
thirty-millisecond packet size.

Parameters

• address—The internet address for inbound IPv4
RTP streams on this terminal

• port—The UDP port for inbound RTP streams on
this terminal

Throws

CiscoRegistrationException

register(java.net.InetAddressaddress, intport)void

This method registers the MediaTerminal. Ensure that
the CiscoMediaTerminal is in the
CiscoTerminal.UNREGISTERED state and its Provider
is in the Provider.IN_SERVICE state.

This method returns successfully when the
MediaTerminal gets registered. This method requires
that the application have a TLS link established with
CTIManager and have the SRTP Enabled flag enabled
in Cisco Unified Communications Manager
Administration for the user; otherwise, the system throws
a PrivilegeViolationException.

Parameters

• address—The internet address for inbound IPv4
RTP streams on this terminal

• port—The UDP port for inbound RTP streams on
this terminal

• capabilities—The list of RTP encodings that this
terminal supports

• algorithmIDs—The SRTP algorithms that this
CTIPort supports. AlgorithmIDs must be one of
CiscoMediaEncryptionAlgorithmType.

Throws

CiscoRegistrationException
javax.telephony.PrivilegeViolationException

register(java.net.InetAddressaddress, intport,
CiscoMediaCapability[]capabilities, int[]algorithmIDs)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
454

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

register(java.net.InetAddressaddress, intport,
CiscoMediaCapability[]capabilities, int[]algorithmIDs,
java.net.InetAddressaddress_v6,
intactiveAddressingMode)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
455

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

The CiscoMediaTerminal must be in the
CiscoTerminal.UNREGISTERED state and its Provider
must be in the Provider.IN_SERVICE state.

The successful effect of this method is to register the
MediaTerminal. The activeAddressingMode indicates
the application IP addressing capabilities. If application
specifies activeAddressingMode as
CiscoTerminal.IP_ADDRESSING_MODE_IPv4, then
it must also specify address.

If application specifies activeAddressingMode as
CiscoTerminal.IP_ADDRESSING_MODE_IPv6, then
it must also specify address_v6.

If application specifies activeAddressingMode as
CiscoTerminal.IP_ADDRESSING_MODE_IPv4_6,
then it must also specify address and address_v6.

Method Arguments

This method has four arguments:

• The first argument specifies the internet address at
which the RTP media stream for this Terminal will
be terminated.

• The second indicates the UDP port at which RTP
packets will be directed.

• The third argument indicates the type of RTP
encodings that the application is willing to support
for this Terminal

• The final argument indicates SRTP algorithm that
application supports.

This method can be used only if application has TLS
link established with CTIManager and if application has
SRTP Enabled flag enabled in CMAdmin pages for the
user, otherwise PrivilegeViolationException is thrown.

Method Post-conditions

This method returns successfully when the
MediaTerminal is registered.

Parameters

• address—The internet address for inbound IPv4
RTP streams on this terminal, it can be null
depending on application Addressing Mode.

• port—The UDP port for inbound RTP streams on
this terminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
456

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

• capabilities—The list of RTP encodings supported
by this terminal

• algorithmIDs—Indicates SRTP algorithms that this
CTIPort supports. AlgorithmIDs may only be one
of CiscoMediaEncryptionAlgorithmType

• address_v6—The IPv6 internet address for inbound
IPv6 RTP streams on this terminal, it can be null
depending upon activeAddressingMode

• activeAddressingMode—IP Addressing mode in
which application intends to register this
CiscoMediaTerminal. It can be:

CiscoTerminal.IP_ADDRESSING_MODE_IPv4

CiscoTerminal.IP_ADDRESSING_MODE_IPv6

CiscoTerminal.IP_ADDRESSING_MODE_IPv4z_v6
Since: 7.0

Throws

CiscoRegistrationException,
javax.telephony.PrivilegeViolationException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
457

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method registers the MediaTerminal with the
specified CiscoMediaCapabilities. Applications should
use this method when they want to supply the IP address
and port dynamically for each call.

Applications that register with this method will receive
a CiscoMediaOpenLogicalChannelEv for each call and
must supply an IP address and port number by using the
setRTPParams method on this object.

Ensure the CiscoMediaTerminal is in the
CiscoTerminal.UNREGISTERED state and its Provider
is in the Provider.IN_SERVICE state.

Method Arguments

Arguments indicate the type of RTP encodings that the
application is willing to support for this Terminal.

Method Post-conditions

This method returns successfully when the
CiscoMediaTerminal is registered.

Parameters

capabilities—The list of RTP encodings that this
terminal supports.

Throws

CiscoRegistrationException

register(CiscoMediaCapability[]capabilities)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
458

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method registers a MediaTerminal with the
specified CiscoMediaCapabilities and supported SRTP
algorithms.

Applications should use this method when they want to
supply the IP address and port dynamically for each call
and also want to specify the SRTP algorithm.

Applications that register with this method will receive
a CiscoMediaOpenLogicalChannelEv for each call and
must supply the IP address and port number by using
the setRTPParams method on this object.

This form of register() also requires a second parameter
that indicates which SRTP algorithm that the application
supports.

This method requires that the application have a TLS
link established with CTIManager and have the SRTP
Enabled flag enabled in Cisco Unified Communications
Manager Administration for the user; otherwise, the
system throws a PrivilegeViolationException.

This method returns successfully when the
CiscoMediaTerminal gets registered.

Ensure the CiscoMediaTerminal is in the
CiscoTerminal.UNREGISTERED state and its Provider
is in the Provider.IN_SERVICE state.

Parameters

• capabilities—The list of RTP encodings that this
terminal supports

• algorithmIDs—The list of SRTP algorithms that
this terminal supports. AlgorithmIDs must be one
of CiscoMediaEncryptionAlgorithmType.

Throws

CiscoRegistrationException
javax.telephony.PrivilegeViolationException

register(CiscoMediaCapability[]capabilities,
int[]algorithmIDs)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
459

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

register(CiscoMediaCapability[]capabilities,
int[]algorithmIDs, intactiveAddressingMode)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
460

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

The CiscoMediaTerminal must be in the
CiscoTerminal.UNREGISTERED state and its Provider
must be in the Provider.IN_SERVICE state. The
successful effect of this method is to register the
MediaTerminal. It registers a Terminal with specified
CiscoMediaCapabilities and supported SRTP algorithms.
It also indicates that application is interested in supplying
ipAddress and port dynamically for each call.

Applications registering with this method receive
CiscoMediaOpenLogicalChannelEv for each call and
have to supply ipAddress and port number using
setRTPParams method on this object.

The second parameter indicates SRTP algorithm that
application supports. This method can be used only if
application has TLS link established with CTIManager
and if application has SRTP Enabled flag enabled in
CiscoUnified CommunicationsManagerAdministration
for the user, otherwise PrivilegeViolationException is
thrown.

Method Arguments

Arguments indicate the type of RTP encodings that the
application is willing to support for this Terminal and
the application or CTIManager failure persistence delay.

Method Post-conditions

This method returns successfully when the
CiscoMediaTerminal is registered.

Parameters

• capabilities—The list of RTP encodings supported
by this terminal

• algorithmIDs—Indicates the list of SRTP
algorithms supported by this terminal.
AlgorithmIDs may only be one of
CiscoMediaEncryptionAlgorithmType

• activeAddressingMode—Is the IPAddressingmode
in which application intends to register this
CiscoMediaTerminal. The activeAddressingMode
can be:

CiscoTerminal.IP_ADDRESSING_MODE_IPv4

CiscoTerminal.IP_ADDRESSING_MODE_IPv6

CiscoTerminal.IP_ADDRESSING_MODE_IPv4_v6

Throws

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
461

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

CiscoRegistrationException
javax.telephony.PrivilegeViolationException

Applications must use this method when they want to
set the IP address and RTP port number to dynamically
stream media for a call. In this situation, the application
will have registered the MediaTerminal or
CiscoRouteTeminal by providing only capabilities.

Applications must invoke this method upon receiving
the CiscoCallOpenLogicalChannel on terminalObserver.
Applicationsmust pass in the rtpHandle that they receive
in CiscoCallOpenLogicalChannelEv. Applications can
get a CiscoCall reference by calling the
CiscoProvider.getRTPHandle(rtpHandle) method.

This method may return null if no call observer is added
on the terminal, or there was no callobserver at the time
when this event got sent sent, or or there is no call
associated with this handle.

Parameters

• rtpHandle—is obtained from.
CiscoMediaCallOpenLogicalChannelEv

• rtpParams—is of type CiscoRTPParams, which is
used to specify the dynamic RTP address and port
number for a media terminal on a per-call basis.

Throws

javax.telephony.InvalidStateException
javax.telephony.InvalidArgumentException
javax.telephony.PrivilegeViolationException

setRTPParams(CiscoRTPHandlertpHandle,
CiscoRTPParamsrtpParams)

void

This method unregisters theMediaTerminal and returns
successfully when theMediaTerminal gets unregistered.
The CiscoMediaTerminal must be registered and its
Provider must be in the Provider.IN_SERVICE state.

Throws

CiscoUnregistrationException

unregister()void

This method returns true if the CiscoMediaTerminal is
registered and false otherwise. For a MediaTerminal,
this method returns true if the MediaTerminal is
InService and false if it is OutOfService. For
CTIManager failure cases, this method returns false.

isRegistered()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
462

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method returns true if this application issued a
successful registration request. The registration remains
valid even if the device is out-of-service because of a
CTIManager failure. This will get set to true until this
application unregisters the device.

isRegisteredByThisApp()boolean

An application can invoke this API to query the IP
Addressing Mode of the CiscoMediaTerminal
Addressingmodemay be any of the following constants:

• CiscoTerminal.IP_ADDRESSING_IPv4
• CiscoTerminal.IP_ADDRESSING_IPv6
• CiscoTerminal.IP_ADDRESSING_IPv4_v6

getIPAddressingMode()int

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoTerminal

createSnapshot, getAltScript, getDeviceState, getDNDOption, getDNDStatus, getEMLoginUsername, getFilter,
getLocale, getProtocol, getRegistrationState, getRTPInputProperties, getRTPOutputProperties, getState,
getSupportedEncoding, isRestricted, sendData, sendData, setDNDStatus, setFilter, unPark

From Interface javax.telephony.Terminal

addCallObserver, addObserver, getAddresses, getCallObservers, getCapabilities, getName, getObservers,
getProvider, getTerminalCapabilities, getTerminalConnections, removeCallObserver, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
See CiscoTerminal and CiscoMediaOpenLogicalChannelEv.CiscoRTPParams

CiscoMonitorInitiatorInfo
This interface defines provides information about the monitor initiator.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
463

Cisco Unified JTAPI Extensions
Inherited Methods

Declaration
public interface CiscoMonitorInitiatorInfo

Fields
None

Methods
Table 125: Methods in CiscoMonitorInitiatorInfo

DescriptionMethodInterface

Returns the monitor initiator address.getAddress()CiscoAddress

Returns the call leg hanlde at the monitor initiator.
JTAPI gets the call at the monitor target by using
provider.getCall(int monitorInitiatorCallLegHandle).

This method returns null if the call at the monitor
initiator is not active in this provider.

getMonitorInitiatorCallLegHandle()Int

Returns the terminal name of the monitor initiator.getTerminalName()java.lang.String

Related Documentation
None

CiscoMonitorTargetInfo
This interface provides information about the monitor target.

Declaration
public interface CiscoMonitorTargetInfo

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
464

Cisco Unified JTAPI Extensions
Declaration

Methods
Table 126: Methods in CiscoMonitorTargetInfo

DescriptionMethodInterface

Returns the monitor target address.getAddress()CiscoAddress

Returns the call leg handle at the monitor target.getMonitorTargetCallLegHandle()Int

Returns the terminal name of monitor target.getTerminalName()java.lang.String

Related Documentation
None

CiscoMultiForkingRecorderInfo
The CiscoMultiForkingRecorderInfo interface contains the information related to the recorders.

Interface History

DescriptionCisco Unified
Communications
Manager Release
Number

A new API which returns recorders details during Multi Forking Recording.

CiscoMultiForkingRecorderInfo()

New constants:

CALL_RECORDING_MULTI_FORKING _RECORDER_TYPE_UNKNOWN

CALL_RECORDING_MULTI_FORKING
_RECORDER_TYPE_OPTIONAL_RECORDER

CALL_RECORDING_MULTI_FORKING
_RECORDER_TYPE_MANDATORY_RECORDER

CALL_RECORDING_MULTI_FORKING_RECORDER_STATUS_UNKNOWN

CALL_RECORDING_MULTI_FORKING_RECORDER_STATUS_SUCCESS

CALL_RECORDING_MULTI_FORKING_RECORDER_STATUS_FAILURE

12.5(1)

Declaration
public interface CiscoMultiForkingRecorderInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
465

Cisco Unified JTAPI Extensions
Methods

Methods

Methods in CiscoMultiForkingRecorderInfo

DescriptionMethodInterface

This interface returns URI of the MultiForking recorder.getRecorderURI()java.lang.String

This interface returns the error message of theMultiForking recorder.getRecorderErrorMsg()java.lang.String

This interface returns the integer which denotes the type of recorder.
The recorder type can be:

CALL_RECORDING_MULTI_FORKING
_RECORDER_TYPE_UNKNOWN

CALL_RECORDING_MULTI_FORKING
_RECORDER_TYPE_OPTIONAL_RECORDER

CALL_RECORDING_MULTI_FORKING
_RECORDER_TYPE_MANDATORY_RECORDER

getRecorderType()public int

This interface returns the integer which denotes the status of the
recorder. The recorder status can be:

CALL_RECORDING_MULTI_FORKING
_RECORDER_STATUS_UNKNOWN

CALL_RECORDING_MULTI_FORKING
_RECORDER_STATUS_SUCCESS

CALL_RECORDING_MULTI_FORKING
_RECORDER_STATUS_FAILURE

get RecorderStatus()public int

CiscoMultiMediaCapabilityInfo
CiscoMultiMediaCapabilityInfo interface contains the multimedia capabilities of a terminal. Applications can
get the video capability, telepresence interopability, and number of screens information of the terminal using
this API.

Declaration
public interface CiscoMultiMediaCapabilityInfo

com.cisco.jtapi.extensions.CiscoMultiMediaCapabilityInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
466

Cisco Unified JTAPI Extensions
Methods

Fields
Table 127: Fields in CiscoMultiMediaCapabilityInfo

DescriptionFieldInterface

Indicates that the
CiscoMultiMediaCapabilityInfo.
getVideoCapability () for this terminal is
CiscoMultiMediaCapabilityInfo.ENABLED.

VIDEO_DISABLEDstatic final int

Indicates that the
CiscoMultiMediaCapabilityInfo.
getVideoCapability () for this terminal is
CiscoMultiMediaCapabilityInfo.ENABLED.

VIDEO_ENABLEDstatic final int

Indicates that the
CiscoMultiMediaCapabilityInfo.
getTelepresenceInfo() for this terminal is
TELEPRESENCEINTEROP_NONE.

TELEPRESENCEINTEROP_NONEstatic final int

Indicates that the
CiscoMultiMediaCapabilityInfo.
getTelepresenceInfo () for this terminal is
CiscoMultiMediaCapabilityInfo.
TELEPRESENCEINTEROP_ENABLED.

TELEPRESENCEINTEROP_ENABLEDstatic final int

This field will return -1 to indicate that the
video capability and telepresence
interopability is screen count is Unknown.

UNKNOWNstatic final int

Methods
Table 128: Methods in MultiMediaCapabilityInfo

DescriptionMethodInterface

Returns the video capability of the Terminal. The video capability
can be CiscoMultiMediaCapabilityInfo. DISABLED or
CiscoMultiMediaCapabilityInfo. ENABLED.

getVideoCapability()int

Returns the telepresence interoperability of the Terminal. The
telepresence interoperability can be
CiscoMultiMediaCapabilityInfo.
TELEPRESENCEINTEROP_DISABLED or
CiscoMultiMediaCapabilityInfo.
TELEPRESENCEINTEROP_ENABLED.

getTelepresenceInfo()int

Returns the number of screens present on the Terminal.getScreenCount()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
467

Cisco Unified JTAPI Extensions
Fields

CiscoMultiMediaConnectionMode
This interface specifies the connection mode associated with the multimedia stream.

Table 129: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMultiMediaConnectionMode

Methods
Table 130: Methods in CiscoProvTerminalMultiMediaConnectionMode

DescriptionFieldInterface

Indicates that only the receive channel is
active.

RECEIVE_ONLYstatic final int

Indicates that only the transmit channel is
active.

TRANSMIT_ONLYstatic final int

CiscoMultiMediaEncryptionKeyInfo
This interface contains the multi media streams encryption key information of a Terminal.

Table 131: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMultiMediaEncryptionKeyInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
468

Cisco Unified JTAPI Extensions
CiscoMultiMediaConnectionMode

Methods
Table 132: Methods in CiscoProvTerminalMultiMediaEncryptionKeyInfo

DescriptionMethodInterface

Returns the master key for the input stream.getRxKey()byte[]

Returns the salt key for the input stream.getRxSalt()byte[]

Returns the master key for the output
stream.

getTxKey()byte[]

Returns the salt key for the output stream.getTxSalt()byte[]

Returns the media encryption algorithm ID
for the current stream.

getAlgorithmID()int

Indicates whether MKI is present for the
input stream.

getRxMKIPresent()int

Indicates whether MKI is present for the
output stream.

getTxMKIPresent()int

CiscoMultiMediaProperties
This interface contains the multi media stream information of the video-capabilities on a Terminal.

Table 133: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMultiMediaProperties

Methods
Table 134: Methods in CiscoProvTerminalMultiMediaProperties

DescriptionMethodInterface

Returns the rtp properties for the multimedia stream.CiscoRTPPropertiesCiscoRTPProperties

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
469

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the connection mode for the multimedia stream.

The multimedia connection mode can be:

• CiscoMultiMediaConnectionMode. INACTIVE =
3

• CiscoMultiMediaConnectionMode.
RECEIVE_ONLY = 1;

• CiscoMultiMediaConnectionMode.
TRANSMIT_ONLY = 2

• CiscoMultiMediaConnectionMode.
TRANSMIT_AND_RECEIVE = 0

getMultiMediaConnection Mode()int

Returns the multimedia type for the multimedia stream.
The media type can be

• CiscoMultiMediaType. INVALID = 0

• CiscoMultiMediaType. AUDIO = 1

• CiscoMultiMediaType. MAIN_VIDEO = 2

• CiscoMultiMediaType. PRESENTATION_VIDEO
= 3

getMultiMediaType()int

Returns whether key information is present for the
multimedia stream.

isKeyInfoPresent()boolean

Returns the multimedia encryption data for the
multimedia stream.

getMultiMediaEncryptionKeyInfo()CiscoMultiMediaEncryptionKeyInfo

Indicates security indicator for the multimedia stream.
The security indicator can be:

• CiscoMasterKeyIndicator. NOT_AVAILABLE =
0

• CiscoMasterKeyIndicator. AVAILABLE = 1

getMultiMediaSecurity Indicator()int

CiscoMultiMediaStreamsInfoEv
CiscoMultiMediaStreamsInfoEv is a new interface that is being notified to applications as a Terminal Event.
This interface will be delivered to terminal observers added by applications to indicate the multimedia streams
information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
470

Cisco Unified JTAPI Extensions
CiscoMultiMediaStreamsInfoEv

Table 135: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMultiMediaStreamsInfoEv extends CiscoTermEv

Methods
Table 136: Methods in CiscoProvTerminalMultiMediaStreamsInfoEv

DescriptionFieldInterface

Returns an array of
CiscoMultiMediaProperties, one for each
stream.

getProperties()CiscoMultiMediaProperties[]

Returns CiscoCallID.getCallID()CiscoCallID

CiscoMultiMediaType
This interface specifies the multimedia type associated with the multimedia stream.

Table 137: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoMultiMediaType

Methods
Table 138: Methods in CiscoProvTerminalMultiMediaType

DescriptionFieldInterface

The multimedia stream type is unknown.INVALIDstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
471

Cisco Unified JTAPI Extensions
Declaration

DescriptionFieldInterface

The multimedia stream contains audio
information.

AUDIOstatic final int

The multimedia stream contains video
information.

MAIN_VIDEOstatic final int

The multimedia stream contains
presentation information.

PRESENTATION_VIDEOstatic final int

CiscoObjectContainer
The ApplicationObject interface allows applications to associate an application-defined object to objects that
implement this interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Subinterfaces
CiscoAddress, CiscoCall, CiscoCallID, CiscoConnection, CiscoConnectionID, CiscoConsultCall,
CiscoIntercomAddress, CiscoJtapiPeer, CiscoMediaTerminal, CiscoProvider, CiscoRouteTerminal,
CiscoTerminal, CiscoTerminalConnection

Declaration
public interface CiscoObjectContainer

Fields
None

Methods
Table 139: Methods in CiscoObjectContainer

DescriptionMethodInterface

Gets the application-defined object.getObject()java.lang.Object

Sets an application-defined object.setObject(java.lang.Objectreference)java.lang.Object

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
472

Cisco Unified JTAPI Extensions
CiscoObjectContainer

Related Documentation
None

CiscoOutOfServiceEv
The CiscoOutOfServiceEv event is the super class for the out-of-service events CiscoAddrOutOfServiceEv
and CiscoTermOutOfServiceEv. This class defines the causes for out-of-service events.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, javax.telephony.events.Ev

Subinterfaces
CiscoAddrOutOfServiceEv, CiscoTermOutOfServiceEv

Declaration
public interface CiscoOutOfServiceEv extends CiscoEv

Fields
Table 140: Fields in CiscoOutOfServiceEv

DescriptionFieldInterface

The cause for this event is due a Cisco Unified
Communications Manager failure.

CAUSE_CALLMANAGER_FAILUREstaticint

The cause for this event is due to a failure from
CTIManager.

CAUSE_CTIMANAGER_FAILUREstaticint

The cause for this event is a device failure.CAUSE_DEVICE_FAILUREstaticint

The cause for this event is that the device is
restricted.

CAUSE_DEVICE_RESTRICTEDstaticint

The cause for this event is that the device is in an
unregistered state.

CAUSE_DEVICE_UNREGISTEREDstaticint

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
473

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionFieldInterface

The cause for this event is that the line is restricted.CAUSE_LINE_RESTRICTEDstaticint

The cause for this event is the unavailability of any
Cisco Unified Communications Manager.

CAUSE_NOCALLMANAGER_AVAILABLEstaticint

The cause for this event is an to error in failback to
a higher-priority Cisco Unified Communications
Manager node.

CAUSE_REHOME_TO_HIGHER_PRIORITY_CMstaticint

The cause for this event is a failure while attempting
to rehome.

CAUSE_REHOMING_FAILUREstaticint

—IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Methods
None

Related Documentation
See Constant Field Values, on page 1665

CiscoPartyInfo
This interface defines the party info of the call.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
474

Cisco Unified JTAPI Extensions
Inherited Fields

Declaration
public interface CiscoPartyInfo

Fields
Table 141: Fields in CiscoPartyInfo

DescriptionFieldInterface

This NumberType is same as 4; it
represents caller is from sameCiscoUnified
Communications Manager server.

ABBREVIATED_NUMBERStatic int

This NumberType is same as 0; it
represents nothing is configured

INTERNATIONAL_NUMBERStatic int

This NumberType is same as 1; it
represents caller is INTERNATIONAL

NATIONAL_NUMBERStatic int

This NumberType is same as 2; it
represents caller is NATIONAL

NET_SPECIFIC_NUMBERStatic int

This NumberType is same as 6; it
represents its a fast dial call - not being used
currently

RESERVED_FOR_EXTENSIONStatic int

This NumberType is same as 3; it
represents call is from MGCP/H.323
gateway

SUBSCRIBER_NUMBERStatic int

—UNKNOWN_NUMBERStatic int

Methods
Table 142: Methods in CiscoPartyInfo

DescriptionMethodInterface

Returns the address.getAddress()javax.telephony.Address

Returns Presentation Indicator (PI) associated with
Address. If it returns true, Application can display this
Address name to end users. If it returns false,
Applications should not display this Address name to
end user.

getAddressPI()boolean

Returns display name of the party.getDisplayName()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
475

Cisco Unified JTAPI Extensions
Declaration

DescriptionMethodInterface

Returns the PI associated with DisplayName. If it returns
true, Application can display this DisplayName to end
users. If it returns false, Applications should not display
this DisplayName to end user.

getDisplayNamePI()boolean

Returns the locale of the party unicode display name.getlocale()int

Returns number type of the party.getNumberType()int

Returns unicode display name of the party.getUnicodeDisplayName()java.lang.String

Returns URL Info.getUrlInfo()CiscoUrlInfo

Returns voice mail box of the party.getVoiceMailbox()java.lang.String

Related Documentation
See Constant Field Values, on page 1665.

CiscoPickupGroup
CiscoPickupGroup is a new interface that represents a Pickup Group at the JTAPI layer. Currently, all a
PickupGroup is a pair of String objects representing the Pickup Group’s DN, and the Pickup Group’s Partition.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Following APIs are added:

• getPickupGroupDN()
• getPickupGroupPartition()

8.0(1)

Declaration
public interface CiscoPickupGroup

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
476

Cisco Unified JTAPI Extensions
Related Documentation

Methods
Table 143: Methods in CiscoPickup Group

DescriptionMethodInterface

Returns a String object that represents the number of
the Pickup Group.

getPickupGroupDN()String

Returns a String object that represents the partition of
the Pickup Group. It returns an empty String object if
this pickup group does not belong to a partition.

getPickupGroupPartition()String

Related Documentation
None

CiscoProvCallParkEv
CiscoProvCallParkEv event is delivered to providerobserver when a call is parked/unparked from any device
in the cluster. To receive this event application should register using CiscoProvider.registerFeature() and
CiscoProvFeatureID.MONITOR_CALLPARK_DN. User profile used by the application should have the
Call Park Retrieval Allowed flag enabled to receive this event.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, CiscoProvFeatureEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoProvCallParkEv extends CiscoProvFeatureEv

Fields
Table 144: Fields in CiscoProvCallParkEv

DescriptionFieldInterface

—IDStatic int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
477

Cisco Unified JTAPI Extensions
Methods

DescriptionFieldInterface

Indicates that a call is parked.PARK_STATE_ACTIVEStatic int

Indicates that a call is unparked.PARK_STATE_IDLEstaticint

Indicates that this event is due to call park.REASON_CALLPARKstaticint

Deprecated

This interface is deprecated due to a
spelling error. Use the new interface
REASON_CALLPARKREMINDER.

REASON_CALLPARKREMAINDERstaticint

Indicates that the call is offered back to the
parking party after call park reminder.

REASON_CALLPARKREMINDERstaticint

Indicates that the call is unparked.REASON_CALLUNPARKstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 145: Methods in CiscoProvCallParkEv

DescriptionMethodInterface

Returns an integer representation of this object.getintCallIDValue()int

Returns where the call is parked.getParkDN()java.lang.String

Returns the DN of the parked party.getParkedParty()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
478

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

Returns the partition of the Parked Party.getParkedPartyPartition()java.lang.String

Returns the DN of the parking party.getParkingParty()java.lang.String

Returns the partition of the Parking party.getParkingPartyPartition()java.lang.String

Returns the partition of park DN.getParkPartyPartition()java.lang.String

Returns the reason of the event.getReason()int

Returns the state of the call. Possible states are
CiscoProvCallParkEv.PARK_STATE_IDLE
CiscoProvCallParkEv.PARK_STATE_ACTIVE.

getState()int

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoProvFeatureEv

getFeatureID

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoProvEv
The CiscoProvEv interface, which extends JTAPI's core javax.telephony.events.ProvEv interface, serves as
the base interface for all Cisco-extended JTAPI Provider events. Every Provider-related event in this package
extends this interface, directly or indirectly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added new API getCiscoCause() which returns the CiscoCause
for delivering the provider events.

8.0(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
479

Cisco Unified JTAPI Extensions
Inherited Methods

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Subinterfaces
CiscoAddrActivatedEv, CiscoAddrActivatedOnTerminalEv, CiscoAddrAddedToTerminalEv,
CiscoAddrCreatedEv, CiscoAddrRemovedEv, CiscoAddrRemovedFromTerminalEv, CiscoAddrRestrictedEv,
CiscoAddrRestrictedOnTerminalEv, CiscoProvCallParkEv, CiscoProvConnToLeastPriorCtiServerEv,
CiscoProvFallbackToPrimNwCompltdEv, CiscoProvFeatureEv, CiscoProvPrimNwReachableEv,
CiscoProvTerminalCapabilityChangedEv, CiscoRestrictedEv, CiscoTermActivatedEv, CiscoTermCreatedEv,
CiscoTermRemovedEv, CiscoTermRestrictedEv,

Declaration
public interface CiscoProvEv extends CiscoEv, javax.telephony.events.ProvEv

Fields
None

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
480

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
DescriptionMethodInterface

This method returns the cause to let application know
why the event has been delivered.

getCiscoCause ()int

This indicates the cause for non - EM login/logout
scenarios. It will have an integer value of 0.

CiscoProvEv.CAUSE_NORMALStatic final int

This cause indicates an EM login on a terminal with a
profile that is in the application’s control list and/or with
a user id that matches with the user id with which
application has been started. It will have an integer value
of 1.

CiscoProvEv.CAUSE_EM_LOGINStatic final int

This cause indicates an EM logout from a terminal with
the profile that is in the application’s control list and/or
with a user id that matches with the user id with which
application has been started. It will have an integer value
of 2.

CiscoProvEv. CAUSE_EM_LOGOUTStatic final int

This cause indicates a case where profile is added to the
control list when it is already logged into a terminal. It
will have an integer value of 3.

CiscoProvEv. CAUSE_EM_LOGIN_PROFILE_ADDStatic final int

This cause indicates a case where profile is removed
from the control list when it is already logged into a
terminal. It will have an integer value of 4.

CiscoProvEv.
CAUSE_EM_LOGIN_PROFILE_REMOVE

Static final int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

CiscoProvFeatureEv
The CiscoProvFeatureEv interface extends the com.cisco.jtapi.extensions.CiscoProvEv interface for provider
events.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
481

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Subinterfaces
CiscoProvCallParkEv

Declaration
public interface CiscoProvFeatureEv extends CiscoProvEv

Fields
None

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
482

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 146: Methods in CiscoProvFeatureEv

DescriptionMethodInterface

The feature ID for which the application wants to receive
events.

getFeatureID()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoProvEv.

ProvEv.

CiscoProvFeatureID
This interface lists the features that registerFeature supports.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Interface is enhanced to allow application register to get
CiscoProvTerminalRegisteredEv and
CiscoProvTerminalUnRegisteredEv events when terminal register
and unregister respectively. CiscoProvTerminalRegisteredEv and
CiscoProvTerminalUnRegisteredEvwill be delivered to Provider
observer when application registers for this feature

7.1(3)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
483

Cisco Unified JTAPI Extensions
Methods

Declaration
public interface CiscoProvFeatureID

Fields
Table 147: Fields in CiscoProvFeatureID

DescriptionFieldInterface

Used in the registerFeature
interface in CiscoProvider to
receive CiscoProvCallParkEv
when a call gets parked or
unparked from any device in the
cluster.

MONITOR_CALLPARK_DNstatic int

Application can use to this to
receive
CiscoProvTerminalRegisteredEv
and
CiscoProvTerminalUnRegisteredEv

TERMINAL_REGISTER_UNREGISTER_EVENT_NOTIFYpublic static final int

Sample Code

To register for Terminal Register and Unregister event notification:

try{JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
} catch (JtapiPeerUnavailableException e){

}

MyProviderObserver providerObserver = new MyProviderObserver ();
Try{
provider = peer.getProvider (ipaddress;login = useid;passwd = password);

} catch (ProviderUnavailableException exp){
}
if (provider ! = null) {
provider.addObserver (providerObserver);
provInService.waitTrue();
System.out.Println("Enabling Register and Unregister events ");
try{

((CiscoProvider)provider).registerFeature(CiscoProvFeatureID.
TERMINAL_REGISTER_UNREGISTER_EVENT_NOTIFY);

} catch (InvalidStateException ec){
}

}

// CiscoProvTerminalRegisteredEv and CiscoProvTerminalUnRegisteredEv are delivered to Provider Observer.

class MyProviderObserver implements ProviderObserver {

public synchronized void providerChangedEvent (ProvEv [] eventList) {

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
484

Cisco Unified JTAPI Extensions
Declaration

try {
if (eventList ! = null) {
for (int i = 0; i < eventList.length; i++) {
if (eventList[i] instanceof CiscoProvTerminalRegisteredEv){
CiscoProvTerminalRegisteredEv ev = (CiscoProvTerminalRegisteredEv)

eventList[i];
System.out.Println(ev.getTerminal().getName() + " registered with

CUCM");
}

}
} catch (Exception eee){

}

Methods
None

Related Documentation
See Constant Field Values, on page 1665.

CiscoProvPickupCallAlertEv
CiscoProvPickupCallAlertEvent is a new interface being added with Call Pickup feature development. This
event is fired whenever there is a call to be picked up in a pickup group that the provider is observing. See
previous changes to CiscoProvider for information about how to register to observe a pickup group.

DescriptionCisco Unified Communications Manager Release Number

New interface.8.0(1)

Declaration
public interface CiscoProvPickupCallAlertEvent extends CiscoProvEv

Methods
Table 148: Methods of CiscoProvPickupCallAlertEv

DescriptionMethodInterface

Thismethod returns the PickupGroupNumber for which
this event is being fired.

getPickupGroupNumber()String

Thismethod returns the PickupGroupNumber for which
this event is being fired.

getPickupGroupPartition()String

This method returns the Call ID for the ringing call.getCallID()CiscoCallID

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
485

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method returns a CiscoPartyInfo representing the
calling party.CAVEAT: Currently, if the calling party
is from out of cluster (External), it will still report as
being Internal on the Address object inside of the
CiscoPartyInfo.

getCallingPartyInfo()CiscoPartyInfo

This method returns a CiscoPartyInfo representing the
called party.

getCalledPartyInfo()CiscoPartyInfo

CiscoProvTerminalIPAddressChangedEv
This interface will be delivered to provider observers added by applications whenever the IP address of a
terminal changes without the terminal getting unregistered.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.9.0(1)

Declaration
public interface CiscoProvTerminalIPAddressChangedEv extends CiscoProvEv

Fields
Table 149: Fields in CiscoProvTerminalIPAddressChangedEv

DescriptionFieldInterface

Returns the Terminal that registered with
Cisco Unified Communication Manager.

getTerminal()public Terminal

Returns the active IP Addressing mode of
the terminal after the change. Based on this
value, applications can query either the Ipv4
or the Ipv6 address of the terminal.

Addressing mode may be any of the
following constants:

CiscoTerminal.IP_ADDRESSING_MODE_IPv4

CiscoTerminal.IP_ADDRESSING_MODE_IPv6

CiscoTerminal.IP_ADDRESSING_MODE_IPv4_v6

getIPAddressingMode()public int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
486

Cisco Unified JTAPI Extensions
CiscoProvTerminalIPAddressChangedEv

DescriptionFieldInterface

Returns the IPv4 address of the terminal.
If the addressing mode is
CiscoTerminal.IP_ADDRESSING_MODE_IPv6,
this method will return null.

getIPV4Address()public InetAddress

Returns the IPv6 address of the terminal.
If the addressing mode is
CiscoTerminal.IP_ADDRESSING_MODE_IPv4,
this method will return null.

getIPV6Address()public InetAddress

Methods
None

Related Documentation
None

CiscoProvTerminalMultiMediaCapabilityChangedEv
CiscoProvTerminalMultiMediaCapabilityChangedEv is a new interface that is notified to application as a
Provider Event. when the video capability of the terminal changes, this interface is delivered to the provider
observers added by applications.

Table 150: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoProvTerminalMultiMediaCapabilityChangedEv

com.cisco.jtapi.extensions.CiscoProvTerminalMultiMediaCapabilityChangedEv

Methods
Table 151: Methods in CiscoProvTerminalMultiMediaCapabilityChangedEv

DescriptionMethodInterface

This API returns the Terminal that is registered with
Cisco UCM.

getTerminal()Terminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
487

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This returns the video capability of the Terminal. The
video capability can be:

• CiscoMultiMediaCapabilityInfo.NONE
• CiscoMultiMediaCapabilityInfo.VIDEO_ENABLED

getVideoCapability()int

CiscoProvTerminalRegisteredEv
This event is delivered to provider observer whenever a terminal registers with Cisco Unified Communication
Manager. To receive this event, the application must use registerFeature API with CiscoFeatureID.
TERMINAL_REGISTER_UNREGISTER_EVENT_NOTIFY. This event is delivered if a Terminal registers
to Cisco Unified Communication Manager after the application registers for the feature using registerFeature
API. During initialization time and JTAPI failover time the application can see this event for some the Terminals
in the control list.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.7.1(3)

Declaration
public interface CiscoProvTerminalRegisteredEv extends CiscoProvEv.

Fields
Table 152: Fields in CiscoProvTerminalRegisteredEv

DescriptionFieldInterface

Returns the terminal that registered with
Cisco Unified Communications Manager.

getTerminal()Terminal

Methods
None

Related Documentation
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
488

Cisco Unified JTAPI Extensions
CiscoProvTerminalRegisteredEv

CiscoProvTerminalUnRegisteredEv
This event is delivered to provider observer when ever a terminal unregisters from Cisco Unified
Communication Manager. To receive this event, the application must use the registerFeature API with
CiscoFeatureID. TERMINAL_REGISTER_UNREGISTER_EVENT_NOTIFY.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.7.1(3)

Declaration
public interface CiscoProvTerminalUnRegisteredEv extends CiscoProvEv.

Fields
Table 153: Fields in CiscoProvTerminalRegisteredEv

DescriptionFieldInterface

Returns the terminal that un-registered with
Cisco Unified Communications Manager.

getTerminal()Terminal

• Indicates Terminal un-registered for
unknown reason

• Indicates Terminal un-registered due
to rest

• Indicates Terminal un-registered due
to login

• Indicates Terminal un-registered due
to logout

• REASON_UNKNOWN
• REASON_RESET
• REASON_LOGIN
• REASON_LOGOUT

public final static int

public final static int

public final static int

public final static int

Returns the reason of un-register. The
return value is one of the above defined
reasons.

getReason()Int

Methods
None

Related Documentation
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
489

Cisco Unified JTAPI Extensions
CiscoProvTerminalUnRegisteredEv

CiscoProvider
The CiscoProvider interface extends the Provider interface with additional Cisco capabilities.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Enhanced to have the following:

• New API registerPickupAlert(String pickupDn, String
pickupPartition)

• unregisterPickupAlert(String pickupDn, String
pickupPartition) which allow the application to register and
unregister for the reception of Call Pickup events.

• CiscoProvPickupCallAlertEvent, which is a provider event
what the application receives when they register for events
using the previously mentioned API

• ProviderCallPickupRegistrationClosedEv, which is a provider
event used to alert the application if something happens that
would close the registration event, such as the pickup group
being removed from the Unified CM admin panel.

8.0(1)

A new method is added: getClusterID() this returns the clusterID
enterprise parameter configured for the cluster as a string.

10.0(1)

Enhanced to have the following:

• New APIs setLeastPriorityCtiServer(String
leastPriorityCtiServer)

• setLeastPriorityCtiServer(String leastPriorityCtiServer, int
fallbackInitiationTime)

• getLeastPriorityCtiServer()

• isCtiServerAvailable(String server)

• initiateFallback()

• initiateFallback(String server)

14SU3

Superinterfaces
CiscoObjectContainer, javax.telephony.Provider.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
490

Cisco Unified JTAPI Extensions
CiscoProvider

Declaration
public interface CiscoProvider extends javax.telephony.Provider, CiscoObjectContainer

Fields
None

Inherited Fields

From Interface javax.telephony.Provider

IN_SERVICE, OUT_OF_SERVICE, SHUTDOWN

New Error Codes
CTIERR_ALREADY_REGISTERED

This error code indicates that the Pickup Group attempting to be registerred for has already been registerred
by this provider.

CTIERR_REGISTRATION_NOT_FOUND

This error code indicates that an unregister attempt failed because the PickupGroup specified was not registerred
for previously.

CTIERR_INVALID_PICKUPGROUP

This error code indicates that the Pickup Group specified in the register or unregister event is not valid.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
491

Cisco Unified JTAPI Extensions
Declaration

Methods
Table 154: Methods in CiscoProvider

DescriptionMethodInterface

Returns an instance of the CiscoTerminal class which
corresponds to the given name. Application must have
sufficient capability otherwise
PrivilegeViolationException gets thrown
CiscoProvider.createTerminal().

Pre-conditions

this.getState() = = Provider.IN_SERVICE

Post-conditions

Create CiscoTerminal corresponding to name; terminal
is an element of this.getTerminals().

Parameters

• name—The name of desired CiscoTerminal object.

Throws

javax.telephony.InvalidArgumentException—The name
provided does not correspond to a name of any
CiscoMediaTerminal known to the Provider or within
the Provider's domain.

javax.telephony.InvalidStateException—The provider
is not inService.

PreviledgeVoilationException—The provider does not
have sufficient capbilitly i.e.
CiscoProviderCapabilities.canObserveAnyTerminal()
returns false call.getState() = = Call.INVALID

createTerminal
(java.lang.Stringname)

CiscoTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
492

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Removes the CiscoTerminal Object from providers
control. Application must have created this terminal
using Provider.createTerminal() interface otherwise
PreviledgeVoilationException gets thrown.
CiscoProvider.deleteTerminal().

Pre-conditions

this.getState() = = Provider.IN_SERVICE

Post-conditions

CiscoTerminal Object deleted from providers list of
terminal. Terminal is not element of this.getTerminals()
any more and Addresses belonging to terminal get
deleted.

Parameters

• terminal—The referece to the desired
CiscoTerminal object to be deleted.

Throws

javax.telephony.InvalidArgumentException—The
terminal provided is not element of this.getTerminals()
or terminal is not provider domain.

PrivilegeViolationException—The terminal given in the
argument is not a terminal created using
Provider.createTerminal() method. Applications can
delete only those terminal which are created using
Provider.createTerminal() interface.

deleteTerminal
(CiscoTerminalterminal)

void

Returns an address object corresponding to the number
and partition that is passed in the method. The address
object will be unique for a particular number, partition
combination.

Throws

javax.telephony.InvalidArgumentException

getAddress (java.lang.Stringnumber,
java.lang.Stringpartition)

javax.telephony.Address

Gets the DSCP value from the provider by using
CiscoProvider.getAppDSCPValue().

Pre-conditions

this.getState() = = Provider.IN_SERVICE

Post-conditions

The method will return the integer value of the DSCP
value for applications set by CTI.

getAppDSCPValue ()int

Returns call object with the RTPHandle associated with
a specific terminal.

getCall (CiscoRTPHandlertpHandle)CiscoCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
493

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns CiscoCall present in provider domain and the
call object with the RTPHandle associatedwith a specific
terminal. This methodmay return null if this RTPHandle
is no longer associated with any call or if there was no
callObserver added on the terminal at the time when
CiscoCallOpenLogicalChannelEvwhich contained this
handle is sent to applications.

Throws

javax.telephony.InvalidStateException

getCall (intcallleg)CiscoCall

NonegetCallbackGuardEnabled ()boolean

Returns true if JTAPI is running in FIPS Compliance
mode. This means that the application has explicitly
requested FIPS compliance, and that the libraries are
running properly.

isFIPSCompliantJTAPI ()boolean

Returns true if the Unified CM server is running in FIPS
Compliance mode.

isFIPSCompliantCUCM ()boolean

Returns array of CiscoInterComAddress present in
provider domain.

getIntercomAddresses ()CiscoIntercomAddress[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
494

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns an instance of the CiscoMediaTerminal class
which corresponds to the given name. Each
CiscoMediaTerminal has a unique name associated with
it, which is assigned to it by the JTAPI implementation.

If no CiscoMediaTerminal is available for the given
name within the Provider domain, this method throws
the InvalidArgumentException.

This CiscoMediaTerminal is contained in the arrays
generated by Provider.getTerminals() and
CiscoProvider.getMediaTerminals().

Pre-conditions

Let CiscoMediaTerminal terminal =
this.getMediaTerminal(name); terminal is an element
of this.getTerminals(); terminal is an element of
this.getMediaTerminals();

Post-conditions

Let CiscoMediaTerminal terminal =
this.getMediaTerminal(name); terminal is an element
of this.getTerminals(); terminal is an element of
this.getMediaTerminals();

Parameters

• name—The name of desired CiscoMediaTerminal
object.

Throws

javax.telephony.InvalidArgumentException—The name
provided does not correspond to a name of any
CiscoMediaTerminal known to the Provider or within
the Provider domain.

getMediaTerminal
(java.lang.Stringname)

CiscoMediaTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
495

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns an array of CiscoMediaTerminals associated
with the Provider and within the Provider local domain.

Each CiscoMediaTerminal possesses a unique name,
which is assigned to it by the JTAPI implementation.

If there are no CiscoMediaTerminals associated with
this Provider, then this method returns null.

This array is a subset of the array returned by
Provider.getTerminals().

Post-conditions

Let CiscoMediaTerminal[] terminals =
this.getMediaTerminals() terminals = = null or
terminals.length > = 1 if terminals ! = null, terminals is
a subset of this.getTerminals ()

Throws

javax.telephony.ResourceUnavailableException—Indicates
the number of media terminals present in the Provider
is too great to return as a static array.

getMediaTerminals ()CiscoMediaTerminal[]

This method returns an array of CiscoPickupGroup
objects that represents all of the Pickup Groups that this
provider is currently registerred to observe.

Parameters

AString object that represents the number of the Pickup
Group to be registerred for, and another String object
that represents the partition that the Call Pickup Group
is in.

getRegisteredPickupGroups ()CiscoPickupGroup[]

NonegetVersion ()java.lang.String

Registers a particular feature for which application gets
Provider events. Applications should pass in the
featureID of the softkey. Current supported features are
listed in CiscoProvFeatureID interface.

Throws

javax.telephony.InvalidStateException
javax.telephony.PrivilegeViolationException
javax.telephony.InvalidArgumentException

registerFeature (intfeatureID)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
496

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method tells the Provider to register for receiving
Call Pickup events. After this method is called, Call
Pickup events for the specified Call Pickup Group will
be sent to all JTAPI observers under this provider.

Parameters

• A String object that represents the number of the
Pickup Group to be registerred for, and another
String object that represents the partition that the
Call Pickup Group is in.

• The pickupPartition can be passed in as an empty
String (“”) or null if the pickup group does is not
in any partition.

• An application can use the newCiscoPickupGroup
object in place of the pair of Strings for either
method.

registerPickupAlert (String
pickupDN, String pickupPartition)

void

This method tells the Provider to register for receiving
Call Pickup events. After this is called, Call Pickup
events for the specified Call Pickup Group will be sent
to all JTAPI observers under this provider.

Parameters

• A String object that represents the number of the
Pickup Group to be registerred for, and another
String object that represents the partition that the
Call Pickup Group is in.

• The pickupPartition can be passed in as an empty
String (“”) or null if the pickup group does is not
in any partition.

• An application can use the newCiscoPickupGroup
object in place of the pair of Strings for either
method.

registerPickupAlert
(CiscoPickupGroup pickupGroup)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
497

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Enables or disables try/catch logic for observer
callbacks. In order to protect itself from application
exceptions in observer callbacks, the Provider normally
guards all invocations of application interfaces (e.g.
observers) with the following code:

try {observer.callStateChanged (...);
} catch (Throwable t) {
// log the exception here
}

This isolates application errors from the JTAPI
implementation, allowing easier troubleshooting, since
the JTAPI implementation can note the unhandled
exception and continue operating.

Some errors are considered non-recoverable and will be
re-thrown by JTAPI, generally resulting in application
exit. Such errors include ThreadDeath,
OutOfMemoryError, and StackOverflowError.

Applications wishing to trap errors within JTAPI threads
should create a subclass of ThreadGroup and initialize
JTAPI from a thread within that ThreadGroup.

By overriding the ThreadGroup.uncaughtException ()
method, the application can be made aware of all
unrecoverable errors thrown on JTAPI threads. In some
cases, JTAPI's aggressive error-catching approach may
make it more difficult to troubleshoot applications within
a java debugger.

Microsoft Visual J++ version 6.0, for example, does not
handle breakpoints within application observer callbacks
properly if JTAPI catches Throwable. In such cases,
JTAPI application developers may choose to disable the
internal JTAPI try/catch logic.

Disabling callback guards in this manner
is only intended for use while
troubleshooting applications, and never for
use in production environments. By
default, callback guards are always
enabled.

Note

Parameters

• enabled—if true, callback guard will be enabled;
if false, callback guard will be disabled.

setCallbackGuardEnabled
(booleanenabled)

Void

Unregisters a particular feature.unregisterFeature (intfeatureID)Void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
498

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method will tell the Provider to unregister for
receiving Call Pickup events. After this is called, Call
Pickup events for the specified Call Pickup Group will
no longer be sent to all JTAPI observers under this
provider.

Parameters

• A String object that represents the number of the
Pickup Group to be registerred for, and another
String object that represents the partition that the
Call Pickup Group is in.

• The pickupPartition can be passed in as an empty
String (“”) or null if the pickup group does is not
in any partition.

• An application can use the newCiscoPickupGroup
object in place of the pair of Strings for either
method.

unregisterPickupAlert (String
pickupDN, String pickupPartition)

Void

This method will tell the Provider to unregister for
receiving Call Pickup events. After this is called, Call
Pickup events for the specified Call Pickup Group will
no longer be sent to all JTAPI observers under this
provider.

Parameters

• A String object that represents the number of the
Pickup Group to be registerred for, and another
String object that represents the partition that the
Call Pickup Group is in.

• The pickupPartition can be passed in as an empty
String (“”) or null if the pickup group does is not
in any partition.

• An application can use the newCiscoPickupGroup
object in place of the pair of Strings for either
method.

unregisterPickupAlert
(CiscoPickupGroup pickupGroup)

Void

This method returns an array of CiscoRemoteTerminal
associated with the Provider and within the Provider's
domain. Each CiscoRemoteTerminal possesses an
unique name, which is assigned to it by the JTAPI
implementation. If there is no CiscoRemoteTerminals
associated with this Provider, this API will return null.
This array is a subset of the array returned by
Provider.getTerminals().

getRemoteTerminals ()CiscoRemoteTerminal[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
499

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method returns an instance of the
CiscoRemoteTerminal class which corresponds to the
given name. Each CiscoRemoteTerminal has an unique
name associated to it, which is assigned by the JTAPI
implementation. If no CiscoRemoteTerminal is available
for the given name within the Provider's domain, this
API throws the InvalidArgumentException. This
CiscoRemoteTerminal is contained in the arrays
generated by Provider.getTerminals() and
CiscoProvider.getRemoteTerminals().

getRemoteTerminal (String name)CiscoRemoteTerminal

This method returns the clusterID enterprise parameter
configured for the cluster as a string. If this enterprise
parameter is changed CTIManager service and other
Cisco Communication Manager services need to be
restarted.

Pre-conditions

Provider.getState() = = Provider.IN_SERVICE

If pre-condition is not met, InvalidStateException is
thrown.

Default value is StandAloneCluster.

getClusterID ()String

This method allows application to mark a CTI server as
least priority. Least Priority indicates, JTAPI would
connect to the CTI server only in the case when no other
CTI Server configured by application is reachable.
JTAPI would also initiate a forceful fallback once one
of the CTI servers are reachable again (600 seconds post
this event). Basically, all other CTI servers configured
and not marked as least priority have equal weightage.
Application can only configure one CTI server as least
priority.

setLeastPriorityCtiServer(String
leastPriorityCtiServer)

Void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
500

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This API allows application to mark a CTI server as
least priority. Least Priority indicates, JTAPI would
connect to the CTI server only in the case when no other
CTI Server configured by application is reachable.
JTAPI would also initiate a forceful fallback once one
of the CTI servers arereachable again. Basically, all
other CTI servers configured and not marked as least
priority have equal weightage. Application can only
configure one CTI server as least priority. This method
is overloaded to take additional parameter to specify
time (in seconds) after which a forceful fallback is to be
initiated once primary network becomes reachable.
Fallback initiation time is defined as below:

• Default value : 300 seconds

• Min value : 120 seconds

• Max value: 600 seconds

• Default value would be taken if specified value is
out of the range.

setLeastPriorityCtiServer(String
leastPriorityCtiServer, int
fallbackInitiationTime)

void

This API returns the least priority CTI server as
configured by application by invoking
<CODE>CiscoProvider.setLeastPriorityCtiServer((server)</CODE>.

getLeastPriorityCtiServer()String

This API allows application to query if one of the
configured CTI servers is reachable.

isCtiServerAvailable(String server)boolean

This API allows application to invoke a fallback when
connected to CTI server which was previously identified
as least priority by invoking
<CODE>CiscoProvider.setLeastPriorityCtiServer(server)</CODE>.
Application can invoke this in case one of the primary
network CTI Server becomes available and application
is ready to do a fallback before the configured/default
fallback timer expires.

initiateFallback()void

This API allows application to invoke a fallback when
connected to CTI server which was previously identifie
as least priority by invoking
<CODE>CiscoProvider.setLeastPriorityCtiServer(server)</CODE>.
Application can invoke this in case one of the primary
network CTI Server becomes available and application
is ready to do a fallback before the configured/default
fallback timer expires. This method is overloaded to
take additional parameter to specify the server to which
application needs to fallback to.

initiateFallback(String server)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
501

Cisco Unified JTAPI Extensions
Methods

Inherited Methods

From Interface javax.telephony.Provider

addObserver, createCall, getAddress, getAddressCapabilities, getAddressCapabilities, getAddresses,
getCallCapabilities, getCallCapabilities, getCalls, getCapabilities, getConnectionCapabilities,
getConnectionCapabilities, getName, getObservers, getProviderCapabilities, getProviderCapabilities, getState,
getTerminal, getTerminalCapabilities, getTerminalCapabilities, getTerminalConnectionCapabilities,
getTerminalConnectionCapabilities, getTerminals, removeObserver, shutdown

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
None

CiscoProviderCapabilities
This interface defines the Cisco-specific provider capabilities that Cisco Unified JTAPI offers.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added support for the method canSupportIPv6()T.7.1(1 and 2)

Enhanced by adding new API canAutoPickup(), which lets the
application determinewhether or not the CUCM service parameter
“Auto Call Pickup Enabled” is set to true or false. This service
parameter has an impact on the events and behavior of Call
Pickup, and applications can use this new API to determine if it’s
enabled or not, and act accordingly.

8.0(1)

Superinterfaces
javax.telephony.capabilities.ProviderCapabilities

Declaration
public interface CiscoProviderCapabilities extends javax.telephony.capabilities.ProviderCapabilities

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
502

Cisco Unified JTAPI Extensions
Inherited Methods

Methods
Table 155: Methods in CiscoProviderCapabilities

DescriptionMethodInterface

This method returns a boolean value representing
whether or CUCM service parameter “Auto Call Pickup
Enabled” is set ot true or false.

canAutoPickup()boolean

This method checks whether the user has been
provisioned in the Cisco Unified Communications
Manager with the privilege to observe any Terminal
(and its addresses) in the system. Such Terminals and
Addresses do not get returned as part of the list that
JTAPI initializes at startup. The provider obtained with
the login for a user with such privileges can be
determined from the canObserverAnyTerminal method
call in ProviderCapabilities. Returns True if the user can
observe any Terminal in the system, or false if the user
can only observe Terminals and Addresses in the control
list.

canObserveAnyTerminal()boolean

Example

Provider p = peer.getProvider(loginString);
ProviderCapabilities caps = p.getCapabilities ();
if (caps instanceof CiscoProviderCapabilities)
{
boolean canObserveAnyTerminal =
((CiscoProviderCapabilities)caps).canObserveAnyTerminal ();
boolean canMonitorParkDN =
((CiscoProviderCapabilities)caps).canMonitorParkDNs ();
boolean canModifyCallingPN =
((CiscoProviderCapabilities)caps).canModifyCallingParty ();
boolean canRecordCalls =
((CiscoProviderCapabilities)caps).canRecord();
boolean canMonitorCalls =
((CiscoProviderCapabilities)caps).canMonitor();
}

This method checks whether the user has been
provisioned in the Cisco Unified Communications
Manager to monitor park DNs. Returns True if the user
can monitor park DNs, or false otherwise.

canMonitorParkDNs()boolean

This method checks whether the user has been
provisioned in the Cisco Unified Communications
Manager to modify the calling party number of a call.
Returns True if the user can modify the calling party
number, or false otherwise.

canModifyCallingParty()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
503

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method checks whether the user has been
provisioned in the Cisco Unified Communications
Manager to record calls. Only users in 'Standard CTI
Allow Call Recording' user group can record calls.
Returns True if the user belongs to the group.

canRecord()boolean

This method checks whether a user has been provisioned
in the Cisco Unified Communications Manager to
monitor calls. Only users in 'Standard CTI Allow Call
Monitoring' user group can initiate call monitoring
request. Returns True if the user belongs to the group.

canMonitor()boolean

This interface returns true if Enterprise Parameter
“Enable IPv6” is enabled and false otherwise.

canSupportIPv6()boolean

Inherited Methods

From Interface javax.telephony.capabilities.ProviderCapabilities

isObservable

Related Documentation
See canObserveAnyTerminal().

CiscoProviderCapabilityChangedEv
Application provider observers receive this event when a user gets added or removed from user groups
(capabilitied) in Cisco Unified Communications Manager. The methods for this event let you check which
capabilities changed.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added hasIPv6CapabilityChanged() method.7.1(1 and 2)

Declaration
public interface CiscoProviderCapabilityChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
504

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
Table 156: Fields in CiscoProviderCapabilityChangedEv

DescriptionFieldInterface

NoneIDstaticint

Deprecated

This constant is not returned by any
interface, should not be used by application.

MODIFY_CGPNstaticint

Deprecated

This constant is not returned by any
interface, should not be used by application.

MONITOR_PARKDNstaticint

Deprecated

This constant is not returned by any
interface, should not be used by application.

SUPERPROVIDERstaticint

Methods
Table 157: Methods in CiscoProviderCapabilityChangedEv

DescriptionMethodInterface

This method returns the current
CiscoProviderCapabilities object for the user.

getCapability()CiscoProviderCapabilities

This method can be used by applications to determine
whether Enable IPv6 Enterprise Parameter has changed.

Pre-conditions

this.getState() = = Provider.IN_SERVICE

Post-conditions

The method returns True when the Enable IPv6
Enterprise parameter gets changed; otherwise it returns
False.

hasIPv6CapabilityChanged()boolean

This method checks whether the “modify Calling Party"
privilege has changed.

Pre-conditions

provider.getState() = = Provider.IN_SERVICE

hasModifyCallingPartyChanged()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
505

Cisco Unified JTAPI Extensions
Fields

DescriptionMethodInterface

This method checks whether the monitor capability of
a user has changed.

Pre-conditions

provider.getState() = = Provider.IN_SERVICE

hasMonitorCapabilityChanged()boolean

This method checks whether the "monitor Park DN"
privilege has changed.

Pre-conditions

provider.getState() = = Provider.IN_SERVICE

hasMonitorParkDNChanged()boolean

This method checks whether the "can control any
terminal" privilege has changed

Pre-conditions

provider.getState() = = Provider.IN_SERVICE

hasObserveAnyTerminalChanged()boolean

This method checks whether the recording capability of
the has changed.

Pre-conditions

provider.getState() = = Provider.IN_SERVICE

hasRecordingCapabilityChanged()boolean

Related Documentation
See Constant Field Values, on page 1665.

CiscoProviderObserver
Implement this interface to receive CiscoProvEv events such as CiscoAddrCreatedEv and CiscoTermCreatedEv
when observing a Provider via the Provider.addObserver method.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.ProviderObserver

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
506

Cisco Unified JTAPI Extensions
Related Documentation

Declaration
public interface CiscoProviderObserver extends javax.telephony.ProviderObserver

Methods
None

Inherited Methods

From Interface javax.telephony.ProviderObserver

providerChangedEvent

Related Documentation
See CiscoAddrCreatedEv and CiscoTermCreatedEv.

CiscoProvTerminalCapabilityChangedEv
This event is delivered to the Provider when Terminal Capability is changed. This event is provided on
application observer .

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added event.7.0(1)

Modified the CiscoTerminal[] interface so that only
CiscoMediaTerminals or CiscoRouteTerminals gets returned.

7.0(1)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoProvTerminalCapabilityChangedEv extends CiscoProvEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
507

Cisco Unified JTAPI Extensions
Declaration

Fields
Table 158: Fields in CiscoProvTerminalCapabilityChangedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 159: Methods in CiscoProvTerminalCapabilityChangedEv

DescriptionMethodInterface

Returns an array of CiscoTerminals whose capabilities
have changed. In Cisco Unified Communications
Manager Release 7.0(1), CiscoTerminal[] interface was
modified so that only CiscoMediaTerminals or
CiscoRouteTerminals get returned.

getTerminals()CiscoTerminal[]

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
508

Cisco Unified JTAPI Extensions
Fields

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
None

CiscoProvTerminalRemoteDestinationChangedEv
CiscoProvTerminalRemoteDestinationChangedEv is a new interface exposed to the applications as a Provider
Event. JTAPI sends this event to the application's provider observer when any of Remote Destination
information is changed on a CiscoRemoteTerminal in the provider domain. This event contains the latest list
of Remote Destinations at a given time. And depending on the request or operation done on these remote
destinations, single or multiple CiscoProvTerminalRemoteDestinationChangedEv event(s) can be generated
from the change notification(s).

Methods
DescriptionMethodInterface

This method returns the CiscoRemoteTerminal object
for which its remote destination has changed.

getTerminal()CiscoRemoteTerminal

This method returns an array of
CiscoRemoteDestinationInfo objects representing the
latest/current list of remote destinations associated to
the CiscoRemoteTerminal at the time when this change
notification event took place.

getRemoteDestinations()CiscoRemoteDestinationInfo[]

This method can be used by application to determine
whether it is the last application to set active remote
destination for the CiscoRemoteTerminal.

isMyAppLastToSetActiveRD()boolean

CiscoRecorderInfo
This interface provides information about the recorder in a recording session. When a recording session is
active, this interface gives information about the recording device.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
509

Cisco Unified JTAPI Extensions
Related Documentation

Interface History

DescriptionCisco Unified Communications
Manager Release Number

A new method getMultiForkingRecorderInfo() is added which returns an array (maximum size 5)
of CiscoMultiForkingRecorderInfo[]. The following are the four new methods inside
getMultiForkingRecorderInfo() that provide the information about each recorder.

• getRecorderURI()

• getRecorderErrorMsg()

• getRecorderType()

• getRecorderStatus()

12.5(1)

Four new methods are added:

• getMediaForkingDeviceType()

• getMediaForkingDeviceName()

• getProtocolReferenceGUID()

• getMediaForkingClusterID()

10.0(1)

A new method, getRecordingType(), is added.9.0(1)

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRecorderInfo

Fields
None

Methods
Table 160: Methods in CiscoRecorderInfo

DescriptionMethodInterface

Returns the recorder address.getAddress()CiscoAddress

This method returns the recording type that was used to start the recording.getRecordingType()public int

Returns the terminal name of the recording device.getTerminalName()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
510

Cisco Unified JTAPI Extensions
Declaration

DescriptionMethodInterface

This interface returns the Media Forking Device Type for Gateway Recording.
The forking device type can be:

CiscoCall.CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_NONE
= 0

CiscoCall.CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE
= 1

CiscoCall.CALL_RECORDING_MEDIA_FORKING _DEVICE_TYPE_GW
= 2

getMediaForkingDeviceType()public int

This interface returns the Forking Device Name for Gateway Recording.getMediaForkingDeviceName()java.lang.String

This interface returns the Protocol Call Reference GUID for Gateway Recording.getProtocolReferenceGUID()java.lang.String

This interface returns the Forking Cluster ID for Gateway Recording.getMediaForkingClusterID()java.lang.String

Range of Values
The range of values returned by the getRecordingType() method is defined on the CiscoCall object:

CiscoCall.CALL_RECORDING_TYPE_NONE

CiscoCall.CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT

CiscoCall.CALL_RECORDING_TYPE_AUTOMATIC

CiscoCall.CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATION

CiscoCall.CALL_RECORDING_TYPE_USER_INITIATED_FROM

Related Documentation
None

CiscoRemoteDestinationInfo
CiscoRemoteDestinationInfo is a new interface that contains the information about a remote destination on
a CiscoRemoteTerminal. Applications can get a list of all associated remote destinations from the return array
of CiscoRemoteTerminal.getAllRemoteDestinations().

Methods
DescriptionMethodInterface

This method returns the remote destination name.getRemoteDestinationName()String

This method returns the remote destination number.getRemoteDestinationNumber()String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
511

Cisco Unified JTAPI Extensions
Range of Values

DescriptionMethodInterface

This method returns whether the remote destination is
an active remote destination or not.

getIsActiveRD()boolean

CiscoRemoteTerminal
CiscoRemoteTerminal is a new interface that extends the interface of CiscoTerminal. A CiscoRemoteTerminal
is a special kind of CiscoTerminal representing the CTI Remote Device and Jabber/CUCSF (Cisco Unified
Client Services Framework) Device in extend mode. It allows applications to monitor remote destinated
devices such as PSTN, PBSX, and Mobiles phones.

Interface History

DescriptionCisco Unified Communications Manager Release Number

A new interface, CiscoRemoteTerminal, is added.9.0(1)

Declaration
public interface CiscoRemoteTerminal

Methods
DescriptionMethodInterface

This method will return an array of
CiscoRemoteDestinationInfo representing all remote
destinations of the CiscoRemoteTerminal, or null if
none. Note that CiscoProvider must be in IN_SERVICE
state, otherwise InvalidStateException will be thrown.

getAllRemoteDestinations ()CiscoRemoteDestinationInfo[]

This method will return an array
CiscoRemoteDestinationInfo representing all active
remote destinations of the CiscoRemoteTerminal, or
null if none. Note that CiscoProvider must be in
IN_SERVICE state, otherwise InvalidStateException
will be thrown.

getActiveRemoteDestinations ()CiscoRemoteDestinationInfo[]

This method will set/unset an active remote destination
of the CiscoRemoteTerminal based on the remote
destination number. Note that CiscoProvider must be in
IN_SERVICE state, otherwise InvalidStateException
will be thrown. Also note that the Remote Destination
Numbermust be of a valid associated remote destination,
and if the remoteDestinationNumber parameter is null,
it will throw InvalidArgumentException.

setActiveRemoteDestination (String
remoteDestinationNumber, boolean
isActiveRD)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
512

Cisco Unified JTAPI Extensions
CiscoRemoteTerminal

DescriptionMethodInterface

This method will add a new remote destination to the
CiscoRemoteTerminal. Note that CiscoProvider must
be in IN_SERVICE state, otherwise
InvalidStateException will be thrown. And if either the
remoteDestinationNumber or remoteDestinationName
parameter is null, it will throw
InvalidArgumentException.

addRemoteDestination (String
remoteDestinationName, String
remoteDestinationNumber, boolean
isActiveRD)

void

This method will remove a remote destination from the
CiscoRemoteTerminal based on the remote destination
number. Note that CiscoProvider must be in
IN_SERVICE state, otherwise InvalidStateException
will be thrown. Also note that the Remote Destination
Numbermust be of a valid associated remote destination,
and if the remoteDestinationNumber parameter is null,
it will throw InvalidArgumentException.

removeRemoteDestination (String
remoteDestinationNumber)

void

This API will remove all associated remote destinations
from the CiscoRemoteTerminal. Note that CiscoProvider
must be in IN_SERVICE state, otherwise
InvalidStateException will be thrown.

removeAllRemoteDestinations ()void

This method will update the name of a remote
destination of the CiscoRemoteTerminal based on the
remote destination number. Note that CiscoProvider
must be in IN_SERVICE state, otherwise
InvalidStateException will be thrown. Also note that the
Remote Destination Number must be of a valid
associated remote destination, and if the
remoteDestinationNumber parameter is null, it will
throw InvalidArgumentException.

updateRemoteDestinationName
(String remoteDestinationNumber,
String remoteDestinationName)

void

This method will update the number of a remote
destination of the CiscoRemoteTerminal based on the
remote destination number. Note that CiscoProvider
must be in IN_SERVICE state, otherwise
InvalidStateException will be thrown. Also note that the
Remote Destination Number must be of a valid
associated remote destination, and if either the
remoteDestinationNumber or
newRemoteDestinationNumber parameter is null, it will
throw InvalidArgumentException.

updateRemoteDestinationNumber
(String remoteDestinationNumber,
StringnewRemoteDestinationNumber)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
513

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method will update a remote destination of the
CiscoRemoteTerminal based on the remote destination
number. It can update any or all of its remote destination
name, remote destination number, and isActiveRD at
the same time. Note that CiscoProvider must be in
IN_SERVICE state, otherwise InvalidStateException
will be thrown. Also note that the Remote Destination
Numbermust be of a valid associated remote destination,
and if the remoteDestinationNumber parameter is null,
it will throw InvalidArgumentException.

updateRemoteDestination (String
remoteDestinationNumber, String
remoteDestinationName, String
newRemoteDestinationNumber,
boolean isActiveRD)

void

This method will return true if this application issued a
successful registration request to register this terminal's
device in Extend mode; return false otherwise. It will
get set to true until this application unregisters the
device.

isRegisteredByThisApp ()boolean

This method will return the registration type with which
this terminal's device has been registered in. The
registration type returned can be one of the following:

• CiscoRemoteTerminal.
EXTEND_MEDIA_REGISTRATION

• CiscoRemoteTerminal.
NO_EXTEND_MEDIA_REGISTRATION

getRegistrationType ()int

This method will return true if this application is the last
application to set active remote destination for the
CiscoRemoteTerminal; return false otherwise. Note that
CiscoProvider must be in IN_SERVICE state, otherwise
InvalidStateException will be thrown.

isMyAppLastToSetActiveRD ()boolean

Parameters

String remoteDestinationName

The name of the specified remote destination.

String remoteDestinationNumber

The number of the specified remote destination.

boolean isActiveRD

The flag to indicate whether the specified remote destination is an active remote destination or not.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
514

Cisco Unified JTAPI Extensions
Parameters

Data Type
public static final int

EXTEND_MEDIA_REGISTRATION = 8

This registration type applies to CUCSF device that is registered in Extend mode, which as a result is
representing as a CiscoRemoteTerminal.

NO_EXTEND_MEDIA_REGISTRATION = 0

This registration type applies to non-CUCSF device that is static registered and is representing as
CiscoRemoteTerminal, such as CTI Remote Device.

New Error Codes
CiscoJtapiException.CTIERR_INVALID_REMOTE_DESTINATION_NUMBER (0x8CCC0121)

CiscoJtapiException.CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER (0x8CCC0122)

CiscoJtapiException.CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDED (0x8CCC0123)

CiscoJtapiException. CTIERR_REMOTE_DEVICE_REQUEST_FAILED_ACTIVE_RD_NOT_SET (0x
8CCC0124)

CiscoJtapiException.CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE (0x 8CCC0126)

CiscoJtapiException.CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTEND (0x 8CCC0127)

CiscoJtapiException.CTIERR_MEDIA_ALREADY_TERMINATED_EXTEND (0x 8CCC0128)

CiscoJtapiException.CTIERR_INVALID_REMOTE_DESTINATION_NAME (0x8CCC0130)

Sample Code

Sample Code:
public static void main(String[] args) {
try
{
JtapiPeer peer = JtapiPeerFactory.getJtapiPeer(null);
String provStr = provName + ";login = " + login + ";passwd = " + passwd;
Provider myProvider = peer.getProvider(provStr);
MyProviderObserver providerObserver = new MyProviderObserver();
String myDevName = "CTIRD-A";
String temp = “”;
if (myProvider ! = null)
{
myProvider.addObserver(providerObserver);
provInService.waitTrue();
CiscoRemoteTerminal rTerm =

(CiscoRemoteTerminal)(myProvider.getTerminal(myDevName));
if (rTerm ! = null)
{
CiscoRemoteDestinationInfo[] remoteDestinations =

rTerm.getAllRemoteDestinations();
CiscoRemoteDestinationInfo[] activeRemoteDestinations =

rTerm.getActiveRemoteDestinations();

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
515

Cisco Unified JTAPI Extensions
Data Type

System.out.println("CTI Remote Device Name: " + rTerm.getName());
if (remoteDestinations ! = null && remoteDestinations.length ! = 0)
{
System.out.println("Number of associated Remote Destinations (RD): " +
remoteDestinations.length);

for (int i = 0; i < remoteDestinations.length; i++)
{
System.out.println("RD["+i+"] Name: " +
remoteDestinations[i].getRemoteDestinationName());

System.out.println("RD["+i+"] Number: " +
remoteDestinations[i].getRemoteDestinationNumber());

System.out.println("RD["+i+"] IsActiveRD: " +
remoteDestinations[i].getIsActiveRD());

temp = remoteDestinations[i].getRemoteDestinationName();
if (temp ! = null && temp.equalsIgnoreCase(“MyOffice”))
{
temp = remoteDestinations[i].getRemoteDestinationNumber();
rTerm.updateRemoteDestinationNumber(temp, “9498231202”);
rTerm.setActiveRemoteDestination(“9498231202”, true);

}
}
rTerm.addRemoteDestination(“MyHome”, “6267978244”, false);

}
else
{
System.out.println("There is no associated Remote Destinations (RD)");

}
}
else
{
System.out.println("There is no CTI Remote Device of " + myDevName +
" in this provider");

}
}
else
{
System.out.println("Cannot create provider");

}
}
catch (Exception e)
{
System.out.println("Exception caught for getting CTI Remote Device RD info!

" + e);
if (e instanceof PlatformException)
{
switch (((CiscoJtapiException) e).getErrorCode())
{
case CiscoJtapiException.CTIERR_INVALID_REMOTE_DESTINATION_NUMBER:
System.out.println("Invalid RD Number");
break;

case CiscoJtapiException. CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER:
System.out.println("Duplicated RD Number");
break;

}
}

}
}
...

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
516

Cisco Unified JTAPI Extensions
Sample Code

CiscoRestrictedEv
The CiscoRestrictedEv event is the parent class for the CiscoAddrRestrictedEv and
CiscoAddrRestrictedOnTerminalEv events. This is the base class for restricted events and defines the cause
codes for all restricted events.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Subinterfaces
CiscoAddrRestrictedEv, CiscoAddrRestrictedOnTerminalEv

Declaration
public interface CiscoRestrictedEv extends CiscoProvEv

Fields
Table 161: Fields in CiscoRestrictedEv

DescriptionFieldInterface

The Terminal is restricted
for an unknown reason.

CAUSE_UNKNOWNstaticint

The Terminal is restricted
due to an unsupported
configuration (for
example, configuring the
rollover option).

CAUSE_UNSUPPORTED_DEVICE_CONFIGURATIONstaticint

The Terminal in the
control list is using a
protocol that Cisco
Unified JTAPI does not
support.

CAUSE_UNSUPPORTED_PROTOCOLstaticint

The Terminal or Address
is marked as restricted.

CAUSE_USER_RESTRICTEDstaticint

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
517

Cisco Unified JTAPI Extensions
CiscoRestrictedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE,CAUSE_SNAPSHOT,META_CALL_ADDITIONAL_PARTY,
META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING,
META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
518

Cisco Unified JTAPI Extensions
Inherited Fields

CiscoRouteAddress
This interface is deprecated and has not been implemented.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.Address, javax.telephony.callcenter.RouteAddress

Declaration
public interface CiscoRouteAddress extends javax.telephony.callcenter.RouteAddress

Fields
None

Inherited Fields

From Interface javax.telephony.callcenter.RouteAddress

ALL_ROUTE_ADDRESS

Methods
Table 162: Methods in CiscoRouteAddress

DescriptionMethodInterface

Deprecated

Throws

javax.telephony.ResourceUnavailableException javax,
telephony.MethodNotSupportedException

registerRouteCallback
(javax.telephony.callcenter.RouteCallbackrouteCallback,
booleandisableAutoRehoming)

void

Inherited Methods

From Interface javax.telephony.callcenter.RouteAddress

cancelRouteCallback, getActiveRouteSessions, getRouteCallback, registerRouteCallback

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
519

Cisco Unified JTAPI Extensions
CiscoRouteAddress

From Interface javax.telephony.Address

addCallObserver, addObserver, getAddressCapabilities, getCallObservers, getCapabilities, getConnections,
getName, getObservers, getProvider, getTerminals, removeCallObserver, removeObserver

Related Documentation
None

CiscoRouteEvent
The CiscoRouteEvent interface extends the RouteEvent interface with additional Cisco-specific capabilities.
Applications can use the getCallingPartyIpAddr method to obtain the IP address of the calling party device.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added the method getCallingPartyIpAddr_v6().7.1(1 and 2)

Superinterfaces
javax.telephony.callcenter.events.RouteEvent, javax.telephony.callcenter.events.RouteSessionEvent

Declaration
public interface CiscoRouteEvent extends javax.telephony.callcenter.events.RouteEvent

Fields
None

Inherited Fields

From Interface javax.telephony.callcenter.events.RouteEvent

SELECT_ACD, SELECT_EMERGENCY, SELECT_LEAST_COST, SELECT_NORMAL,
SELECT_USER_DEFINED

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
520

Cisco Unified JTAPI Extensions
Related Documentation

Methods
Table 163: Methods in CiscoRouteEvent

DescriptionMethodInterface

Returns the IPv6 address of the calling party. If the IP
address is not available, this method returns an
InetAddress with the IP address 0::0 and a null host
name. Printing this object yields a string representation
of “null/0::0”. Returns: InetAddress.

getCallingPartyIpAddr_v6()java.net.InetAddress

Returns the IP address of the calling party. If the IP
address is not available, this method returns an
InetAddress with the IP address 0.0.0.0 and a null host
name. Printing this object yields a string representation
of “null/0.0.0.0”.

getCallingPartyIpAddr()java.net.InetAddress

Inherited Methods

From Interface javax.telephony.callcenter.events.RouteEvent

getCallingAddress, getCallingTerminal, getCurrentRouteAddress, getRouteSelectAlgorithm,
getSetupInformation

From Interface javax.telephony.callcenter.events.RouteSessionEvent

getRouteSession

Related Documentation
None

CiscoRouteSession
The CiscoRouteSession interface supports application access to the underlying call that is associated with a
RouteSession. Also, this interface exposes various internal ERRORs for RouteEndEvent.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Added route selection with deviceName11.5(1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
521

Cisco Unified JTAPI Extensions
Methods

Superinterfaces
javax.telephony.callcenter.RouteSession

Declaration
public interface CiscoRouteSession extends javax.telephony.callcenter.RouteSession

Fields
Table 164: Fields in CiscoRouteSession

DescriptionFieldInterface

Each routeEvent() or
reRouteEvent() that is sent starts
a timer for the application to
respond with a routeSelect() or
endRoute(). The default value
of this timer is 5 seconds.
Should the application not
respond within this time, the
system calls an endRoute with
this error.

ERROR_ROUTESELECT_TIMEOUTstatic final int

Because there is no default route
mechanism in place, if there is
no callback registered for this
application, the system calls an
endRoute with this error.

ERROR_NO_CALLBACKstatic final int

If an internal
InvalidStateException occurred,
or some preconditions or
postconditions were not met
during routing, the system calls
endRoute with this error.

ERROR_INVALID_STATEstatic final int

This indicates that the redirect
should be done by using the
search space that is the default
for the implementation. The
default is to use the caller search
space.

DEFAULT_SEARCH_SPACEstatic final int

This indicates that the redirect
should be done by using the
search space of the calling
address.

CALLINGADDRESS_SEARCH_SPACEstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
522

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

This indicates that the redirect
should be done by using the
search space of the route point
address.

ROUTEADDRESS_SEARCH_SPACEstatic final int

This is a parameter value for the
PreferedOriginalCalled option;
it specifies not to reset
OriginalCalled.

DONOT_RESET_ORIGINALCALLEDstatic final int

This is a parameter value for
PreferedOriginalCalled Option;
if the value of
preferedOriginalCalledOption
is set to this, it will reset the
OriginalCalled to
preferedOriginalCalledNumber.

RESET_ORIGINALCALLEDstatic final int

This constant returned by
RouteSession.getCause()
indicates that the
routeSelectedElement in the
selectRoute does not contain the
required FAC code.

CAUSE_CTIERR_FAC_CMC_REASON_FAC_NEEDEDstatic final int

This constant returned by
RouteSession.getCause()
indicates that the
routeSelectedElement in the
selectRoute does not contain the
required CMC code.

CAUSE_CTIERR_FAC_CMC_REASON_CMC_NEEDEDstatic final int

This constant returned by
RouteSession.getCause()
indicates that the
routeSelectedElement in the
selectRoute does not contain the
required FAC and CMC codes.

CAUSE_CTIERR_FAC_CMC_REASON_FAC_CMC_NEEDEDstatic final int

This constant returned by
RouteSession.getCause()
indicates that the
routeSelectedElement in the
selectRoute contains an invalid
FAC code.

CAUSE_CTIERR_FAC_CMC_REASON_FAC_INVALIDstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
523

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This constant returned by
RouteSession.getCause()
indicates that the
routeSelectedElement in the
selectRoute contains an invalid
CMC code.

CAUSE_CTIERR_FAC_CMC_REASON_CMC_INVALIDstatic final int

Inherited Fields

From Interface javax.telephony.callcenter.RouteSession

CAUSE_INVALID_DESTINATION,CAUSE_NO_ERROR,CAUSE_PARAMETER_NOT_SUPPORTED,
CAUSE_ROUTING_TIMER_EXPIRED, CAUSE_STATE_INCOMPATIBLE,
CAUSE_UNSPECIFIED_ERROR, ERROR_RESOURCE_BUSY,
ERROR_RESOURCE_OUT_OF_SERVICE, ERROR_UNKNOWN, RE_ROUTE, ROUTE,
ROUTE_CALLBACK_ENDED, ROUTE_END, ROUTE_USED

Methods
Table 165: Methods in CiscoRouteSession

DescriptionMethodInterface

Returns the call associated with this RouteSession.getCall()javax.telephony.Call

Overloads the selectRoute method in the RouteSession
interface to allow applications to specify a calling search
space to use when the call is redirected to the route
destination.

Parameters

javax.telephony. MethodNotSupportedException

Throws

• callingSearchSpace—One of CiscoRouteSession.
DEFAULT_SEARCH_SPACE;
CiscoRouteSession.
CALLINGADDRESS_SEARCH_SPACE; or
CiscoRouteSession.
ROUTEADDRESS_SEARCH_SPACE.

• routeSelected—A list of possible destinations for
the call.

selectRoute(java.lang.
String[]routeSelected,
intcallingSearchSpace)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
524

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

selectRoute(java.lang.
String[]routeSelected,
intcallingSearchSpace, java.lang.
String[]modifyingCallingNumber)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
525

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Selects one or more possible routing destinations for a
call with a modified calling number. This method takes
as an argument that is a string array of destination
telephone address names, modifyingCallingNumber,
arranged in priority order.

The highest-priority destination is the first element in
the specified array and routing is attempted with this
destination first with the corresponding element of
modifying calling number.

If modifiedCallingNumber is null for an element, the
calling number is not modified if a call is routed to that
particular routeSelected element. The system attempts
to use the specified destination addresses in order until
the system successfully selects a destination. The system
delivers a RouteUsedEvent to the application when it
routes the call to that destination.

Pre-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =
RouteSession.ROUTE or
RouteSession.RE_ROUTE

Post-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =

• RouteSession.ROUTE_USED (if the Call was
successfully routed.) A RouteUsedEvent gets
delivered for this RouteSession if a successful
destination was selected.

Parameters

• routeSelected—Possible destinations for
callcallingSearchSpace can be
CiscoRouteSession.DEFAULT_SEARCH_SPACE;
CiscoRouteSession.
CALLINGADDRESS_SEARCH_SPACE; or
CiscoRouteSession.
ROUTEADDRESS_SEARCH_SPACE.

• modifyingCallingNumber—An array of elements
for which the application wants to modify the
calling number when the call reaches the
routeSelected element.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
526

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Throws

• com.cisco.jtapi.
MethodNotSupportedExceptionImpl (The
implementation does not support routing.)

• javax.telephony. PrivilegeViolationException (The
user does not have the necessary privileges to use
this method.)

• javax.telephony.MethodNotSupportedException
selectRoute

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
527

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

selectRoute(java.lang.
String[]routeSelected,
intcallingSearchSpace, java.lang.
String[]preferedOriginalCalledNumber,
int[]preferedOriginalCalledOption

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
528

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Selects one or more possible destinations for routing the
Call. This method takes as an argument a string array
of destination telephone address names, in prioritized
order, and a string array for the PreferredOriginalCalled
number.

PreferedOriginalCalled number gets selected based on
the index of the destination telephone names array. If
the index corresponding to the destination array is not
found in the PreferedOriginalCalled number array,
preferedOriginalCalled gets set to the destination.

The highest-priority destination is the first element in
the given array, and the system attempts to route with
this destination first. The system attempts each given
destination address in succession until the call gets
successfully routed. The system delivers a
RouteUsedEvent event to the application when a
successful routing destination has been selected and the
Call has been routed to that destination.

Pre-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =
RouteSession.ROUTE or

• RouteSession.RE_ROUTE

Post-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =

• RouteSession.ROUTE_USED (if the Call was
successfully routed.) A RouteUsedEvent gets
delivered for this RouteSession if a successful
destination was selected.

Parameters

• routeSelected—Possible destinations for the call.

• preferedOriginalCalledNumber—List with each
item corresponding to a route at the matching array
index in the routeSelected list.

• preferedOriginalCalledOption—List of options,
each corresponding to routeSelected list. The option
specifies whether to set OriginalCalled to
preferedOriginalCalledNumber. The option values

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
529

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

are CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED and
CiscoRouteSession.RESET_ORIGINALCALLED.
If the value is unspecified or null, the default is
CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED.

Throws

com.cisco.jtapi. MethodNotSupportedExceptionImpl
(The implementation does not support routing.)

javax.telephony. PrivilegeViolationException (The user
does not have the necessary privileges to use this
method.)

javax.telephony. MethodNotSupportedException
selectRoute

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
530

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

selectRoute(java.lang.
String[]routeSelected,
intcallingSearchSpace, java.lang.
String[]modifyingCallingNumber,
java.lang.
String[]preferedOriginalCalledNumber,
int[]preferedOriginalCalledOption,
java.lang. String[]facCode, java.lang.
String[]cmcCode)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
531

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Selects one or more possible routing destinations. It
takes as arguments a string array of:

• destination telephone address names, in prioritized
order

• PreferredOriginalCalled numbers
• FACs
• CMCs

The system selects the PreferedOriginalCalled number
corresponding to the index of the destination telephone
name array. If the index is not found in the
PreferedOriginalCalled number array, the
preferedOriginalCalled gets set to the destination.

The highest priority destination is the first element in
the specified array, and the system attempts to route the
call to that destination first. The system attempts the
specified destination addresses in order, until the call
gets routed successfully. The system delivers a
RouteUsedEvent event to the application when the
system has selected a successful routing destination and
routed the call to that destination.

Pre-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =
RouteSession.ROUTE

• RouteSession.RE_ROUTE

Post-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =

• RouteSession.ROUTE_USED (if the call was
successfully routed). A RouteUsedEvent gets
delivered for this RouteSession if a successful
destination was selected.

Parameters

• routeSelected—List of possible destinations.

• preferedOriginalCalledNumber—List with each
member of corresponding to the route at the same
array index in the routeSelected.

• list.preferedOriginalCalledOption—List of options,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
532

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

each corresponding to RouteList. The option
specifies whether to set OriginalCalled to
preferedOriginalCalledNumber. The option values
are CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED and
CiscoRouteSession.
RESET_ORIGINALCALLED.If the value is
unspecified or null, the default is
CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED.

• modifyingCallingNumber—Array of elements for
which the application wants modify the calling
number when the call reaches the routeSelected
element. If applications do not want to modify the
number, a null value for this parameter must be
passed by the application.

• facCode (Forced Authorization Code [FAC])—If
a routeSelected element requires a FAC, the
corresponding facCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

• cmcCode - (Client Matter Code [CMC]) If a
routeSelected element requires a CMC, the
corresponding cmcCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

Throws

• com.cisco.jtapi.
MethodNotSupportedExceptionImpl (The
implementation does not support routing.)

• javax.telephony. PrivilegeViolationException (The
user does not have the necessary privileges to use
this method.)

• javax.telephony. MethodNotSupportedException
selectRoute

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
533

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

selectRoute(java.lang.
String[]routeSelected,
intcallingSearchSpace, java.lang.
String[]modifyingCallingNumber,
java.lang.
String[]preferedOriginalCalledNumber,
int[]preferedOriginalCalledOption,
java.lang. String[]facCode, java.lang.
String[]cmcCode, intfeaturePriority)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
534

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Selects one or more possible routing destinations. It
takes a string array of:

• Destination telephone address names, in prioritized
order

• PreferredOriginalCalled numbers
• FACs
• CMCs
• Integer priorities

The PreferedOriginalCalled number gets selected based
on the index of the destination telephone name array. If
the index tis not found in the PreferedOriginalCalled
number array, preferedOriginalCalled gets set to the
destination.

The highest-priority destination is the first element in
the given array, and the system attempts to route with
this destination first. The system tries the successive
specified destination addresses until the call gets routed
successfully. The system delivers a RouteUsedEvent
event to the application when a successful routing
destination has been selected and the call has been routed
to that destination.

Pre-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =
RouteSession.ROUTE

• RouteSession.RE_ROUTE

Post-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =

• RouteSession.ROUTE_USED (if the Call was
successfully routed.)

Parameters

routeSelected—Possible destinations for the call.

preferedOriginalCalledNumber—Listwith each element
corresponding to the route at the same array index in the
routeSelected list.

preferedOriginalCalledOption—Options list, each
corresponding to RouteList. The option specifies whether

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
535

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

to set OriginalCalled to preferedOriginalCalledNumber.
The option values are CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED and
CiscoRouteSession. RESET_ORIGINALCALLED. If
the value is unspecified or null, the default is
CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED.

• modifyingCallingNumber—Array of elements for
which the application would like to modify the
calling number when the call reaches the
routeselected element. If applications do not want
to modify the number, they must pass a null value
for this parameter.

• facCode (Forced Authorization Code [FAC])—If
a routeSelected element requires a FAC, the
corresponding facCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

• cmcCode (Client Matter Code [CMC])—If a
routeSelected element requires a CMC, the
corresponding cmcCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

• featurePriority—Sets the feature priority of the call.
The application may set CiscoCall.
FEATUREPRIORITY_NORMAL if the
application does not want to set any specific
priority. The featurePriority parameter may be:

• CiscoCall. FEATUREPRIORITY_NORMAL

• CiscoCall. FEATUREPRIORITY_URGENT

• CiscoCall.
FEATUREPRIORITY_EMERGENCY

Throws

• javax.telephony. PrivilegeViolationException (The
user does not have the necessary privileges to use
this method.)

• com.cisco.jtapi.
MethodNotSupportedExceptionImpl (The
implementation does not support routing.)

• javax.telephony. MethodNotSupportedException

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
536

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

selectRoute(java.lang.
String[]routeSelected,
int[]callingSearchSpace, java.lang.
String[]modifyingCallingNumber,
java.lang.
String[]preferedOriginalCalledNumber,
int[]preferedOriginalCalledOption,
java.lang. String[]facCode, java.lang.
String[]cmcCode,
int[]featurePriority)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
537

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Selects one or more possible routing destinations. It
takes a string array of:

• destination telephone address names, in prioritized
order

• calling search spaces
• modifyingCallingNumbers
• PreferredOriginalCalled numbers
• FACs
• CMCs
• feature priorities

The PreferedOriginalCalled number gets selected based
on the index of the destination telephone name array. If
the index tis not found in the PreferedOriginalCalled
number array, preferedOriginalCalled gets set to the
destination.

The highest-priority destination is the first element in
the given array, and the system attempts to route with
this destination first. The system tries the successive
specified destination addresses until the call gets routed
successfully.

The system delivers a RouteUsedEvent event to the
application when a successful routing destination has
been selected and the call has been routed to that
destination.

Pre-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =
RouteSession.ROUTE

• RouteSession.RE_ROUTE

Post-conditions

• this.getRouteAddress().getProvider().getState() =
=

• Provider.IN_SERVICE this.getState() = =

• RouteSession.ROUTE_USED (if the call was
successfully routed.)

Parameters

• routeSelected—List of possible destinations for the
call.

• callingSearchSpace—For each route selected; can

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
538

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

be CiscoRouteSession.
DEFAULT_SEARCH_SPACE,
CiscoRouteSession.
CALLINGADDRESS_SEARCH_SPACE, or
CiscoRouteSession.
ROUTEADDRESS_SEARCH_SPACE.

• preferedOriginalCalledNumber—List with each
element corresponding to the route at the same
array index in the routeSelected list.

• preferedOriginalCalledOption—Options list, each
corresponding to RouteList. The option specifies
whether to set OriginalCalled to
preferedOriginalCalledNumber. The option values
are CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED and
CiscoRouteSession.RESET_ORIGINALCALLED.
If the value is unspecified or null, the default is
CiscoRouteSession.
DONOT_RESET_ORIGINALCALLED.

• modifyingCallingNumber—Elements array for
which the application would like to modify the
calling number when the call reaches the
routeselected element. If applications do not want
to modify the number, they must pass a null value
for this parameter.

• facCode (Forced Authorization Code [FAC])—If
a routeSelected element requires a FAC, the
corresponding facCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

• cmcCode (Client Matter Code [CMC])—If a
routeSelected element requires a CMC, the
corresponding cmcCode element must contain that
code. If no code is required for a routeSelected
element, the application must pass a null value for
this parameter.

• featurePriority—For each route selected, the feature
priority can be set. The application may set
CiscoCall. FEATUREPRIORITY_NORMAL if
the application does not want to set any specific
priority. The featurePriority parameter may be
CiscoCall. FEATUREPRIORITY_NORMAL,
CiscoCall. FEATUREPRIORITY_URGENT, or
CiscoCall.FEATUREPRIORITY_EMERGENCY

Throws

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
539

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

• javax.telephony. PrivilegeViolationException (The
user does not have the necessary privileges to use
this method.)

• com.cisco.jtapi.
MethodNotSupportedExceptionImpl (The
implementation does not support routing.)

• javax.telephony. MethodNotSupportedException

This method is similar to the above method, but takes
an array of destination device names, in a prioritized
order. This order of device names corresponds to the
order of destinations provided in route selected.

This method takes a string array of:

• destination telephone address names, in prioritized
order

• calling search spaces

• modifyingCallingNumbers

• PreferredOriginalCalled numbers

• FACs

• CMCs

• feature priorities

• Application XML

• device Names

selectRoute(String[] routeSelected,
int[] callingSearchSpace, String[]
modifyingCallingNumber,String[]
preferedOriginalCalledNumber, int[]
preferedOriginalCalledOption,
String[] facCode, String[]
cmcCode,int[] featurePriority,
byte[][] applicationXMLData,
String[] deviceName

void

Inherited Methods

From Interface javax.telephony.callcenter.RouteSession

endRoute, getCause, getRouteAddress, getState, selectRoute

Related Documentation
See Constant Field Values, on page 1665.

CiscoRouteTerminal
A CiscoRouteTerminal is a special kind of CiscoTerminal that allows applications to terminate RTP media
streams. Unlike a CiscoTerminal, a CiscoRouteTerminal does not represent a physical telephony endpoint,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
540

Cisco Unified JTAPI Extensions
Inherited Methods

which is observable and controllable in a third-party manner. Instead, a CiscoRouteTerminal is a logical
telephony endpoint that may be associated with any application that wants to route calls and terminate media.
Unlike a CiscoMediaTerminal, a CiscoRouteTerminal can havemultiple active calls at the same time. Typically,
applications use CiscoRouteTerminals to queue calls until an agent is available to service them.

CiscoRouteTerminals are CTI Route Points on Cisco Unified Communications Manager.Note

Terminating media is a three-step process as follows:

1. The application registers its media capabilities with this Terminal by using the CiscoRouteTerminal.register
method.

2. The application adds an observer that implements the CiscoTerminalObserver interface by using the
Terminal.addObserver method.

3. The application must call addCallObserver on the CiscoRouteTerminal or the CiscoRouteAddress to
receive and answer calls.

Applications will receive a CiscoMediaOpenLogicalChannelEv for each call or whenever media is stopped
and needs to be reestablished. Applications must supply an IP address and port number by using the
setRTPParams method on CiscoRouteTerminal.

Important—All applications written for or prior to CiscoJtapiClient Release 1.4 must be modified to register
with CiscoRouteTerminal.NO_MEDIA_TERMINATION type if the applications are not interested in media
termination.

Note

Multiple applications can register with same RoutePoint as long as they are registered with the same media
capabilities and registration type. All applications, if registered with
CiscoRouteTerminal.DYNAMIC_MEDIA_REGISTRATION,will receiveCiscoMediaOpenLogicalChannelEv
when they add a callObserver, but only one application will be able to invoke setRTPParams.

Applications that are interested in media termination must add a CallObserver on the RouteAddress or on the
CiscoRouteTerminals. Applications must not register with Dynamic type and add a registerRouteCallBack.
Applications should only use registerRouteCallBack if they are not interested inmedia termination. Applications
must not add a registerRouteCallBack and a callObserver at the same time.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added these modes to the activeAddressingMode:

• CiscoTerminal.IP_ADDRESSING_MODE_IPv6
• CiscoTerminal.IP_ADDRESSING_MODE_IPv4_v6

7.1(1 and 2)

Superinterfaces
CiscoObjectContainer, CiscoTerminal, javax.telephony.Terminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
541

Cisco Unified JTAPI Extensions
Superinterfaces

Declaration
public interface CiscoRouteTerminal extends CiscoTerminal

Fields
Table 166: Fields in CiscoRouteTerminal

DescriptionFieldInterface

Applications that are interested in media
termination need to register with this type
and pass in the capabilities that the
application supports in the registration
request.

DYNAMIC_MEDIA_REGISTRATIONstaticint

Applications that are not interested inmedia
termination need to register with this type
and pass in a null value for
CiscoMediaCapability in the registration
request.

If registrationType is CiscoRouteTerminal.
NO_MEDIA_REGISTRATION, the
application cannot terminate media and can
use the CiscoRouteTerminal for call
routing.

NO_MEDIA_REGISTRATIONstaticint

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoTerminal

ASCII_ENCODING, DEVICESTATE_ACTIVE, DEVICESTATE_ALERTING, DEVICESTATE_HELD,
DEVICESTATE_IDLE, DEVICESTATE_UNKNOWN, DEVICESTATE_WHISPER,
DND_OPTION_CALL_REJECT, DND_OPTION_NONE, DND_OPTION_RINGER_OFF, IN_SERVICE,
IP_ADDRESSING_MODE_IPV4, IP_ADDRESSING_MODE_IPV4_V6, IP_ADDRESSING_MODE_IPV6,
IP_ADDRESSING_MODE_UNKNOWN, IP_ADDRESSING_MODE_UNKNOWN_ANATRED,
NOT_APPLICABLE, OUT_OF_SERVICE, UCS2UNICODE_ENCODING, UNKNOWN_ENCODING

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
542

Cisco Unified JTAPI Extensions
Declaration

Methods
Table 167: Methods in CiscoRouteTerminal

DescriptionMethodInterface

Registers a Terminal with specified
CiscoMediaCapabilities and register type. The Provider
must be in the Provider.IN_SERVICE state. Returns
successfully when the CiscoRouteTerminal is registered.

Parameters

• capabilities—List of RTP encodings that the
application supports for this Terminal. If the
application is not interested in media termination,
you may pass in a null value.

• registrationType—Either CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION or
CiscoRouteTerminal
.NO_MEDIA_REGISTRATION.

If registrationType is CiscoRouteTerminal
.NO_MEDIA_REGISTRATION, the application
cannot terminate media and can use the
CiscoRouteTerminal for call routing.

If registrationType is CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION, the
application can terminate media and can have
multiple active calls. This registrationType
indicates that the application will supply the IP
address and port dynamically for each call.
Applications registering with this type receive a
CiscoMediaOpenLogicalChannelEv for each call
and must supply the IP address and port number
by using the setRTPParams method on the
CiscoRouteTerminal .

Throws

• CiscoRegistrationException

register(CiscoMediaCapability[]capabilities,
intregistrationType)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
543

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Registers a Terminal with the specified
CiscoMediaCapabilities, registrationType, and supported
SRTP algorithms. The Provider must be in the
Provider.IN_SERVICE state. This method returns
successfully when the CiscoRouteTerminal is registered.

Parameters

• capabilities—List of RTP encodings that the
application supports for this Terminal. If the
application is not interested in media termination,
you may pass in a null value.

• registrationType—Either CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION or
CiscoRouteTerminal
.NO_MEDIA_REGISTRATION.

If registrationType is CiscoRouteTerminal
.NO_MEDIA_REGISTRATION, the application
cannot terminate media and can use the
CiscoRouteTerminal for call routing. Other
parameters in the method are ignored.

If registrationType is CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION, the
application can terminate media and can have
multiple active calls. This registrationType
indicates that the application will supply the IP
address and port dynamically for each call.
Applications registering with this type receive a
CiscoMediaOpenLogicalChannelEv for each call
and must supply the IP address and port number
by using the setRTPParams method.

• algorithmIDs—List of SRTP algorithms that the
application supports for this Terminal. To use this,
the application must have the TLS Link and SRTP
Enabled flag enabled. AlgorithmIDs must be one
of CiscoMediaEncryptionSupportedAlgorithms.

Throws

• javax.telephony.PrivilegeViolationException (The
application tried to use the method, but is not
authorized to use it.)

• CiscoRegistrationException

register(CiscoMediaCapability[]capabilities,
intregistrationType, int[]algorithmIDs)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
544

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

register(CiscoMediaCapability[]capabilities,
intregistrationType, int[]algorithmIDs,
intactiveAddressingMode)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
545

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

The CiscoRouteTerminal must be in the
CiscoTerminal.UNREGISTERED state and its Provider
must be in the Provider.IN_SERVICE state. The
successful effect of this method is to register the
RouteTerminal. Registers a Terminal with specified
CiscoMediaCapabilities and register type and supported
SRTP Algorithms.

If registrationType is CiscoRouteTerminal
.NO_MEDIA_REGISTRATION, application cannot
terminate media and can use route point for call routing
purpose. Other parameters in the method are ignored.

If registration Type is CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION, then app can
terminate media and can have multiple active calls. This
Indicates that application is interested in supplying
ipAddress and port dynamically for each call.

Applications registering with this type will receive
CiscoMediaOpenLogicalChannelEv for each call and
will have to supply ipAddress and port number using
setRTPParams method on CiscoRouteTerminal .

Method arguments

Capabilities indicates the type of RTP encodings that
the application is willing to support for this Terminal.
If application is not intersted in media termination, it
may pass in null value registrationType may be
CiscoRouteTerminal .NO_MEDIA_REGISTRATION
or CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION.

Supported Algorithms may be the SRTP Algorithms
that application supports for this terminal. In order to
use this, application need to have TLS Link and SRTP
Enabled flag enabled. PrivilegeViolationException is
thrown if app is not authorized to use this method.

Post-condition

This method returns successfully when the
CiscoRouteTerminal is registered.

Parameters

• capabilities—List of RTP encodings supported by
this terminal.

• registrationType—CiscoRouteTerminal
.DYNAMIC_MEDIA_REGISTRATION or
CiscoRouteTerminal
.NO_MEDIA_REGISTRATION

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
546

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

• algorithmIDs—List of supported SRTP algorithms.
AlgorithmIDs may only be one of
CiscoMediaEncryptionSupportedAlgorithms.

• activeAddressingMode—IP Addressing mode in
which application intends to register this
CiscoRouteTerminal . The modes can be:

• CiscoTerminal.IP_
ADDRESSING_MODE_IPv4

• CiscoTerminal.IP_
ADDRESSING_MODE_IPv6

• CiscoTerminal.IP_
ADDRESSING_MODE_IPv4_v6

Throws

• CiscoRegistrationException

• javax.telephony.PrivilegeViolationException

The CiscoRouteTerminal must be registered and its
Provider must be in the Provider.IN_SERVICE state.
The successful effect of this method is to unregister the
CiscoRouteTerminal .

Post-condition

• This method returns successfully when the
MediaTerminal is unregistered.

Throws

• CiscoUnregistrationException

unregister()void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
547

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Applications can set the IP address and RTP Port number
to dynamically stream media for a call. To do this,
applications must register MediaTerminal or
CiscoRouteTeminal by providing only capabilities.

Applications must then invoke this method upon
receiving CiscoCallOpenLogicalChannelEv on the
TerminalObserver.

Parameters

rtpHandle—The handle the application receives in
CiscoCallOpenLogicalChannelEvrtpParams. Refer to
CiscoRTPParams.

Throws

• javax.telephony.InvalidStateException

• javax.telephony.InvalidArgumentException

• javax.telephony.PrivilegeViolationException

setRTPParams(CiscoRTPHandlertpHandle,
CiscoRTPParamsrtpParams)

void

This method returns true if the CiscoMediaTerminal is
registered and false otherwise. If the
CiscoRouteTerminal is OutOfService, this method
returns false; if it is InService, this method returns true.
For CTIManager failure cases, this method returns false.

isRegistered()boolean

This method returns true if this application issued a
successful registration request. The registration remains
valid even if the device is out-of-service because of a
CTIManager failure. This returns true until this
application unregisters the device.

isRegisteredByThisApp()boolean

Application can invoke this API to query the IP
Addressing Mode of the CiscoRouteTerminal .
Addressingmodemay be any of the following constants:

• CiscoTerminal.IP_ ADDRESSING_IPv4
• CiscoTerminal.IP_ ADDRESSING_IPv6
• CiscoTerminal.IP_ ADDRESSING_IPv4_v6

getIPAddressingMode()int

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoTerminal

createSnapshot, getAltScript, getDeviceState, getDNDOption, getDNDStatus, getEMLoginUsername, getFilter,
getLocale, getProtocol, getRegistrationState, getRTPInputProperties, getRTPOutputProperties, getState,
getSupportedEncoding, isRestricted, sendData, sendData, setDNDStatus, setFilter, unPark

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
548

Cisco Unified JTAPI Extensions
Inherited Methods

From Interface javax.telephony.Terminal

addCallObserver, addObserver, getAddresses, getCallObservers, getCapabilities, getName, getObservers,
getProvider, getTerminalCapabilities, getTerminalConnections, removeCallObserver, removeObserver

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

getObject, setObject

Related Documentation
See CiscoTerminal and Constant Field Values, on page 1665 CiscoMediaOpenLogicalChannelEv

CiscoRouteUsedEvent
The CiscoRouteUsedEvent event indicates that the RouteSessionmoved into the RouteSession.ROUTE_USED
state and the call terminated at a destination as a result of application routing. This interface extends the
RouteUsedEvent interface and gets reported via the RouteCallback interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.callcenter.events.RouteSessionEvent, javax.telephony.callcenter.events.RouteUsedEvent

Declaration
public interface CiscoRouteUsedEvent extends javax.telephony.callcenter.events.RouteUsedEvent

Fields
None

Methods
Table 168: Methods in CiscoRouteUsedEvent

DescriptionMethodInterface

Returns an array index of the route where the call got
routed.

getRouteSelectedIndex()Int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
549

Cisco Unified JTAPI Extensions
Related Documentation

Inherited Methods

From Interface javax.telephony.callcenter.events.RouteUsedEvent

getCallingAddress, getCallingTerminal, getDomain, getRouteUsed

From Interface javax.telephony.callcenter.events.RouteSessionEvent

getRouteSession

Related Documentation
See RouteSession, RouteCallback, and RouteSessionEvent.

CiscoRTPBitRate
The RTPBitRate interface contains constants describing G.723 RTP bit rates.
CiscoRTPInputProperties.getBitRate and CiscoRTPOutputProperties.getBitRate return these constants.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPBitRate

Fields
Table 169: Fields in CiscoRTPBitRate

DescriptionFieldsInterface

This constant is the 5.3k G.723 bit rate.R5_3staticint

This constant is the 6.4k G.723 bit rate.R6_4staticint

Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
550

Cisco Unified JTAPI Extensions
Inherited Methods

Related Documentation
See CiscoRTPInputProperties.getBitRate(), CiscoRTPOutputProperties.getBitRate()

CiscoRTPHandle
Use the CiscoRTPHandle object to get a call reference with CiscoProvider.getCall(CiscoRTPHandle). This
object gets returned in CiscoMediaCallOpenLogicalChannelEv. Pass this handle in the setRTPParams parameter
of CiscoMediaTerminal or CiscoRouteTerminal, depending on where the
CiscoMediaCallOpenLogicalChannelEv event gets received.

If no call observer was added, or there was no call observer added at the time CiscoMediaCallOpen
LogicalChannelEv got sent, CiscoProvider.getCall(CiscoRTPHandle) may return null.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPHandle

Fields
None

Methods
Table 170: Methods in CiscoRTPHandle

DescriptionMethodInterface

Returns the Cisco Unified Communications Manager
CallLeg ID of the call, in integer format.

getHandle()Int

Related Documentation
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
551

Cisco Unified JTAPI Extensions
Related Documentation

CiscoRTPInputKeyEv
The CiscoRTPInputKeyEv event interface gives the key information for the encrypted incomingmedia stream.
Applications should set the filter by using CiscoTermEvFilter.setRTPKeyEventsEnabled(true) to get this
event via the TerminalObserver.terminalChangedEvent().

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPInputKeyEv extends CiscoTermEv

Fields
Table 171: Fields in CiscoRTPInputKeyEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
552

Cisco Unified JTAPI Extensions
CiscoRTPInputKeyEv

META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 172: Methods in CiscoRTPInputKeyEv

DescriptionMethodInterface

Returns CiscoMediaEncryptionKeyInfo only if the
provider is opened with the TLS link and SRTP enabled
options set for the application in the Cisco Unified
Communications Manager administration. Otherwise,
it returns null.

getCiscoMediaEncryptionKeyInfo()int

Returns the media security indicator, one of the
following constants:

CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_AVAILABLE

CiscoMediaSecurityIndicator.
MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

getCiscoMediaSecurityIndicator()int

Returns a CiscoCallID object if there is already a
CiscoCall present when this event is sent. If there is no
CiscoCall present, this method returns null.
getCallID().getCall() gives the call for which this key
applies.

getCallID()CiscoCallID

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event got delivered, CiscoProvider.getCall returns
null. Returns:CiscoRTPHandle.

getCiscoRTPHandle()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
553

Cisco Unified JTAPI Extensions
Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoRTPParams, CiscoMediaSecurityIndicator.

CiscoRTPInputProperties
The CiscoRTPInputProperties interface returns the properties of the media received by the Terminal (the
inbound media stream). CiscoRTPInputStartedEv indicates that the media started.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPInputProperties

Fields
None

Methods
Table 173: Methods in CiscoRTPInputProperties

DescriptionMethodInterface

Returns the media bit rate and can
CiscoRTPBitRate.R5_3 or CiscoRTPBitRate.R6_4.

getBitRate()int

Returns True if the application needs to use echo
cancellation.

getEchoCancellation()boolean

Returns the address to which media will be directed.getLocalAddress()java.net.InetAddress

Returns the port to which media will be directed.getLocalPort()int

Returns the packet size, in milliseconds.getPacketSize()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
554

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionMethodInterface

Returns the payload format, which is one of the
following constants:

• CiscoRTPPayload.G711ALAW64K
• CiscoRTPPayload.G711ALAW56K
• CiscoRTPPayload.G711ULAW64K
• CiscoRTPPayload.G711ULAW56K
• CiscoRTPPayload.G722_64K
• CiscoRTPPayload.G722_56K
• CiscoRTPPayload.G722_48K
• CiscoRTPPayload.G7231
• CiscoRTPPayload.G728
• CiscoRTPPayload.G729
• CiscoRTPPayload.G729ANNEXA
• CiscoRTPPayload.ACY_G729AASSN
• CiscoRTPPayload.DATA64
• CiscoRTPPayload.DATA56
• CiscoRTPPayload.GSM
• CiscoRTPPayload.WIDEBAND_256K

getPayloadType()int

Related Documentation
See CiscoRTPPayload and CiscoRTPBitRate.

CiscoRTPInputStartedEv
The CiscoRTPInputStartedEv event indicates the start of incoming media.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPInputStartedEv extends CiscoTermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
555

Cisco Unified JTAPI Extensions
Related Documentation

Fields
Table 174: Fields in CiscoRTPInputStartedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 175: Methods in CiscoRTPInputStartedEv

DescriptionMethodInterface

Returns CiscoCallID.getCallID()CiscoCallID

Returns a CiscoRTPHandle object.getCiscoRTPHandle()CiscoRTPHandle

Returns a CiscoMediaConnectionMode.getMediaConnectionMode()int

Returns CiscoRTPInputProperties, which gives the
characteristics of the incoming media.

getRTPInputProperties()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
556

Cisco Unified JTAPI Extensions
Fields

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoRTPInputProperties, CiscoCallID, CiscoRTPParams, and
CiscoMediaConnectionMode.

CiscoRTPInputStoppedEv
The CiscoRTPInputStoppedEv event indicates that the incoming media stream has stopped.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPInputStoppedEv extends CiscoTermEv

Fields
Table 176: Fields in CiscoRTPInputStoppedEv

DescriptionFieldInterface

NoneIDstaticint

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
557

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 177: Methods in CiscoRTPInputStoppedEv

DescriptionMethodInterface

Returns CiscoCallID. CiscoRTPInputStartedEv applies
to CiscoCallID.getCall().

getCallID()CiscoCallID

Returns CiscoRTPHandle object. Applications can get
call reference using CiscoProvider.getCall If there is no
callobserver or there was no callobserver when this event
is delivered, then CiscoProvider.getCall may return null.

getCiscoRTPHandle()CiscoRTPHandle

Returns a CiscoMediaConnectionMode with one of the
following values for mediaMode:

• CiscoMediaConnectionMode. RECEIVE_ONLY
(one-way media, receive only)

• CiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE: (two-way media)

In general, you should never get an event with mode
NONE; however, if that happens, applications should
ignore the event and log an error.

getMediaConnectionMode()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
558

Cisco Unified JTAPI Extensions
Inherited Fields

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoMediaConnectionMode, CiscoCallID, and CiscoRTPParams.

CiscoRTPOutputKeyEv
The CiscoRTPOutputKeyEv event gives the key information for the encrypted outgoing (transmitted) media
stream. Applications set the filter by using CiscoTermEvFilter.setRTPKeyEventsEnabled(true) to get this
event via the TerminalObserver.terminalChangedEvent().

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputKeyEv extends CiscoTermEv

Fields
Table 178: Fields in CiscoRTPOutputKeyEv

DescriptionFieldInterface

NoneIDstaticint

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
559

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 179: Methods in CisctoRTPOutputKeyEv

DescriptionMethodInterface

Returns a CiscoCallID object if there is already a
CiscoCall present when this event is sent. If there is no
CiscoCall present, this method returns null.

getCallID()CiscoCallID

Returns CiscoMediaEncryptionKeyInfo only if the
provider is opened with the TLS link and SRTP enabled
options set for the application in Cisco Unified
Communications Manager administration. Otherwise,
it will return null.

getCiscoMediaEncryptionKeyInfo()CiscoMediaEncryptionKeyInfo

Returns media security indicator, one of the following
constants:

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_AVAILABLE

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

getCiscoMediaSecurityIndicator()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
560

Cisco Unified JTAPI Extensions
Inherited Fields

DescriptionMethodInterface

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoRTPParams, and CiscoMediaSecurityIndicator.

CiscoRTPOutputProperties
The CiscoRTPOutputProperties interface gives the properties of the media transmitted by the terminal.
CiscoRTPOutputStartedEv indicates that the media has started.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPOutputProperties

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
561

Cisco Unified JTAPI Extensions
Inherited Methods

Methods
Table 180: Methods in CiscoRTPOutputProperties

DescriptionMethodInterface

Returns the media bit rate, one of the following
constants:

• CiscoRTPBitRate.R5_3
• CiscoRTPBitRate.R6_4

getBitRate()int

Returns the maximum number of frames to send per
packet.

getMaxFramesPerPacket()int

Returns the packet size, in milliseconds.getPacketSize()int

Returns the payload format, which is one of the
following constants:

• CiscoRTPPayload.NONSTANDARD
• CiscoRTPPayload.G711ALAW64K
• CiscoRTPPayload.G711ALAW56K
• CiscoRTPPayload.G711ULAW64K
• CiscoRTPPayload.G711ULAW56K
• CiscoRTPPayload.G722_64K
• CiscoRTPPayload.G722_56K
• CiscoRTPPayload.G722_48K
• CiscoRTPPayload.G7231
• CiscoRTPPayload.G728
• CiscoRTPPayload.G729
• CiscoRTPPayload.G729ANNEXA
• CiscoRTPPayload.IS11172AUDIOCAP
• CiscoRTPPayload.IS13818AUDIOCAP
• CiscoRTPPayload.ACY_G729AASSN
• CiscoRTPPayload.DATA64
• CiscoRTPPayload.DATA56
• CiscoRTPPayload.GSM
• CiscoRTPPayload.ACTIVEVOICE
• CiscoRTPPayload.WIDEBAND_256K

getPayloadType()int

Returns the precedence value.getPrecedenceValue()int

Returns the address to which media is to be transmitted.getRemoteAddress()java.net.
InetAddress

Returns the port to which media is to be transmitted.getRemotePort()int

Returns false if Cisco Unified CommunicationManager
service parameter “Silence Suppression” is set to False
or True otherwise.

getSilenceSuppression()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
562

Cisco Unified JTAPI Extensions
Methods

Related Documentation
See CiscoRTPBitRate.

CiscoRTPOutputStartedEv
The CiscoRTPOutputStartedEv event interface indicates the start of media transmission.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputStartedEv extends CiscoTermEv

Fields
Table 181: Fields in CiscoRTPOutputStartedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
563

Cisco Unified JTAPI Extensions
Related Documentation

CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 182: Methods in CiscoRTPOutputStartedEv

DescriptionMethodInterface

Returns the RTP output properties.getRTPOutputProperties()CiscoRTPOutputProperties

Returns CiscoCallID. CiscoRTPOutputStartedEv applies
to CiscoCallID.getCall().

getCallID()CiscoCallID

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

Returns a CiscoMediaConnectionMode with one of the
following values for mediaMode:

• CiscoMediaConnectionMode.TRANSMIT_ONLY
(one-way media; transmit only)

• CiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE (two-way media)

In general, you should never get an event
with mode NONE; however, if that
happens, applications should ignore the
event and log an error.

Note

getMediaConnectionMode()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
564

Cisco Unified JTAPI Extensions
Methods

Related Documentation
See Constant Field Values, on page 1665, CiscoCallID, and CiscoRTPParams.

CiscoRTPOutputStoppedEv
The CiscoRTPOutputStoppedEv event indicates that the media transmission stopped.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputStoppedEv extends CiscoTermEv

Fields
Table 183: Fields in CiscoRTPOutputStoppedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
565

Cisco Unified JTAPI Extensions
Related Documentation

CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 184: Methods in CiscoRTPOutputStoppedEv

DescriptionMethodInterface

Returns CiscoCallID. CiscoRTPOutputStoppedEv
applies to CiscoCallID.getCall().

getCallID()CiscoCallID

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

• Returns CiscoMediaConnectionMode with one of
the following values:

• CiscoMediaConnectionMode.TRANSMIT_ONLY
(one-way media; transmit)

• onlyCiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE (two-way media)

In general, you should never get an event
with mode NONE; however, if that
happens, applications should ignore the
event and log an error.

Note

getMediaConnectionMode()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoCallID, CiscoRTPParams, and CiscoMediaConnectionMode.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
566

Cisco Unified JTAPI Extensions
Methods

CiscoRTPOutputKeyEv
The CiscoRTPOutputKeyEv event gives the key information for the encrypted outgoing (transmitted) media
stream. Applications set the filter by using CiscoTermEvFilter.setRTPKeyEventsEnabled(true) to get this
event via the TerminalObserver.terminalChangedEvent().

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputKeyEv extends CiscoTermEv

Fields
Table 185: Fields in CiscoRTPOutputKeyEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
567

Cisco Unified JTAPI Extensions
CiscoRTPOutputKeyEv

META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 186: Methods in CisctoRTPOutputKeyEv

DescriptionMethodInterface

Returns a CiscoCallID object if there is already a
CiscoCall present when this event is sent. If there is no
CiscoCall present, this method returns null.

getCallID()CiscoCallID

Returns CiscoMediaEncryptionKeyInfo only if the
provider is opened with the TLS link and SRTP enabled
options set for the application in Cisco Unified
Communications Manager administration. Otherwise,
it will return null.

getCiscoMediaEncryptionKeyInfo()CiscoMediaEncryptionKeyInfo

Returns media security indicator, one of the following
constants:

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_AVAILABLE

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPT_USER_NOT_AUTHORIZED

• CiscoMediaSecurityIndicator.
MEDIA_ENCRYPTED_KEYS_UNAVAILABLE

getCiscoMediaSecurityIndicator()int

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
568

Cisco Unified JTAPI Extensions
Methods

Related Documentation
See Constant Field Values, on page 1665, CiscoRTPParams, and CiscoMediaSecurityIndicator.

CiscoRTPOutputProperties
The CiscoRTPPutputProperties interface gives the properties of the media transmitted by the terminal.
CiscoRTPOutPutStartedEv indicates that the media has started.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPOutputProperties

Fields
None

Methods
Table 187: Methods in CiscoRTPOutputProperties

DescriptionMethodInterface

Returns the media bit rate, one of the following
constants:

• CiscoRTPBitRate.R5_3
• CiscoRTPBitRate.R6_4

getBitRate()int

Returns the maximum number of frames to send per
packet.

getMaxFramesPerPacket()int

Returns the packet size, in milliseconds.getPacketSize()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
569

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionMethodInterface

Returns the payload format, which is one of the
following constants:

• CiscoRTPPayload.NONSTANDARD
• CiscoRTPPayload.G711ALAW64K
• CiscoRTPPayload.G711ALAW56K
• CiscoRTPPayload.G711ULAW64K
• CiscoRTPPayload.G711ULAW56K
• CiscoRTPPayload.G722_64K
• CiscoRTPPayload.G722_56K
• CiscoRTPPayload.G722_48K
• CiscoRTPPayload.G7231
• CiscoRTPPayload.G728
• CiscoRTPPayload.G729
• CiscoRTPPayload.G729ANNEXA
• CiscoRTPPayload.IS11172AUDIOCAP
• CiscoRTPPayload.IS13818AUDIOCAP
• CiscoRTPPayload.ACY_G729AASSN
• CiscoRTPPayload.DATA64
• CiscoRTPPayload.DATA56
• CiscoRTPPayload.GSM
• CiscoRTPPayload.ACTIVEVOICE
• CiscoRTPPayload.WIDEBAND_256K

getPayloadType()int

Returns the precedence value.getPrecedenceValue()int

Returns the address to which media is to be transmitted.getRemoteAddress()java.net.InetAddress

Returns the port to which media is to be transmitted.getRemotePort()int

Returns false if Cisco Unified CommunicationManager
service parameter “Silence Suppression” is set to False
or True otherwise.

getSilenceSuppression()boolean

Related Documentation
See CiscoRTPBitRate.

CiscoRTPOutputStartedEv
The CiscoRTPOutputStartedEv event interface indicates the start of media transmission.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
570

Cisco Unified JTAPI Extensions
Related Documentation

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputStartedEv extends CiscoTermEv

Fields
Table 188: Fields in CiscoRTPOutputStartedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
571

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 189: Methods in CiscoRTPOutputStartedEv

DescriptionMethodInterface

Returns the RTP output properties.getRTPOutputProperties()CiscoRTPOutputProperties

Returns CiscoCallID. CiscoRTPOutputStartedEv applies
to CiscoCallID.getCall().

getCallID()CiscoCallID

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

Returns a CiscoMediaConnectionMode with one of the
following values for mediaMode:

• CiscoMediaConnectionMode.TRANSMIT_ONLY
(one-way media; transmit only)

• CiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE (two-way media)

In general, you should never get an event
with mode NONE; however, if that
happens, applications should ignore the
event and log an error.

Note

getMediaConnectionMode()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoCallID, and CiscoRTPParams.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
572

Cisco Unified JTAPI Extensions
Methods

CiscoRTPOutputStoppedEv
The CiscoRTPOutputStoppedEv event indicates that the media transmission stopped.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoRTPOutputStoppedEv extends CiscoTermEv

Fields
Table 190: Fields in CiscoRTPOutputStoppedEv

DescriptionFieldInterface

NoneIDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
573

Cisco Unified JTAPI Extensions
CiscoRTPOutputStoppedEv

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 191: Methods in CiscoRTPOutputStoppedEv

DescriptionMethodInterface

Returns CiscoCallID. CiscoRTPOutputStoppedEv
applies to CiscoCallID.getCall().

getCallID()CiscoCallID

Returns a CiscoRTPHandle object. Applications can get
a call reference by using CiscoProvider.getCall. If there
is no call observer or there was no call observer when
this event is delivered, CiscoProvider.getCall may return
null.

getCiscoRTPHandle()CiscoRTPHandle

• Returns CiscoMediaConnectionMode with one of
the following values:

• CiscoMediaConnectionMode.TRANSMIT_ONLY
(one-way media; transmit)

• onlyCiscoMediaConnectionMode.
TRANSMIT_AND_RECEIVE (two-way media)

In general, you should never get an event
with mode NONE; however, if that
happens, applications should ignore the
event and log an error.

Note

getMediaConnectionMode()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665, CiscoCallID, CiscoRTPParams, and CiscoMediaConnectionMode.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
574

Cisco Unified JTAPI Extensions
Methods

CiscoRTPPayload
The RTPPayload interface contains constants that describe RTP formats. The
CiscoRTPInputProperties.getPayloadType and CiscoRTPOutputProperties.getPayloadType methods return
these constants.

Interface History

DescriptionCisco Unified Communications Manager Release Number

AddedH261, H263, H264, H264_SVC, T120, andH224Methods.10.0(1)

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoRTPPayload

Fields
Table 192: Fields in CiscoRTPPayload

DescriptionFieldsInterface

A nonstandard RTP payloadNONSTANDARDstatic final int

G.711 64K a-law payloadG711ALAW64Kstatic final int

G.711 56K a-law payloadG711ALAW56Kstatic final int

G.711 64K u-law payloadG711ULAW64Kstatic final int

G.711 56K u-law payloadG711ULAW56Kstatic final int

G.722 64K payloadG722_64Kstatic final int

G.722 56K payloadG722_56Kstatic final int

G.722 48K payloadG722_48Kstatic final int

G.723.1 payloadG7231static final int

G.728 payloadG728static final int

G.729 payloadG729static final int

G.729a payloadG729ANNEXAstatic final int

IS11172AUDIOCAP payloadIS11172AUDIOCAPstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
575

Cisco Unified JTAPI Extensions
CiscoRTPPayload

DescriptionFieldsInterface

IS13818AUDIOCAP payloadIS13818AUDIOCAPstatic final int

ACY_G729AASSN payloadACY_G729AASSNstatic final int

DATA64 payloadDATA64static final int

DATA56 payloadDATA56static final int

GSM payloadGSMstatic final int

ACTIVEVOICE payloadACTIVEVOICEstatic final int

Wide_Band_256k payloadWIDEBAND_256Kstatic final int

Methods
Table 193: Methods in CiscoRTPPayload

DescriptionMethodInterface

The rtp payload type associated with the
multimedia stream is H261.

H261static final int

The rtp payload type associated with the
multimedia stream is H263.

H263static final int

The rtp payload type associated with the
multimedia stream is H264.

H264static final int

The rtp payload type associated with the
multimedia stream is H264_SVC.

H264_SVCstatic final int

The rtp payload type associated with the
multimedia stream is T120.

T120static final int

The rtp payload type associated with the
multimedia stream is H224.

H224static final int

Related Documentation
See CiscoRTPInputProperties.getPayloadType(), CiscoRTPOutputProperties.getPayloadType(), and Constant
Field Values, on page 1665.

CiscoRTPProperties
This interface contains the rtp properties of the multi media streams information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
576

Cisco Unified JTAPI Extensions
Methods

Table 194: Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.10.0(1)

Declaration
public interface CiscoRTPProperties

Methods
Table 195: Methods in CiscoRTPProperties

DescriptionMethodInterface

Specifies the receiving IP address.getReceptionAddress()InetAddress

Specifies the receiving port number.getReceptionPort()int

Specifies the transmitting IP address.getTransmissionAddress()InetAddress

Specifies the transmitting port number.getTransmissionPort()boolean

Returns the payload format. The payload
type can be:

• CiscoRTPPayload.H261 = 100

• CiscoRTPPayload.H263_VIDEO =
101

• CiscoRTPPayload.VIDEO = 102

• CiscoRTPPayload.H264 = 103

• CiscoRTPPayload.H264_SVC = 104

• CiscoRTPPayload.T120 = 105

• CiscoRTPPayload.H224 = 106

getPayloadType()int

Returns the maximum bit rate (bits per
second), which is the max allowed video
bit rate as negotiated by media layer. The
value is the smaller of the region
BW(Bandwidth) setting and BW requested
by the endpoints.

getMaxBitRate()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
577

Cisco Unified JTAPI Extensions
Declaration

CiscoSynchronousObserver
The Cisco JTAPI implementation is designed to allow applications to invoke blocking JTAPI methods such
as Call.connect() and TerminalConnection.answer() from within their observer callbacks. This means that
applications are not subject to the restrictions imposed by the JTAPI specification, which cautions applications
against using JTAPI methods from within observer callbacks.

Normally, when an application adds a new observer to a JTAPI object, the Cisco JTAPI implementation
creates an event queue and an accompanying worker thread to service the new observer. If the same observer
is added to another object, its queue and thread are reused; in effect, every unique observer object has a single
queue and worker thread. As noted, the advantage of this arrangement is that an application may invoke
blocking JTAPI methods from within its observer callback. A subtle disadvantage, however, is that accessor
methods such as Call.getConnections() and Connection.getState() may not return results that are consistent
with events when invoked from within the observer callback.

For example, suppose that an application creates and connects a call from address "A" to address "B." If the
application is observing address "A", it might reasonably expect that when it receives the CallActiveEv, the
state of the call will be Call.ACTIVE. This is not necessarily true, because the worker thread that delivers
events to the application is decoupled from the internal JTAPI thread that updates object states. In fact, if "B"
rejects the call from "A, " the call object might be in either the Call.ACTIVE state or the Call.INVALID state,
depending on the exact moment at which the worker thread delivers the CallActiveEv.

Many applications will not be adversely affected by this asychronous behavior. Applications that would benefit
from a coherent call model during observer callbacks, however, can selectively disable the queueing logic of
the Cisco JTAPI implementation. Applications that implement the CiscoSynchronousObserver interface on
their observer objects declare that they want events to be delivered synchronously to its observers. Events
delivered to synchronous observers will match the states of the call model objects queried from within the
observer callback.

Objects that implement the CiscoSynchronousObserver interface may not invoke blocking JTAPI methods
fromwithin their event callbacks. The consequences of doing so are unpredictable, andmay include deadlocking
the JTAPI implementation. On the other hand, you may safely use the accessor methods of any JTAPI object,
such as Call.getState() or Connection.getState(). Applications should avoid calling any interface that returns
an array such as Terminal.getAddresses() in synchronous callbacks.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoSynchronousObserver

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
578

Cisco Unified JTAPI Extensions
CiscoSynchronousObserver

Methods
None

Related Documentation
None

CiscoTermActivatedEv
If a Terminal is observed and the restriction status changes to active, the system sends this event to the
application.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoTermActivatedEv extends CiscoProvEv

Fields
Table 196: Fields in CiscoTermActivatedEv

DescriptionFieldInterface

NoneIDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
579

Cisco Unified JTAPI Extensions
Methods

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 197: Methods in CiscoTermActivatedEv

DescriptionMethodInterface

Returns the Terminal that is activated.getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermButtonPressedEv
CiscoTermButtonPressedEv event is delivered on the TerminalObserver when a button is pressed on the
Terminal. To receive this event, an application must set the filter using
ciscoTermEvFilter.setButtonPressedEnabled(true). The button pressed events respond only to the numeric
keypad button presses on the Terminal as listed in the constants in this interface: 0-9, *, #, A, B, C, and D.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
580

Cisco Unified JTAPI Extensions
Methods

Declaration
public interface CiscoTermButtonPressedEv extends CiscoTermEv

Fields
Table 198: Fields in CiscoTermButtonPressedEv

FieldInterface

CHARAstaticint

CHARBstaticint

CHARCstaticint

CHARDstaticint

EIGHTstaticint

FIVEstaticint

FOURstaticint

IDstaticint

NINEstaticint

ONEstaticint

POUNDstaticint

SEVENstaticint

SIXstaticint

STARstaticint

THREEstaticint

TWOstaticint

ZEROstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
581

Cisco Unified JTAPI Extensions
Declaration

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 199: Methods in CiscoTermButtonPressedEv

DescriptionMethodInterface

The button pressed on the Terminal.getButtonPressed()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoTermEvFilter and Constant Field Values, on page 1665.

CiscoTermConnMonitoringEndEv
The system delivers the CiscoTermConnMonitoringEndEv event to the call observer when monitoring stops
on the call or when call is disconnected.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
582

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnMonitoringEndEv extends javax.telephony.events.TermConnEv

Fields
Table 200: Fields in CiscoTermConnMonitoringEndEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 201: CiscoTermConnMonitoringEndEv Methods

DescriptionMethodInterface

Returns the type of monitoring. The return value is
always CiscoCall.SILENT_MONITOR.

getMonitorType()Int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
583

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoTermConnMonitoringStartEv
The system delivers the CiscoTermConnMonitoringStartEv event to the call observer when monitoring starts
on the call.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnMonitoringStartEv extends javax.telephony.events.TermConnEv

Fields
Table 202: Fields in CiscoTermConnMonitoringStartEv

FieldInterface

IDstaticfinal int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
584

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 203: CiscoTermConnMonitoringStartEv Methods

DescriptionMethodInterface

Returns the type of monitoring. The return value is
always CiscoCall.Silent_Monitor.

getMonitorType()int

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 for more information.

CiscoTermConnMonitorInitiatorInfoEv
The CiscoTermConnMonitorInitiatorInfoEv event interface extends the TermConnEv interface and gets
reported via the CallObserver on the monitor target (agent). This interface gives information about the monitor
initiator (supervisor) when a monitor session gets established.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
585

Cisco Unified JTAPI Extensions
Inherited Fields

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

A new API getTransactionID() will be exposed to retrieve the
transaction ID.

8.0(1)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnMonitorInitiatorInfoEv extends javax.telephony.events.TermConnEv

Fields
Table 204: Fields in CiscoTermConnMonitorInitiatorInfoEv

FieldsInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 205: Methods in CiscoTermConnMonitorInitiatorInfoEv

DescriptionMethodInterface

Returns the Terminal name and Address of the monitor
initiator.

getCiscoMonitorInitiatorInfo()CiscoMonitorInitiatorInfo

Returns the transaction ID.getTransactionID()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
586

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermConnMonitorTargetInfoEv
The CiscoTermConnMonitorTargetInfoEv event interface extends the TermConnEv interface and gets reported
via the CallObserver on monitor initiator. This interface provides information about the monitor target (agent)
when a monitor session gets established.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

A new getTransactionID() will be exposed to retrieve the
transaction ID.

8.0(1)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnMonitorTargetInfoEv extends javax.telephony.events.TermConnEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
587

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
Table 206: Fields in CiscoTermConnMonitorTargetInfoEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 207: Methods in CiscoTermConnMonitorTargetInfoEv

DescriptionMethodInterface

Returns the Terminal name and Address of the monitor
target.

getCiscoMonitorTargetInfo()CiscoMonitorTargetInfo

Returns the transaction ID.getTransactionID()int

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
588

Cisco Unified JTAPI Extensions
Fields

CiscoTermConnPrivacyChangedEv
The system sends the CiscoTermConnPrivacyChangedEv event when the privacy status of a TeminalConnection
changes. If privacy is active, the user cannot Barge into the Call.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoTermConnPrivacyChangedEv

Fields
Table 208: Fields in CiscoTermConnPrivacyChangedEv

FieldInterface

IDstaticint

Methods
Table 209: Methods in CiscoTermConnPrivacyChangedEv

DescriptionMethodInterface

Returns the TerminalConnection where privacy
changed. You can call getPrivacyStatus on the
TerminalConnection to check its privacy status.

getTerminalConnection()javax.telephony.
TerminalConnection

Related Documentation
See Constant Field Values, on page 1665 and CiscoTerminalConnection.getPrivacyStatus().

CiscoTermConnRecordingEndEv
The JTAPI delivers CiscoTermConnRecordingEndEv to the call observer when call recording stops.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
589

Cisco Unified JTAPI Extensions
CiscoTermConnPrivacyChangedEv

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnRecordingEndEv extends javax.telephony.events.TermConnEv

Fields
staticintID

Inherited Fields
Fields inherited from interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
590

Cisco Unified JTAPI Extensions
Superinterfaces

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermConnRecordingStartEv
The JTAPI delivers CiscoTermConnRecordingStartEv to the call observer when call recording starts.

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnRecordingStartEv extends javax.telephony.events.TermConnEv

Fields
Table 210: Fields in CiscoTermConnRecordingStartEv

FieldInterface

IDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
591

Cisco Unified JTAPI Extensions
Related Documentation

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermConnRecordingTargetInfoEv
The JTAPI delivers CiscoTermConnRecordingTargetInfoEv to the call observer of the recording initiator.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnRecordingTargetInfoEv extends javax.telephony.events.TermConnEv

Fields
Table 211: Fields in CiscoTermConnRecordingTargetInfoEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
592

Cisco Unified JTAPI Extensions
Related Documentation

META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 212: Methods in CiscoTermConnRecordingTargetInfoEv

DescriptionMethodInterface

Returns CiscoRecorderInfo, which provides the terminal
name and address of the recording device.

getCiscoRecorderInfo()CiscoRecorderInfo

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 and CiscoRecorderInfo.

CiscoTermConnRecordingFailedEv
The JTAPI delivers CiscoTermConnRecordingFailedEv to the call observer when call recording failed.

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnRecordingFailedEv extends TermConnEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
593

Cisco Unified JTAPI Extensions
Methods

Fields
Table 213: Fields in CiscoTermConnRecordingStartEv

FieldInterface

IDstatic int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermConnSelectChangedEv
The JTAPI sends CiscoTermConnSelectChangedEv when the call select status of a TerminalConnection
changes, either by feature invocation or manually.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
594

Cisco Unified JTAPI Extensions
Fields

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, javax.telephony.events.Ev, javax.telephony.events.TermConnEv

Declaration
public interface CiscoTermConnSelectChangedEv extends javax.telephony.events.TermConnEv

Fields
Table 214: Fields in CiscoTermConnSelectChangedEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.TermConnEv

getTerminalConnection

From Interface javax.telephony.events.CallEv

getCall

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
595

Cisco Unified JTAPI Extensions
Superinterfaces

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermCreatedEv
The JTAPI sends the CiscoTermCreatedEv event to the provider observer of the application when a
CiscoTerminal gets added to the provider domain.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoTermCreatedEv extends CiscoProvEv

Fields
Table 215: Fields in CiscoTermEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
596

Cisco Unified JTAPI Extensions
Related Documentation

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 216: Methods in CiscoTermCreatedEv

DescriptionMethodInterface

Returns the Terminal object for which this event was
sent.

getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDataEv
The JTAPI sends the CiscoTermDataEv event to the terminal observer when the phone receives XSI data
(XML object).

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
597

Cisco Unified JTAPI Extensions
Methods

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDataEv extends CiscoTermEv

Fields
Table 217: Fields in CiscoTermDataEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 218: Methods in CiscoTermDataEv

DescriptionMethodInterface

Deprecated.Use byte[] getTermDatagetData()java.lang.String

Returns an XML-encoded byte array corresponding to
the XSI data that the phone received.

getTermData()byte[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
598

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDeviceStateActiveEv
The CiscoTermDeviceStateActiveEv event gets sent to the Terminal Observer if any of the addresses on the
terminal have an outgoing call in any state or an incoming call with TerminalConnection and
CallCtlTerminalConnection in ACTIVE and TALKING state respectively.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDeviceStateActiveEv extends CiscoTermEv

Fields
Table 219: Fields in CiscoTermDeviceStateActiveEv

FieldInterface

IDstaticint

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
599

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDeviceStateAlertingEv
The CiscoTermDeviceStateAlertingEv event gets sent to the Terminal Observer if none of the Addresses on
the Terminal have an outgoing call or an incoming call with Connection in CallCtlConnection.Established

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
600

Cisco Unified JTAPI Extensions
Inherited Fields

state, and at least one of the addresses on the Terminal has an incoming Call with Connection in
CallCtlConnection.OFFERED or CallCtlConnection.ALERTING State.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDeviceStateAlertingEv extends CiscoTermEv

Fields
Table 220: Fields in CiscoTermDeviceStateAlertingEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
601

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDeviceStateHeldEv
The CiscoTermDeviceStateHeldEv event gets sent to the Terminal Observer if all of the calls on the addresses
of the Terminal have TerminalConnection in CallCtlTerminalConnection.HELD state.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDeviceStateHeldEv extends CiscoTermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
602

Cisco Unified JTAPI Extensions
Methods

Fields
Table 221: Fields in CiscoTermDeviceStateHeldEv

FieldInterface

IDstaticint

Inherited Fields

Fields Inherited From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
603

Cisco Unified JTAPI Extensions
Fields

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDeviceStateIdleEv
The CiscoTermDeviceStateIdleEv event gets sent to the Terminal Observer if there are no calls on any of the
Addresses of the Terminal.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDeviceStateIdleEv extends CiscoTermEv

Fields
Table 222: Fields in CiscoTermDeviceStateIdleEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
604

Cisco Unified JTAPI Extensions
Related Documentation

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDeviceStateWhisperEv
The CiscoTermDeviceStateActiveEv event gets sent to Terminal Observer if atleast one of the Addresses on
the Terminal is an intercom target and has an intercom call with the
TerminalConnection/CallCtlTerminalConneciton in State Passive/Bridged state. In this state, the user can
initiate new outgoing calls and receive new incoming calls.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
605

Cisco Unified JTAPI Extensions
Methods

Declaration
public interface CiscoTermDeviceStateWhisperEv extends CiscoTermEv

Fields
Table 223: Fields in CiscoTermDeviceStateWhisperEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
606

Cisco Unified JTAPI Extensions
Declaration

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermDNDOptionChangedEv
The CiscoTermDNDOptionChangedEv event is delivered to the terminal observer if DND option is changed.
This event is delivered only if the filter to receive events is enabled by the application. This event is provided
on application observer

History

DescriptionCisco Unified Communications Manager Release

Added the extension.7.0(1)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

public interface CiscoTermDNDOptionChangedEv

extends CiscoTermEv

Fields
Table 224: CiscoTermDNDOptionChangedEv Fields

FieldInterface

IDstatic final int

Table 225: Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE, CAUSE_INCOMPATIBLE_DESTINATION,
CAUSE_LOCKOUT,CAUSE_NETWORK_CONGESTION,CAUSE_NETWORK_NOT_OBTAINABLE,CAUSE_NEW_CALL,
CAUSE_NORMAL, CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING, META_SNAPSHOT,
META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
607

Cisco Unified JTAPI Extensions
Related Documentation

Table 226: Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE, CAUSE_INCOMPATIBLE_DESTINATION,
CAUSE_LOCKOUT,CAUSE_NETWORK_CONGESTION,CAUSE_NETWORK_NOT_OBTAINABLE,CAUSE_NEW_CALL,
CAUSE_NORMAL, CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING, META_CALL_PROGRESS,
META_CALL_REMOVING_PARTY, META_CALL_STARTING, META_CALL_TRANSFERRING, META_SNAPSHOT,
META_UNKNOWN

Methods
Table 227: CiscoTermDNDOptionChangedEv Methods

DescriptionMethodInterface

This interface returns the current DND option to the
application. It returns int dndOption.

getDNDOption()Int

Table 228: Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Table 229: Inherited Methods

From Interface javax.telephony.events.TermEv

getTerminal

Table 230: Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

See also Constant Field Values, on page 1665. and CiscoTermEv.

CiscoTermDNDStatusChangedEv
The CiscoTermDNDStatusChangedEv event gets delivered to the Terminal Observer if the DND status
changes, provided that the application has enabled the filter to receive events.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
608

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermDNDStatusChangedEv extends CiscoTermEv

Fields
Table 231: Fields in CiscoTermDNDStatusChangedEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
609

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 232: Methods in CiscoTermDNDStatusChangedEv

DescriptionMethodInterface

Returns the current DND status to the application.getDNDStatus()boolean

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoTermEvFilter, CiscoTermEv, and Constant Field Values, on page 1665.

CiscoTermEv
The CiscoTermEv interface, which extends the JTAPI core javax.telephony.events.TermEv interface, serves
as the base interface for all Cisco-extended JTAPI Terminal events. Every Call-related event in this package
extends this interface, directly or indirectly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Subinterfaces
CiscoMediaOpenLogicalChannelEv, CiscoRTPInputKeyEv, CiscoRTPInputStartedEv,
CiscoRTPInputStoppedEv, CiscoRTPOutputKeyEv, CiscoRTPOutputStartedEv, CiscoRTPOutputStoppedEv,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
610

Cisco Unified JTAPI Extensions
Methods

CiscoTermButtonPressedEv, CiscoTermDataEv, CiscoTermDeviceStateActiveEv,
CiscoTermDeviceStateAlertingEv, CiscoTermDeviceStateHeldEv, CiscoTermDeviceStateIdleEv,
CiscoTermDeviceStateWhisperEv, CiscoTermDNDOptionChangedEv, CiscoTermDNDStatusChangedEv,
CiscoTermInServiceEv, CiscoTermOutOfServiceEv, CiscoTermRegistrationFailedEv,
CiscoTermSnapshotCompletedEv, CiscoTermSnapshotEv

Declaration
public interface CiscoTermEv extends CiscoEv, javax.telephony.events.TermEv

Fields
None

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
611

Cisco Unified JTAPI Extensions
Declaration

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CallEv.

CiscoTermEvFilter
An application can use the CiscoTermEvFilter interface to selectively restrict those Terminal events that are
not of interest.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added getHuntLogStatusChangedEvFilter() and
setHuntLogStatusChangedEvFilter(boolean filterValue) methods.

11.5(1)

Added getMultiMediaStreamsInfoEvFilter() and
setMultiMediaStreamsInfoEvFilter(boolean filterValue) methods.

10.0(1)

Created history table to track changes.7.1(1 and 2)

Declaration
public interface CiscoTermEvFilter

Fields
None

Methods
Table 233: Methods in CiscoTermEvFilter

DescriptionMethodInterface

Returns the event filter status of the CiscoTermDataEv
event for the Terminal. The default value is disabled.
Returns True if the event filter is enabled, or false if the
event filter is disabled.

getDeviceDataEnabled()boolean

Enables or disables the CiscoTermDataEv events for
the Terminal.

setDeviceDataEnabled(booleanenabled)void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
612

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionMethodInterface

Returns the event filter status of the
CiscoTermButtonPressedEv event for the Terminal. The
default value is disabled. Returns:True if the event filter
is enabled, or false if the event filter is disabled.

getButtonPressedEnabled()boolean

Enables or disables CiscoTermButtonPressedEv events
for the Terminal.

setButtonPressedEnabled(booleanenabled)void

Returns the event filter status of the
CiscoRTPInputStartedEv, CiscoRTPOutputStartedEv,
CiscoRTPInputStoppedEv, and
CiscoRTPOutputStoppedEv events for the Terminal.
The Default value is disabled. Returns:True if the event
filter is enabled, or false if the event filter is disabled.

getRTPEventsEnabled()boolean

Enables or disables CiscoRTPInputStartedEv,
CiscoRTPOutputStartedEv, CiscoRTPInputStoppedEv
and CiscoRTPOutputStoppedEv events for the Terminal.

setRTPEventsEnabled(booleanenabled)void

Returns the event filter status of the
CiscoTermSnapshotEv and
CiscoTermSnapshotCompletedEv events for the
Terminal. If disabled, neither event gets sent to
applications. Returns:True if the event filter is enabled,
or false if the event filter is disabled.

getSnapshotEnabled()boolean

Enable or disables CiscoTermSnapshotEv and
CiscoTermSnapshotCompletedEv for the Terminal.

setSnapshotEnabled(booleanenabled)void

Returns the event filter status of the
CiscoRTPInputKeyEv and CiscoRTPOutputKeyEv
events for the Terminal. Returns:True if the event filter
is enabled, or false if the event filter is disabled.

getRTPKeyEventsEnabled()boolean

Enables or disables the CiscoRTPInputKeyEv and
CiscoRTPOutputKeyEv events for the Terminal.

setRTPKeyEventsEnabled(booleanenabled)void

Returns the event filter status of the
CiscoTermDeviceStateActiveEv event for the Terminal.
Returns:True if the event filter is enabled, or false if the
event filter is disabled.

getDeviceStateActiveEvFilter()boolean

Returns the event filter status of the
CiscoTermDeviceStateHeldEv event for the Terminal.
Returns: True if the event filter is enabled, or false if the
event filter is disabled.

getDeviceStateHeldEvFilter()boolean

Returns the event filter status of the
CiscoTermDeviceStateAlerting event for the Terminal.
Returns:True if the event filter is enabled, or false if the
event filter is disabled.

getDeviceStateAlertingEvFilter()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
613

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the CiscoTermDeviceStateIdleEv filter status.
Returns:True if the event filter is enabled, or false if the
event filter is disabled.

getDeviceStateIdleEvFilter()boolean

Enables or disables the CiscoTermDeviceStateActiveEv
filter for the Terminal. Default value is disable.

setDeviceStateActiveEvFilter(booleanfilterValue)void

Enables or disables the CiscoTermDeviceStateHeldEv
filter for the Terminal. Default value is disable

setDeviceStateHeldEvFilter(booleanfilterValue)void

Enables or disables the
CiscoTermDeviceStateAlertingEv filter for the Terminal.
Default value is disable

setDeviceStateAlertingEvFilter(booleanfilterValue)void

Enables or disables the CiscoTermDeviceStateIdleEv
filter for the Terminal. Default value is disable

setDeviceStateIdleEvFilter(booleanfilterValue)void

Returns the CiscoTermDeviceStateWhisperEv filter
status on the Terminal.

getDeviceStateWhisperEvFilter()boolean

Returns the CiscoTermDNDStatusChangedEv filter
status Returns:the CiscoTermDNDStatusChangedEv
Filter status on the Terminal.

getDNDChangedEvFilter()boolean

Enables or disables the
CiscoTermDNDStatusChangedEv filter for the Terminal.
Parameters:filterValue - void
setDeviceStateWhisperEvFilter(booleanfilterValue)
Enables or disables the
CiscoTermDeviceStateWhisperEv filter for the Terminal.
The default value is disable.

setDNDChangedEvFilter(booleanfilterValue)void

This interface can be used to get
CiscoTermDNDOptionChangedEv filter status .
Returns:the CiscoTermDNDOptionChangedEv Filter
status on the Terminal.

getDNDOptionChangedEvFilter()boolean

This interface is provided for enabling/disabling the
CiscoTermDNDOptionChangedEv filter for the
Terminal Parameters:filterValue.

setDNDOptionChangedEvFilter(booleanfilterValue)void

This interface can be used to get
CiscoMultiMediaStreamsInfoEv filter status.

getMultiMediaStreamsInfoEvFilter()boolean

This interface is provided for enabling/disabling the
CiscoMultiMediaStreamsInfoEv filter for the Terminal.

setMultiMediaStreamsInfoEvFilter(boolean filterValue)void

This method is used get the value of filter, the value of
filter is false by default.

getHuntLogStatusChangedEvFilter()boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
614

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method is used to set the filter, if filter value is true,
the event CiscoTermHuntLogStatusChangedEv is
received by the application when the value of
huntLogStatus is changed.

setHuntLogStatusChangedEvFilter(boolean filterValue)void

Related Documentation
None

CiscoTerminal
Standard JTAPI does not support the notion of dynamic terminal registration. The CiscoTerminal interface
extends the standard terminal interface to do so. All Cisco Unified Communications Manager devices are
represented by CiscoTerminals, and you can query all CiscoTerminals to determine whether they are currently
IN_SERVICE or OUT_OF_SERVICE.

If the Cisco Unified Communications Manager device represented by the CiscoTerminal is an IP telephone,
for instance, it goes OUT_OF_SERVICE if it loses its network connection. Other types of devices, such as
CiscoMediaTerminal, get registered on demand by applications, and may be IN_SERVICE or
OUT_OF_SERVICE accordingly.

CiscoTerminal includes an API getIPAddressingMode(). This interface returns the configured IP Addressing
Mode of the CiscoTerminal.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

This interface is enhanced to:

• Get the IP addresses of the terminal
• Get the outbound call roll over configuration of the terminal.
New interfaces expose consult call roll over, out bound call
rollover, Join across lines (JAL) and Direct Transfer Across
Lines (DTAL) capability of the terminal. A terminal can
have different capability when feature is invoked on the
phone and when feature is invoked by application. It does
not indicate if the entire configuration required for the feature
is enabled (for example, Join softkey must be configured in
the template for the feature).

• Get registered state of the terminal

7.1.(3)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
615

Cisco Unified JTAPI Extensions
Related Documentation

DescriptionCisco Unified Communications Manager Release Number

Added the following new APIs:

• APIs pickup(Address pickingAddress) groupPickup(Address
pickingAddress

• String pickupGroupNumber)
• directedPickup(Address pickingAddress, String
pickupGroupNumber),

• Pickup(Address pickingAddress) for picking up calls from
different flavors of Call Pickup Groups.

• API getLoginType () which returns the LoginType on the
terminal.

8.0(1)

A new API, isBuiltInBridgeEnabled(). is added.8.5(1)

A new interface, public interface CiscoTerminal, is added on
CiscoTerminal to determine the multimedia capabilities of the
terminal.

10.0(1)

Added getHuntLogStatus() throwsInvalidStateException and
setHuntLogStatus(int huntLogStatus)throws
InvalidStateException,MethodNotSupportedException,methods.

11.5(1)

Sample Code

public class MyTerminalObserver implements TerminalObserver
{
public void terminalChangedEvent (TermEv[] evlist) {
for(int i = 0; evlist ! = null && i < evlist.length; i++)
{
…
if (evlist[i] instance of TermInServiceEv)
{
CiscoTerminal term = (CiscoTerminal) (((CiscoTermEv)evlist[i]

).getTerminal());
if(!term instanceof CiscoMediaTerminal && ! term instanmceof

CiscoRouteterminal)
{
try
{
if (term. isBuiltInBridgeEnabled())
{
System.out.println("Build in Bridge is enabled for terminal" +
tern.getName());

else
{
System.out.println("Build in Bridge is disabled for terminal" +
tern.getName());

}
}
catch(Exception)
{
System.out.println("Exception caught");

}
}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
616

Cisco Unified JTAPI Extensions
CiscoTerminal

}
}

}
}

Superinterfaces
CiscoObjectContainer, javax.telephony.Terminal

Subinterfaces
CiscoMediaTerminal, CiscoRouteTerminal

Declaration
public interface CiscoTerminal extends javax.telephony.Terminal, CiscoObjectContainer

Fields
Table 234: Fields in CiscoTerminal

DescriptionFieldInterface

This constant depicts that the terminal is logged into
the hunt group.

DEVICE_HUNT_LOGGED_INstatic final int

This constant depicts that the terminal is logged out
of the hunt group.

DEVICE_HUNT_LOGGED_OUTstatic final int

This constant depicts that the terminal does not have
the capability either to log in or log out of the hunt
group.

DEVICE_HUNT_NOT_APPLICABLEstatic final int

This Constant FieldValues, on page 1665 returned by
the getState() interface on CiscoTerminal indicates
that the CiscoTerminal is out of service.

OUT_OF_SERVICEstatic final int

This constant value returned by the getState()
interface on CiscoTerminal indicates that the
CiscoTerminal is in service.

IN_SERVICEstatic final int

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal currently has no calls on any
Addresses.

DEVICESTATE_IDLEstatic final int

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal has at least one active call on an
Address.

DEVICESTATE_ACTIVEstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
617

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal has at least one alerting call, but no
active call, on an Address.

DEVICESTATE_ALERTINGstatic final int

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal has at least one held call, but no
alerting or active calls, on an Address.

DEVICESTATE_HELDstatic final int

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal DeviceState is Unknown. This state
may get returned if the device state filters are
disabled.

DEVICESTATE_UNKNOWNstatic final int

This constant value returned by the getDeviceState()
interface on CiscoTerminal indicates that the
CiscoTerminal has at least one intercom call with
one-way media, but has no held, alerting, or active
calls on an Address.

DEVICESTATE_WHISPERstatic final int

Indicates that the
CiscoTerminal.getSupportedEncoding () for this
terminal is UNKNOWN.

UNKNOWN_ENCODINGstatic final int

Indicates that the
CiscoTerminal.getSupportedEncoding () for this
CiscoMediaTerminal or RoutePoint is
NOT_APPLICABLE.

NOT_APPLICABLEstatic final int

Indicates that the
CiscoTerminal.getSupportedEncoding () for this
terminal is ASCII and that this terminal supports
only ASCII_ENCODING.

ASCII_ENCODINGstatic final int

Indicates that the
CiscoTerminal.getSupportedEncoding () for this
terminal is UCS2UNICODE_ENCODING.

UCS2UNICODE_ENCODINGstatic final int

This constant value returned by the getDNDOption()
interface on CiscoTerminal indicates that the DND
option configured is None.

DND_OPTION_NONEstatic final int

This constant value returned by the getDNDOption()
interface on CiscoTerminal indicates that the DND
option configured is Ringer Off. If DND is enabled
on the phone, the phone would not ring if a call lands
there.

DND_OPTION_RINGER_OFFstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
618

Cisco Unified JTAPI Extensions
Fields

DescriptionFieldInterface

This constant value returned by the
getDNDOptions() interface on CiscoTerminal
indicates that the DND option configured is Call
Reject. If DND is enabled on the phone, all calls to
the phone will get rejected, except for shared lines.

DND_OPTION_CALL_REJECTstatic final int

This indicates that IPAddressing mode is Unknown.IP_ADDRESSING_MODE_UNKNOWNstatic final int

This indicates that IPAddressing mode is IPv4IP_ADDRESSING_MODE_IPV4static final int

This indicates that IPAddressing mode is IPv6IP_ADDRESSING_MODE_IPV6static final int

This indicates that IPAddressing mode is both IPv4
and IPv6

IP_ADDRESSING_MODE_IPV4_V6static final int

This is reserved IP Addressing constant for ANAT
in Cisco Unified CommunicationsManager. It is not
used in JTAPI

IP_ADDRESSING_MODE_UNKNOWN_ANATREDstatic final int

Methods
Table 235: Methods in CiscoTerminal

DescriptionMethodInteface

Thismethod returns the valueNO_EM_LOGIN,NATIVE_LOGIN
or VISITOR_LOGIN to indicate whether the terminal is local to
the cluster or not when the EM login is done.

getLoginType()int

This indicates that there has been no EM login done into the
terminal. It will have an integer value of 0.

CiscoTerminal.NO_LOGINStatic final int

This indicates that the terminal is part of the local cluster when
an EM login is done into it with a profile that belongs to the same
cluster. It will have an inteher value of 1.

CiscoTerminal.NATIVE_LOGIN

This indicates that the terminal is part of the visiting cluster when
an EM login is done into it with a profile that is not local to the
cluster. It will have an integer value of 2.

CiscoTerminal.VISITOR_LOGIN

Deprecated

This method has been replaced by the getState() method. Returns
the state of this terminal. The state may be any of the following
constants:

• CiscoTerminal.OUT_OF_SERVICE
• CiscoTerminal.IN_SERVICE

getRegistrationState()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
619

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Returns the state of this terminal. The state may be any of the
following constants:

• CiscoTerminal.OUT_OF_SERVICE
• CiscoTerminal.IN_SERVICE

getState()int

Returns the properties to be used for the RTP input stream
associatedwith the ACTIVETerminalConnection on this terminal.
The CiscoTerminal must be in the CiscoTerminal.REGISTERED
state, its Provider must be in the Provider.IN_SERVICE state,
and Terminal.getTerminalConnections () must return at least one
terminal connection in the TerminalConnection.ACTIVE state.

Throws

javax.telephony.InvalidStateException

getRTPInputProperties()CiscoRTPInputProperties

Returns the properties to be used for the RTP output stream
associatedwith the ACTIVETerminalConnection on this terminal.
The CiscoTerminal must be in the CiscoTerminal.REGISTERED
state, its Provider must be in the Provider.IN_SERVICE state,
and Terminal.getTerminalConnections () must return at least one
terminal connection in the TerminalConnection.ACTIVE state.

Throws

javax.telephony.InvalidStateException

getRTPOutputProperties()CiscoRTPOutputProperties

Deprecated

Use CiscoTerminal.sendData (byte[]).

Throws

javax.telephony.InvalidStateException

javax.telephony.MethodNotSupportedException

sendData(java.lang.
StringterminalData)

java.lang.String

The CiscoTerminal must be in the CiscoTerminal.IN_SERVICE
state, and its Provider must be in the Provider.IN_SERVICE state.
Applications can push the XSI object in the byte format to the
phone with this interface. If the phone receives the data, this
method returns successfully. Applications may only send 2000
bytes of data with this interface. Requests carrying excess data
get rejected.

Throws

PlatformException (The data did not get sent successfully),
javax.telephony.InvalidStateException, and
javax.telephony.MethodNotSupportedException

sendData(byte[]terminalData)byte[]

Retrieves the filter object associated with the terminal.getFilter()CiscoTermEvFilter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
620

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Filters the events that get delivered to the TerminalObserver. You
can call this method at any time, but the typical usage is to set up
the terminal events as part of initialization or when a
CiscTermCreatedEv indicates that the system created a new
terminal.

• Example 1—One use might be to turn on the button-pressed
events that normally do not get not delivered. Terminal term
= provider.getTerminal (name); if (term instanceof
CiscoTerm) { CiscoTerm ciscoTerm = (CiscoTerm)term;
CiscoTermEvFilter filter = ciscoTerm.getFilter ();
filter.setButtonPressedEnabled (true); } term.addObserver
(terminalObserver)

• Example 2—Another use might be turning off events that
are not of interest to an application. For example, an
application doing pure call control could turn off the media
(RTP) events as follows: Terminal term =
provider.getTerminal (name); if (term instanceof CiscoTerm
) { CiscoTerm ciscoTerm = (CiscoTerm)term;
CiscoTermEvFilter filter = ciscoTerm.getFilter ();
filter.setRTPEventsEnabled (false); ciscoTerm.setFilter (
filter); } term.addObserver (terminalObserver);
term.getAddresses () [0].addCallObserver (callObserver)

Adding a CallObserver (without explicitly setting a
filter) turns the RTP events on. This behavior of
Cisco JTAPI Release 1.4 and earlier is still
preserved. If an explicit setFilter call gets made, the
filter settings will take effect. The RTP events will
not get delivered for the previous code snippet, but
will get delivered for the following example:
Terminal term = provider.getTerminal (name);
term.addObserver (terminalObserver);
term.getAddresses () [0].addCallObserver (
callObserver).

Note

setFilter(CiscoTermEvFilter
terminalEvFilter)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
621

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Returns a terminalConnection. The CiscoTerminal must be in the
CiscoTerminal.IN_SERVICE state and its Provider must be in
the Provider.IN_SERVICE state. This method takes an address
and string as input.

Parameters

• UnParkAddress - Any address on the terminal

• ParkedAt - A string identifying is system park port where a
call was previously parked. The system returns this string
when the call gets parked.

Throws

• javax.telephony.InvalidStateException (The
CiscoTerminal.getState() is not IN_SERVICE)

• PlatformException - Any other error occurred while
unparking (for example, the Unpark number is not valid).

• javax.telephony.InvalidArgumentException

• javax.telephony.ResourceUnavailableException

unPark(javax.telephony.Address
UnParkAddress,
java.lang.StringParkedAt)

javax.telephony.TerminalConnection

• Returns the DeviceState of this terminal. The DeviceState is
the accumulative call state of all the addresses on the terminal.
The state may be any of the following constants:

• CiscoTerminal.DEVICESTATE_ILDE
• CiscoTerminal.DEVICESTATE_ACTIVE
• CiscoTerminal.DEVICESTATE_ALERTING
• CiscoTerminal.DEVICESTATE_HELD
• CiscoTerminal.DEVICESTATE_UNKNOWN
• CiscoTerminal.DEVICESTATE_WHISPER

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

getDeviceState()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
622

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Returns the supported encoding types for this terminal. Use this
method to check whether a terminal supports Unicode. To access
this information, the terminal must be in the
CiscoTerminal.IN_SERVICE state. The supportedEncoding is
one of the following constants:

• CiscoTerminal.UNKNOWN_ENCODING
• CiscoTerminal.ASCII_ENCODING
• CiscoTerminal.UCS2UNICODE_ENCODING
• CiscoTerminal.NOT_APPLICABLE

Throws

• javax.telephony.InvalidStateException

getSupportedEncoding()int

Returns the locale that this terminal supports. To access this
method, the terminal must be in the CiscoTerminal.IN_SERVICE
state.

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

getLocale()int

Returns the restriction status of this terminal. If a terminal is
restricted, all associated addresses on the terminal are also
restricted. Returns:True if terminal is restricted; otherwise false.

isRestricted()boolean

Generates a CiscoTermSnapshotEv event, which contains the
security status of the current active call on the terminal. To access
this method, the terminal must be in the
CiscoTerminal.IN_SERVICE state and
CiscoTermEvFilter.setSnapshotEnabled () must be set to true.

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

createSnapshot()void

Returns the locale alternate script that this terminal supports. An
empty return value indicates that this terminal does not support
or is not configured with an alternate script. To access this method,
the terminal must be in the CiscoTerminal.IN_SERVICE state.

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

getAltScript()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
623

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Reports the terminal protocol (SCCP, SIP, or none) and returns
the protocol of this terminal as one of the following constants:

• CiscoTerminalProtocol.PROTOCOL_NONE
• CiscoTerminalProtocol.PROTOCOL_SCCP
• CiscoTerminalProtocol.PROTOCOL_SIP

getProtocol()int

Sets the DND status, which enables or disables the DND feature.
This feature does not apply to route points.

Parameters

• dndStatus

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

setDNDStatus(booleandndStatus)void

Reports the DND status and returns dndStatus.

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

getDNDStatus()boolean

Returns the value of the DND option. This value is not significant
for a CiscoMediaTerminal or CiscoRouteTerminal because the
DND feature applies only to physical phones. The DND option
can be any of the following constants:

• CiscoTerminal.DND_OPTION_NONE
• CiscoTerminal.DND_OPTION_RINGER_OFF
• CiscoTerminal.DND_OPTION_CALL_REJECT

Throws

• javax.telephony.InvalidStateException
—CiscoTerminal.getState() is not IN_SERVICE.

getDNDOption()int

Returns extension mobility (EM) login user name. If no EM user
has logged into Terminal, this interface will return null/empty
string

Throws

• javax.telephony.InvalidStateException —if
CiscoTerminal.getState() is not IN_SERVICE.

You must use this API with
CiscoTerminal.getLoginType() to determine if an
EM login is done.

Note

getEMLoginUsername()java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
624

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

Returns IPV4 ip address of the terminal

Throws

• InvalidStateException

• MethodNotSupportedException

getIPV4Address()InetAddress

Returns IPV6 ip address of the terminal

Throws

• InvalidStateException

• MethodNotSupportedException

getIPV6Address()InetAddress

This method picks up the longest ringing call from the Pickup
Group to which pickingAddress belongs to. pickingAddress is the
Address on the Terminal where the Call is picked up.

Parameters

pickingAddress that specifies which Address the Terminal object
should do the pickup on.

pickup (Address pickingAddress)Call

This method picks up the longest ringing call from the specified
pickupGroupNumber at the pickingAddress.

Parameters

• pickingAddress that specifies which Address the Terminal
object should do the pickup on.

• Additional String object that respresents the number of the
pickup group you wish to answer a call from, as set in the
CUCM.

groupPickup(Address
pickingAddress, String
pickupGroupNumber)

Call

This method picks up the call from the specified ringingDN at the
pickingAddress. The ringingDNmust be in the same PickupGroup
as the pickingAddress.

Parameters

• pickingAddress that specifies which Address the Terminal
object should do the pickup on.

• Additional String object that respresents the specific DN the
application wishes to pick up for a directed call pickup
request.

directedPickup(Address
pickingAddress, String ringingDN)

Call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
625

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

This method picks up a call based upon the priority of the
associated pickupgroups. Within the group, if there are more than
one call, the longest ringing call will be picked up. pickingAddress
is the Address on the Terminal where the Call is picked up.

Parameters

pickingAddress that specifies which Address the Terminal object
should do the pickup on.

otherPickup(Address
pickingAddress)

Call

Returns the roll over configuration of the terminal.

Throws

• InvalidStateException.

getRollOverConfig()int

This indicates that the terminal is configured with no roll over.NO_ROLLOVERpublic final static int

This indicates that calls can roll over to any address on the
terminal.

ROLLOVER_ANY_DNpublic final static int

This indicates that calls can roll over to address that match the
name(DN).

ROLLOVER_SAME_DNpublic final static int

Application can use this to find the capability of the terminal when
used manually by user.

PHONE_USERpublic static final int

Application can use to this to find the capability of the terminal
to invoke the feature from application.

APPLICATIONpublis static final int

Which user can be CiscoTerminal. PHONE_USER or
CiscoTerminal.APPLICATION

Throws

• InvalidStateException.

canConsultCallRollOver(int
which_user)

boolean

• InvalidStateException.canOutBoundCallRollOver(int
which_user)

boolean

This interface returns True if calls on different addresses of this
terminal can be conferenced.

This interface returns True for terminals that support Connected
Transfer or Conference Across Lines.

Throws

• InvalidStateException.

canJoinAcrossLines(int
which_user)

boolean

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
626

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

This interface returns True if calls on different addresses of this
terminal can be transferred.

This interface returns True for terminals that support Connected
Transfer or Conference Across Lines.

Throws

• InvalidStateException.

canDirectTransferAcrossLines(int
which_user)

boolean

Throws

• InvalidStateException.

canJoinOnSameLine (int
which_user)

boolean

Throws

• InvalidStateException.

canDirectTransferOnSameLine(int
which_user)

boolean

Returns true if terminal is registered with Cisco Unified
Communications Manager else false.

isRegistered()boolean

Returns true if Built-In-Bridge is enabled on the terminal, else
returns false.

isBuiltInBridgeEnabled()public boolean

This method registers Cisco Unified Client Services Framework
device to Extend mode, which will be represented as a
CiscoRemoteTerminal. This is intended to be used by application
monitoring Cisco Unified Client Services Framework device to
enable its Extendmode from its softphone (SIP)/deskphonemode.
The successful effect of this method is to register the device and
present as a CiscoRemoteTerminal terminal type (if it is not
already a CiscoRemoteTerminal), and be able to use Cisco Extend
& Connect (CTI Remote Device) supported features with remote
destinations. In any case when it switches in between
Softphone/Deskphone & Extend modes that results in a terminal
switching (e.g. CiscoTerminal->CiscoRemoteTerminal), there
will be provider events sent to application: CiscoAddrRemovedEv,
CiscoTermRemovedEv, CiscoAddrCreatedEv,
CiscoTermCreatedEv. Any observers on the terminal and address
will be removed, application needs to de-reference the old terminal
object and re-add any desired observers.

Note that CiscoProvider must be in IN_SERVICE state, otherwise
CiscoRegistrationException about InvalidStateException will be
thrown; or if terminal is already registered by this application in
Extend mode or the registration fails for any reason,
CiscoRegistrationException will be thrown. And if terminal type
is not CiscoTerminal or CiscoRemoteTerminal and if terminal is
not a Cisco Unified Client Services Framework device, then
MethodNotSupportedException will be thrown.

register()void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
627

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

This method unregisters Cisco Unified Client Services Framework
device from Extend mode. Its terminal type will remain as
CiscoRemoteTerminal, and application can explicitly register to
CUCM to switch back to its softphone/deskphone mode. This is
intended to be used by applicationmonitoring Cisco Unified Client
Services Framework device in Cisco Extend Connect mode to
disable its Cisco Extend Connect mode. The successful effect of
this method is to unregister the device but retains as a
CiscoRemoteTerminal.

Note that CiscoProvider must be in IN_SERVICE state, otherwise
CiscoUnregistrationException about InvalidStateException will
be thrown; or if terminal is not registered in Extend mode by this
application or the unregistration fails for any reason,
CiscoUnregistrationException will be thrown. And if terminal
type is not CiscoRemoteTerminal and if terminal is not a Cisco
Unified Client Services Framework device, then
MethodNotSupportedException will be thrown.

unregister()void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
628

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

This method returns the device type of Terminal, which can be
one of the following contants. It will return
CiscoTerminal.DEVICETYPE_UNKNOWN if type of device
cannot be found or device is invalid.

CiscoTerminal.DEVICETYPE_UNKNOWN

CiscoTerminal.DEVICETYPE_ANALOG_PHONE

CiscoTerminal.DEVICETYPE_CISCO_6901

CiscoTerminal.DEVICETYPE_CISCO_6911

CiscoTerminal.DEVICETYPE_CISCO_6921

CiscoTerminal.DEVICETYPE_CISCO_6941

CiscoTerminal.DEVICETYPE_CISCO_6945

CiscoTerminal.DEVICETYPE_CISCO_6961

CiscoTerminal.DEVICETYPE_CISCO_7906

CiscoTerminal.DEVICETYPE_TELECASTER_BID

CiscoTerminal.DEVICETYPE_CISCO_7911

CiscoTerminal.DEVICETYPE_14 _BUTTON_SIDECAR

CiscoTerminal.DEVICETYPE_7915_12 _BUTTON_SIDECAR

CiscoTerminal.DEVICETYPE_7915_24 _BUTTON_SIDECAR

CiscoTerminal.DEVICETYPE_7916_12 _BUTTON_SIDECAR

CiscoTerminal.DEVICETYPE_7916_24 _BUTTON_SIDECAR

CiscoTerminal.DEVICETYPE_CKEM_36_BUTTON

CiscoTerminal.DEVICETYPE_CP7921

CiscoTerminal.DEVICETYPE_CISCO_7925

CiscoTerminal.DEVICETYPE_CISCO_7926

CiscoTerminal.DEVICETYPE_7931

getType()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
629

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

CiscoTerminal.DEVICETYPE_IP_ CONFERENCE_PHONE

CiscoTerminal.DEVICETYPE_CISCO_7936

CiscoTerminal.DEVICETYPE_CISCO_7937

CiscoTerminal.DEVICETYPE _TELECASTER_BUSINESS

CiscoTerminal.DEVICETYPE_CISCO_7941

CiscoTerminal.DEVICETYPE_CISCO_7941G_GE

CiscoTerminal.DEVICETYPE_CISCO_7942

CiscoTerminal.DEVICETYPE_CISCO_7945

CiscoTerminal.DEVICETYPE_TELECASTER_MGR

CiscoTerminal.DEVICETYPE_CISCO_7961

CiscoTerminal.DEVICETYPE_CISCO_7961G_GE

CiscoTerminal.DEVICETYPE_CISCO_7962

CiscoTerminal.DEVICETYPE_CISCO_7965

CiscoTerminal.DEVICETYPE_CISCO_7970

CiscoTerminal.DEVICETYPE_CISCO_7971

CiscoTerminal.DEVICETYPE_CISCO_7975

CiscoTerminal.DEVICETYPE_CISCO_7989

CiscoTerminal.DEVICETYPE_CISCO_8941

CiscoTerminal.DEVICETYPE_CISCO_8945

CiscoTerminal.DEVICETYPE_CISCO_8961

CiscoTerminal.DEVICETYPE_9951

CiscoTerminal.DEVICETYPE_CISCO_9971

CiscoTerminal.DEVICETYPE_ATA_186

CiscoTerminal.DEVICETYPE_CISCO_ATA_187

CiscoTerminal.DEVICETYPE_CISCO_CIUS

CiscoTerminal.DEVICETYPE_CISCO_CIUS_SP

CiscoTerminal.DEVICETYPE_CISCO _SOFTPHONE_SE_M

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED
_COMMUNICATOR

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED
_MOBILE_COMMUNICATOR

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED
_COMMUNICATIONS_FOR_RTX

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
630

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInteface

CiscoTerminal.DEVICETYPE_CLIENT
_SERVICES_FRAMEWORK

CiscoTerminal.DEVICETYPE_VGC_PHONE

CiscoTerminal.DEVICETYPE_CTI_PORT

CiscoTerminal.DEVICETYPE_CTI_ROUTE_POINT

CiscoTerminal.DEVICETYPE_DEVICE_PILOT

CiscoTerminal.DEVICETYPE_ISDN_BRI_PHONE

CiscoTerminal.DEVICETYPE_CTI_REMOTE_DEVICE

This method returns the device type name of Terminal (i.e. The
display name of the device type). It will return an empty string if
device type name cannot be found, or return null if device is
invalid.

getTypeName()String

Returns CiscoMultiMediaCapabilityInfo, to indicate the
multimedia capabilities of the terminal.

getCiscoMultiMediaCapabilityInfo()CiscoTerminal

This method is used get the value of huntlogstatus of the terminal,
it returns either
CiscoTerminal.DEVICE_HUNT_LOGGED_IN,CiscoTerminal.DEVICE_HUNT_LOGGED_OUT
or CiscoTerminal. DEVICE_HUNT_NOT_APPLICABLE

This method throws InvalidStateException if it is invoked on the
terminal which is out of service

getHuntLogStatus() throws
InvalidStateException

int

This method is used set the value of huntLogStatus of the device,
it can take
CiscoTerminal.DEVICE_HUNT_LOGGED_IN,CiscoTerminal.DEVICE_HUNT_LOGGED_OUT
values as parameters.

This method throws InvalidStateException if it is invoked on the
terminal which is out of service. It throws
MethodNotSupportedExceptionwhen it is invoked on unsupported
devices like CTI Route Points, CTI Remote Device and Spark
Remote Device and InvalidArgumentException when the
arguments are other than 1(loggen_in) and 2(logged_out)

setHuntLogStatus(int
huntLogStatus) throws
InvalidStateException,
MethodNotSupportedException,
InvalidArgumentException

void

Inherited Fields

From Interface javax.telephony.Terminal

addCallObserver, addObserver, getAddresses, getCallObservers, getCapabilities, getName, getObservers,
getProvider, getTerminalCapabilities, getTerminalConnections, removeCallObserver, removeObserver

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
631

Cisco Unified JTAPI Extensions
Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

Data Type
public static final int

CiscoTerminal.DEVICETYPE_UNKNOWN = 0

CiscoTerminal.DEVICETYPE_ANALOG_PHONE = 30027

CiscoTerminal.DEVICETYPE_12S = 4

CiscoTerminal.DEVICETYPE_CISCO_6901 = 547

CiscoTerminal.DEVICETYPE_CISCO_6911 = 548

CiscoTerminal.DEVICETYPE_CISCO_6921 = 495

CiscoTerminal.DEVICETYPE_CISCO_6941 = 496

CiscoTerminal.DEVICETYPE_CISCO_6945 = 564

CiscoTerminal.DEVICETYPE_CISCO_6961 = 497

CiscoTerminal.DEVICETYPE_CISCO_7906 = 369

CiscoTerminal.DEVICETYPE_TELECASTER_BID = 6

CiscoTerminal.DEVICETYPE_CISCO_7911 = 307

CiscoTerminal.DEVICETYPE_14_BUTTON_SIDECAR = 124

CiscoTerminal.DEVICETYPE_7915_12_BUTTON_SIDECAR = 227

CiscoTerminal.DEVICETYPE_7915_24_BUTTON_SIDECAR = 228

CiscoTerminal.DEVICETYPE_7916_12_BUTTON_SIDECAR = 229

CiscoTerminal.DEVICETYPE_7916_24_BUTTON_SIDECAR = 230

CiscoTerminal.DEVICETYPE_CKEM_36_BUTTON = 232

CiscoTerminal.DEVICETYPE_CP7921 = 365

CiscoTerminal.DEVICETYPE_CISCO_7925 = 484

CiscoTerminal.DEVICETYPE_CISCO_7926 = 577

CiscoTerminal.DEVICETYPE_7931 = 348

CiscoTerminal.DEVICETYPE_IP_CONFERENCE_PHONE = 9

CiscoTerminal.DEVICETYPE_CISCO_7936 = 30019

CiscoTerminal.DEVICETYPE_CISCO_7937 = 431

CiscoTerminal.DEVICETYPE_TELECASTER_BUSINESS = 8

CiscoTerminal.DEVICETYPE_CISCO_7941 = 115

CiscoTerminal.DEVICETYPE_CISCO_7941G_GE = 309

CiscoTerminal.DEVICETYPE_CISCO_7942 = 434

CiscoTerminal.DEVICETYPE_CISCO_7945 = 435

CiscoTerminal.DEVICETYPE_TELECASTER_MGR = 7

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
632

Cisco Unified JTAPI Extensions
Data Type

CiscoTerminal.DEVICETYPE_CISCO_7961 = 30018

CiscoTerminal.DEVICETYPE_CISCO_7961G_GE = 308

CiscoTerminal.DEVICETYPE_CISCO_7962 = 404

CiscoTerminal.DEVICETYPE_CISCO_7965 = 436

CiscoTerminal.DEVICETYPE_CISCO_7970 = 30006

CiscoTerminal.DEVICETYPE_CISCO_7971 = 119

CiscoTerminal.DEVICETYPE_CISCO_7975 = 437

CiscoTerminal.DEVICETYPE_CISCO_7989 = 302

CiscoTerminal.DEVICETYPE_CISCO_8941 = 586

CiscoTerminal.DEVICETYPE_CISCO_8945 = 585

CiscoTerminal.DEVICETYPE_CISCO_8961 = 540

CiscoTerminal.DEVICETYPE_9951 = 537

CiscoTerminal.DEVICETYPE_CISCO_9971 = 493

CiscoTerminal.DEVICETYPE_ATA_186 = 12

CiscoTerminal.DEVICETYPE_CISCO_ATA_187 = 550

CiscoTerminal.DEVICETYPE_CISCO_CIUS = 593

CiscoTerminal.DEVICETYPE_CISCO_CIUS_SP = 632

CiscoTerminal.DEVICETYPE_CISCO_SOFTPHONE_SE_M = 30016

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_COMMUNICATOR = 358

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_MOBILE_COMMUNICATOR = 468

CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_COMMUNICATIONS_FOR_RTX = 648

CiscoTerminal.DEVICETYPE_CLIENT_SERVICES_FRAMEWORK = 503

CiscoTerminal.DEVICETYPE_VGC_PHONE = 10

CiscoTerminal.DEVICETYPE_CTI_PORT = 72

CiscoTerminal.DEVICETYPE_CTI_ROUTE_POINT = 73

CiscoTerminal.DEVICETYPE_DEVICE_PILOT = 71

CiscoTerminal.DEVICETYPE_ISDN_BRI_PHONE = 30028

CiscoTerminal.DEVICETYPE_CTI_REMOTE_DEVICE = 635

Related Documentation
See Terminal, CiscoMediaTerminal, Constant Field Values, on page 1665, and CiscoTermEvFilter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
633

Cisco Unified JTAPI Extensions
Related Documentation

CiscoTerminalConnection
The CiscoTerminalConnection interface extends the CallControlTerminalConnection interface with additional
capabilities. Applications can use the getReasonmethod to obtain the reason for the creation of this Connection.

Interface History

DescriptionCisco Unified Communications Manager
Release Number

Created history table to track changes.7.1(1 and 2)

Two newmethods, addMediaStream(String streamDN, String
callingPartyNumber) and removeMediaStream(), are added.

8.5(1)

A new API, playtone(int toneType, int playToneDirection)
is added.

A new method, startRecording(int playToneDirection, int
recordingInvocationType), is added. Two new constants,
RECORDING_INVOCATION_TYPE_SILENT, and
RECORDING_INVOCATION_TYPE_USER, are added.

9.0(1)

A new method, hold (String contentID) is added.10.0(1)

Superinterfaces
javax.telephony.callcontrol.CallControlTerminalConnection, CiscoObjectContainer,
javax.telephony.TerminalConnection

Declaration
public interface CiscoTerminalConnection extends javax.telephony.callcontrol.CallControlTerminalConnection,
CiscoObjectContainer

Fields
Table 236: Fields in CiscoTerminalConnection

DescriptionFieldInterface

The the call is not selected.CISCO_SELECTEDNONEstatic final int

The call is selected.CISCO_SELECTEDLOCALstatic final int

A passive TerminalConnection receives this select
status if the call is selected by its shared line.

CISCO_SELECTEDREMOTEstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
634

Cisco Unified JTAPI Extensions
CiscoTerminalConnection

DescriptionFieldInterface

This constant is used when the application invokes
silent recording invocation type. The call recording
status is not reflected on the Cisco IP device display.

Silent recording is the default behavior in releases
prior to Release 9.0. If an application uses the
startRecording(int playToneDirection) method that
was introduced prior to Release 9.0, it will default
to the
RECORDING_INVOCATION_TYPE_SILENT
invocation type.

RECORDING_INVOCATION_TYPE_SILENTstatic int

This constant is used when the application invokes
user recording invocation type. The call recording
status is reflected on the Cisco IP device display.
Applications can query the device for this recording
type.

RECORDING_INVOCATION_TYPE_USERstatic int

Inherited Fields

From Interface javax.telephony.callcontrol.CallControlTerminalConnection

BRIDGED, DROPPED, HELD, IDLE, INUSE, RINGING, TALKING, UNKNOWN

From Interface javax.telephony.TerminalConnection

ACTIVE, PASSIVE

Parameters

invocationType

The invocationType parameter allows an application to specify a recording invocation type. The parameter
is passed as one of the constants RECORDING_INVOCATION_TYPE_SILENT or
RECORDING_INVOCATION_TYPE_USER.

String contentID

A String representing a specific video. Max 128 characters.

New Error Codes
CTIERR_ILLEGAL_CALLSTATE

Occurs if the request is made on a TerminalConnection associated with an invalid call. The only valid state
to invoke this request is ‘Connected’.

JTAPI throws InvalidStateException with description as “Line is not in a legal state to invoke command.”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
635

Cisco Unified JTAPI Extensions
Inherited Fields

CTIERR _CALL_DROPPED

Occurs if the request is made on a TerminalConnection associated with an invalid call.

JTAPI throws InvalidStateException with description as “Call is dropped”.

CTIERR_BIB_NOT_CONFIGURED

Occurs if the Built-In-Bridge (BIB) is not configured on the agent device.

JTAPI throws ResourceUnavailableException with a description as “Built in bridge not configured”.

CTIERR_RESOURCE_NOT_AVAILABLE

Occurs if the Bulit-In-Bridge (BIB) cannot be allocated for the request.

JTAPI throws ResourceUnavailableException with a description as “Resource Not Available”.

CTIERR_MEDIA_CONNECTION_FAILED

Occurs if the Bulit-In-Bridge (BIB) call fails to connect to the media.

JTAPI throws InvalidStateException with a description as “The connection to the media has failed”.

CTIERR_START_STREAM_MEDIA_FAILED

Occurs if there is a general failure with the Agent Greeting feature, that is not covered by any of the other
error codes.

JTAPI throws InvalidStateException with a description as “Start streaming media request failed”.

CTIERR_STOP_STREAM_MEDIA_FAILED

Occurs if there is a general failure with the Agent Greeting feature, that is not covered by any of the other
error codes.

JTAPI throws InvalidStateException with a description as “Stop streaming media request failed”.

CTIERR_REQUEST_ALREADY_PENDING

Occurs if an application attempts to invoke an Agent Greeting API while another request is made.

JTAPI throws InvalidStateException with a description as “The request was rejected because there is a similar
request already pending”.

CTIERR_NO_STREAMING_MEDIA_SESSION

Occurs if an application attempts to invoke a stop request while there is no existing media stream to stop.
JTAPI throws InvalidStateException with a description as “There is no streaming media session active”.

CTIERR_EXISTING_STREAMING_MEDIA_SESSION

Occurs if an application attempts to invoke an Agent Greeting API while another request is made and accepted.

JTAPI throws InvalidStateException with a description as “There is an existing streaming media session”.

CTIERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING

Occurs if an application attempts to stop an active recording, but specifies a recording type other than the
recording type that was used to invoke the recording.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
636

Cisco Unified JTAPI Extensions
New Error Codes

Methods
Table 237: Methods in CiscoTerminalConnection

DescriptionMethodInterface

Returns the privacy status of the call on the terminal. This interface
returns True if Privacy is on and False otherwise. Always check
the TerminalConnection privacy status before displaying any
information about the call at an applcation Terminal
implementation.

getPrivacyStatus()boolean

Returns the select status of the call on the terminal. Always check
the select status of the TerminalConnection before performing
any call-process operation for the call. Can be one of:

• CiscoTerminalConnection.CISCO_SELECTEDNONE
• CiscoTerminalConnection.CISCO_SELECTEDLOCAL
• CiscoTerminalConnection.CISCO_SELECTEDREMOTE

getSelectStatus()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
637

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Starts recording a call. The system delivers
CiscoTermConnRecordingStartEv and
CiscoTermConnRecordingTargetInfoEv to the call observer when
this method is successful.

Pre-conditions

• ((this.getTerminal()).getProvider()).getState() = =
Provider.IN_SERVICE

• this.getCallControlState() = =
CallControlTerminalConnection.TALKING

• ((CiscoProviderCapabilities)
(this.getTerminal().getProvider().
getProviderCapabilities()).canRecord() = = TRUE

• this.getConnection().getAddress().
getRecordingConfig(this.getTerminal()) = = CiscoAddress.
APPLICATION_CONTROLLED__RECORDING

Parameters

• playToneDirection—Specifies whether to play a tone. Valid
values are:

• CiscoCall. PLAYTONE_NOLOCAL_OR_REMOTE

• CiscoCall. PLAYTONE_LOCALONLY

• CiscoCall. PLAYTONE_REMOTEONLY

• CiscoCall. PLAYTONE_BOTHLOCALANDREMOTE

Throws

• javax.telephony. InvalidStateException—Either the Provider
was not "in service" or the TerminalConnection is not in the
"TALKING" state.

• javax.telephony. PrivilegeViolationException—The
application does not have the proper authority to invoke this
method.

• javax.telephony. ResourceUnavailableException—An
internal resource that this method requires is not available.

• javax.telephony. InvalidArgumentException—The value for
playToneDirection is not valid.

startRecording(intplayToneDirection)void

This method is similar to the startRecording(int
playToneDirection) method.

startRecording(int playToneDirection, int
invocationType)

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
638

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

This method is similar to the stopRecording() method.

If an application attempts to stop an active recording, but specifies
a recording type other than the recording type that the recording
was invoked with, the request fails and an exception with error
code CTIERR_RECORDING_INVOCATION
_TYPE_NOT_MATCHING is thrown.

stopRecording(int invocationType)void

Returns CiscoRecorderInfo, which exposes the terminal name
and address of the recorder or null if the call is not being recorded.
The call control terminal connection must be in the talking state.

getCiscoRecorderInfo()CiscoRecorderInfo

Returns CiscoMonitorInitiatorInfo or null if the call is not being
monitored. The application can use this method on the terminal
connection of the monitor target to get information about the
monitor initiator or determine that there is no monitor session.

getCiscoMonitorInitiatorInfo()CiscoMonitor
InitiatorInfo

Returns CiscoMonitorTargetInfo or null. The application can use
this method on the terminal connection of the monitor initiator to
get information about the monitor target. This method returns null
when called on a terminal connection of the monitor target or if
there is no monitor session.

getCiscoMonitorTargetInfo()CiscoMonitor
TargetInfo

Sends a request to begin sending media to the
TerminalConnection's associated Built-in-bridge (BIB).

Parameters

• String streamDN—Dialed Number (DN) for the IVR, CTI
Port, or the device streaming the media to the call.

• String callingPartyNumber—A string object that applications
use to provide information to the IVR. This is subject to all
the constraints of a DN, and is used to store the agent's DN.
This is presented to the IVR as the calling party in the new
call event. The IVRmust have some application running that
understands this information, and can only be retrieved from
the new call event on the IVR.

addMediaStream(String streamDN, String
callingPartyNumber)

void

Sends a request to cease the playing of media to the
TerminalConnection's associated BIB.

removeMediaStream()void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
639

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Plays tones at local or remote ends of the call.

Parameters

• int tonetype—One of the tones defined in CiscoTone
interface.

• int playToneDirection—Can be
CiscoCall.PLAYTONE_LOCALONLY or
CiscoCall.PLAYTONE_REMOTEONLY.

Throws

• InvalidStateException

• InvalidArgumentException

• PlatformException

playTone(int toneType, int
playToneDirection)

void

This interface puts a call on hold, and specifies a contentID that
can be used to play video on hold, or other related features. Note
that CiscoProvider must be in IN_SERVICE state. Also, the call
control state needs to be in TALKING state. If not,
InvalidStateException will be thrown. If the hold request fails,
ResourceUnavailableException will be thrown. All other errors
encountered will result in PlatformException to be thrown.

Parameters

String contentID—A String representing a specific video. Max
128 characters.

hold (String contentID)void

Inherited Methods

From Interface javax.telephony.callcontrol.CallControlTerminalConnection

getCallControlState, hold, join, leave, unhold

From Interface javax.telephony.TerminalConnection

answer, getCapabilities, getConnection, getState, getTerminal, getTerminalConnectionCapabilities, getObject,
setObject

From Interface com.cisco.jtapi.extensions.CiscoObjectContainer

Related Documentation
See Constant Field Values, on page 1665.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
640

Cisco Unified JTAPI Extensions
Inherited Methods

CiscoTerminalObserver
Applications implement this interface to receive CiscoTermEv events such as CiscoRTPInputStartedEv and
CiscoRTPInputStoppedEv when observing Terminals via the Terminal.addObserver method.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.TerminalObserver

Declaration
public interface CiscoTerminalObserver extends javax.telephony.TerminalObserver

Fields
None

Methods
None

Inherited Methods

From Interface javax.telephony.TerminalObserver

terminalChangedEvent

Related Documentation
See CiscoTermInServiceEv, CiscoTermOutOfServiceEv, CiscoRTPInputStartedEv, CiscoRTPInputStoppedEv,
CiscoRTPOutputStartedEv, and CiscoRTPOutputStoppedEv.

CiscoTerminalProtocol
The CiscoTerminalProtocol event is a container for the constants that define protocol types.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
641

Cisco Unified JTAPI Extensions
CiscoTerminalObserver

Interface History

DescriptionCisco Unified Communications Manager Release

Added the extension.3.x

Superinterfaces
public interface CiscoTerminalProtocol

Fields
Table 238: Fields in CiscoTerminalProtocol

DescriptionFieldInterface

This constant value returned by the
getProtocol() interface on CiscoTerminal
indicates that the protocol type for the
CiscoTerminal is not known or not
available.

PROTOCOL_NONEstatic int

This constant value returned by the
getProtocol() interface on CiscoTerminal
indicates that the protocol type for the
CiscoTerminal is SCCP.

PROTOCOL_SCCPstatic int

This constant value returned by the
getProtocol() interface on CiscoTerminal
indicates that the protocol type for the
CiscoTerminal is SIP.

PROTOCOL_SIPstatic int

This constant value returned by the
getProtocol() interface on CiscoTerminal
indicates that the protocol type for the
CiscoTerminal is CTI Remote Device.

PROTOCOL_CTI_REMOTE_DEVICEstatic int

Related Documentation
See also CiscoTerminal, Constant Field Values, on page 1665 for more information.

CiscoTermInServiceEv
The CiscoTermInServiceEv event gets sent to the application's TerminalObservers to indicate that the
CiscoTerminal is ready for operation.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
642

Cisco Unified JTAPI Extensions
Superinterfaces

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermInServiceEv extends CiscoTermEv

Fields
Table 239: Fields in CiscoTermInServiceEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
643

Cisco Unified JTAPI Extensions
Superinterfaces

Methods
Table 240: Methods in CiscoTermInServiceEv

DescriptionMethodInterface

Reports whether a terminal is UNICODE-capable by
returning the supported encoding. The value of supported
encoding may be any of the following constants:

• CiscoTerminal.UNKNOWN_ENCODING
• CiscoTerminal.ASCII_ENCODING
• CiscoTerminal.UCS2UNICODE_ENCODING
• CiscoTerminal.NOT_APPLICABLE

Returns: An integer value for the supported encoding
of this terminal.

getSupportedEncoding()int

Returns the locale that this Terminal supports. Returns
int values defined in the CiscoLocales interface.

getLocale()int

Returns the current DND status to the
application.Returns boolean dndStatus.

getDNDStatus()boolean

Returns the current DND option to the application. The
DND option can be any of the following constants:

• CiscoTerminal.DND_OPTION_NONE
• CiscoTerminal.DND_OPTION_RINGER_OFF
• CiscoTerminal.DND_OPTION_CALL_REJECT

Returns int dndOption.

getDNDOption()int

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665 and CiscoLocales

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
644

Cisco Unified JTAPI Extensions
Methods

CiscoTermOutOfServiceEv
The CiscoTermOutOfServiceEv event gets sent to the TerminalObservers of an application to indicate that
the CiscoTerminal is out-of-service.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoOutOfServiceEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermOutOfServiceEv extends CiscoTermEv, CiscoOutOfServiceEv

Fields
Table 241: Fields in CiscoTermOutOfServiceEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
645

Cisco Unified JTAPI Extensions
CiscoTermOutOfServiceEv

META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN,
CAUSE_CALLMANAGER_FAILURE,CAUSE_CTIMANAGER_FAILURE,CAUSE_DEVICE_FAILURE,
CAUSE_DEVICE_RESTRICTED, CAUSE_DEVICE_UNREGISTERED, CAUSE_LINE_RESTRICTED,
CAUSE_NOCALLMANAGER_AVAILABLE, CAUSE_REHOME_TO_HIGHER_PRIORITY_CM,
CAUSE_REHOMING_FAILURE

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface com.cisco.jtapi.extensions.CiscoOutOfServiceEv

Methods
None

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermRegistrationFailedEv
Applications receive this event when TerminalRegistration fails at the provider. The error that getErrorCode()
returns explains the problem. On receiving this event, the application should try to reregister the terminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
646

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

A new error code, CTI_SECURITY_NOT_ALLOWED, is added.8.5(1)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermRegistrationFailedEv extends CiscoTermEv

Fields
Table 242: Fields in CiscoTermRegistrationFailedEv

DescriptionFieldInterface

NoneIDstatic final int

Registration failed because the
Terminal is already registered
with a different media
capability. Try reregistering
with the same capability.

MEDIA_CAPABILITY_MISMATCHstatic final int

Registration failed because the
Terminal is already registered
with media termination type
none. Try reregistering with
Media termination type none.

MEDIA_ALREADY_TERMINATED_NONEstatic final int

Registration failed because the
Terminal is already registered
with static media termination.
Static registration does not allow
a second registration. Wait until
the terminal unregisters.

MEDIA_ALREADY_TERMINATED_STATICstatic final int

Registration failed because the
Terminal is already registered
with dynamic media
termination. Try reregistering
with dynamic media
termination.

MEDIA_ALREADY_TERMINATED_DYNAMICstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
647

Cisco Unified JTAPI Extensions
Superinterfaces

DescriptionFieldInterface

Registration encountered a race
condition while attempting to
register the Terminal. Try
registering the Terminal.

OWNER_NOT_ALIVEstatic final int

A database initialization error
occurred while registering a
Terminal. Try registering the
Terminal.

DB_INITIALIZATION_ERRORstatic final int

Registration failed for an
unknown internal reason. Try to
reregister the Terminal.

UNKNOWNstatic final int

Registration failed due to
unsupported IP Addressing
mode Try to register the
Terminal with correct IP
Addressing Mode.

IP_ADDRESSING_MODE_MISMATCHstatic final int

The application registers a
device in secured mode but
eventually is rejected with the
error code.

CTI_SECURITY_NOT_ALLOWEDpublic static

Inherited Fields

From Inteface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Inteface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
648

Cisco Unified JTAPI Extensions
Inherited Fields

Methods
Table 243: Methods in CiscoTermRegistrationFailedEv

DescriptionMethodInterface

Returns the error code for this exception, as an integer.getErrorCode()int

Inherited Methods

From Inteface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Inteface javax.telephony.events.TermEv

getTerminal

From Inteface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermRemovedEv
The CiscoTermRemovedEv event gets sent to the provider observer of the application when a CiscoTerminal
gets removed from the provider domain.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoTermRemovedEv extends CiscoProvEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
649

Cisco Unified JTAPI Extensions
Methods

Fields
Table 244: Fields in CiscoTermRemovedEv

FieldInterface

IDstatic final int

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 245: Methods in CiscoTermRemovedEv

DescriptionMethodInterface

Returns the Terminal that was removed from the
provider domain.

getTerminal()javax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
650

Cisco Unified JTAPI Extensions
Fields

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermRestrictedEv
Applications see the CiscoTermRestrictedEv event when a user restricts a Terminal from Cisco Unified
Communications Manager administration after the application starts running. Applications will not be able
to see events for restricted Terminals, or for addresses on those terminals. If a Terminal gets restricted while
it is in the in-service state, applications receive this event, and the Terminal and the corresponding addresses
move to the out-of-service state.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoProvEv, javax.telephony.events.Ev, javax.telephony.events.ProvEv

Declaration
public interface CiscoTermRestrictedEv extends CiscoProvEv

Fields
Table 246: Fields in CiscoTermRestrictedEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
651

Cisco Unified JTAPI Extensions
Related Documentation

META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 247: Methods in CiscoTermRestrictedEv

DescriptionMethodInterface

Returns the Terminal that has become restricted.getTerminaljavax.telephony.Terminal

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.ProvEv

getProvider

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See Constant Field Values, on page 1665.

CiscoTermSnapshotCompletedEv
If an application comes up after a call is established between two endpoints, for mid-call monitoring the
application needs to query Terminal.createSnapshot(). After the call events for all of the Addresses on the
Terminal get delivered, the application will get CiscoTermSnapshotCompletedEv. To maintain backward
compatibility, these events get generated only when the application enables the snapShotRTPEnabled filter
in CiscoTermEvFilter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
652

Cisco Unified JTAPI Extensions
Methods

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermSnapshotCompletedEv extends CiscoTermEv

Fields
Table 248: Fields in CiscoTermSnapshotCompletedEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
653

Cisco Unified JTAPI Extensions
Superinterfaces

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoTermEvFilter and Constant Field Values, on page 1665.

CiscoTermSnapshotEv
If an application comes up after a call is established between two endpoints, for mid-call monitoring the
application needs to query Terminal.createSnapshot(). The snapshot event, CiscoTermSnapshotEv, gets sent
and indicates whether the current media between the endpoints is secure. Applications could also query
CiscoMediaCallSecurityIndicator to get the security indicator for a call; however, this event does not contain
any KeyMaterial. If there are no calls on any of the lines on the Terminal, applications will only get
CiscoTermSnapshotCompletedEv. Tomaintain backward compatibility, these events get generated only when
the application enables the snapShotRTPEnabled filter in CiscoTermEvFilter.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
CiscoEv, CiscoTermEv, javax.telephony.events.Ev, javax.telephony.events.TermEv

Declaration
public interface CiscoTermSnapshotEv extends CiscoTermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
654

Cisco Unified JTAPI Extensions
Inherited Methods

Fields
Table 249: Fields in CiscoTermSnapshotEv

FieldInterface

IDstaticint

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 250: Methods in CiscoTermSnapshotEv

DescriptionMethodInterface

Returns the media security status for each active
call on this device.

getCiscoMediaCallSecurityIndicator()CiscoMediaCallSecurity
Indicator[]

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.TermEv

getTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
655

Cisco Unified JTAPI Extensions
Fields

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Related Documentation
See CiscoTermEvFilter and Constant Field Values, on page 1665.

CiscoTone
The CiscoTone interface defines CTI Tone constant codes. CiscoToneChangedEv provides the getTone()
method to return one of these constants. Only the ZIPZIP tone type is exposed to applications.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added a new extension.7.0(1)

Enhanced to include the supported tones that are used as
parameters for playTone() method.

8.5(1)

Superinterfaces
public interface CiscoTone

Fields
Table 251: Fields in CiscoTone

DescriptionFieldInterface

This interface defines the integer value for
the ZIPZIP tone. The
CiscoToneChangedEv.getTone() interface
returns an integer value for tone.

ZIPZIPStatic int

-ZIPpublic static final int

-CALLWAITINGTONEpublic static final int

See also CiscoToneChangedEv, Constant Field Values, on page 1665.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
656

Cisco Unified JTAPI Extensions
Related Documentation

CiscoToneChangedEv
The CiscoToneChangedEv event indicates that a tone has been generated for this call. The
CallControlCallObserver interface reports this event. Currently, this tone gets generated only because of the
Forced Authorization Code (FAC) or Client Matter Code (CMC) features.
CiscoToneChangedEv.getCiscoCause() returns CiscoCallEv.CAUSE_FAC_CMC_FEATURE if the tone
gets generated because of FAC_CMC.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoToneChangedEv extends CiscoCallEv

Fields
Table 252: Fields in CiscoToneChangedEv

DescriptionFieldInterface

NoneIDstatic final int

Indicates that a FAC must be entered using
Connection.addToAddress(String) to extend
the call. This applies only for
FAC_CMC_FEATURE_ID.

FAC_REQUIREDstatic final int

Indicates that a CMCmust be entered using
Connection.addToAddress(String) to extend
the call. This applies only for
FAC_CMC_FEATURE_ID.

CMC_REQUIREDstatic final int

Indicates that both a FAC and a CMCmust
be entered using
Connection.addToAddress(String) to extend
the call. The application can enter either
one String code at a time or both at same
time, separated by a # (pound sign)
character. This applies only for
FAC_CMC_FEATURE_ID.

FAC_CMC_REQUIREDstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
657

Cisco Unified JTAPI Extensions
CiscoToneChangedEv

CAUSE_ACCESSINFORMATIONDISCARDED

, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL, CAUSE_BCNAUTHORIZED,
CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED, CAUSE_CALLIDINUSE,
CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED, CAUSE_CALLSPLIT,
CAUSE_CHANTYPENIMPL,CAUSE_CHANUNACCEPTABLE,CAUSE_CTICCMSIP400BADREQUEST,
CAUSE_CTICCMSIP401UNAUTHORIZED, CAUSE_CTICCMSIP402PAYMENTREQUIRED,
CAUSE_CTICCMSIP403FORBIDDEN, CAUSE_CTICCMSIP404NOTFOUND,
CAUSE_CTICCMSIP405METHODNOTALLOWED, CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,
CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
658

Cisco Unified JTAPI Extensions
Fields

CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

Inherited Fields

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface com.cisco.jtapi.extensions.CiscoCallEv

Methods
Table 253: Methods in CiscoToneChangedEv

DescriptionMethodInterface

Returns the generated tone type from CiscoTone.getTone()int

Returns which codes are required for the dialed DN. The
codeRequired may be one of the following:

• CiscoToneChangedEv.FAC_REQUIRED
• CiscoToneChangedEv.CMC_REQUIRED
• CiscoToneChangedEv.FAC_CMC_REQUIRED

getWhichCodeRequired()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
659

Cisco Unified JTAPI Extensions
Inherited Fields

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface com.cisco.jtapi.extensions.CiscoCallEv

Related Documentation
See Constant Field Values, on page 1665.

CiscoTransferEndEv
The CiscoTransferEndEv event indicates that a transfer operation has completed. This event gets reported via
the CallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoTransferEndEv extends CiscoCallEv

Fields
None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
660

Cisco Unified JTAPI Extensions
Inherited Methods

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,
CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
661

Cisco Unified JTAPI Extensions
Inherited Fields

CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Methods
Table 254: Methods in CiscoTransferEndEv

DescriptionMethodInterface

Returns the call that has been transferred. This call is in
the Call.INVALID state.

getTransferredCall()javax.telephony.Call

Returns the call that remains active after the transfer
completes.

getFinalCall()javax.telephony.Call

Returns the ACTIVETerminalConnection that currently
acts as the transfer controller for the final call. When
the transferController is a SharedLine, there will be
multiple TerminalConnection objects. This method
returns the ACTIVE TerminalConnection; however, if
the application is not observing the ACTIVE
TerminalConnection, this method will return one of the
PASSIVE TerminalConnection objects.

getTransferController()javax.telephony.TerminalConnection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
662

Cisco Unified JTAPI Extensions
Methods

DescriptionMethodInterface

Returns the list of TerminalConnection objects that
currently act as the transfer controller for the final call.
When the transferController is not a SharedLine, there
will be only one TerminalConnection in the list. This
method returns null if there is no observer on the transfer
controller.

getTransferControllers()javax.telephony.TerminalConnection[]

Returns the address that currently acts as the transfer
controller for the final call.

getTransferControllerAddress()javax.telephony.Address

Returns true if the transfer is successful, or false
otherwise.

isSuccess()boolean

Inherited Methods

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

Related Documentation
See Constant Field Values, on page 1665 and getTransferControllers().

CiscoTransferStartEv
The CiscoTransferStartEv event indicates that a transfer operation has started. This event gets reported via
the CallControlCallObserver interface.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
663

Cisco Unified JTAPI Extensions
Inherited Methods

Superinterfaces
javax.telephony.events.CallEv, CiscoCallEv, CiscoEv, javax.telephony.events.Ev

Declaration
public interface CiscoTransferStartEv extends CiscoCallEv

Fields
Table 255: Fields in CiscoTransferStartEv

FieldInterface

IDstatic final int

Inherited Fields

From Interface com.cisco.jtapi.extensions.CiscoCallEv

CAUSE_ACCESSINFORMATIONDISCARDED, CAUSE_BARGE, CAUSE_BCBPRESENTLYAVAIL,
CAUSE_BCNAUTHORIZED, CAUSE_BEARERCAPNIMPL, CAUSE_CALLBEINGDELIVERED,
CAUSE_CALLIDINUSE, CAUSE_CALLMANAGER_FAILURE, CAUSE_CALLREJECTED,
CAUSE_CALLSPLIT, CAUSE_CHANTYPENIMPL, CAUSE_CHANUNACCEPTABLE,
CAUSE_CTICCMSIP400BADREQUEST, CAUSE_CTICCMSIP401UNAUTHORIZED,
CAUSE_CTICCMSIP402PAYMENTREQUIRED, CAUSE_CTICCMSIP403FORBIDDEN,
CAUSE_CTICCMSIP404NOTFOUND, CAUSE_CTICCMSIP405METHODNOTALLOWED,
CAUSE_CTICCMSIP406NOTACCEPTABLE,
CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED,
CAUSE_CTICCMSIP408REQUESTTIMEOUT, CAUSE_CTICCMSIP410GONE,
CAUSE_CTICCMSIP411LENGTHREQUIRED,CAUSE_CTICCMSIP413REQUESTENTITYTOOLONG,
CAUSE_CTICCMSIP414REQUESTURITOOLONG,
CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE,
CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME, CAUSE_CTICCMSIP420BADEXTENSION,
CAUSE_CTICCMSIP421EXTENSTIONREQUIRED, CAUSE_CTICCMSIP423INTERVALTOOBRIEF,
CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE,
CAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST, CAUSE_CTICCMSIP482LOOPDETECTED,
CAUSE_CTICCMSIP483TOOMANYHOOPS, CAUSE_CTICCMSIP484ADDRESSINCOMPLETE,
CAUSE_CTICCMSIP485AMBIGUOUS, CAUSE_CTICCMSIP486BUSYHERE,
CAUSE_CTICCMSIP487REQUESTTERMINATED,CAUSE_CTICCMSIP488NOTACCEPTABLEHERE,
CAUSE_CTICCMSIP491REQUESTPENDING, CAUSE_CTICCMSIP493UNDECIPHERABLE,
CAUSE_CTICCMSIP500SERVERINTERNALERROR, CAUSE_CTICCMSIP501NOTIMPLEMENTED,
CAUSE_CTICCMSIP502BADGATEWAY, CAUSE_CTICCMSIP503SERVICEUNAVAILABLE,
CAUSE_CTICCMSIP504SERVERTIMEOUT, CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED,
CAUSE_CTICCMSIP513MESSAGETOOLARGE, CAUSE_CTICCMSIP600BUSYEVERYWHERE,
CAUSE_CTICCMSIP603DECLINE, CAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE,
CAUSE_CTICCMSIP606NOTACCEPTABLE, CAUSE_CTICONFERENCEFULL,
CAUSE_CTIDEVICENOTPREEMPTABLE, CAUSE_CTIDROPCONFEREE,
CAUSE_CTIMANAGER_FAILURE, CAUSE_CTIPRECEDENCECALLBLOCKED,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
664

Cisco Unified JTAPI Extensions
Superinterfaces

CAUSE_CTIPRECEDENCELEVELEXCEEDED, CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH,
CAUSE_CTIPREEMPTFORREUSE, CAUSE_CTIPREEMPTNOREUSE,
CAUSE_DESTINATIONOUTOFORDER,CAUSE_DESTNUMMISSANDDCNOTSUB,CAUSE_DPARK,
CAUSE_DPARK_REMINDER, CAUSE_DPARK_UNPARK, CAUSE_EXCHANGEROUTINGERROR,
CAUSE_FAC_CMC, CAUSE_FACILITYREJECTED, CAUSE_IDENTIFIEDCHANDOESNOTEXIST,
CAUSE_IENIMPL, CAUSE_INBOUNDBLINDTRANSFER, CAUSE_INBOUNDCONFERENCE,
CAUSE_INBOUNDTRANSFER, CAUSE_INCOMINGCALLBARRED,
CAUSE_INCOMPATABLEDDESTINATION, CAUSE_INTERWORKINGUNSPECIFIED,
CAUSE_INVALIDCALLREFVALUE, CAUSE_INVALIDIECONTENTS,
CAUSE_INVALIDMESSAGEUNSPECIFIED, CAUSE_INVALIDNUMBERFORMAT,
CAUSE_INVALIDTRANSITNETSEL, CAUSE_MANDATORYIEMISSING,
CAUSE_MSGNCOMPATABLEWCS,CAUSE_MSGTYPENCOMPATWCS,CAUSE_MSGTYPENIMPL,
CAUSE_NETOUTOFORDER, CAUSE_NOANSWERFROMUSER, CAUSE_NOCALLSUSPENDED,
CAUSE_NOCIRCAVAIL, CAUSE_NOERROR, CAUSE_NONSELECTEDUSERCLEARING,
CAUSE_NORMALCALLCLEARING, CAUSE_NORMALUNSPECIFIED,
CAUSE_NOROUTETODDESTINATION, CAUSE_NOROUTETOTRANSITNET,
CAUSE_NOUSERRESPONDING, CAUSE_NUMBERCHANGED,
CAUSE_ONLYRDIVEARERCAPAVAIL, CAUSE_OUTBOUNDCONFERENCE,
CAUSE_OUTBOUNDTRANSFER, CAUSE_OUTOFBANDWIDTH,
CAUSE_PROTOCOLERRORUNSPECIFIED, CAUSE_QSIG_PR, CAUSE_QUALOFSERVNAVAIL,
CAUSE_QUIET_CLEAR, CAUSE_RECOVERYONTIMEREXPIRY, CAUSE_REDIRECTED,
CAUSE_REQCALLIDHASBEENCLEARED,CAUSE_REQCIRCNAVIL,CAUSE_REQFACILITYNIMPL,
CAUSE_REQFACILITYNOTSUBSCRIBED, CAUSE_RESOURCESNAVAIL,
CAUSE_RESPONSETOSTATUSENQUIRY, CAUSE_SERVNOTAVAILUNSPECIFIED,
CAUSE_SERVOPERATIONVIOLATED, CAUSE_SERVOROPTNAVAILORIMPL,
CAUSE_SUBSCRIBERABSENT, CAUSE_SUSPCALLBUTNOTTHISONE,
CAUSE_SWITCHINGEQUIPMENTCONGESTION, CAUSE_TEMPORARYFAILURE,
CAUSE_UNALLOCATEDNUMBER, CAUSE_USERBUSY

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

From Interface javax.telephony.events.Ev

CAUSE_CALL_CANCELLED, CAUSE_DEST_NOT_OBTAINABLE,
CAUSE_INCOMPATIBLE_DESTINATION, CAUSE_LOCKOUT, CAUSE_NETWORK_CONGESTION,
CAUSE_NETWORK_NOT_OBTAINABLE, CAUSE_NEW_CALL, CAUSE_NORMAL,
CAUSE_RESOURCES_NOT_AVAILABLE, CAUSE_SNAPSHOT, CAUSE_UNKNOWN,
META_CALL_ADDITIONAL_PARTY, META_CALL_ENDING, META_CALL_MERGING,
META_CALL_PROGRESS, META_CALL_REMOVING_PARTY, META_CALL_STARTING,
META_CALL_TRANSFERRING, META_SNAPSHOT, META_UNKNOWN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
665

Cisco Unified JTAPI Extensions
Inherited Fields

Methods
Table 256: Methods in CiscoTransferStartEv

DescriptionMethodInterface

Returns the call that will be transferred.getTransferredCall()javax.telephony.
Call

Returns the call that will remain active after the transfer
completes.

getFinalCall()javax.telephony.
Call

Returns the ACTIVETerminalConnection that currently
acts as the transfer controller for the final call. When
the transferController is a SharedLine, there will be
multiple TerminalConnection objects. This method
returns the ACTIVE TerminalConnection; however, if
the application is not observing the ACTIVE
TerminalConnection, this method will return one of the
PASSIVE TerminalConnection objects.

getTransferController()javax.telephony.
Terminal
Connection

Returns a list of TerminalConnection objects that
currently act as the transfer controller for the final call.
When the transferController is not a SharedLine, there
will be only TerminalConnection in the list. This method
returns null if there is no observer on the transfer
controller.

getTransferControllers()javax.telephony.
Terminal
Connection[]

Returns the address that currently acts as the transfer
controller for the final call.

getTransferControllerAddress()javax.telephony.
Address

Returns the terminal names of the controllers across
which transfer is done.

getControllerTerminalName()String

Inherited Methods

From Interface com.cisco.jtapi.extensions.CiscoCallEv

getCiscoCause, getCiscoFeatureReason

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

From Interface javax.telephony.events.CallEv

getCall

From Interface javax.telephony.events.Ev

getCause, getID, getMetaCode, getObserved, isNewMetaEvent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
666

Cisco Unified JTAPI Extensions
Methods

Related Documentation
See Constant Field Values, on page 1665 and getTransferControllers().

CiscoUrlInfo
The CiscoUrlInfo object specifies the properties of the Uniform Resources Locator (URL) associated with a
SIP endpoint.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Created history table to track changes.7.1(1 and 2)

Two new fields, TRANSPORT_TYPE_UNKNOWN and
TRANSPORT_TYPE_TLS, are added.

9.0(1)

Declaration
public interface CiscoUrlInfo

Fields
Table 257: Fields in CiscoUrlInfo

DescriptionFieldInterface

The endpoint is using an unknown transport
type.

TRANSPORT_TYPE_UNKNOWNstatic final int

The endpoint is using UDP.TRANSPORT_TYPE_UDPstatic final int

The endpoint is using TCP.TRANSPORT_TYPE_TCPstatic final int

The endpoint is using TLS.TRANSPORT_TYPE_TLSstatic final int

The URL is of unknown type.URL_TYPE_UNKNOWNstatic final int

The URL is of type telephony.URL_TYPE_TELstatic final int

The URL is of type SIP.URL_TYPE_SIPstatic final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
667

Cisco Unified JTAPI Extensions
Related Documentation

Methods
Table 258: Methods in CiscoUrlInfro

DescriptionMethodInterface

Returns the user name associated with the SIP endpoint
as a string

getUser()java.lang.String

Returns the host name associated with the SIP endpoint.getHost()java.lang.String

Returns the port associated with the SIP endpoint.getPort()int

Returns the Transport Layer Protocol type that the SIP
endpoint uses. The type is either
CiscoUrlInfo.TRANSPORT_TYPE_UDP or
CiscoUrlInfo.TRANSPORT_TYPE_TCP.

getTransportType()int

This method returns the endpoint URL type.
CiscoUrlInfo.URL_TYPE_UNKNOWN,
CiscoUrlInfo.URL_TYPE_TEL, and
CiscoUrlInfo.URL_TYPE_SIP are the possible return
values.

getUrlType()int

Related Documentation
See Constant Field Values, on page 1665.

ComponentUpdater
The overloaded method is introduced which creates an updater log in the directory that is specified.

Interface History

DescriptionCisco Unified Communications Manager Release Number

Added in 7.1(2)7.1(2)

Declaration
public interface ComponentUpdater

Methods
The overloaded method is introduced which creates updater log in the directory specified.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
668

Cisco Unified JTAPI Extensions
Methods

Table 259: Methods in ComponentUpdater

DescriptionMethodInterface

Returns the Consult Call for which consult operation is
cancelled, if the consult call doesn't exist it will return
NULL.

String tracePathComponentUpdater

Related Documentation
See Constant Field Values, on page 1665.

ProviderPickupNotificationRegistrationClosedEv
ProviderPickupNotificationRegistrationClosedEvent is a new interface being added with Call Pickup feature
development. This event is fired whenever something happens on the CUCM that results in a previous
registration to observe a pickup group being made invalid. For example, removal of pickup group from the
CUCM, or change in Pickup Number etc. Applications should look for these events and handle them
accodringly.

Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface8.0(1)

Declaration
public interface ProviderPickupNotificationRegistrationClosedEvent extends CiscoProvEvMethods

Methods
Table 260: Methods in ProviderPickupNotificationRegistrationClosedEv

DescriptionMethodInterface

This method returns the Pickup Group Number for the
Pickup Group that is invalidated by the event.

getPickupGroupNumber()String

This method returns the Pickup Group Partition for the
Pickup Group that is invalidated by the event.

getPickupGroupPartition()String

This method returns the reason code explaining why this
Pickup Group was invalidated.

getReason()int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
669

Cisco Unified JTAPI Extensions
Related Documentation

New Reason Code
CTIERR_PICKUPGROUP_CHANGED

CTIERR_PICKUPGROUP_DELETED

Related Documentation
None

CiscoTermHuntLogStatusChangedEv
This is a new interface that has been introduced in Cisco JTAPI. The intention of this new interface is to notify
the applications with event CiscoTermHuntLogStatusChangedEv whenever the value of hunt log status is
changed, provided the filter is set to true on that particular terminal.

Declaration

Methods
DescriptionMethodInteface

This method is used get the value of huntlogstatus of the
terminal, it returns either
CiscoTerminal.DEVICE_HUNT_LOGGED_IN,
CiscoTerminal.DEVICE_HUNT_LOGGED_OUT, or
CiscoTerminal. DEVICE_HUNT_NOT_APPLICABLE

getHuntLogStatus()int

CiscoProvConnToLeastPriorCtiServerEv
Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.14SU3

Declaration

public interface CiscoProvConnToLeastPriorCtiServerEv extends CiscoProvEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
670

Cisco Unified JTAPI Extensions
New Reason Code

Fields

Table 261: Fields in CiscoProvConnToLeastPriorCtiServerEv

DescriptionFieldInterface

IDStatic int

Methods

Related Documentation

None

CiscoProvFallbackToPrimNwCompltdEv
Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.14SU3

Declaration

public interface CiscoProvFallbackToPrimNwCompltdEv extends CiscoProvEv.

Fields

Table 262: Fields in CiscoProvFallbackToPrimNwCompltdEv

DescriptionFieldInterface

IDStatic int

Methods

Related Documentation

None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
671

Cisco Unified JTAPI Extensions
CiscoProvFallbackToPrimNwCompltdEv

CiscoProvPrimNwReachableEv
Interface History

DescriptionCisco Unified Communications Manager Release Number

New interface.14SU3

Declaration

public interface CiscoProvPrimNwReachableEv extends CiscoProvEv.

Fields

None

Methods

Table 263: Methods in CiscoProvPrimNwReachableEv

DescriptionMethodInterface

Returns a list of CTI Servers that are reachable after
application fails over to the least priority CTI Server.

getReachableCtiServers()String[]

Related Documentation

None

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
672

Cisco Unified JTAPI Extensions
CiscoProvPrimNwReachableEv

C H A P T E R 6
Cisco Unified JTAPI Alarms and Services

The Cisco Unified JTAPI alarms and services consists of a set of classes and interfaces that expose the
additional functionality not readily exposed in JTAPI 1.2 specification but are available in Cisco Unified
CommunicationsManager. Developers can use the classes and interfaces to create new applications or modify
existing classes and interfaces to create new methods.

This chapter describes the alarms and services that are available for implementation in a Cisco Unified
Communications Manager.

For information about Cisco Unified JTAPI extensions, see Cisco Unified JTAPI Extensions, on page 247

• Alarm Class Hierarchy, on page 674
• AlarmManager, on page 674
• AlarmWriter, on page 676
• DefaultAlarm, on page 678
• DefaultAlarmWriter, on page 680
• ParameterList, on page 684
• Alarm Interface Hierarchy, on page 686
• Alarm, on page 686
• AlarmWriter, on page 691
• Services Tracing Class Hierarchy, on page 693
• BaseTraceWriter, on page 693
• ConsoleTraceWriter, on page 697
• LogFileTraceWriter, on page 699
• OutputStreamTraceWriter, on page 705
• SyslogTraceWriter, on page 708
• TraceManagerFactory, on page 710
• Services Tracing Interface Hierarchy, on page 712
• Trace, on page 712
• ConditionalTrace, on page 719
• UnconditionalTrace, on page 720
• TraceManager, on page 721
• TraceModule, on page 725
• TraceWriter, on page 726
• TraceWriterManager, on page 729
• Tracing Implementation Class Hierarchy, on page 730
• TraceImpl, on page 731

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
673

• ConditionalTraceImpl, on page 733
• UnconditionalTraceImpl, on page 734
• TraceManagerImpl, on page 735
• TraceWriterManagerImpl, on page 739

Alarm Class Hierarchy
The following class hierarchy is contained in the com.cisco.services.alarm package.

java.lang.Object
com.cisco.services.alarm.AlarmManager, on page 674

com.cisco.services.alarm.DefaultAlarm, on page 678 (implements
com.cisco.services.alarm.Alarm)

com.cisco.services.alarm.DefaultAlarmWriter, on page 680 (implements
com.cisco.services.alarm.AlarmWriter, on page 691)

com.cisco.services.alarm.ParameterList, on page 684

AlarmManager
The AlarmManager is used to create Alarm objects. The AlarmManager is created with a facility and
AlarmService hostname and port. All alarms created by the factory will be associated with this facility. This
class also maintains a reference to a single AlarmWriter that can be used system wide. An application can
make use of this AlarmWriter. AlarmManager exposes a default implementation of an AlarmWriter.
Applications can override this with a user defined implementation of their own AlarmWriter.

Usage

AlarmManager AlarmManager = new AlarmManager(facilityName, alarmServiceHost, alarmServicePort,
debugTrace, errorTrace);

Alarms are created by the factory by supplying the alarmName (mnemonic), subfacility and severity Alarms
can be cached for use in different parts of the application. During a send alarm applications can specify the
variable parameters that offer specific information to the AlarmService.

Usage

Typically applications will maintain their own AlarmManager instance. Applications will also have to set a
debug and error trace to enable the alarm tracing to also be sent to the existing trace destinations.

Setup the manager and writer classes:

AlarmWriter alarmWriter = new DefaultAlarmWriter(port, alarmServiceHost);

AlarmManager alarmManager = new AlarmManager(“AA_IVR”, alarmWriter, debugTrace, errorTrace);

Generating the Alarms:

create an alarm for the subfacility and a default severity.

Alarm alarm = alarmManager.createAlarm(“HTTPSS”, Alarm.INFORMATIONAL);

alarm.send(“090T”) sends the alarm with the mnemonic

alarm.send(“090T”, “Port is stuck”, “CTIPort01”) or with a mnemonic and parameter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
674

Cisco Unified JTAPI Alarms and Services
Alarm Class Hierarchy

Declaration

public class AlarmManager

java.lang.Object
|
+--com.cisco.services.alarm.AlarmManager

More than one parameter can be sent by specifying a ParameterListNote

Member summary

Constructors

AlarmManager(String, AlarmWriter, Trace, UnconditionalTrace),
on page 675

Create an instance of the AlarmManager for the facility.

Methods

createAlarm(String, int), on page 676

Creates an Alarm of required severity for the subFacility

Alarm

getAlarmWriter(), on page 676AlarmWriter

setAlarmWriter(AlarmWriter), on page 676

Allows applications to override the AlarmWriter to be used by
this AlarmManager, with a user defined AlarmWriter

void

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(),

wait()

Constructors

AlarmManager(String, AlarmWriter, Trace, UnconditionalTrace)

public AlarmManager(java.lang.String facility,
com.cisco.services.alarm.AlarmWriterwriter,
com.cisco.services.tracing.TracedebugTrace_,
com.cisco.services.tracing.UnconditionalTraceerrorTrace_)

Create an instance of the AlarmManager for the facility. Applications specify an AlarmWriter to be used by
this AlarmManager to send the Alarms to the AlarmService.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
675

Cisco Unified JTAPI Alarms and Services
Declaration

Methods

createAlarm(String, int)

public com.cisco.services.alarm.Alarm createAlarm
(java.lang.String subfacility, intseverity)

Creates an Alarm of required severity for the subFacility

Returns:

an object implementing the alarm interface

getAlarmWriter()

public com.cisco.services.alarm.AlarmWriter getAlarmWriter()

Returns:

an AlarmWriter object

setAlarmWriter(AlarmWriter)

public void setAlarmWriter(com.cisco.services.alarm.AlarmWriter writer)

Allows applications to override the AlarmWriter to be used by this AlarmManager, with a user defined
AlarmWriter

AlarmWriter
An AlarmWriter receives alarm messages and transmits it to the receiving AlarmService on a TCP link. This
interface can be used to implement other AlarmWriters to be used with this implementation of
com.cisco.service.alarm A DefaultAlarmWriter is provided with this implementation and can be obtained
from the AlarmManager.

Declaration
public interface AlarmWriter

All Known Implementing Classes
DefaultAlarmWriter, on page 680

Member Summary
Member summary

Methods

close(), on page 677

close the AlarmWriter

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
676

Cisco Unified JTAPI Alarms and Services
Methods

Member summary

getDescription(), on page 677java.lang.String

getEnabled(), on page 677boolean

getName(), on page 677java.lang.String

send(String), on page 677

Send out the alarm message to the AlarmService.

void

setEnabled(boolean), on page 678

Enable or disable the AlarmWriter

void

Methods

close()

public void close()

close the AlarmWriter

getDescription()

public java.lang.String getDescription()

Returns:

the AlarmWriter description

getEnabled()

public boolean getEnabled()

Returns:

the current enabled or disabled state of the AlarmWriter

getName()

public java.lang.String getName()

Returns:

the AlarmWriter name

send(String)

public void send(java.lang.String alarmMessage)

Send out the alarm message to the AlarmService.

Parameters:

the - Alarm to be sent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
677

Cisco Unified JTAPI Alarms and Services
Methods

setEnabled(boolean)

public void setEnabled(boolean enable)

Enable or disable the AlarmWriter

Parameters:

enable or disable the AlarmWriter

DefaultAlarm
An Implementation of the Alarm interface. The AlarmManager creates these Alarms when the createAlarm()
method is called.

Declaration

public class DefaultAlarm implements Alarm, on page 686

java.lang.Object
|
+--com.cisco.services.alarm.DefaultAlarm

All Implemented Interfaces
Alarm, on page 686

Member Summary
Member summary

Constructors

DefaultAlarm(String, String, int, AlarmWriter), on page 679

Methods

getFacility(), on page 679java.lang.String

getSeverity(), on page 679int

getSubFacility(), on page 679java.lang.String

send(String), on page 679

Send the alarm with the specified mnemonic

void

send(String, ParameterList), on page 680

Send the alarm with the specified name and list of parameters.

void

send(String, String, String), on page 680

Send the alarm with the specified name and parameter

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
678

Cisco Unified JTAPI Alarms and Services
DefaultAlarm

Inherited member summary

Fields inherited from interface Alarm, on page 686

ALERTS, on page 689, CRITICAL, on page 689, DEBUGGING, on page 689, EMERGENCIES, on page 689, ERROR, on page 689,
HIGHEST_LEVEL, on page 689, INFORMATIONAL, on page 690, LOWEST_LEVEL, on page 690, NOTIFICATION, on page
690, NO_SEVERITY, on page 690, UNKNOWN_MNEMONIC, on page 690, WARNING, on page 690

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Constructors

DefaultAlarm(String, String, int, AlarmWriter)

public DefaultAlarm(java.lang.String facility,
java.lang.StringsubFacility,
intseverity,
com.cisco.services.alarm.AlarmWriteralarmWriter)

Methods

getFacility()

public java.lang.String getFacility()

Specified By:

getFacility(), on page 690 in interface Alarm, on page 686

getSeverity()

public int getSeverity()

Specified By:

getSeverity(), on page 690 in interface Alarm, on page 686

getSubFacility()

public java.lang.String getSubFacility()

Specified By:

getSubFacility(), on page 691 in interface Alarm, on page 686

send(String)

public void send(java.lang.String mnemonic)

Send the alarm with the specified mnemonic

Specified By:

send(String), on page 691 in interface Alarm, on page 686

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
679

Cisco Unified JTAPI Alarms and Services
Constructors

send(String, ParameterList)

public void send(java.lang.String mnemonic,
com.cisco.services.alarm.ParameterListparamList)

Send the alarm with the specified name and list of parameters.

Specified By:

send(String, ParameterList), on page 691 in interface Alarm, on page 686

send(String, String, String)

public void send(java.lang.String mnemonic,
java.lang.StringparamName,
java.lang.StringparamValue)

Send the alarm with the specified name and parameter

Specified By:

send(String, String, String), on page 691 in interface Alarm, on page 686

DefaultAlarmWriter
DefaultAlarmWriter implementation of the AlarmWriter interface.

DefaultAlarmWriter maintains a queue of a fixed size to which the alarms are written. The sending of the
alarms to the alarm service takes place on a separate thread. The queue is fixed size.

Declaration
public class DefaultAlarmWriter implements AlarmWriter, on page 676

java.lang.Object
|
+--com.cisco.services.alarm.DefaultAlarmWriter

All Implemented Interfaces
AlarmWriter, on page 676

Member Summary
Member summary

Constructors

DefaultAlarmWriter(int, String), on page 681

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and a queue size of fifty (50).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
680

Cisco Unified JTAPI Alarms and Services
DefaultAlarmWriter

Member summary

DefaultAlarmWriter(int, String, int), on page 682

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and queue size.

DefaultAlarmWriter(int, String, int, ConditionalTrace,
UnconditionalTrace), on page 682

Constructor for the DefaultAlarmWriter which takes the
AlarmService hostname, port and queue size.

Methods

close(), on page 682

Shutdown the send thread and close the socket

void

getDescription(), on page 683java.lang.String

getEnabled(), on page 683boolean

getName(), on page 683java.lang.String

main(String[]), on page 683static void

send(String), on page 683

send the Alarm to the alarm service

void

setEnabled(boolean), on page 683

Applications can dynamically enable or disable the AlarmWriter

void

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Constructors

DefaultAlarmWriter(int, String)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and a queue size of
fifty (50). The AlarmService is listening on this port for Alarm messages.

Parameters:

port: port on which the alarm service is listening

alarmServiceName: The host name of the machine with the Alarm service

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
681

Cisco Unified JTAPI Alarms and Services
Constructors

Throws:

java.net.UnknownHostException

DefaultAlarmWriter(int, String, int)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName,
intqueueSize) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and queue size. The
AlarmService is listening on this port for Alarm messages.

Parameters:

port—port on which the alarm service is listening

alarmServiceName—The host name of the machine with the Alarm service

queueSize - the size of the queue to be maintained in the alarm writer

Throws:

java.net.UnknownHostException

DefaultAlarmWriter(int, String, int, ConditionalTrace, UnconditionalTrace)

public DefaultAlarmWriter(int port,
java.lang.StringalarmServiceName,
intqueueSize,
com.cisco.services.tracing.ConditionalTracedebugTrace_,
com.cisco.services.tracing.UnconditionalTraceerrorTrace_) throwsUnknownHostException

Constructor for the DefaultAlarmWriter which takes the AlarmService hostname, port and queue size. The
AlarmService is listening on this port for Alarm messages.

Parameters:

port—port on which the alarm service is listening

alarmServiceName—The host name of the machine with the Alarm service

queueSize - the size of the queue to be maintained in the alarm writer

Throws:

java.net.UnknownHostException

Methods

close()

public void close()

Shutdown the send thread and close the socket

Specified By:

close in interface AlarmWriter, on page 676

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
682

Cisco Unified JTAPI Alarms and Services
Methods

getDescription()

public java.lang.String getDescription()

Specified By:

getDescription in interface AlarmWriter, on page 676

Returns:

a short description of the AlarmWriter

getEnabled()

public boolean getEnabled()

Specified By:

getEnabled in interface AlarmWriter, on page 676

Returns:

the enabled state of the AlarmWriter

getName()

public java.lang.String getName()

Specified By:

getName in interface AlarmWriter, on page 676

Returns:

the name of the AlarmWriter

main(String[])

public static void main(java.lang.String[] args)

send(String)

public void send(java.lang.String alarmMessage)

send the Alarm to the alarm service

Specified By:

send in interface AlarmWriter, on page 676

setEnabled(boolean)

public void setEnabled(boolean enable)

Applications can dynamically enable or disable the AlarmWriter

Specified By:

setEnabled in interface AlarmWriter, on page 676

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
683

Cisco Unified JTAPI Alarms and Services
Methods

ParameterList
ParameterList is a list of name value pairs that is used to send additional (and optional) user defined parameters
to the AlarmService. These parameters can contain the specifics of an Alarm.

As an example, a LowResourceAlarm can have a parameter that informs the service which particular resource
is low:

name = “CPUUsage”

value = “0.9”

These parameters are user definable but must, however, also be pre-defined in the AlarmService catalog.

Declaration

public class ParameterList

java.lang.Object
|
+--com.cisco.services.alarm.ParameterList

Member Summary
Member summary

Constructors

ParameterList(), on page 685

Default constructor for the ParameterList

ParameterList(String, String), on page 685

Constructor that takes a name value pair.

Methods

addParameter(String, String), on page 685

method used to add additional name value pairs (parameters) to
the list

void addParameter(String, String), on page 685

getParameterNames(), on page 685

Get the parameter names in the list

java.lang.String[]

getParameterValue(String), on page 685

get the value for a parameter

java.lang.String

removeAllParameters(), on page 686

remove all the parameters in the list

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
684

Cisco Unified JTAPI Alarms and Services
ParameterList

Member summary

removeParameter(String), on page 686

remove a particular parameter if it is in the list

void

toString(), on page 686java.lang.String

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

ParameterList()

public ParameterList()

Default constructor for the ParameterList

ParameterList(String, String)

public ParameterList(java.lang.String name,
java.lang.Stringvalue)

Constructor that takes a name value pair.

Methods

addParameter(String, String)

public void addParameter(java.lang.String name,
java.lang.Stringvalue)

method used to add additional name value pairs (parameters) to the list

getParameterNames()

public java.lang.String[] getParameterNames()

Get the parameter names in the list

Returns:

array of parameters

getParameterValue(String)

public java.lang.String getParameterValue(java.lang.String parameterName)

get the value for a parameter

Returns:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
685

Cisco Unified JTAPI Alarms and Services
Constructors

value of a parameter

removeAllParameters()

public void removeAllParameters()

remove all the parameters in the list

removeParameter(String)

public void removeParameter(java.lang.String parameterName)

remove a particular parameter if it is in the list

toString()

public java.lang.String toString()

Overrides:

toString in class Object

Alarm Interface Hierarchy
The following interface hierarchy is contained in the com.cisco.services.alarm package.

com.cisco.services.alarm.Alarm, on page 686

com.cisco.services.alarm.AlarmWriter, on page 691

Alarm
The Alarm interface is used to define Alarms in. An Alarm has an XML representation that it must adhere to
in order to be recognized by the Alarm Service, with a DTD as shown below. An application can implement
this interface or use the AlarmFactory to generate Alarms of the correct format. The Alarm is the a specification
that needs to be sent to an AlarmService that will take some action based on the Alarm. Using this specification
the AlarmService will access definitions available in a catalog. This catalog is maintained by the user requiring
the Alarm function to effect the appropriate action for the Alarm. The severity specified the Alarm can over-ride
the severity associated with this Alarm in the catalog. If no severity is specified in the Alarm the catalog
severity is used.

Alarm severities are derived from Syslog and are defined as follows:

0 = EMERGENCIES System unusable

1 = ALERTS Immediate action needed

2 = CRITICAL Critical conditions

3 = ERROR Error conditions

4 = WARNING Warning conditions

5 = NOTIFICATION Normal but significant condition

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
686

Cisco Unified JTAPI Alarms and Services
Alarm Interface Hierarchy

6 = INFORMATIONAL Informational messages only

7 = DEBUGGING Debugging messages

Declaration
public interface Alarm

All Known Implementing Classes
DefaultAlarm, on page 678

Member Summary
Member summary

Fields

ALERTS, on page 689

The application will continue working on the tasks but all
functions may not be operational (one or more devices in the list
are not accessible but others in the list can be accessed)

Syslog severity level = 1

static int

CRITICAL, on page 689

A critical failure, the application cannot accomplish the tasks
required due to this failure, for example, the application cannot
open the database to read the device list

Syslog severity level = 2

static int

DEBUGGING, on page 689

Very detailed information regarding errors or processing status
that is only generated when DEBUG mode has been enabled

Syslog severity level = 7

static int

EMERGENCIES, on page 689

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

static int

ERROR, on page 689

An error condition of some kind has occurred and the user needs
to understand the nature of that failure

Syslog severity level = 3

static int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
687

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

HIGHEST_LEVEL, on page 689

The highest trace level, currently this is DEBUGGING with a
trace level of 7

static int

INFORMATIONAL, on page 690

Information of some form not relating to errors, warnings, audit,
or debug

Syslog severity level = 6

static int

LOWEST_LEVEL, on page 690

The lowest trace level, currently this is EMERGENCIES with a
trace level of 0

static int

NO_SEVERITY, on page 690

Applications can set this level to generate Alarms without a
severity.

static int

NOTIFICATION, on page 690

Notification denotes a normal but significant condition

Syslog severity level = 5

static int

UNKNOWN_MNEMONIC, on page 690

String used when a mnemonic is not specified during an Alarm
send

static java.lang.String

WARNING, on page 690

Warning that a problem of some form exists but is not keeping
the application from completing its tasks

Syslog severity level = 4

static int

Methods

getFacility(), on page 690java.lang.String

getSeverity(), on page 690int

getSubFacility(), on page 691java.lang.String

send(String), on page 691

send the Alarm with the specified mnemonic.

void

send(String, ParameterList), on page 691

send an Alarm with the specified mnemonic and supplied
parameter list

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
688

Cisco Unified JTAPI Alarms and Services
Member Summary

Member summary

send(String, String, String), on page 691

send an Alarm with the specified mnemonic and with one
parameter

void

Fields

ALERTS

public static final int ALERTS

The application will continue working on the tasks but all functions may not be operational (one or more
devices in the list are not accessible but others in the list can be accessed)

Syslog severity level = 1

CRITICAL

public static final int CRITICAL

A critical failure, the application cannot accomplish the tasks required due to this failure, for example, the
application cannot open the database to read the device list

Syslog severity level = 2

DEBUGGING

public static final int DEBUGGING

Very detailed information regarding errors or processing status that is only generated when DEBUG mode
has been enabled (Syslog severity level = 7).

EMERGENCIES

public static final int EMERGENCIES

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

ERROR

public static final int ERROR

An error condition of some kind has occurred and the user needs to understand the nature of that failure

Syslog severity level = 3

HIGHEST_LEVEL

public static final int HIGHEST_LEVEL

The highest trace level, currently this is DEBUGGING with a trace level of 7

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
689

Cisco Unified JTAPI Alarms and Services
Fields

INFORMATIONAL

public static final int INFORMATIONAL

Information of some form not relating to errors, warnings, audit, or debug

Syslog severity level = 6

LOWEST_LEVEL

public static final int LOWEST_LEVEL

The lowest trace level, currently this is EMERGENCIES with a trace level of 0

NO_SEVERITY

public static final int NO_SEVERITY

Applications can set this level to generate Alarms without a severity. NOTE: This is only intended for cases
where an application wants the AlarmService to use the severity associated with the Alarm in the catalog

NOTIFICATION

public static final int NOTIFICATION

Notification denotes a normal but significant condition (Syslog severity level = 5).

UNKNOWN_MNEMONIC

public static final java.lang.String UNKNOWN_MNEMONIC

String used when a mnemonic is not specified during an Alarm send

WARNING

public static final int WARNING

Warning that a problem of some form exists but is not keeping the application from completing its tasks
(Syslog severity level = 4).

Methods

getFacility()

public java.lang.String getFacility()

Returns:

the facility name of this Alarm

getSeverity()

public int getSeverity()

Returns:

severity of the alarm, an integer in the range [0-7]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
690

Cisco Unified JTAPI Alarms and Services
Methods

getSubFacility()

public java.lang.String getSubFacility()

Returns:

the subfacility of this Alarm

send(String)

public void send(java.lang.String mnemonic)

send the Alarm with the specified mnemonic. If a null or empty String is passed a mnemonic UNK is sent

send(String, ParameterList)

public void send(java.lang.String mnemonic,
com.cisco.services.alarm.ParameterListparameterList)

send an Alarm with the specified mnemonic and supplied parameter list

send(String, String, String)

public void send(java.lang.String mnemonic,
java.lang.StringparameterName,
java.lang.StringparameterValue)

send an Alarm with the specified mnemonic and with one parameter.

AlarmWriter
An AlarmWriter receives alarm messages and transmits it to the receiving AlarmService on a TCP link. This
interface can be used to implement other AlarmWriters to be used with this implementation of
com.cisco.service.alarm A DefaultAlarmWriter is provided with this implementation and can be obtained
from the AlarmManager.

Declaration
public interface AlarmWriter

All Known Implementing Classes
DefaultAlarmWriter, on page 680

Member Summary
Member summary

Methods

close(), on page 677

close the AlarmWriter

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
691

Cisco Unified JTAPI Alarms and Services
AlarmWriter

Member summary

getDescription(), on page 677java.lang.String

getEnabled(), on page 677boolean

getName(), on page 677java.lang.String

send(String), on page 677

Send out the alarm message to the AlarmService.

void

setEnabled(boolean), on page 678

Enable or disable the AlarmWriter

void

Methods

close()

public void close()

close the AlarmWriter

getDescription()

public java.lang.String getDescription()

Returns:

the AlarmWriter description

getEnabled()

public boolean getEnabled()

Returns:

the current enabled or disabled state of the AlarmWriter

getName()

public java.lang.String getName()

Returns:

the AlarmWriter name

send(String)

public void send(java.lang.String alarmMessage)

Send out the alarm message to the AlarmService.

Parameters:

the Alarm to be sent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
692

Cisco Unified JTAPI Alarms and Services
Methods

setEnabled(boolean)

public void setEnabled(boolean enable)

Enable or disable the AlarmWriter

Parameters:

enable or disable the AlarmWriter

Services Tracing Class Hierarchy
The following class hierarchy is contained in the com.cisco.services.tracing package.

java.lang.Object
com.cisco.services.tracing.BaseTraceWriter, on page 693 (implements

com.cisco.services.tracing.TraceWriter)
com.cisco.services.tracing.ConsoleTraceWriter, on page 697
com.cisco.services.tracing.LogFileTraceWriter, on page 699
com.cisco.services.tracing.OutputStreamTraceWriter, on page 705
com.cisco.services.tracing.SyslogTraceWriter, on page 708

com.cisco.services.tracing.TraceManagerFactory, on page 710

BaseTraceWriter
This abstract class is useful for supplying a default, non-printing TraceWriter to a TraceWriterManager This
class must be extended to provide the functionality to trace to different streams. The doPrintln() method must
be implemented by the extending class.

Declaration

public abstract class BaseTraceWriter implements TraceWriter, on page 726

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter

All Implemented Interfaces
TraceWriter, on page 726

Direct Known Subclasses
ConsoleTraceWriter, on page 697, LogFileTraceWriter, on page 699, OutputStreamTraceWriter, on page 705,
SyslogTraceWriter, on page 708

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
693

Cisco Unified JTAPI Alarms and Services
Services Tracing Class Hierarchy

Member Summary
Member summary

Constructors

BaseTraceWriter(int[], String, String), on page 695

BaseTraceWriter with trace levels as passed in traceLevels in the
array falling outside the range Trace.LOWEST_LEVEL and
Trace.HIGHEST_LEVEl are ignored

protected

BaseTraceWriter(int, String, String), on page 695

BaseTraceWriter that traces all levels up to the maxTraceLevel
The trace level is maintained in the range
[Trace.HIGHEST_LEVEL, Trace.LOWEST_LEVEL]

protected

BaseTraceWriter(String, String), on page 695

BaseTraceWriter which only traces the lowest level i.e. severity
level, Trace.LOWEST_LEVEL messages

protected

Methods

close(), on page 695void

doClose(), on page 696protected void

doFlush(), on page 696protected void

doPrintln(String, int), on page 696

Must be implemented by the various TraceWriters extending
BaseTraceWriter to provide the specific tracing functionality

protected abstract void

flush(), on page 696void

getDescription(), on page 696java.lang.String

getEnabled(), on page 696boolean

getName(), on page 696java.lang.String

getTraceLevels(), on page 696int[]

println(String, int), on page 697void

setTraceLevels(int[]), on page 697void

toString(), on page 697java.lang.String

Inherited member summary

Methods inherited from class Object

clone() , equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
694

Cisco Unified JTAPI Alarms and Services
Member Summary

Constructors

BaseTraceWriter(int[], String, String)

protected BaseTraceWriter(int[] traceLevels,
java.lang.Stringname,
java.lang.Stringdescription)

BaseTraceWriter with trace levels as passed in traceLevels in the array falling outside the range
Trace.LOWEST_LEVEL and Trace.HIGHEST_LEVEl are ignored

Parameters:

traceLevels - array of trace levels

See Also:

Trace, on page 712

BaseTraceWriter(int, String, String)

protected BaseTraceWriter(int maxTraceLevel,
java.lang.Stringname,
java.lang.Stringdescription)

BaseTraceWriter that traces all levels up to the maxTraceLevel The trace level is maintained in the range
[Trace.HIGHEST_LEVEL, Trace.LOWEST_LEVEL]

See Also:

Trace, on page 712

BaseTraceWriter(String, String)

protected BaseTraceWriter(java.lang.String name,
java.lang.Stringdescription)

BaseTraceWriter which only traces the lowest level i.e. severity level, Trace.LOWEST_LEVEL messages

See Also:

Trace, on page 712

Methods

close()

public final void close()

Description copied from interface:

com.cisco.services.tracing.TraceWriter

Releases any resources associated by this TraceWriter.

Specified By:

close in interface TraceWriter, on page 726

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
695

Cisco Unified JTAPI Alarms and Services
Constructors

doClose()

protected void doClose()

doFlush()

protected void doFlush()

doPrintln(String, int)

protected abstract void doPrintln(java.lang.String message,
intmessageNumber)

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

flush()

public final void flush()

Description copied from interface: com.cisco.services.tracing.TraceWriter

Forces output of any messages that have been printed using the println method

Specified By:

flush in interface TraceWriter, on page 726

getDescription()

public final java.lang.String getDescription()

Specified By:

getDescription in interface TraceWriter, on page 726

getEnabled()

public boolean getEnabled()

Description copied from interface: com.cisco.services.tracing.TraceWriter

Returns whether the println method will print anything or not. A closed TraceWriter will always return false
from this method.

Specified By:

getEnabled in interface TraceWriter, on page 726

getName()

public final java.lang.String getName()

Specified By:

getName in interface TraceWriter, on page 726

getTraceLevels()

public final int[] getTraceLevels()

Specified By:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
696

Cisco Unified JTAPI Alarms and Services
Methods

getTraceLevels in interface TraceWriter, on page 726

println(String, int)

public final void println(java.lang.String message,
intseverity)

Description copied from interface: com.cisco.services.tracing.TraceWriter

Prints the specified string followed by a carriage return The concrete TraceWriter class will use the severity
to block out messages from a particular stream. Each trace writer has a notion of the highest level trace it
traces.

Specified By:

println in interface TraceWriter, on page 726

setTraceLevels(int[])

public final void setTraceLevels(int[] levels)

Description copied from interface: com.cisco.services.tracing.TraceWriter

set the trace levels that will be traced by this TraceWriter

Specified By:

setTraceLevels in interface TraceWriter, on page 726

toString()

public final java.lang.String toString()

Overrides:

toString in class Object

ConsoleTraceWriter
Supplies a console TraceWriter to trace to System.out.

See Also:

Trace, on page 712

Declaration

public final class ConsoleTraceWriter extends BaseTraceWriter

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.ConsoleTraceWriter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
697

Cisco Unified JTAPI Alarms and Services
ConsoleTraceWriter

All Implemented Interfaces
TraceWriter, on page 726

Member Summary
Member summary

Constructors

ConsoleTraceWriter(), on page 698

Default constructor, traces all severity levels

ConsoleTraceWriter(int), on page 699

Constructor that sets the maximum level to be traced.

ConsoleTraceWriter(int[]), on page 699

Construct a ConsoleTraceWriter with an array of trace levels Only
traces with the severity in the tracelevel array are traced

Methods

doFlush(), on page 699protected void

doPrintln(String, int), on page 699protected void

main(String[]), on page 699static void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 693

close(), on page 695, doClose(), on page 696, flush(), on page 696, getDescription(), on page 696, getEnabled(), on page 696, getName(),
on page 696, getTraceLevels(), on page 696, println(String, int), on page 697, setTraceLevels(int[]), on page 697, toString(), on page
697

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

ConsoleTraceWriter()

public ConsoleTraceWriter()

Default constructor, traces all severity levels

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
698

Cisco Unified JTAPI Alarms and Services
All Implemented Interfaces

ConsoleTraceWriter(int)

public ConsoleTraceWriter(int maxTraceLevel)

Constructor that sets the maximum level to be traced.

See Also:

Trace, on page 712

ConsoleTraceWriter(int[])

public ConsoleTraceWriter(int[] traceLevels)

Construct a ConsoleTraceWriter with an array of trace levels Only traces with the severity in the tracelevel
array are traced

Parameters:

int - [] traceLevels

See Also:

Trace, on page 712

Methods

doFlush()

protected final void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 693

doPrintln(String, int)

protected final void doPrintln(java.lang.String message,
intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 693

main(String[])

public static void main(java.lang.String[] args)

LogFileTraceWriter
This class extends the BaseTraceWriter class to implement a TraceWriter that writes to a set of log files,
rotating among them as each becomes filled to a specified capacity and stores them in a specified directory.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
699

Cisco Unified JTAPI Alarms and Services
Methods

Each of the log files is named according to a pattern controlled by three properties, CurrentFile, FileNameBase,
and FileExtension. The CurrentFile property determines which log file, by ordinal number, is being written
at present, the FileNameBase property determines the prefix of each log file name, and the FileExtension
property determines the suffix, e.g. “txt”. From these properties, log files are named FileNameBase
LeadingZeroPadding CurrentFile.FileExtension. The CurrentFile property takes on a value from 1 to the
value of the MaxFiles property. Note that the CurrentFile property, when converted to a String, is padded
with leading zeroes depending on the values of the MaxFiles and CurrentFile properties. An index file tracks
the index of the last file written. If the logFileWriter is recreated (for example if an application is restarted)
new files will continue from the last written index.

Where the log files are stored is determined by the path, dirNameBase, useSameDir. If a path is not specified,
the current path is used as default. If a dirNameBase is not specified, it write log files in the path. Depending
upon whether useSameDir is true or false, files are written to the same directory or a new directory, each time
an instance of LogFileTraceWriter is created. In case new directories are being made each time, the directory
name will consist of the dirNameBase and a number, separated by an ’_’. The number is one more than the
greatest number associated with directories with the same dirNameBame in the path. While specifying the
path, you may use either a “/” or “\\”, but not “\”

The LogFileTraceWriter keeps track of how many bytes have been written to the current log file. When that
number growswithin approximately LogFileTraceWriter.ROLLOVER_THRESHOLDbytes, tracing continues
to the next file, which is either CurrentFile + 1 if CurrentFile is not equal to MaxFiles, or 1 if CurrentFile is
equal to MaxFiles.

All properties of this class are specified in the constructor; there is no way to change them dynamically.
Caveat: If two instances of LogFileTraceWriter are created with the same path and dirNameBase, and
useSameDir is true, they may write to the same file.

Note

Example

The following code instantiates a LogFileTraceWriter that will create log files called “MyLog01.log”
through “MyLog12.log”. Each file will grow to approximately 100K bytes in size before the next
file is created:

LogFileTraceWriter out = new LogFileTraceWriter (“MyLog”, “log”, 12, 100 * 1024); will create
a log file TraceWriter which will rotate traces to 12 files from Mylog01.log and Mylog12.log with
a file size of 100 KBytes. By default the tracing is set to the HIGHEST_LEVEL.

The following code constructs a LogFileTraceWriter which stores the log files in the path “c:/LogFiles”
in a sub directory, “Run”. The files will be named MyLogXX.log. The number of rotating files will
be 12 with a size of 100 KB. The same directory gets used for each instance of the application.

LogFileTraceWriter out = new LogFileTraceWriter (“c:/logFiles”, “Run”, “MyLog”, “log”, 12,
100*1024, true);

See Also

Trace, on page 712

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
700

Cisco Unified JTAPI Alarms and Services
LogFileTraceWriter

Declaration

public final class LogFileTraceWriter extends BaseTraceWriter, on page 693

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.LogFileTraceWriter

All Implemented Interfaces
TraceWriter, on page 726

Member Summary
Member summary

Fields

DEFAULT_FILE_NAME_BASE, on page 702static java.lang.String

DEFAULT_FILE_NAME_EXTENSION, on page 703static java.lang.String

DIR_BASE_NAME_NUM_SEPERATOR, on page 703static char

MIN_FILE_SIZE, on page 703static int

MIN_FILES, on page 703static int

ROLLOVER_THRESHOLD, on page 703static int

Constructors

LogFileTraceWriter(String, String, int, int), on page 703

Default constructor for LogFileTraceWriter that rotates among
an arbitrary number of files with tracing for all levels.

LogFileTraceWriter(String, String, String, String, int, int,
boolean), on page 703

Default constructor for LogFileTraceWriter that rotates among
an arbitrary number of files with tracing for all levels.

LogFileTraceWriter(String, String, String, String, int, int, int,
boolean), on page 703

Constructs a LogFileTraceWriter that rotates among an arbitrary
number of files storing them in a specified directory.

Methods

doClose(), on page 704

Closes this OutputStream.

protected void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
701

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

doFlush(), on page 704protected void

doPrintln(String, int), on page 704protected void

getCurrentFile(), on page 704

Returns the CurrentFile property

int

getFileExtension(), on page 704

Returns the FileExtension property

java.lang.String

getFileNameBase(), on page 705

Returns the FileNameBase property

java.lang.String

getHeader(), on page 705

Get the header string that will be written at the beginning of each
log file.

java.lang.String

getMaxFiles(), on page 705

Returns the MaxFiles property

int

getMaxFileSize(), on page 705

Returns the MaxFileSize property

int

setHeader(String), on page 705

Set the constant header string that will be written at the beginning
of every file, trace writing continues from the next line after the
header is written.

void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 693

close(), on page 695, doClose(), on page 696, flush(), on page 696, getDescription(), on page 696, getEnabled(), on page 696, getName(),
on page 696, getTraceLevels(), on page 696, println(String, int), on page 697, setTraceLevels(int[]), on page 697, toString(), on page
697

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Fields

DEFAULT_FILE_NAME_BASE

public static final java.lang.String DEFAULT_FILE_NAME_BASE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
702

Cisco Unified JTAPI Alarms and Services
Fields

DEFAULT_FILE_NAME_EXTENSION

public static final java.lang.String DEFAULT_FILE_NAME_EXTENSION

DIR_BASE_NAME_NUM_SEPERATOR

public static final char DIR_BASE_NAME_NUM_SEPERATOR

MIN_FILE_SIZE

public static final int MIN_FILE_SIZE

MIN_FILES

public static final int MIN_FILES

ROLLOVER_THRESHOLD

public static final int ROLLOVER_THRESHOLD

Constructors

LogFileTraceWriter(String, String, int, int)

public LogFileTraceWriter(java.lang.String fileNameBase,
java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize) throwsIOException

Default constructor for LogFileTraceWriter that rotates among an arbitrary number of files with tracing for
all levels. Since a path and Directory Base name is not specified, it writes the files to the current directory
without any sub directories.

Throws:

java.io.IOException

LogFileTraceWriter(String, String, String, String, int, int, boolean)

public LogFileTraceWriter(java.lang.String path,
java.lang.StringdirNameBase,
java.lang.StringfileNameBase,
java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize,
booleanuseSameDir) throwsIOException

Default constructor for LogFileTraceWriter that rotates among an arbitrary number of files with tracing for
all levels.

Throws:

java.io.IOException

LogFileTraceWriter(String, String, String, String, int, int, int, boolean)

public LogFileTraceWriter(java.lang.String path,
java.lang.StringdirNameBase,
java.lang.StringfileNameBase,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
703

Cisco Unified JTAPI Alarms and Services
Constructors

java.lang.StringfileNameExtension,
intmaxFiles,
intmaxFileSize,
intmaxTraceLevel,
booleanuseSameDir) throwsIOException

Constructs a LogFileTraceWriter that rotates among an arbitrary number of files storing them in a specified
directory.

Throws:

java.io.IOException

Methods

doClose()

protected void doClose()

Closes this OutputStream. Any log file that is currently open will be closed as well.

Overrides:

doClose in class BaseTraceWriter, on page 693

doFlush()

protected void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 693

doPrintln(String, int)

protected void doPrintln(java.lang.String message,
intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 693

getCurrentFile()

public int getCurrentFile()

Returns:

the CurrentFile property

getFileExtension()

public java.lang.String getFileExtension()

Returns:

the FileExtension property

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
704

Cisco Unified JTAPI Alarms and Services
Methods

getFileNameBase()

public java.lang.String getFileNameBase()

Returns:

the FileNameBase property

getHeader()

public java.lang.String getHeader()

Get the header string that will be written at the beginning of each log file.

Returns:

the Header Property

getMaxFiles()

public int getMaxFiles()

Returns:

the MaxFiles property

getMaxFileSize()

public int getMaxFileSize()

Returns:

the MaxFileSize property

setHeader(String)

public void setHeader(java.lang.String header)

Set the constant header string that will be written at the beginning of every file, trace writing continues from
the next line after the header is written. If setHeader is called after a file output has started, it will take effect
from the next file to be written.

Usage:
tm = TraceManagerFactory.registerModule(this);
tw = newLogFileTraceWriter(“trace”, “log”, 10, 1024*1024);
tw.setHeader(header);
tm.getTraceWriterManager().addTraceWriter(tw);

OutputStreamTraceWriter
OutputStreamTraceWriter wraps an output stream in a TraceWriter. This simplifies adding custom tracing
classes that can co-exist with other TraceWriters.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
705

Cisco Unified JTAPI Alarms and Services
OutputStreamTraceWriter

Declaration

public final class OutputStreamTraceWriter extends BaseTraceWriter, on page 693

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.OutputStreamTraceWriter

All Implemented Interfaces
TraceWriter, on page 726

Member Summary

Member summary

Constructors

OutputStreamTraceWriter(int, OutputStream), on page 707

Default constructor which is auto-flushing

OutputStreamTraceWriter(int, OutputStream, boolean), on page
707

Create an OutputStreamTraceWriter

Methods

doClose(), on page 707protected void

doFlush(), on page 707protected void

doPrintln(String, int), on page 707protected void

getOutputStream(), on page 708java.io.OutputStream

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 693

close(), on page 695, doClose(), on page 696, flush(), on page 696, getDescription(), on page 696, getEnabled(), on page 696, getName(),
on page 696, getTraceLevels(), on page 696, println(String, int), on page 697, setTraceLevels(int[]), on page 697, toString(), on page
697

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
706

Cisco Unified JTAPI Alarms and Services
Declaration

Constructors

OutputStreamTraceWriter(int, OutputStream)

public OutputStreamTraceWriter(int maxTraceLevel,
java.io.OutputStreamoutputStream)

Default constructor which is auto-flushing

See Also:

Trace, on page 712

OutputStreamTraceWriter(int, OutputStream, boolean)

public OutputStreamTraceWriter(int maxTraceLevel,
java.io.OutputStreamoutputStream,
booleanautoFlush)

Create an OutputStreamTraceWriter

See Also:

Trace, on page 712

Methods

doClose()

protected void doClose()

Overrides:

doClose in class BaseTraceWriter, on page 693

doFlush()

protected void doFlush()

Overrides:

doFlush in class BaseTraceWriter, on page 693

doPrintln(String, int)

protected void doPrintln(java.lang.String message, intmessageNumber)

Description copied from class: com.cisco.services.tracing.BaseTraceWriter

Must be implemented by the various TraceWriters extending BaseTraceWriter to provide the specific tracing
functionality

Overrides:

doPrintln in class BaseTraceWriter, on page 693

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
707

Cisco Unified JTAPI Alarms and Services
Constructors

getOutputStream()

public java.io.OutputStream getOutputStream()

Returns:

the output stream associated with the TraceWriter

SyslogTraceWriter
SyslogTraceWriter refines the BaseTraceWriter to allow tracing to syslog. Cisco syslog specification calls
for sending low level traces to a syslog collector in the form of UDP messages. No buffering is done in this
TraceWriter. The SyslogTraceWriter makes an exception to the println() method in that it places a ’\0’ instead
of a System specified line separator to terminate the message packet.

Declaration

public final class SyslogTraceWriter extends BaseTraceWriter, on page 693

java.lang.Object
|
+--com.cisco.services.tracing.BaseTraceWriter
|
+--com.cisco.services.tracing.SyslogTraceWriter

All Implemented Interfaces
TraceWriter, on page 726

Member Summary
Member summary

Constructors

SyslogTraceWriter(int, String), on page 709

Default SyslogTraceWriter with a max trace level of
INFORMATIONAL

SyslogTraceWriter(int, String, int), on page 709

SyslogTraceWriter with max trace level specified

SyslogTraceWriter(int, String, int[]), on page 709

SyslogTraceWriter which takes an array of trace levels.

Methods

doClose(), on page 710

Closes the socket

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
708

Cisco Unified JTAPI Alarms and Services
SyslogTraceWriter

Member summary

doPrintln(String, int), on page 710

The SyslogTraceWriter makes an exception to the println() method
in that it places a ’\0’ instead of a System specified line separator
to terminate the message packet.

protected void

main(String[]), on page 710static void

Inherited member summary

Methods inherited from class BaseTraceWriter, on page 693

close(), on page 695, doClose(), on page 696, flush(), on page 696, getDescription(), on page 696, getEnabled(), on page 696, getName(),
on page 696, getTraceLevels(), on page 696, println(String, int), on page 697, setTraceLevels(int[]), on page 697, toString(), on page
697

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Constructors

SyslogTraceWriter(int, String)

public SyslogTraceWriter(int port,
java.lang.Stringcollector)

Default SyslogTraceWriter with a max trace level of INFORMATIONAL

See Also:

Trace, on page 712

SyslogTraceWriter(int, String, int)

public SyslogTraceWriter(int port,
java.lang.Stringcollector,
intmaxTraceLevel)

SyslogTraceWriter with max trace level specified

See Also:

Trace, on page 712

SyslogTraceWriter(int, String, int[])

public SyslogTraceWriter(int port,
java.lang.Stringcollector,
int[]traceLevels)

SyslogTraceWriter which takes an array of trace levels.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
709

Cisco Unified JTAPI Alarms and Services
Constructors

See Also:

Trace, on page 712

Methods

doClose()

public void doClose()

Closes the socket

Overrides:

doClose in class BaseTraceWriter, on page 693

doPrintln(String, int)

protected void doPrintln(java.lang.String message,
intmessageNumber)

The SyslogTraceWritermakes an exception to the println() method in that it places a ’\0’ instead of a System
specified line separator to terminate the message packet. The portion of the message after a ’\r’ or ’\n’ is
ignored

Overrides:

doPrintln in class BaseTraceWriter, on page 693

main(String[])

public static void main(java.lang.String[] args)

TraceManagerFactory
The TraceManagerFactory class is a class by which applications obtain a TraceManager object. The
TraceModule passed in the constructor is registered in a list. The list can be enumerated using the getModules()
method.

Declaration

public class TraceManagerFactory

java.lang.Object
|
+--com.cisco.services.tracing.TraceManagerFactory

Member Summary
Member summary

Methods

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
710

Cisco Unified JTAPI Alarms and Services
Methods

Member summary

getModules(), on page 711

Returns an enumeration of the TraceModules registered with this
factory.

static java.util.Enumeration

registerModule(TraceModule), on page 711

Returns an instance of a TraceManager object.

static TraceManager

registerModule(TraceModule, String[], TraceWriterManager),
on page 711

Returns an instance of a TraceManager object.

static TraceManager

registerModule(TraceModule, TraceWriterManager), on page 712

Returns an instance of a TraceManager object.

static TraceManager

Inherited member summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(), wait(), wait()

Methods

getModules()

public static java.util.Enumeration getModules()

Returns an enumeration of the TraceModules registered with this factory.

registerModule(TraceModule)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module)

Returns an instance of a TraceManager object. The contained TraceWriterManager will not have any default
TraceWriters.

registerModule(TraceModule, String[], TraceWriterManager)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module,
java.lang.String[]subFacilities,
com.cisco.services.tracing.TraceWriterManagertraceWriterManager)

Returns an instance of a TraceManager object. Trace output will be redirected to the TraceWriterManager
object specified.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
711

Cisco Unified JTAPI Alarms and Services
Methods

registerModule(TraceModule, TraceWriterManager)

public static com.cisco.services.tracing.TraceManager
registerModule(com.cisco.services.tracing.TraceModule module,
com.cisco.services.tracing.TraceWriterManagertraceWriterManager)

Returns an instance of a TraceManager object. Trace output will be redirected to the TraceWriterManager
object specified.

Services Tracing Interface Hierarchy
The following interface hierarchy is contained in the com.cisco.services.tracing package.

com.cisco.services.tracing.Trace, on page 712
com.cisco.services.tracing.ConditionalTrace, on page 719

com.cisco.services.tracing.UnconditionalTrace, on page 720

com.cisco.services.tracing.TraceManager, on page 721

com.cisco.services.tracing.TraceModule, on page 725

com.cisco.services.tracing.TraceWriter, on page 726

com.cisco.services.tracing.TraceWriterManager, on page 729

Trace
The Trace interface defines the methods that allow application tracing. Trace also defines the standard trace
types as specified by Syslog Trace Logging.Syslog currently defines 8 levels of trace. The severity of the
message is indicated in the trace as a number ranging between [0-7] (0 and 7 included). Currently 7 is
HIGHEST_LEVEL and 0 is the LOWEST_LEVEL trace. All 8 levels are predefined here as static int types
for reference in tracing sub-system implementations.

The severities traced are as follows:

0 = EMERGENCIES System unusable

1 = ALERTS Immediate action needed

2 = CRITICAL Critical conditions

3 = ERROR Error conditions

4 = WARNING Warning conditions

5 = NOTIFICATION Normal but significant condition

6 = INFORMATIONAL Informational messages only

7 = DEBUGGING Debugging messages

Declaration
public interface Trace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
712

Cisco Unified JTAPI Alarms and Services
Services Tracing Interface Hierarchy

All Known Subinterfaces
ConditionalTrace, on page 719UnconditionalTrace, on page 720

Member Summary
Member summary

Fields

ALERTS, on page 715

The application will continue working on the tasks but all
functions may not be operational (one or more devices in the list
are not accessible but others in the list can be accessed)

Syslog severity level = 1

static int

ALERTS_TRACE_NAME, on page 715

String descriptor for ALERTS trace level

static java.lang.String

CRITICAL, on page 689

A critical failure, the application cannot accomplish the tasks
required due to this failure, e.g.: the application cant open the
database to read the device list

Syslog severity level = 2

static int

CRITICAL_TRACE_NAME, on page 716

String descriptor for CRITICAL trace level

static java.lang.String

DEBUGGING, on page 716

Very detailed information regarding errors or processing status
that is only generated when DEBUG mode has been enabled

Syslog severity level = 7

static int

DEBUGGING_TRACE_NAME, on page 716

String descriptor for the DEBUGGING trace level

static java.lang.DEBUGGING_TRACE_NAME, on page 716String

EMERGENCIES, on page 716

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

static int

EMERGENCIES_TRACE_NAME, on page 716

String descriptor for EMERGENCIES trace level

static java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
713

Cisco Unified JTAPI Alarms and Services
All Known Subinterfaces

Member summary

ERROR, on page 716

An error condition of some kind has occurred and the user needs
to understand the nature of that failure

Syslog severity level = 3

static int

ERROR_TRACE_NAME, on page 716

String descriptor for ERROR trace level

static java.lang.String

HIGHEST_LEVEL, on page 716

The highest trace level, currently this is DEBUGGING with a
trace level of 7

static int

INFORMATIONAL, on page 717

Information of some form not relating to errors, warnings, audit,
or debug

Syslog severity level = 6

static int

INFORMATIONAL_TRACE_NAME, on page 717

String descriptor for INFORMATIONAL trace level

static java.lang.String

LOWEST_LEVEL, on page 717

The lowest trace level, currently this is EMERGENCIES with a
trace level of 0

static int

NOTIFICATION, on page 717

Notification denotes a normal but significant condition

Syslog severity level = 5

static int

NOTIFICATION_TRACE_NAME, on page 717

String descriptor for NOTIFICATION trace level

static java.lang.String

WARNING, on page 717

Warning that a problem of some form exists but is not keeping
the application from completing its tasks

Syslog severity level = 4

static int

WARNING_TRACE_NAME, on page 717

String descriptor for WARNING trace level

static java.lang.String

Methods

getName(), on page 717

Returns the name of this Trace object.

java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
714

Cisco Unified JTAPI Alarms and Services
Member Summary

Member summary

getSubFacility(), on page 718

Returns the subFacility of trace

java.lang.String

getType(), on page 718

Returns the type of trace.

int

isEnabled(), on page 718

Returns the state of this Trace object.

boolean

println(Object), on page 718

Prints the string returned by the Object.toString() method and
terminates the line as defined by the system.

void

println(String), on page 718

Prints a message in the same format as Trace.print() and terminates
the line as defined by the system.

void

println(String, Object), on page 718

Prints the string returned by the Object.toString() method and
terminates the line as defined by the system.

void

println(String, String), on page 719

Prints a message in the same format as Trace.print() and terminates
the line as defined by the system.

void

setDefaultMnemonic(String), on page 719

Sets a default mnemonic for all messages printed out to this trace.

void

Fields

ALERTS

public static final int ALERTS

The application will continue working on the tasks but all functions may not be operational (one or more
devices in the list are not accessible but others in the list can be accessed)

Syslog severity level = 1

ALERTS_TRACE_NAME

public static final java.lang.String ALERTS_TRACE_NAME

String descriptor for ALERTS trace level

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
715

Cisco Unified JTAPI Alarms and Services
Fields

CRITICAL

public static final int CRITICAL

A critical failure, the application cannot accomplish the tasks required due to this failure, e.g.: the application
cant open the database to read the device list

Syslog severity level = 2

CRITICAL_TRACE_NAME

public static final java.lang.String CRITICAL_TRACE_NAME

String descriptor for CRITICAL trace level

DEBUGGING

public static final int DEBUGGING

Very detailed information regarding errors or processing status that is only generated when DEBUG mode
has been enabled

Syslog severity level = 7

DEBUGGING_TRACE_NAME

public static final java.lang.String DEBUGGING_TRACE_NAME

String descriptor for the DEBUGGING trace level

EMERGENCIES

public static final int EMERGENCIES

Emergency situation, a system shutdown is necessary

Syslog severity level = 0

EMERGENCIES_TRACE_NAME

public static final java.lang.String EMERGENCIES_TRACE_NAME

String descriptor for EMERGENCIES trace level

ERROR

public static final int ERROR

An error condition of some kind has occurred and the user needs to understand the nature of that failure

Syslog severity level = 3

ERROR_TRACE_NAME

public static final java.lang.String ERROR_TRACE_NAME

String descriptor for ERROR trace level

HIGHEST_LEVEL

public static final int HIGHEST_LEVEL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
716

Cisco Unified JTAPI Alarms and Services
Fields

The highest trace level, currently this is DEBUGGING with a trace level of 7

INFORMATIONAL

public static final int INFORMATIONAL

Information of some form not relating to errors, warnings, audit, or debug

Syslog severity level = 6

INFORMATIONAL_TRACE_NAME

public static final java.lang.String INFORMATIONAL_TRACE_NAME

String descriptor for INFORMATIONAL trace level

LOWEST_LEVEL

public static final int LOWEST_LEVEL

The lowest trace level, currently this is EMERGENCIES with a trace level of 0

NOTIFICATION

public static final int NOTIFICATION

Notification denotes a normal but significant condition

Syslog severity level = 5

NOTIFICATION_TRACE_NAME

public static final java.lang.String NOTIFICATION_TRACE_NAME

String descriptor for NOTIFICATION trace level

WARNING

public static final int WARNING

Warning that a problem of some form exists but is not keeping the application from completing its tasks

Syslog severity level = 4

WARNING_TRACE_NAME

public static final java.lang.String WARNING_TRACE_NAME

String descriptor for WARNING trace level

Methods

getName()

public java.lang.String getName()

Returns:

the name of this Trace object

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
717

Cisco Unified JTAPI Alarms and Services
Methods

getSubFacility()

public java.lang.String getSubFacility()

Returns:

the trace subFacility type

getType()

public int getType()

Returns:

the type of trace as specified in Syslog. DEBUGGING, INFORMATIONAL, WARNING, etc.

isEnabled()

public boolean isEnabled()

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Returns:

true if tracing is enabled, false otherwise

See Also

ConditionalTrace, on page 719

println(Object)

public void println(java.lang.Object object)

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Parameters:

object - the object to be printed

println(String)

public void println(java.lang.String message)

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Parameters:

message - the message to be printed

println(String, Object)

public void println(java.lang.String mnemonic,
java.lang.Objectobject)

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Parameters:

object - the object to be printed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
718

Cisco Unified JTAPI Alarms and Services
Methods

mnemonic - the mnemonic mapped to message to be printed

println(String, String)

public void println(java.lang.String mnemonic,
java.lang.Stringmessage)

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Parameters:

message - the message to be printed

mnemonic - the mnemonic mapped to message to be printed

setDefaultMnemonic(String)

public void setDefaultMnemonic(java.lang.String mnemonic)

Sets a default mnemonic for all messages printed out to this trace.

Parameters:

mnemonic, - a mnemonic string

ConditionalTrace
The ConditionalTrace interface extends the Trace interface and defines the methods that allow enabling and
disabling of tracing for this particular condition.

Typically, applications obtain one ConditionalTrace object for each condition that they need to trace under
certain circumstances but not always (for example, AUDIT, INFO, and so on).

Declaration
public interface ConditionalTrace extends Trace, on page 712

All Superinterfaces
Trace, on page 712

Member Summary
Member summary

Methods

disable(), on page 720

Disables this condition for tracing.

void

enable(), on page 720

Enables this condition for tracing.

void

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
719

Cisco Unified JTAPI Alarms and Services
ConditionalTrace

Inherited member summary

Fields inherited from interface Trace, on page 712

ALERTS, on page 715, ALERTS_TRACE_NAME, on page 715, CRITICAL, on page 689, CRITICAL_TRACE_NAME, on page
716, DEBUGGING, on page 716, DEBUGGING_TRACE_NAME, on page 716, EMERGENCIES, on page 716,
EMERGENCIES_TRACE_NAME, on page 716, ERROR, on page 716, ERROR_TRACE_NAME, on page 716,HIGHEST_LEVEL,
on page 716, INFORMATIONAL, on page 717, INFORMATIONAL_TRACE_NAME, on page 717, LOWEST_LEVEL, on page
717, NOTIFICATION, on page 717, NOTIFICATION_TRACE_NAME, on page 717, WARNING, on page 717,
WARNING_TRACE_NAME, on page 717

Methods inherited from interface Trace, on page 712

getName(), on page 717, getSubFacility(), on page 718, getType(), on page 718, isEnabled(), on page 718, println(Object), on page
718, println(String), on page 718, println(String, Object), on page 718, println(String, String), on page 719, setDefaultMnemonic(String),
on page 719

Methods

disable()

public void disable()

Disables this condition for tracing.

enable()

public void enable()

Enables this condition for tracing.

UnconditionalTrace
The UnconditionalTrace interface extends the Trace interface. Note that because this object extends Trace,
its state is enabled by default and it may not be changed.

Typically, applications would obtain one UnconditionalTrace object per each condition that they need to trace
always under any circumstances (such as, ERROR, FATAL, and so on).

Declaration
public interface UnconditionalTrace extends Trace, on page 712

All Superinterfaces
Trace, on page 712

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
720

Cisco Unified JTAPI Alarms and Services
Methods

Member Summary
Inherited Member summary

Fields inherited from interface Trace, on page 712

ALERTS, on page 715, ALERTS_TRACE_NAME, on page 715, CRITICAL, on page 689, CRITICAL_TRACE_NAME, on page
716, DEBUGGING, on page 716, DEBUGGING_TRACE_NAME, on page 716, EMERGENCIES, on page 716,
EMERGENCIES_TRACE_NAME, on page 716, ERROR, on page 716, ERROR_TRACE_NAME, on page 716,HIGHEST_LEVEL,
on page 716, INFORMATIONAL, on page 717, INFORMATIONAL_TRACE_NAME, on page 717, LOWEST_LEVEL, on page
717, NOTIFICATION, on page 717, NOTIFICATION_TRACE_NAME, on page 717, WARNING, on page 717,
WARNING_TRACE_NAME, on page 717

Methods inherited from interface Trace, on page 712

getName(), on page 717, getSubFacility(), on page 718, getType(), on page 718, isEnabled(), on page 718, println(Object), on page
718, println(String), on page 718, println(String, Object), on page 718, println(String, String), on page 719, setDefaultMnemonic(String),
on page 719

TraceManager
The TraceManager interface defines the methods that allow applications trace management.

Typically, an application obtains only one TraceManager object. All Trace objects are created by default:
Predefined Trace in accordance with Syslog definitions are:

ConditionalTraces:INFORMATIONAL, DEBUGGING, NOTIFICATION, WARNING
UnconditionalTraces:ERROR, CRITICAL, ALERTS, EMERGENCIES

Facilities/Sub-Facilities:

• Facility—A code consisting of two or more uppercase letters that indicate the facility to which the
message refers. A facility can be a hardware device, a protocol, or a module of the system software.

• SubFacility—A code consisting of two or more uppercase letters that indicate the sub-facility to which
the message refers. A sub-facility can be a hardware device component, a protocol unit, or a sub-module
of the system software.

By default all 8 Conditional and UnConditional Traces are created for the Facility and 8 for each of the
subFacilities In order to use the DEBUGGING trace for the parent FACILITY, for example, the application
needs to use the getConditionalTrace(“DEBUGGING”) method of this object.

In order to use the DEBUGGING trace for the SUBFACILITY, for example, the application needs to use the
getConditionalTrace(SUBFACILITY + “_” + “DEBUGGING”) method of this object or use the
getConditionalTrace(SUBFACILITY, “DEBUGGING”) method.

Systemwide TraceWriterManager is set through the setTraceWriterManager method provided by this interface.

The Trace Manager object also allows the application to enable or disable tracing for all trace through the
enableAll() and disableAll() methods.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
721

Cisco Unified JTAPI Alarms and Services
Member Summary

Declaration
public interface TraceManager

Member Summary
Member summary

Methods

addSubFacilities(String[]), on page 723

Sets a set of subFacilities for this TraceManager/Facility.

void

addSubFacility(String), on page 723

Adds a single subFacility for this TraceManager/Facility.

void

disableAll(), on page 723

Disables tracing for all Trace objects managed by this
TraceManager.

void

disableTimeStamp(), on page 724

Disables prefixing a time stamp for every message printed by this
TraceManager.

void

enableAll(), on page 724

Enables tracing for all Trace objects managed by this
TraceManager.

void

enableTimeStamp(), on page 724

Enables prefixing a time stamp for every message printed by this
TraceManager.

void

getConditionalTrace(int), on page 724

Creates a new ConditionalTrace object or obtains an existing
ConditionalTrace object for this condition.

ConditionalTrace

getConditionalTrace(String, int), on page 724

Creates a new ConditionalTrace object or obtains an existing
ConditionalTrace object for this condition and subFacility

ConditionalTrace

getName(), on page 724

Returns the Facility name for this TraceManager.

java.lang.String

getSubFacilities(), on page 724

Returns the subFacility names for this TraceManager/Facility.

java.lang.String[]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
722

Cisco Unified JTAPI Alarms and Services
Declaration

Member summary

getTraces(), on page 724

Returns an enumeration of the Trace objects managed by this
TraceManager.

java.util.Enumeration

getTraceWriterManager(), on page 724

Returns the TraceWriter used by this TraceManager.

TraceWriterManager

getUnconditionalTrace(int), on page 724

Creates a new UnconditionalTrace object or obtains an existing
UnconditionalTrace object for this condition.

UnconditionalTrace

getUnconditionalTrace(String, int), on page 725

Creates a new UnconditionalTrace object or obtains an existing
UnconditionalTrace object for this condition and subFacility

UnconditionalTrace

removeTrace(Trace), on page 725

Removes a Trace object given an object.

void

setSubFacilities(String[]), on page 725

Sets a set of subFacilities for this TraceManager/Facility.

void

setSubFacility(String), on page 725

Adds a single subFacility for this TraceManager/Facility.

void

setTraceWriterManager(TraceWriterManager), on page 725

Sets the TraceWriter to be used by this TraceManager.

void

Methods

addSubFacilities(String[])

public void addSubFacilities(java.lang.String[] names)

Sets a set of subFacilities for this TraceManager/Facility.

addSubFacility(String)

public void addSubFacility(java.lang.String name)

Adds a single subFacility for this TraceManager/Facility.

disableAll()

public void disableAll()

Disables tracing for all Trace objects managed by this TraceManager.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
723

Cisco Unified JTAPI Alarms and Services
Methods

disableTimeStamp()

public void disableTimeStamp()

Disables prefixing a time stamp for every message printed by this TraceManager.

enableAll()

public void enableAll()

Enables tracing for all Trace objects managed by this TraceManager.

enableTimeStamp()

public void enableTimeStamp()

Enables prefixing a time stamp for every message printed by this TraceManager.

getConditionalTrace(int)

public com.cisco.services.tracing.ConditionalTrace
getConditionalTrace(int severity)

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition.

getConditionalTrace(String, int)

public com.cisco.services.tracing.ConditionalTrace
getConditionalTrace(java.lang.String subFacility,
intseverity)

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition and
subFacility

getName()

public java.lang.String getName()

Returns the Facility name for this TraceManager.

getSubFacilities()

public java.lang.String[] getSubFacilities()

Returns the subFacility names for this TraceManager/Facility.

getTraces()

public java.util.Enumeration getTraces()

Returns an enumeration of the Trace objects managed by this TraceManager.

getTraceWriterManager()

public com.cisco.services.tracing.TraceWriterManager getTraceWriterManager()

Returns the TraceWriter used by this TraceManager.

getUnconditionalTrace(int)

public com.cisco.services.tracing.UnconditionalTrace getUnconditionalTrace(int severity)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
724

Cisco Unified JTAPI Alarms and Services
Methods

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition.

getUnconditionalTrace(String, int)

public com.cisco.services.tracing.UnconditionalTrace
getUnconditionalTrace(java.lang.String subFacility,
intseverity)

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition
and subFacility

removeTrace(Trace)

public void removeTrace(com.cisco.services.tracing.Trace tc)

Removes a Trace object given an object.

setSubFacilities(String[])

public void setSubFacilities(java.lang.String[] names)

Deprecated and replaced with TraceManager.addSubFacilities method

Sets a set of subFacilities for this TraceManager/Facility.

setSubFacility(String)

public void setSubFacility(java.lang.String name)

Deprecated and replaced with TraceManager.addSubFacility method

Adds a single subFacility for this TraceManager/Facility.

setTraceWriterManager(TraceWriterManager)

public void setTraceWriterManager(com.cisco.services.tracing.TraceWriterManager twm)

Sets the TraceWriter to be used by this TraceManager.

TraceModule
The TraceModule interface serves two purposes. First, it allows applications to discover the TraceManager
object used by other packages that they use. Second, applications that register with the TraceManagerFactory
must identify themselves by implementing this interface.

Declaration
public interface TraceModule

All Known Subinterfaces
com.cisco.jtapi.extensions.CiscoJtapiPeer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
725

Cisco Unified JTAPI Alarms and Services
TraceModule

Member Summary
Member summary

Methods

getTraceManager(), on page 726

Returns the TraceManager that an object is using for tracing.

TraceManager

getTraceModuleName(), on page 726

Returns the module name.

java.lang.String

Methods

getTraceManager()

public com.cisco.services.tracing.TraceManager getTraceManager()

Returns the TraceManager that an object is using for tracing.

getTraceModuleName()

public java.lang.String getTraceModuleName()

Returns the module name.

TraceWriter
The TraceWriter interface abstracts the details of trace message output. The TraceWriter uses its enabled
method to advertise whether or not the print and println methods will have any effect. Users of TraceWriter
should use the value returned by the getEnabled method as an indication of whether they should invoke the
print and println methods at all.

Declaration
public interface TraceWriter

All Known Subinterfaces
TraceWriterManager, on page 729

All Known Implementing Classes
BaseTraceWriter, on page 693

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
726

Cisco Unified JTAPI Alarms and Services
Member Summary

Member Summary
Member summary

Methods

close(), on page 727

Releases any resources associated by this TraceWriter .

void

flush(), on page 727 Forces output of anymessages that have been
printed using the println method

void

getDescription(), on page 727java.lang.String

getEnabled(), on page 728

Returns whether the println method will print anything or not.

boolean

getName(), on page 728java.lang.String

getTraceLevels(), on page 728int[]

println(String, int), on page 728

Prints the specified string followed by a carriage return The
concrete TraceWriter class will use the severity to block out
messages from a particular stream.

void

setTraceLevels(int[]), on page 728

set the trace levels that will be traced by this TraceWriter

void

Methods

close()

public void close()

Releases any resources associated by this TraceWriter.

flush()

public void flush()

Forces output of any messages that have been printed using the println method

getDescription()

public java.lang.String getDescription()

Returns:

a short description of this TraceWriter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
727

Cisco Unified JTAPI Alarms and Services
Member Summary

getEnabled()

public boolean getEnabled()

Returns whether the println method will print anything or not. A closed TraceWriterwill always return false
from this method.

Returns:

true if this TraceWriter is enabled, false if not

getName()

public java.lang.String getName()

Returns:

the name of this TraceWriter

getTraceLevels()

public int[] getTraceLevels()

Returns:

the array of trace levels that will be traced by this TraceWriter

println(String, int)

public void println(java.lang.String message,
intseverity)

Prints the specified string followed by a carriage return The concrete TraceWriter class will use the severity
to block out messages from a particular stream. Each trace writer has a notion of the highest level trace it
traces

Parameters:

message - the string to print

severity - of the trace.

See Also

Trace, on page 712

setTraceLevels(int[])

public void setTraceLevels(int[] levels)

set the trace levels that will be traced by this TraceWriter

Parameters:

int[] - levels

See Also

Trace, on page 712

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
728

Cisco Unified JTAPI Alarms and Services
Methods

TraceWriterManager
TraceWriterManager contains the list of TraceWriter objects that are used to implement the tracing. The list
is populated at startup from the switches in a .ini file. A LogFileTraceWriter, a ConsoleTraceWriter, and a
SyslogTraceWriter are available. Users can override the existing TraceWriters by setting a user implemented
TraceWriter[] or adding to the existing TraceWriters. This makes it possible to add other TraceWriters that
can function along with existing trace writers.

Declaration
public interface TraceWriterManager extends TraceWriter, on page 726

All Superinterfaces
TraceWriter, on page 726

Member Summary
Member summary

Methods

addTraceWriter(TraceWriter), on page 730

Add another TraceWriter to the array

void

getTraceWriters(), on page 730TraceWriter[]

removeTraceWriter(TraceWriter), on page 730

Remove the TraceWriter from the array in the manager

void

setTraceWriters(TraceWriter[]), on page 730

Implementations can use this method to override or enhance the
provided TraceWriters

void

Inherited member summary

Methods inherited from interface TraceWriter, on page 726

close(), on page 727, flush(), on page 727, getDescription(), on page 727, getEnabled(), on page 728, getName(), on page 728,
getTraceLevels(), on page 728, println(String, int), on page 728, setTraceLevels(int[]), on page 728

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
729

Cisco Unified JTAPI Alarms and Services
TraceWriterManager

Methods

addTraceWriter(TraceWriter)

public voidaddTraceWriter(com.cisco.services.tracing.TraceWriter traceWriter)

Add another TraceWriter to the array

Parameters:

TraceWriter - to be added to the list

getTraceWriters()

public com.cisco.services.tracing.TraceWriter[] getTraceWriters()

Returns:

the array of TraceWriters in the manager

removeTraceWriter(TraceWriter)

public voidremoveTraceWriter(com.cisco.services.tracing.TraceWriter traceWriter)

Remove the TraceWriter from the array in the manager

setTraceWriters(TraceWriter[])

public voidsetTraceWriters(com.cisco.services.tracing.TraceWriter[] traceWriters)

Implementations can use this method to override or enhance the provided TraceWriters

Parameters:

set - the array of TraceWriters.

Tracing Implementation Class Hierarchy
The following tracing implementation class hierarchy is contained in the
com.cisco.services.tracing.implementation package.

java.lang.Object
com.cisco.services.tracing.implementation.TraceImpl, on page 731 (implements

com.cisco.services.tracing.Trace)
com.cisco.services.tracing.implementation.ConditionalTraceImpl, on page 733 (implements

com.cisco.services.tracing.ConditionalTrace)
com.cisco.services.tracing.implementation.UnconditionalTraceImpl, on page 734 (implements

com.cisco.services.tracing.UnconditionalTrace)
com.cisco.services.tracing.implementation.TraceManagerImpl, on page 735 (implements

com.cisco.services.tracing.TraceManager)
com.cisco.services.tracing.implementation.TraceWriterManagerImpl, on page 739 (implements

com.cisco.services.tracing.TraceWriterManager)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
730

Cisco Unified JTAPI Alarms and Services
Methods

TraceImpl

Declaration
public abstract class TraceImpl

extends java.lang.Object

implements Trace

All Implemented Interfaces
Trace, on page 712

Methods

println

public final void println(java.lang.String message)

Description copied from interface: Trace

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

message - the message to be printed

println

public final void println(java.lang.String mnemonic, java.lang.String message)

Description copied from interface: Trace

Prints a message in the same format as Trace.print() and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

mnemonic - the mnemonic mapped to message to be printed

message - the message to be printed

println

public final void println(java.lang.Object object)

Description copied from interface: Trace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
731

Cisco Unified JTAPI Alarms and Services
TraceImpl

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

object - the object to be printed

println

public final void println(java.lang.String mnemonic, java.lang.Object object)

Description copied from interface: Trace

Prints the string returned by the Object.toString() method and terminates the line as defined by the system.

Specified by:

println in interface Trace

Parameters:

mnemonic - the mnemonic mapped to message to be printed

object - the object to be printed

getName

public final java.lang.String getName()

Description copied from interface: Trace

Returns the name of this Trace object.

Specified by:

getName in interface Trace

Returns:

the name of this Trace object

setDefaultMnemonic

public final void setDefaultMnemonic(java.lang.String mnemonic)

Description copied from interface: Trace

Sets a default mnemonic for all messages printed out to this trace.

Specified by:

setDefaultMnemonic in interface Trace

Parameters:

mnemonic - a mnemonic string

getType

public int getType()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
732

Cisco Unified JTAPI Alarms and Services
Methods

Description copied from interface: Trace

Returns the type of trace.

Specified by:

getType in interface Trace

Returns:

the trace severity as specified in Syslog. DEBUGGING, INFORMATIONAL, WARNING, etc.

getSubFacility

public java.lang.String getSubFacility()

Description copied from interface: Trace

Returns the subFacility of trace

Specified by:

getSubFacility in interface Trace

Returns:

the trace subFacility type

Inherited Methods
isEnabled

ConditionalTraceImpl

Declaration
public final class ConditionalTraceImpl

extends TraceImpl

implements ConditionalTrace

All Implemented Interfaces
ConditionalTrace, Trace

Methods

enable

public void enable()

Description copied from interface: ConditionalTrace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
733

Cisco Unified JTAPI Alarms and Services
Inherited Methods

Enables this condition for tracing.

Specified by:

enable in interface ConditionalTrace

disable

public void disable()

Description copied from interface: ConditionalTrace

Disables this condition for tracing.

Specified by:

disable in interface ConditionalTrace

isEnabled

public boolean isEnabled()

Description copied from interface: Trace

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Specified by:

isEnabled in interface Trace

Returns:

true if tracing is enabled, false otherwise

See Also:

ConditionalTrace

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

UnconditionalTraceImpl

Declaration
public final class UnconditionalTraceImpl

extends TraceImpl

implements UnconditionalTrace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
734

Cisco Unified JTAPI Alarms and Services
Inherited Methods

All Implemented Interfaces
Trace, UnconditionalTrace

Methods

isEnabled

public boolean isEnabled()

Description copied from interface: Trace

Returns the state of this Trace object. By default, Trace objects are enabled, that is, println() method will
always trace. The state may not be changed through this interface, however, this object may implement
additional interfaces that allow the state to be changed.

Specified by:

isEnabled in interface Trace

Returns:

true if tracing is enabled, false otherwise

See Also:

ConditionalTrace

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

TraceManagerImpl
The TraceManagerImpl class implements the TraceManager interface.

Declaration
public class TraceManagerImpl extends java.lang.Object

java.lang.Object

|

+--com.cisco.services.tracing.implementation.TraceManagerImpl

All Implemented Interfaces
TraceManager, on page 721

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
735

Cisco Unified JTAPI Alarms and Services
All Implemented Interfaces

Constructors
public TraceManagerImpl(java.lang.StringmoduleName, java.lang.String[]subFacilities,
TraceWriterManagertraceWriterManager)

public TraceManagerImpl(java.lang.StringmoduleName, TraceWriterManagertraceWriterManager)

Methods

getConditionalTrace

public ConditionalTrace getConditionalTrace(intseverity)

Description copied from interface: TraceManager

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition.

Specified by:

getConditionalTrace in interface TraceManager

getConditionalTrace

public ConditionalTrace getConditionalTrace(java.lang.StringsubFacility,
intseverity)

Description copied from interface: TraceManager

Creates a new ConditionalTrace object or obtains an existing ConditionalTrace object for this condition and
subFacility

Specified by:

getConditionalTrace in interface TraceManager

getUnconditionalTrace

public UnconditionalTrace getUnconditionalTrace(intseverity)

Description copied from interface: TraceManager

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition.

Specified by:

getUnconditionalTrace in interface TraceManager

getUnconditionalTrace

public UnconditionalTrace getUnconditionalTrace(java.lang.StringsubFacility,
intseverity)

Description copied from interface: TraceManager

Creates a new UnconditionalTrace object or obtains an existing UnconditionalTrace object for this condition
and subFacility

Specified by:

getUnconditionalTrace in interface TraceManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
736

Cisco Unified JTAPI Alarms and Services
Constructors

getTraceWriterManager

public TraceWriterManager getTraceWriterManager()

Description copied from interface: TraceManager

Returns the TraceWriter used by this TraceManager.

Specified by:

getTraceWriterManager in interface TraceManager

setTraceWriterManager

public void setTraceWriterManager(TraceWriterManagerout)

Description copied from interface: TraceManager

Sets the TraceWriter to be used by this TraceManager.

Specified by:

setTraceWriterManager in interface TraceManager

removeTrace

public void removeTrace(Tracetc)

Description copied from interface: TraceManager

Removes a Trace object given an object.

Specified by:

removeTrace in interface TraceManager

getTraces

public java.util.Enumeration getTraces()

Description copied from interface: TraceManager

Returns an enumeration of the Trace objects managed by this TraceManager.

Specified by:

getTraces in interface TraceManager

enableAll

public void enableAll()

Description copied from interface: TraceManager

Enables tracing for all Trace objects managed by this TraceManager.

Specified by:

enableAll in interface TraceManager

disableAll

public void disableAll()

Description copied from interface: TraceManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
737

Cisco Unified JTAPI Alarms and Services
Methods

Disables tracing for all Trace objects managed by this TraceManager.

Specified by:

disableAll in interface TraceManager

getName

public java.lang.String getName()

Description copied from interface: TraceManager

Returns the Facility name for this TraceManager.

Specified by:

getName in interface TraceManager

enableTimeStamp

public void enableTimeStamp()

Description copied from interface: TraceManager

Enables prefixing a time stamp for every message printed by this TraceManager.

Specified by:

enableTimeStamp in interface TraceManager

disableTimeStamp

public void disableTimeStamp()

Description copied from interface: TraceManager

Disables prefixing a time stamp for every message printed by this TraceManager.

Specified by:

disableTimeStamp in interface TraceManager

getSubFacilities

public java.lang.String[] getSubFacilities()

Returns the subFacility names for this TraceManager/Facility.

Specified by:

getSubFacilities in interface TraceManager

addSubFacilities

public void addSubFacilities(java.lang.String[]names)

Adds subFacilities for this TraceManager/Facility.

Specified by:

addSubFacilities in interface TraceManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
738

Cisco Unified JTAPI Alarms and Services
Methods

addSubFacility

public void addSubFacility(java.lang.Stringname)

Adds a subFacility for this TraceManager/Facility.

Specified by:

addSubFacility in interface TraceManager

Deprecated

getSubFacilities(java.lang.String[]names)

Replaced by addSubFacilties(String[]).

setSubFacility(java.lang.Stringname)

Replaced by addSubFacility(String).

Inherited Methods
Inherited methods from class java.lang.Object are: clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

TraceWriterManagerImpl
TraceWriterManager contains the list of TraceWriter objects that are used to implement the tracing. The list
is populated at startup from the switches in a .ini file. A LogFileTraceWriter, a ConsoleTraceWriter, and a
SyslogTraceWriter are available. Users can override the existing TraceWriters by setting a user implemented
TraceWriter[] or adding to the existing TraceWriters. This makes it possible to add other traceWriters that
can function along with exisiting trace writers.

Methods inherited from class java.lang.Object are clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait.

Note

Declaration
public class TraceWriterManagerImpl extends java.lang.Object implements TraceWriterManager

java.lang.Object

com.cisco.services.tracing.implementation.TraceWriterManagerImpl

All Implemented Interfaces
TraceWriter, TraceWriterManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
739

Cisco Unified JTAPI Alarms and Services
Deprecated

Constructors

TraceWriterManagerImpl

public TraceWriterManagerImpl()

Creates a TraceWriterManagerImpl with a zero length TraceWriter array .

Methods

setTraceWriters

public void setTraceWriters(TraceWriter[]traceWriters)

Overrides the existing TraceWriters with a new user supplied set .

Specified by:

setTraceWriters in interface TraceWriterManager

Parameters:

traceWriters - An array of TraceWriters.

getTraceWriters

public TraceWriter[] getTraceWriters()

Returns the array of TraceWriters currently in use .

Specified by:

getTraceWriters in interface TraceWriterManager

Returns:

The array of TraceWriters in the manager.

addTraceWriter

public void addTraceWriter(TraceWritertw)

Add this TraceWriter to the array of trace writers

Specified by:

addTraceWriter in interface TraceWriterManager

Parameters:

tw - TraceWriter to be added to the list

removeTraceWriter

public void removeTraceWriter(TraceWritertw)

Remove the Tracewriter from the array of trace writers.

Specified by:

removeTraceWriter in interface TraceWriterManager

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
740

Cisco Unified JTAPI Alarms and Services
Constructors

println

public void println(java.lang.Stringmessage, intseverity)

All traces invoke this method. A trace supplies its severity along with the message. Traces below the threshold
severity of the TraceWriter are allowed. Eg. If the Threshhold severity is set to INFORMATIONAL (level =
6) DEBUG traces will not be passed by the TraceWriter. The severity level is set in the constructor of the
TraceWriter

Specified by:

println in interface TraceWriter

Parameters:

message - The string to print

severity - The severity of the trace.

See Also:

Trace

Flush

public void flush()

Description copied from interface: TraceWriter

Forces output of any messages that have been printed using the println method

Specified by:

flush in interface TraceWriter

close

public void close()

Description copied from interface: TraceWriter

Releases any resources associated by this TraceWriter.

Specified by:

close in interface TraceWriter

getEnabled

public boolean getEnabled()

Returns true if any one of the underlying TraceWriter is enabled, else returns false.

Specified by:

getEnabled in interface TraceWriter

Returns:

True if this TraceWriter is enabled, false if not.

getName

public java.lang.String getName()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
741

Cisco Unified JTAPI Alarms and Services
Methods

Specified by:

getName in interface TraceWriter

Returns:

The name of this TraceWriter.

getDescription

public java.lang.String getDescription()

Specified by:

getDescription in interface TraceWriter

Returns:

A short description of this TraceWriter.

setTraceLevels

public void setTraceLevels(int[]levels)

The TraceWriterManager does nothing for this method .

Specified by:

setTraceLevels in interface TraceWriter

Parameters:

Levels - Array of trace levels.

See Also:

Trace

getTraceLevels

public int[] getTraceLevels()

The TraceWriterManager returns a null, as the traceLevel is maintained at the individual TraceWriter .

Specified by:

getTraceLevels in interface TraceWriter

Returns:

null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
742

Cisco Unified JTAPI Alarms and Services
Methods

C H A P T E R 7
Cisco Unified JTAPI Examples

This chapter provides the source code for makecall, the Cisco Unified JTAPI program that is used to test the
JTAPI installation. The makecall program comprises a series of programs that were written in Java by using
the Cisco Unified JTAPI implementation.

For instructions on how to invoke makecall, see Running makecall, on page 757.

The Cisco Unified JTAPI Test tool can also be used to review message examples and test JTAPI features and
functions. For details, refer http://developer.cisco.com/web/jtapi/docs.

• MakeCall.java, on page 743
• Actor.java, on page 745
• Originator.java, on page 749
• Receiver.java, on page 753
• StopSignal.java, on page 754
• Trace.java, on page 755
• TraceWindow.java, on page 756
• Running makecall, on page 757

MakeCall.java
/** * makecall.java
*
* Copyright Cisco Systems, Inc.
*
* Performance-testing application (first pass) for Cisco JTAPI
* implementation.
*
* Known problems:
*
* Due to synchronization problems between Actors, calls may
* not be cleared when this application shuts down.
*
*/

//import com.ms.wfc.app.*;
import java.util.*;
import javax.telephony.*;
import javax.telephony.events.*;
import com.cisco.cti.util.Condition;

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
743

http://developer.cisco.com/web/jtapi/docs

public class makecall extends TraceWindow implements ProviderObserver
{
Vectoractors = new Vector ();
ConditionconditionInService = new Condition ();
Providerprovider;

public makecall (String [] args) {

super ("makecall" + ": "+ new CiscoJtapiVersion());
try
{

println ("Initializing Jtapi");
int curArg = 0;
String providerName = args[curArg++];
String login = args[curArg++];
String passwd = args[curArg++];
int actionDelayMillis = Integer.parseInt (args[curArg++]);
String src = null;
String dest = null;

JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null);
if (curArg < args.length)
{

String providerString = providerName + ";login = " + login + ";passwd
= " + passwd;

println ("Opening " + providerString + "...\n");
provider = peer.getProvider (providerString);
provider.addObserver (this);
conditionInService.waitTrue ();

println ("Constructing actors");

for (; curArg < args.length; curArg++)
{
if (src = = null)
{
src = args[curArg];

}
else
{
dest = args[curArg];
Originator originator = new Originator (provider.getAddress (src

),
dest, this, actionDelayMillis);

actors.addElement (originator);
actors.addElement (
new Receiver (provider.getAddress (dest), this,

actionDelayMillis,
originator)

);
src = null;
dest = null;

}
}
if (src ! = null)
{
println ("Skipping last originating address \"" + src +
"\"; no destination specified");

}

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
744

Cisco Unified JTAPI Examples
MakeCall.java

Enumeration e = actors.elements ();
while (e.hasMoreElements ())
{
Actor actor = (Actor) e.nextElement ();
actor.initialize ();

}

Enumeration en = actors.elements ();
while (en.hasMoreElements ())
{
Actor actor = (Actor) en.nextElement ();
actor.start ();

}
}
catch (Exception e)
{
println ("Caught exception " + e);

}
}

public void dispose () {
println ("Stopping actors");
Enumeration e = actors.elements ();
while (e.hasMoreElements ())
{
Actor actor = (Actor) e.nextElement ();
actor.dispose ();

}
}

public static void main (String [] args)
{
if (args.length < 6)
{
System.out.println ("Usage: makecall <server> <login> <password> <delay>
<origin> <destination> ...");

System.exit (1);
}
new makecall (args);

}

public void providerChangedEvent (ProvEv [] eventList) {
if (eventList ! = null)
{
for (int i = 0; i < eventList.length; i++)
{
if (eventList[i] instanceof ProvInServiceEv)
{
conditionInService.set ();

}
}

}
}

}

Actor.java
/** * Actor.java
*

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
745

Cisco Unified JTAPI Examples
Actor.java

* Copyright Cisco Systems, Inc.
*
*/

import javax.telephony.*;
import javax.telephony.events.*;
import javax.telephony.callcontrol.*;
import javax.telephony.callcontrol.events.*;

import com.cisco.jtapi.extensions.*;
public abstract class Actor implements AddressObserver, TerminalObserver,
CallControlCallObserver, Trace
{

public static final int ACTOR_OUT_OF_SERVICE = 0;
public static final int ACTOR_IN_SERVICE = 1;
private Tracetrace;
protected intactionDelayMillis;
private AddressobservedAddress;
private Terminal observedTerminal;
private boolean addressInService;
private boolean terminalInService;
protected int state = Actor.ACTOR_OUT_OF_SERVICE;

public Actor (Trace trace, Address observed, int actionDelayMillis) {
this.trace = trace;
this.observedAddress = observed;
this.observedTerminal = observed.getTerminals ()[0];
this.actionDelayMillis = actionDelayMillis;

}

public void initialize () {

try
{
if (observedAddress ! = null)
{
bufPrintln (
"Adding Call observer to address "
+ observedAddress.getName ()

);
observedAddress.addCallObserver (this);

//Now add observer on Address and Terminal
bufPrintln (
"Adding Adddress Observer to address "
+ observedAddress.getName ()

);

observedAddress.addObserver (this);

bufPrintln (
"Adding Terminal Observer to Terminal" + observedTerminal.getName ()

);

observedTerminal.addObserver (this);
}

}
catch (Exception e)
{
}
finally
{
flush ();

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
746

Cisco Unified JTAPI Examples
Actor.java

}
}

public final void start () {
onStart ();

}

public final void dispose () {

try
{
onStop ();
if (observedAddress ! = null)
{

bufPrintln (
"Removing observer from Address "
+ observedAddress.getName ()

);
observedAddress.removeObserver (this);

bufPrintln (
"Removing call observer from Address "
+ observedAddress.getName ()

);
observedAddress.removeCallObserver (this);

}
if (observedTerminal ! = null)
{
bufPrintln (
"Removing observer from terminal "
+ observedTerminal.getName ()

);
observedTerminal.removeObserver (this);

}
}
catch (Exception e)
{
println ("Caught exception " + e);

}
finally
{
flush ();

}
}

public final void stop () {
onStop ();

}

public final void callChangedEvent (CallEv [] events) {
//
// for now, all metaevents are delivered in the
// same package...
//
metaEvent (events);

}

public void addressChangedEvent (AddrEv [] events) {

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
747

Cisco Unified JTAPI Examples
Actor.java

for (int i = 0; i<events.length; i++)
{
Address address = events[i].getAddress ();
switch (events[i].getID ())
{
case CiscoAddrInServiceEv.ID:
bufPrintln ("Received " + events[i] + "for "+ address.getName ());
addressInService = true;
if (terminalInService)
{
if (state ! = Actor.ACTOR_IN_SERVICE)
{
state = Actor.ACTOR_IN_SERVICE ;
fireStateChanged ();

}
}
break;

case CiscoAddrOutOfServiceEv.ID:
bufPrintln ("Received " + events[i] + "for "+ address.getName ());
addressInService = false;
if (state ! = Actor.ACTOR_OUT_OF_SERVICE)
{ // you only want to notify when you had notified earlier that you are

IN_SERVICE
state = Actor.ACTOR_OUT_OF_SERVICE;
fireStateChanged ();

}
break;

}
}
flush ();

}

public void terminalChangedEvent (TermEv [] events) {

for (int i = 0; i<events.length; i++)
{
Terminal terminal = events[i].getTerminal ();
switch (events[i].getID ())
{
case CiscoTermInServiceEv.ID:
bufPrintln ("Received " + events[i] + "for " + terminal.getName ());
terminalInService = true;
if (addressInService)
{
if (state ! = Actor.ACTOR_IN_SERVICE)
{
state = Actor.ACTOR_IN_SERVICE;
fireStateChanged ();

}
}
break;

case CiscoTermOutOfServiceEv.ID:
bufPrintln ("Received " + events[i] + "for " + terminal.getName ());
terminalInService = false;
if (state ! = Actor.ACTOR_OUT_OF_SERVICE)
{ // you only want to notify when you had notified earlier that you are

IN_SERVICE
state = Actor.ACTOR_OUT_OF_SERVICE;
fireStateChanged ();

}
break;

}
}
flush();

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
748

Cisco Unified JTAPI Examples
Actor.java

}

final void delay (String action) {
if (actionDelayMillis ! = 0)
{
println ("Pausing " + actionDelayMillis + " milliseconds before " + action

);
try
{
Thread.sleep (actionDelayMillis);

}
catch (InterruptedException e)
{
}

}
}

protected abstract void metaEvent (CallEv [] events);

protected abstract void onStart ();
protected abstract void onStop ();
protected abstract void fireStateChanged ();

public final void bufPrint (String string) {
trace.bufPrint (string);

}
public final void bufPrintln (String string) {
trace.bufPrint (string);
trace.bufPrint ("\n");

}
public final void print (String string) {
trace.print (string);

}
public final void print (char character) {
trace.print (character);

}
public final void print (int integer) {
trace.print (integer);

}
public final void println (String string) {
trace.println (string);

}
public final void println (char character) {
trace.println (character);

}
public final void println (int integer) {
trace.println (integer);

}
public final void flush () {
trace.flush ();

}
}

Originator.java
/** * originator.java
*
* Copyright Cisco Systems, Inc.
*

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
749

Cisco Unified JTAPI Examples
Originator.java

*/

import javax.telephony.*;
import javax.telephony.events.*;
import javax.telephony.callcontrol.*;
import javax.telephony.callcontrol.events.*;

import com.ms.com.*;
import com.cisco.jtapi.extensions.*;

public class Originator extends Actor
{
AddresssrcAddress;
StringdestAddress;
intiteration;
StopSignalstopSignal;
booleanready = false;
intreceiverState = Actor.ACTOR_OUT_OF_SERVICE;
boolean callInIdle = true;

public Originator (Address srcAddress, String destAddress, Trace trace,
int actionDelayMillis) {
super (trace, srcAddress, actionDelayMillis);// observe srcAddress
this.srcAddress = srcAddress;
this.destAddress = destAddress;
this.iteration = 0;

}

protected final void metaEvent (CallEv [] eventList) {
for (int i = 0; i < eventList.length; i++)
{
try
{
CallEv curEv = eventList[i];

if (curEv instanceof CallCtlTermConnTalkingEv)
{
TerminalConnection tc =

((CallCtlTermConnTalkingEv)curEv).getTerminalConnection ();
Connection conn = tc.getConnection ();
if (conn.getAddress ().getName ().equals (destAddress))
{
delay ("disconnecting");
bufPrintln ("Disconnecting Connection " + conn);
conn.disconnect ();

}
}
else if (curEv instanceof CallCtlConnDisconnectedEv)
{
Connection conn = ((CallCtlConnDisconnectedEv)curEv).getConnection

();
if (conn.getAddress ().equals (srcAddress))
{
stopSignal.canStop ();
setCallProgressState (true);

}
}

}
catch (Exception e)
{
println ("Caught exception " + e);

}
finally
{

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
750

Cisco Unified JTAPI Examples
Originator.java

flush ();
}

}
}

protected void makecall ()
throws ResourceUnavailableException, InvalidStateException,

PrivilegeViolationException, MethodNotSupportedException,
InvalidPartyException, InvalidArgumentException {
println ("Making call #" + ++iteration + " from " + srcAddress + " to " +
destAddress + " " + Thread.currentThread ().getName ());

Call call = srcAddress.getProvider ().createCall ();
call.connect (srcAddress.getTerminals ()[0], srcAddress, destAddress);
setCallProgressState (false);
println ("Done making call");

}

protected final void onStart () {
stopSignal = new StopSignal ();
new ActionThread ().start ();

}

protected final void fireStateChanged () {
checkReadyState ();

}

protected final void onStop () {
stopSignal.stop ();
Connection[] connections = srcAddress.getConnections ();
try
{
if (connections ! = null)
{
for (int i = 0; i< connections.length; i++)
{
connections[i].disconnect ();

}
}

}
catch (Exception e)
{
println (" Caught Exception " + e);

}
}

public int getReceiverState () {
return receiverState;

}

public void setReceiverState (int state) {
if (receiverState ! = state)
{
receiverState = state;
checkReadyState ();

}
}

public synchronized void checkReadyState ()
{
if (receiverState = = Actor.ACTOR_IN_SERVICE && state = =

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
751

Cisco Unified JTAPI Examples
Originator.java

Actor.ACTOR_IN_SERVICE)
{
ready = true;

}
else
{
ready = false;

}
notifyAll ();

}

public synchronized void setCallProgressState (boolean isCallInIdle)
{
callInIdle = isCallInIdle;
notifyAll ();

}

public synchronized void doAction ()
{
if (!ready || !callInIdle)
{
try
{
wait ();

}
catch (Exception e)
{
println (" Caught Exception from wait state" + e);

}
}
else
{
if (actionDelayMillis ! = 0)
{
println ("Pausing " + actionDelayMillis + " milliseconds before making

call ");
flush ();
try
{
wait (actionDelayMillis);

}
catch (Exception ex)
{
}

}
//make call after waking up, recheck the flags before making the call
if (ready && callInIdle)
{
try
{
makecall ();

}
catch (Exception e)
{
println (" Caught Exception in MakeCall " + e + " Thread = " +
Thread.currentThread ().getName ());

}
}

}
}

class ActionThread extends Thread {

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
752

Cisco Unified JTAPI Examples
Originator.java

ActionThread () {
super ("ActionThread");

}

public void run () {
while (true)
{
doAction ();

}
}

}

}

Receiver.java
/** * Receiver.java
*
* Copyright Cisco Systems, Inc.
*
*/

import javax.telephony.*;
import javax.telephony.events.*;
import javax.telephony.callcontrol.*;
import javax.telephony.callcontrol.events.*;

public class Receiver extends Actor
{
Addressaddress;
StopSignalstopSignal;
Originatororiginator;

public Receiver (Address address, Trace trace, int actionDelayMillis,
Originator originator) {
super (trace, address, actionDelayMillis);
this.address = address;
this.originator = originator;

}

protected final void metaEvent (CallEv [] eventList) {
for (int i = 0; i < eventList.length; i++)
{
TerminalConnection tc = null;
try
{
CallEv curEv = eventList[i];

if (curEv instanceof CallCtlTermConnRingingEv)
{
tc = ((CallCtlTermConnRingingEv)curEv).getTerminalConnection ();
delay ("answering");
bufPrintln ("Answering TerminalConnection " + tc);
tc.answer ();
stopSignal.canStop ();

}
}
catch (Exception e)
{

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
753

Cisco Unified JTAPI Examples
Receiver.java

bufPrintln ("Caught exception " + e);
bufPrintln ("tc = " + tc);

}
finally
{
flush ();

}
}

}

protected final void onStart () {
stopSignal = new StopSignal ();

}

protected final void onStop () {
stopSignal.stop ();
Connection[] connections = address.getConnections ();
try
{
if (connections ! = null)
{
for (int i = 0; i< connections.length; i++)
{
connections[i].disconnect ();

}
}

}
catch (Exception e)
{
println (" Caught Exception " + e);

}
}

protected final void fireStateChanged () {
originator.setReceiverState (state);

}
}

StopSignal.java
/** * StopSignal.java
*
* Copyright Cisco Systems, Inc.
*
*/

class StopSignal {
boolean stopping = false;
boolean stopped = false;
synchronized boolean isStopped ()
{
return stopped;

}
synchronized boolean isStopping ()
{
return stopping;

}
synchronized void stop ()
{

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
754

Cisco Unified JTAPI Examples
StopSignal.java

if (!stopped)
{
stopping = true;
try
{
wait ();

}
catch (InterruptedException e)
{
}

}
}
synchronized void canStop ()
{
if (stopping = true)
{
stopping = false;
stopped = true;
notify ();

}
}

}

Trace.java
/** * Trace.java
*
* Copyright Cisco Systems, Inc.
*
*/
public interface Trace
{
/**
* bufPrint (str) puts str in buffer only.
*/
public void bufPrint (String string);

/**
* print () println () bufPrint and invoke flush ();
*/
public void print (String string);
public void print (char character);
public void print (int integer);
public void println (String string);
public void println (char character);
public void println (int integer);

/**
* flush out the buffer.
*/
public void flush ();

}

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
755

Cisco Unified JTAPI Examples
Trace.java

TraceWindow.java
/** * TraceWindow.java
*
* Copyright Cisco Systems, Inc.
*
*/

import java.awt.*;
import java.awt.event.*;

public class TraceWindow extends Frame implements Trace
{

TextArea textArea;
booleantraceEnabled = true;
StringBuffer buffer = new StringBuffer ();

public TraceWindow (String name) {
super (name);
initWindow ();

}

public TraceWindow(){
this("");

}

private void initWindow() {
this.addWindowListener(new WindowAdapter () {

public void windowClosing(WindowEvent e){dispose
();}

}
);

textArea = new TextArea();
setSize(400, 400);
add(textArea);
setEnabled(true);
this.show();

}

public final void bufPrint (String str) {
if (traceEnabled)
{
buffer.append (str);

}

}

public final void print (String str) {
if (traceEnabled)
{
buffer.append (str);
flush ();

}
}
public final void print (char character) {
if (traceEnabled)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
756

Cisco Unified JTAPI Examples
TraceWindow.java

{
buffer.append (character);
flush ();

}
}
public final void print (int integer) {
if (traceEnabled)
{
buffer.append (integer);
flush ();

}
}
public final void println (String str) {
if (traceEnabled)
{
print (str);
print ('\n');
flush ();

}
}
public final void println (char character) {
if (traceEnabled)
{
print (character);
print ('\n');
flush ();

}
}
public final void println (int integer) {
if (traceEnabled)
{
print (integer);
print ('\n');
flush ();

}
}

public final void setTrace (boolean traceEnabled) {
this.traceEnabled = traceEnabled;

}

public final void flush () {
if (traceEnabled)
{
textArea.append (buffer.toString());
buffer = new StringBuffer ();

}
}

public final void clear () {

textArea.setText("");
}

}

Running makecall
To Invoke makecall on the client workstation, from theWindows NT command line, navigate to themakecall
directory where JTAPI Tools directory was installed and execute the following command:
jview makecall <server name> <login> <password> 1000 <device 1> <device2>

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
757

Cisco Unified JTAPI Examples
Running makecall

<server name> specifies the hostname or IP address of your Cisco Unified Communications Manager.

<device1> and <device2> are directory numbers of IP phones. Make sure that the phones are part of the
associated devices of a given user as administered in the Cisco Unified Communications Manager’s directory
administration.

<login> and <password> apply similarly as administered in the directory.

This will test that you have installed and configured everything correctly. The application will make calls
between the two devices with an action delay of 1000 msecs until terminated.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
758

Cisco Unified JTAPI Examples
Running makecall

A P P E N D I X A
Message Sequence Charts

This appendix contains message sequence charts illustrating the message flows for several scenarios.

• Agent Greeting, on page 760
• API for Exposing Built-in-Bridge Status, on page 764
• Backward Compatibility Enhancements, on page 766
• Barge and Privacy, on page 780
• Call Control Discovery, on page 783
• CallFwdAll Keys Press Notification, on page 791
• Call Recording for SIP or TLS Authenticated calls , on page 794
• CallSelect and UnSelect, on page 795
• Cius Persistency, on page 796
• Conference and Join, on page 797
• CTI Manager Redundancy Handling with Least Priority CTIManager Configured, on page 803
• CTI Manager Redundancy Handling with Least Priority CTI Server Set, on page 804
• CTI Remote Device, on page 805
• CTI RD Call Forward, on page 874
• CTI Video Support, on page 883
• Device and Line Restriction, on page 890
• Device State Server, on page 893
• Do Not Disturb, on page 893
• Dynamic CTIPort Registration Per Call, on page 899
• E911 Teleworker, on page 900
• Encryption Enhancement, on page 901
• End to End Call Tracing, on page 902
• Hunt Log Status for Phone Devices, on page 918
• Energywise Deep Sleep Mode, on page 921
• External Call Control, on page 927
• Extension Mobility Cross Cluster, on page 976
• End to End Session ID for Calls, on page 979
• Forced Authorization and Customer Matter Codes, on page 989
• Hairpin Support, on page 996
• Half Duplex Media, on page 998
• Hunt List, on page 998
• Hunt List Connected Number, on page 1041

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
759

• Intercom, on page 1049
• iSac Codec, on page 1055
• JTAPI Cisco Unified IP 7931G Phone Interaction, on page 1060
• Call Pickup, on page 1107
• Media Termination at Route Point, on page 1261
• Mobility Interaction Support, on page 1263
• Modifying Calling Number, on page 1269
• Silent Monitoring Use Cases, on page 1272
• Native Queuing, on page 1285
• Use Cases for NuRD (Number Matching for Remote Destination), on page 1305
• Partition Support, on page 1335
• Persistent Connection Use Cases, on page 1341
• Play Announcement, on page 1354
• Play Zip Tone, on page 1388
• QoS Support, on page 1389
• QSIG Path Replacement, on page 1390
• Recording Use Cases, on page 1392
• Redirect Set OriginalCalledID, on page 1445
• Redirect to a Device, on page 1447
• Verify Remote Destination Support, on page 1450
• Secure Conferencing, on page 1453
• Secure Connection Enhancements, on page 1457
• Secure Icon Enhancements, on page 1457
• Shared Line Support, on page 1469
• Single Sign-On, on page 1472
• Single Step Transfer, on page 1473
• SIP REPLACE, on page 1476
• SIP Support, on page 1495
• SIP Trunk Early Offer, on page 1496
• SRTP Key Material, on page 1507
• Super Provider Message Flow, on page 1508
• Support for Cisco Unified IP Phone 6901, on page 1510
• SHA Support for Digital Signatures, on page 1533
• TLS Security, on page 1534
• Transfer and Direct Transfer, on page 1536
• Unicode Support, on page 1539
• Unrestricted Unified CM, on page 1539
• Video Capabilities and Multi-Media Information, on page 1540
• Video On Hold, on page 1579
• Verification Involving PSTN Reachability, on page 1581
• Whisper Coaching, on page 1586

Agent Greeting
The basic Agent Greeting use cases assume a common setup.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
760

Message Sequence Charts
Agent Greeting

In the real-world scenario, an external customer calls a number and is routed through an IVR until the call is
eventually offered to an agent.

IP Phones:

• Customer (1000)

• Agents (2000, 2001, 2002)

• IVRs (5000, 5001)

Scenario One

Agent Greeting Start Success

Call information / NotesEventsAction

This is a basic call.

Calling = 1000 (Customer)

Called = 2000 (Agent)

GC1 - CallActiveEvent

GC1 - ConnCreatedEvent (1000)

GC1 - ConnConnectedEvent (1000)

GC1 - CallCtlConnInitiatedEv (1000)

GC1 - TermConnCreatedEvent (Term of 1000)

GC1 - TermConnActiveEvent (Term of 1000)

GC1 - CallCtlTermConnTalkingEv (Term of 1000)

GC1 - CallCtlConnDialingEv (1000)

GC1 - CallCtlConnEstablishedEv (1000)

GC1 - ConnCreatedEvent (2000)

GC1 - ConnInprogressEvent (2000)

GC1 - CallCtlConnOfferedEv (2000)

GC1 - ConnAlertingEvent (2000)

GC1 - CallCtlConnAlertingEv (2000)

GC1 - TermConnCreatedEvent (Term of 2000)

GC1 - TermConnRingingEvent (Term of 2000)

GC1 - CallCtlTermConnRingingEv (Term of 2000)

GC1 - ConnConnectedEvent (2000)

GC1 - CallCtlConnEstablishedEv (2000)

GC1 - TermConnActiveEvent (Term of 2000)

GC1 - CallCtlTermConnTalkingEv (Term of 2000)

1. Customer dials the
agent.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
761

Message Sequence Charts
Message Sequence Charts

Call information / NotesEventsAction

This is a server call.

Calling = 2000 (Agent)

Called = 5000 (IVR)

The Calling Party number is as specified in the
addMediaStream()method ("2000" in this case), and
is available immediately from the CallActiveEvent.

No connection for 2000 is created, as
2000 is "spoofed".

Note

Agent Greeting is complete.

GC2 - CallActiveEvent

GC2 - ConnCreatedEvent (5000)

GC2 - ConnInprogressEvent (5000)

GC2 - CallCtlConnOfferedEv (5000)

GC2 - ConnAlertingEvent (5000)

GC2 - CallCtlConnAlertingEv (5000)

GC2 - TermConnCreatedEvent (Term of 5000)

GC2 - TermConnRingingEvent (Term of 5000)

GC2 - CallCtlTermConnRingingEv (Term of 5000)

GC2 - ConnConnectedEvent (5000)

GC2 - CallCtlConnEstablishedEv (5000)

GC2 - TermConnActiveEvent (Term of 5000)

GC2 - CallCtlTermConnTalkingEv (Term of 5000)

GC1 - CiscoMediaStreamStartedEv (2000)

2. Application gets the
TerminalConnection for
2000 on GC1 and
invokes
addMediaStream(
"5000", "2000")

BIB call is cleaned up.

Ev.isSuccessful() = true.

The call continues as normal.

GC2 - CallCtlTermConnDroppedEv (Term of 5000)

GC2 - ConnDisconnectedEvent (5000)

GC2 - CallCtlConnDisconnectedEv (5000)

GC2 - CallInvalidEvent (5000)

GC2 - CallObservationEndedEv

GC1 - CiscoMediaStreamEndedEv (2000)

3. Application
disconnects IVR, or tester
manually hangs up the
IVR device.

Primary call is cleaned up.GC1 - TermConnDroppedEv (Term of 2000)

GC1 - CallCtlTermConnDroppedEv (Term of 2000)

GC1 - ConnDisconnectedEvent (2000)

GC1 - CallCtlConnDisconnectedEv (2000)

GC1 - TermConnDroppedEv (Term of 1000)

GC1 - CallCtlTermConnDroppedEv (Term of 1000)

GC1 - ConnDisconnectedEvent (1000)

GC1 - CallCtlConnDisconnectedEv (1000)

GC1 - CallInvalidEvent

GC1 - CallObservationEndedEv

4. Agent finishes the
conversation and ends the
call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
762

Message Sequence Charts
Message Sequence Charts

Scenario Two

Agent Greeting Stop Success

Call information / NotesEventsAgent

Ev.getIVRCall() = Call for CG2.GC1 - CiscoMediaStreamStartedEv (2000)1. Customer calls the
agent and the agent
answers. Application
invokes
addMediaStream().

The Agent Greeting is cut short. The BIB call is
cleaned up.

Ev.isSuccessful() = true.

The call continues as normal.

GC2 - CallCtlTermConnDroppedEv (Term of 5000)

GC2 - ConnDisconnectedEvent (5000)

GC2 - CallCtlConnDisconnectedEv (5000)

GC2 - CallInvalidEvent (5000)

GC2 - CallObservationEndedEv

GC1 - CiscoMediaStreamEndedEv (2000)

2. While the greeting is
played, the application
invokes
removeMediaStream().

The primary call is cleaned up.GC1 - TermConnDroppedEv (Term of 2000)

GC1 - CallCtlTermConnDroppedEv (Term of 2000)

GC1 - ConnDisconnectedEvent (2000)

GC1 - CallCtlConnDisconnectedEv (2000)

GC1 - TermConnDroppedEv (Term of 1000)

GC1 - CallCtlTermConnDroppedEv (Term of 1000)

GC1 - ConnDisconnectedEvent (1000)

GC1 - CallCtlConnDisconnectedEv (1000)

GC1 - CallInvalidEvent

GC1 - CallObservationEndedEv

3. The agent finishes the
conversation and ends the
call.

Scenario Three

Agent Greeting Start Failure: Resource Unavailable

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
763

Message Sequence Charts
Message Sequence Charts

Call information / NotesEventAgent

This is a basic call

Calling = 1000 (Customer)

Called = 2000 (Agent)

GC1 - CallActiveEvent

GC1 - ConnCreatedEvent (1000)

GC1 - ConnConnectedEvent (1000)

GC1 - CallCtlConnInitiatedEv (1000)

GC1 - TermConnCreatedEvent (Term of 1000)

GC1 - TermConnActiveEvent (Term of 1000)

GC1 - CallCtlTermConnTalkingEv (Term of 1000)

GC1 - CallCtlConnDialingEv (1000)

GC1 - CallCtlConnEstablishedEv (1000)

GC1 - ConnCreatedEvent (2000)

GC1 - ConnInprogressEvent (2000)

GC1 - CallCtlConnOfferedEv (2000)

GC1 - ConnAlertingEvent (2000)

GC1 - CallCtlConnAlertingEv (2000)

GC1 - TermConnCreatedEvent (Term of 2000)

GC1 - TermConnRingingEvent (Term of 2000)

GC1 - CallCtlTermConnRingingEv (Term of 2000)

GC1 - ConnConnectedEvent (2000)

GC1 - CallCtlConnEstablishedEv (2000)

GC1 - TermConnActiveEvent (Term of 2000)

GC1 - CallCtlTermConnTalkingEv (Term of 2000)

1. Customer dials the
Agent

No BIB call is created. JTAPI throws a
ResourceUnavailableExceptionwith text as "Unable
to allocate built in bridge resource".

The call continues as normal.

2. The application gets
the TerminalConnection
for 2000 on GC1and
invokes
addMediaStream(
"5000", "2000").

The primary call is cleaned up.GC1 - TermConnDroppedEv (Term of 2000)

GC1 - CallCtlTermConnDroppedEv (Term of 2000)

GC1 - ConnDisconnectedEvent (2000)

3. The agent finishes the
conversation and ends the
call.

API for Exposing Built-in-Bridge Status
Phone TermA, CTI port TermB, and RoutePoint TermC are in application’s control list.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
764

Message Sequence Charts
API for Exposing Built-in-Bridge Status

Use Case One

BIB is disabled on service parameters and device page of TermA.

Call informationResultAction

FalseTermA.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermB.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermC.isBuiltInBridgeEnabled()

Use Case Two

BIB is disabled on service parameters page and enabled on device page of TermA..

Call informationResultAction

TrueTermA.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermB.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermC.isBuiltInBridgeEnabled()

Use Case Three

BIB is enabled on service parameters page and disabled on device page of TermA.

Call informationResultAction

FalseTermA.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermB.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermC.isBuiltInBridgeEnabled()

Use Case Four

BIB is enabled on service parameters page and set to default on device page of TermA.

Call informationResultAction

TrueTermA.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermB.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermC.isBuiltInBridgeEnabled()

Use Case Five

Phone TermA is not registered. BIB is enabled on device page of TermA.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
765

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

InvalidStateExceptionTermA.isBuiltInBridgeEnabled()

Add observers and register TermB and
TermC.

MethodNotSupportedExceptionTermB.isBuiltInBridgeEnabled()

MethodNotSupportedExceptionTermC.isBuiltInBridgeEnabled()

Backward Compatibility Enhancements
This feature is not expected to change the performance or scalability of Cisco Unified Communications
Manager JTAPI. There is no change in the number of events between JTAPI and CTI. For features involving
GCID changes this feature introduces one extra event which should not cause any performance issues.

In all cases events listed below are delivered to call observers when only one party is in control list. TERMA
indicates terminal of A.

Scenario One

A calls B, B transfers the call to C. GC1 is the call between A and B, GC2 is the consult call between B and
C. Similar events are delivered for Conference and other features.

EventsAction

GC2 CiscoTransferStartEv
Cause: CAUSE_NORMAL
Reason = REASON_TRANSFER

CallActiveEv GC1
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

ConnCreatedEv C
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

ConnCreatedEv B
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

CiscoCallChangedEv SurvingCall = GC1, original call = GC2
CiscoCause: NORMAL
Reason: REASON_TRANSFER

B completes the transfer. Events to call
observer on C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
766

Message Sequence Charts
Backward Compatibility Enhancements

EventsAction

Events delivered to CallObserver of B
(transfer controller)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
767

Message Sequence Charts
Message Sequence Charts

EventsAction

ConnConnectedEv C
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

CallCtlConnEstablishedEv C
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_TRANSFER
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

TermConnCreatedEv TERM C
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

TermConnActiveEv TERM C
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

CallCtlTermConnTalkingEv TERM C
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_TRANSFER
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

ConnConnectedEv B
Cause: CAUSE_NORMAL
CiscoCause: CAUSE_NORMALUNSPECIFIED
Reason = REASON_TRANSFER

GC2: ConnDisconnectedEv B
REASON = REASON_TRANSFER
Cause: CAUSE_NORMAL

GC2: ConnDisconnectedEv C
REASON = REASON_TRANSFER
Cause: CAUSE_NORMAL

GC2: TermConnDropped TERMB
REASON = REASON_TRANSFER
Cause: CAUSE_NORMAL

GC2: CalInvalid
REASON = REASON_TRANSFER
Cause:CAUSE_NORMAL

GC1: CallCtlTermConnHeldEv TERMB
REASON = REASON_TRANSFER
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
768

Message Sequence Charts
Message Sequence Charts

EventsAction

GC2: ConsultCallActive
REASON = NORMAL
Cause:CAUSE_NEW_CALL

GC2: ConnCreatedEv B
REASON = NORMAL
Cause:CAUSE_NORMAL

GC2: ConnConnectedEv B
REASON = NORMAL
Cause:CAUSE_NORMAL

GC1: ConnDisconnectedEv B
REASON = REASON_TRANSFER
Cause: CAUSE_UNKNOWN

GC1: CallCtlConnDisconnectedEv B
REASON = REASON_TRANSFER
Cause: CAUSE_UNKNOWN
CallControlCause: CAUSE_TRANSFER

GC1: TermConnDroppedEv TERMB
REASON = REASON_TRANSFER
Cause: CAUSE_UNKNOWN

GC1: CallCtlTermConnDroppedEv TERMB
REASON = REASON_TRANSFER
CallControlCause: CAUSE_TRANSFER

GC1: ConnDisconnectedEv A
REASON = REASON_TRANSFER

GC1: CallCtlConnDisconnectedEv A
REASON = REASON_TRANSFER
CallControlCause: CAUSE_TRANSFER

GC1: CallInvalidEv
REASON = REASON_TRANSFER

GC2: ConnDisconnectedEv C
REASON = REASON_TRANSFER

GC2: CallCtlConnDisconnectedEv C
REASON = REASON_TRANSFER
CallControlCause: CAUSE_TRANSFER

GC2: TermConnDroppedEv TERMB
REASON = REASON_TRANSFER

GC2: CallCtlTermConnDroppedEv TERMB
REASON = REASON_TRANSFER
CallControlCause: CAUSE_TRANSFER

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
769

Message Sequence Charts
Message Sequence Charts

EventsAction

GC2: ConnDisconnectedEv B
REASON = REASON_TRANSFER

GC2: CallCtlConnDisconnectedEv B
REASON = REASON_TRANSFER
CallControlCause: CAUSE_TRANSFER

GC2: CallInvalidEv
REASON = REASON_TRANSFER

GC2: CallObservationEndedEv
REASON = NORMAL
Cause:CAUSE_NORMAL

GC1 CiscoTransferEndEv
REASON = REASON_TRANSFER
Cause: CAUSE_NORMAL

GC2 CallObservationEndedEv
REASON = NORMAL
Cause:CAUSE_NORMAL

Scenario Two

A calls B, call = GC1. B parks the call at 99999. C unparks the call using call GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
770

Message Sequence Charts
Message Sequence Charts

EventsAction

Events delivered to call observer onAwhen
call is parked.

When call is unparked using GC2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
771

Message Sequence Charts
Message Sequence Charts

EventsAction

GC1: ConnDisconnectedEv B
REASON = REASON_PARK
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv B
REASON = REASON_PARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC1: ConnCreatedEv 9999
REASON = REASON_PARK
Cause: CAUSE_NORMAL

GC1: ConnInProgressEv 9999
REASON = REASON_PARK
Cause: CAUSE_NORMAL

GC1: CallCtlConnQueuedEv 9999
REASON = REASON_PARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC2: CiscoCallChangedEv Surviving = GC2
origcall = GC1 address = A
REASON = REASON_UNPARK

CallActiveEv
REASON = REASON_UNPARK
Cause: CAUSE_NEW_CALL

GC2: ConnCreatedEv A
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC2: ConnConnectedEv A
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC2: CallCtlConnEstablishedEv A
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC2: TermConnCreatedEv TERMA
REASON = REASON_UNPARK

GC2: TermConnActiveEv TERMA
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC2: CallCtlTermConnTalkingEv TERMA
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
772

Message Sequence Charts
Message Sequence Charts

EventsAction

CallControlCause: CAUSE_PARK

GC1: ConnDisconnectedEv 9999
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv 9995
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC1: TermConnDroppedEv TERMA
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC1: CallCtlTermConnDroppedEv TERMA
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC1: ConnDisconnectedEv A
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv A
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

GC1: CallInvalidEv
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC1: CallObservationEndedEv
REASON = NORMAL
Cause: CAUSE_NORMAL

GC2: ConnCreatedEv C
REASON = REASON_UNPARK
Cause: CAUSE_NORMAL

GC2: ConnConnectedEv C
REASON = UNPARK
Cause: CAUSE_NORMAL

GC2: CallCtlConnEstablishedEv C
REASON = UNPARK
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_PARK

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
773

Message Sequence Charts
Message Sequence Charts

Scenario Three

A calls B, B has forward no answer to C. B does not answer and call is offered to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
774

Message Sequence Charts
Message Sequence Charts

EventsAction

Events delivered to call observer on A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
775

Message Sequence Charts
Message Sequence Charts

EventsAction

GC1: CallActiveEv
REASON = NORMAL
Cause: CAUSE_NEW_CALL

GC1: ConnCreatedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: ConnConnectedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnInitiatedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: TermConnCreatedEv TERMA
REASON = NORMAL

GC1: TermConnActiveEv TERMA
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlTermConnTalkingEv TERMA
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: CallCtlConnDialingEv A
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnCreatedEv B
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: ConnInProgressEv B
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnOfferedEv B
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnAlertingEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
776

Message Sequence Charts
Message Sequence Charts

EventsAction

REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnAlertingEv B
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnCreatedEv C
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL

GC1: ConnInProgressEv C
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL

GC1: CallCtlConnOfferedEv C
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_REDIRECTED

GC1: ConnAlertingEv C
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL

GC1: CallCtlConnAlertingEv C
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnDisconnectedEv B
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv B
REASON = REASON_FORWARDNOANSWER
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_REDIRECTED

GC1: ConnConnectedEv C
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEv C
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

Scenario Four

A calls B, B redirects the call to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
777

Message Sequence Charts
Message Sequence Charts

EventsAction

Events delivered to call observer on B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
778

Message Sequence Charts
Message Sequence Charts

EventsAction

GC1: CallActiveEv
REASON = NORMAL
Cause: CAUSE_NEW_CALL

GC1: ConnCreatedEv B
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: ConnInProgressEv
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnOfferedEv B
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnCreatedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: ConnConnectedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEv A
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnAlertingEv B
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlConnAlertingEv B
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: TermConnCreatedEv TERMB
REASON = NORMAL
Cause: Other: 0

GC1: TermConnRingingEv TERMB
REASON = NORMAL
Cause: CAUSE_NORMAL

GC1: CallCtlTermConnRingingEvImpl TERMB
REASON = NORMAL
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL

GC1: ConnDisconnectedEv A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
779

Message Sequence Charts
Message Sequence Charts

EventsAction

REASON = REDIRECT
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv A
REASON = REDIRECT
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_REDIRECTED

GC1: TermConnDroppedEv TERMB
REASON = REDIRECT
Cause: CAUSE_NORMAL

GC1: CallCtlTermConnDroppedEv TERMB
REASON = REDIRECT
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_REDIRECTED

GC1: ConnDisconnectedEv B
REASON = REDIRECT
Cause: CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv B
REASON = REDIRECT
Cause: CAUSE_NORMAL
CallControlCause: CAUSE_REDIRECTED

GC1: CallInvalidEv
REASON = REDIRECT
Cause: CAUSE_NORMAL

Barge and Privacy
The following diagrams illustrate the message flows for Barge and Privacy.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
780

Message Sequence Charts
Barge and Privacy

Barge

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
781

Message Sequence Charts
Barge

CBarge

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
782

Message Sequence Charts
CBarge

Privacy

Call Control Discovery
Scenario 1: A Calls 1000 in Other Cluster (SAF ICT)

Call infoResultAction

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnDialingEv - ATermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv - TA

A dials 1000, this
call is first be
intercepted by CCD
Requesting Feature,
andCCDRequesting
feature extends this
call to SIP trunk

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getCalledAddress() = 1000

ConnCreatedEv 1000

ConnInProgressEv 1000

CallCtlConnOfferedEv 1000

Called Party is 1000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
783

Message Sequence Charts
Privacy

Scenario 2: A Calls B, Within Same Cluster. B Redirects the Call to 1000, Which Is in Another Cluster (SAF
ICT)

Call infoResultAction

CallActiveEv

ConnCreatedEv A

ConnConnectedEv A

CallCtlConnInitiatedEv A

TermConnCreatedEv TA

TermConnActiveEv TA

CallCtlTermConnTalkingEv TA

CallCtlConnEstablishedEv A

ConnCreatedEv B

ConnCreatedEv B

CallCtlConnOfferedEv B

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv TB

TermConnRingingEv TB

CallCtlTermConnRingingEvImpl TB

A calls B within the
same cluster

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getCalledAddress() = B

getLastRedirectedAddress() = B

TermConnDroppedEv TB

CallCtlTermConnDroppedEv TB

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv 1000

B redirects the call
to 1000

Scenario 3: A Calls 1000 Which Is in the Other Cluster (SAF ICT Bandwidth Is Low)

Call infoResultAction

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnDialingEv - ATermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv - TA

A dials 1000, this
call is first
intercepted by CCD
Requesting Feature,
andCCDRequesting
feature extends this
call to SIP trunk

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
784

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

getCallingAddress() = A

getCalledAddress() = 1000

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getLastRedirectedAddress() = “”

CallCtlConnEstablishedEv –A

ConnCreatedEv 1000

ConnConnectedEv 1000

CallCtlConnOfferedEv 1000

SIP trunk rejects this
as bandwidth is not
available

CiscoFeatureReason = NORMAL

CallCtlCause = CAUSE_NORMAL

getCallingAddress() = A

getCalledAddress() = 1000

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getLastRedirectedAddress() = 1000

CallCtlConnNetworkReachedEv 1000

CallCtlConnNetworkAlertingEv 1000

CCD Requesting
feature starts PSTN
failover by directing
this caller to 1000’s
PSTN failover
number. Call is sent
out to a PSTN
gateway, and calling
side moves to
Ringback state.

Scenario 4: A Calls B Within the Cluster. B Redirects the Call to 1000 (Low Bandwidth SAF ICT)

Call infoResultAction

CallActiveEv

ConnCreatedEv A

ConnConnectedEv A

CallCtlConnInitiatedEv A

TermConnCreatedEv TA

TermConnActiveEv TA

CallCtlTermConnTalkingEv TA

CallCtlConnEstablishedEv A

ConnCreatedEv B

ConnCreatedEv B

CallCtlConnOfferedEv B

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv TB

TermConnRingingEv TB

CallCtlTermConnRingingEvImpl TB

A calls B within the
same cluster

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
785

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

TermConnDroppedEv TB

CallCtlTermConnDroppedEv TB

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

B redirects the call
to 1000. This call is
first intercepted by
CCD Requesting
Feature, and CCD
Requesting feature
extends this call to
SIP trunk

getCallingAddress() = A

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getCalledAddress() = B

getLastRedirectedAddress() = 1000

Reason =
REASON_SAF_CCD_PSTN_FAILOVER

ConnCreatedEv 1000

ConnConnectedEv 1000

CCD Requesting
feature starts PSTN
failover by directing
this caller to 1000’s
PSTN failover
number. Call is sent
out to a PSTN
gateway

Scenario 5: A Calls B, B Transfers the Call to 1000 (Low Bandwidth SAF ICT)

Call infoResultAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TA

GC1 TermConnActiveEv TA

GC1 CallCtlTermConnTalkingEv TA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnCreatedEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TB

GC1 TermConnRingingEv TB

GC1 CallCtlTermConnRingingEvImpl TB

A calls B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
786

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC2 CallActiveEv

GC2 ConnCreatedEv B

GC2 ConnConnectedEv B

GC2 CallCtlConnInitiatedEv B

GC2 TermConnCreatedEv TB

GC2 TermConnActiveEv TB

GC2 CallCtlTermConnTalkingEv TB

GC2 CallCtlConnEstablishedEv B

GC2 ConnCreatedEv 1000

GC2 ConnCreatedEv 1000

GC2 CallCtlConnOfferedEv 1000

B makes a consult
call to 1000. This
call is first
intercepted by CCD
Requesting Feature,
andCCDRequesting
feature extends this
call to SIP trunk.

CiscofeatureReason = NORMAL

CallCtlCause = CAUSE_NORMAL

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getCalledAddress() = B

getLastRedirectedAddress() = 1000

GC2 CallCtlConnNetworkReachedEv 1000

GC2 CallCtlConnNetworkAlertingEv 1000

SIP trunk rejects this
call as bandwidth is
not available

CCD Requesting
feature starts PSTN
failover by directing
this caller to 1000’s
PSTN failover
number (or as
configured on the
server). Call is sent
out to a PSTN
gateway.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
787

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

Reason=REASON_TRANSFEREDCALLGC1 CiscoTermConnSelectChangedEv B

GC2 CiscoTermConnSelectChangedEv B

GC1 CiscoTransferStartedEv

GC2 CiscoCallChangedEv

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv 1000

GC1 ConnAlertingEv 1000

GC1 CallCtlConnAlertingEv 1000

GC1 TermConnCreatedEv 1000

GC1 TermConnRingingEv 1000

GC1 CallCtlTermConnRingingEvImpl 1000

GC2 TermConnDroppedEv 1000

GC2 CallCtlTermConnDroppedEv 1000

GC2 ConnDisconnectedEv1408972 1000

GC2 CallCtlConnDisconnectedEv 1000

GC1 TermConnDroppedEv B

GC1 CallCtlTermConnDroppedEv B

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectecEv B

GC2 TermConnDroppedEv B

GC2 CallCtlTermConnDroppedEv B

GC2 ConnDisconnectedEv B

GC2 CallCtlConnDisconnectecEv B

GC2 CallInvalidEv

GC1 CiscoTransferEndEv

B completes the
transfer

GC1 ConnConnectedEv 1000

GC1 CallCtlConnEstablishedEv 1000

GC1 termConnActiveEv 1000

GC1 CallCtlTermConnTalkingEv 1000

A and 1000 come in
direct call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
788

Message Sequence Charts
Message Sequence Charts

Scenario 6: A Calls B, B Consults 1000 and Adds It to Conference (Low Bandwidth SAF ICT)

Call infoResultAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TA

GC1 TermConnActiveEv TA

GC1 CallCtlTermConnTalkingEv TA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnCreatedEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TB

GC1 TermConnRingingEv TB

GC1 CallCtlTermConnRingingEvImpl TB

A calls B

GC2 CallActiveEv

GC2 ConnCreatedEv B

GC2 ConnConnectedEv B

GC2 CallCtlConnInitiatedEv B

GC2 TermConnCreatedEv TB

GC2 TermConnActiveEv TB

GC2 CallCtlTermConnTalkingEv TB

GC2 CallCtlConnEstablishedEv B

GC2 ConnCreatedEv 1000

GC2 ConnCreatedEv 1000

GC2 CallCtlConnOfferedEv 1000

B makes a consult
call to 1000 for
conference. This call
is first intercepted by
CCD Requesting
Feature, and CCD
Requesting feature
extends this call to
SIP trunk.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
789

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

CiscofeatureReason = NORMAL

CallCtlCause = CAUSE_NORMAL

getCurrentCallingAddress() = A

getCurrentCalledAddress() = 1000

getCalledAddress() = B

getLastRedirectedAddress() = 1000

GC2 CallCtlConnNetworkReachedEv 1000

GC2 CallCtlConnNetworkAlertingEv 1000

SIP trunk rejects this
call as no more
bandwidth is
available

CCD Requesting
feature starts PSTN
failover by directing
this caller to 1000’s
PSTN failover
number; call is sent
out to a PSTN
gateway.

Reason = REASON_CONFERENCEGC1 CiscoTermConnSelectChangedEv B

GC2 CiscoTermConnSelectChangedEv B

GC1 CiscoConferenceStartedEv

GC2 termConnDroppedEv B

GC2 CallCtlTermConnDroppedEv B

Gc2 ConnDisconnectedEv B

GC2 CallCtlConnDisConnectedEv B

GC1 CallCtlTermConnTalkingEv B

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv 1000

GC1 ConConnectedEv 1000

GC1 CallCtlConnEstablishedEv 1000

GC1 TermConnCreatedEv 1000

GC1 TermConnActiveEv 1000

GC1 CallCtlTermConnTalkingEv 1000

GC2 TermConnDroppedEv 1000

GC2 CallCtlTermConnDroppedEv 1000

GC2 ConnDisconnectedEv 1000

GC2 CallCtlConnDisconnectedEv 1000

GC2 CallInvalidEv

GC1 CiscoTermConnSelectChangedEv B

GC1 CiscoTermConnSelectChangedEv B

B completes the
conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
790

Message Sequence Charts
Message Sequence Charts

CallFwdAll Keys Press Notification
(Scenario 1): Application Is Observing A; A Goes Off-Hook

Call infoResultAction

CiscoAddrInServiceEv – AApplication observes A.

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_NONE

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

A goes off-hook.

(Scenario 2): A Goes Off-Hook; Application Starts Observing A

Call infoResultAction

No Event is deliveredA goes off-hook

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_NONE

currentCalling = A

currentCalled = null

CAUSE = CAUSE_SNAPSHOT

CiscoAddrInServiceEv – A

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

Application starts
observing A

(Scenario 3): Application Is Observing A; User Presses CFwdAll Soft Key on Phone A in On-Hook State

Call infoResultAction

CiscoAddrInServiceEv – AApplication observes A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
791

Message Sequence Charts
CallFwdAll Keys Press Notification

Call infoResultAction

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_SET

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

User presses CFwdAll
soft key on phone A

(Scenario 4): User Presses CFwdAll Soft Key on Phone A Goes in On-Hook State; Application Starts Observing
A

Call infoResultAction

No event is deliveredUser presses CFwdAll
soft key on phone A

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_SET

currentCalling = A

currentCalled = null

CAUSE = CAUSE_SNAPSHOT

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

Application starts
observing A

(Scenario 5): Application Is Observing A; A Goes Off-Hook and Presses CFwdAll Soft Key

Call infoResultAction

CiscoAddrInServiceEv – AApplication observes A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
792

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall_CFWD_ALL_NONE

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

A goes off-hook.

No Event is deliveredA presses CFwdAll soft
key

(Scenario 6): Application Is Observing A; User Presses CFwdAll Key on Phone A and Dial 9999(B) to Set the
CFA Destination as B; User Then Presses CFwdAll Soft Key Again to Cancel the CallFwdAll

Call infoResultAction

CiscoAddrInServiceEv – AApplication observes A.

TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_SET

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv – A

TermConnCreatedEv – TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

User presses CFwdAll
soft key on phone A

currentCalling = A

currentCalled = null

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

CallCtlConnDialingEv – A

CallCtlConnEstablishedEv – A

TermConnDroppedEv – TA

CallCtlTermConnDroppedEv – TA

ConnDisconnectedEv – A

CallCtlConnDisconnectedEv – A

CallInvalidEv

User dials B to set CFA
destination as B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
793

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

(GC2)TermConnActiveEv-TA.
getCall().getCFWDAllKeyPressIndicator() returns
CiscoCall.CFWD_ALL_CLEAR

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC2:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - A

TermConnCreatedEv - TA

TermConnActiveEv –TA

CallCtlTermConnTalkingEv –TA

TermConnDroppedEv – TA

CallCtlTermConnDroppedEv – TA

ConnDisconnectedEv – A

CallCtlConnDisconnectedEv – A

CallInvalidEv

User presses CFwdAll
soft key on phone A to
cancel CFA

Call Recording for SIP or TLS Authenticated calls
Scenario One

Recording behavior for an authenticated Phone when Service Parameter Authenticated Phone Recording
set to Do not Allow Recording.

B is an Authenticated Phone having selective recording configured and Recording Profile assigned to it. Caller
A calls B. B answers the call.

Call informationEventsAction

PlatformException.getErrorCode=
CiscoJtapiException.CTIERR_SECURITY_CAPABLITY_MISMATCH

Recording fails with PlatformExceptiontermConnB.startRecording()

Scenario Two

Recording behavior for an authenticated Phone when Service Parameter Authenticated Phone Recording
set to Allow Recording.

B is an Authenticated Phone having selective recording configured and Recording Profile assigned to it. Caller
A calls B. B answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
794

Message Sequence Charts
Call Recording for SIP or TLS Authenticated calls

Call informationEventsAction

Calling: A

Called: B

Along with the regular events for call
answer, the following events will also be
delivered to the call observer:

CiscoTermConnRecordingStartEv Cause:
CAUSE_NORMAL

CiscoTermConnRecordingTargetInfoEv

CiscoTermConnRecordingEndEv Cause:
CAUSE_NORMAL

CallCtlTermConnDroppedEv TA Cause:
CAUSE_NORMAL

termConnB.startRecording()

B is an Authenticated Phone having auto recording configured and Recording Profile assigned to it. Caller A
calls B. B answers the call.

Call InformationEventsAction

Calling: A

Called: B

Along with the regular events for
call answer, the following events
will also be delivered to the call
observer:

CiscoTermConnRecordingStartEv
Cause: CAUSE_NORMAL

CiscoTermConnRecordingTargetInfoEv

CiscoTermConnRecordingEndEv
Cause: CAUSE_NORMAL

CallCtlTermConnDroppedEv TA
Cause: CAUSE_NORMAL

When B answers

CallSelect and UnSelect
The following diagram illustrates the message flows for CallSelect and UnSelect.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
795

Message Sequence Charts
CallSelect and UnSelect

Cius Persistency
Use Cases for Cius Persistency

InfoEvents on Provider observerUsecase

((CiscoTerminal)(Provider.getTerminal(TermA))).getIPV4Address()
= 1.1.1.1

ProvInServiceEvApplication has a
wireless device TermA
in its control list which is
registered with IPv4
address 1.1.1.1

Ev.getIPAddressingMode() =
CiscoTerminal.IP_ADDRESSING_MODE_IPV4

Ev.getIPV4Address() = 2.2.2.2

((CiscoTerminal)(Ev.getTerminal()).getIP4Address()
= 2.2.2.2

CiscoProvTerminalIPAddressChangedEv TermAThe device moves from
oneWiFi N/W to another
resulting in the change in
the IPv4 address from
1.1.1.1 to 2.2.2.2

Ev.getIPAddressingMode() =
CiscoTerminal.IP_ADDRESSING_MODE_IPV6

Ev.getIPV6Address() = 1::1

((CiscoTerminal)(Ev.getTerminal()).getIP6Address()
= 1::1

CiscoProvTerminalIPAddressChangedEv TermAThe deivce moves from
a IPv4 n/w to a Ipv6 n/w

With new ip as 1::1

Ev.getIPAddressingMode() =
CiscoTerminal.IP_ADDRESSING_MODE_IPV4

Ev.getIPV4Address() = 3.3.3.3

Ev.getTerminal() = TermA

((CiscoTerminal)(Ev.getTerminal()).getIP4Address()
= 3.3.3.3

CiscoProvTerminalIPAddressChangedEv TermAThe Device is docked on
a base station connected
to the ethernet resulting
in a change in IP address
to 3.3.3.3

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
796

Message Sequence Charts
Cius Persistency

Conference and Join
The following diagrams illustrate the message flows for Conference and Join.

Join/Arbitrary Conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
797

Message Sequence Charts
Conference and Join

Join/Arbitrary Conference—Page 2

Consult Conference
The message flow for Consult Conference acts the same as the flow for Arbitrary Conference.

Join Across Lines with Enhancements
The message flows for Join Across Lines with Enhancements are described in following tables. A, C, D, E
and F are addresses on different terminals. B1 and B2 are addresses on the same terminal, TermB.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
798

Message Sequence Charts
Consult Conference

EventsAction

Events to CallObserver of A, C and B1:

TermConnActiveEv TermB GC1

CallCtlTermConnTalkingEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1

ConnConnectedEv Conference-2 GC1

CallCtlConnEstablishedEvConference-2GC1Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv GC1

Ev.getAddedConnection will return connection for Conference-2

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC1

Application conferences the two calls on B1 and B2 by invoking
GC1.conference(GC2) to chain two conference calls.

Event for CallObserver at B2, D & E:

ConnDisconnectedEv B2 GC2 Cause = NORMAL

CallCtlConnDisconnectedEv B2 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

TermConnDroppedEv TermB GC2 Cause = NORMAL

CallCtlTermConnDroppedEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2

ConnConnectedEv Conference-1 GC2

CallCtlConnEstablishedEvConference-1GC2Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2

Ev.getAddedConnection will return connection of Conference-1

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1 & Conference-2

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC1 & GC2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
799

Message Sequence Charts
Message Sequence Charts

EventsAction

Event for CallObserver at B2, D & E:

TermConnActiveEv TermB GC2

CallCtlTermConnTalkingEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2

ConnConnectedEv Conference-1 GC2

CallCtlConnEstablishedEvConference-1GC2Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2

Ev.getAddedConnection will return connection for Conference-1

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC2

Application invokes GC2.conference (GC1) to chain two
conference calls.

Events for CallObservers at A, B1 & C:

ConnDisconnectedEv B1 GC1 Cause = NORMAL

CallCtlConnDisconnectedEv B1 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

TermConnDroppedEv TermB GC1 Cause = NORMAL

CallCtlTermConnDroppedEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1

ConnConnectedEv Conference-2 GC1

CallCtlConnEstablishedEvConference-2GC1Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC1

Ev.getAddedConnection will return connection for Conference-2

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
800

Message Sequence Charts
Message Sequence Charts

EventsAction

Event for CallObserver at A, B1 & C:

TermConnActiveEv TermB GC1

CallCtlTermConnTalkingEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1

ConnConnectedEv Conference-2 GC1

CallCtlConnEstablishedEvConference-2GC1Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv - GC1

Ev.getAddedConnection will return connection for Conference-2

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC1

TermConnDroppedEv TermB GC2

CallCtlTermConnDroppedEv TermB GC2

ConnCreatedEv Conference-3 GC1

ConnConnectedEv Conference-3 GC1

CallCtlConnEstablishedEvConference-3GC1Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv - GC1

Ev.getAddedConnection will return connection for Conference-3

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2 & Conference-3

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC2 & GC3

A, B1, C are in conference-1 (GC1), B1, D, E are in conference-2
(GC2), B2, F, G are in conference-3 (GC-3)

Application completes conference at C by initiating
GC1.conference(GC2, GC3) setting B1 as controller.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
801

Message Sequence Charts
Message Sequence Charts

EventsAction

Event for CallObserver at B1, D & E:

ConnDisconnectedEv B1 GC2 Cause = NORMAL

CallCtlConnDisconnectedEv B1 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

TermConnDroppedEv TermB GC2 Cause = NORMAL

CallCtlTermConnDroppedEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2

ConnConnectedEv Conference-1 GC2

CallCtlConnEstablishedEvConference-1GC2Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2

Ev.getAddedConnection will return connection for Conference-1

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1-GC2

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC2

Event for CallObserver at B2, F & G:

ConnDisconnectedEv B2 GC3 Cause = NORMAL

CallCtlConnDisconnectedEv B2 GC3 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

TermConnDroppedEv TermB GC3 Cause = NORMAL

CallCtlTermConnDroppedEv TermB GC3 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC3

ConnConnectedEv Conference-1 GC3

CallCtlConnEstablishedEvConference-1GC3Cause =NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv - GC3

Ev.getAddedConnection will return connection for Conference-1

Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1

Ev.getConferenceChain().getChainedConferenceCalls()will return
GC3

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
802

Message Sequence Charts
Message Sequence Charts

EventsAction

A
CiscoConferenceStartEv
CallCtlTermConnTalkingEv TermB GC1
ConnCreatedEv D GC1
ConnConnectedEv D GC1
CallCtlTermConnDroppedEv TermB GC2
CiscoConferenceEndEv

B1
CallCtlTermConnHeldEv TermB GC1
CiscoConferenceStartEv
CallCtlTermConnTalkingEv TermB GC1
ConnCreatedEv D
ConnConnectedEv
CiscoConferenceEndEv

B2
ConnDisconnectedEv B GC2
CallCtlTermConnHeldEv TermB GC2

D
CallActiveEv GC2
ConnAlertingEv D GC2
ConnConnectedEv D GC2
CiscoConferenceStartEv
TermConnDroppedEv TermB GC2
CallActiveEv GC1
CiscoCallChangedEv
TermConnTalkingEv TermB GC1
TermConnDroppedEv TermD GC2
CallObservationEndedEv GC2
CiscoConferenceEndEv

Application sets the requestor as B2 and calls
GC2.conference(GC1) getControllerAddress() returns B2.
getOriginalControllerAddress() returns B1.

Events are same as aboveIf application uses B1 as request controller in the above setup
getControllerAddress() returns B1. getOriginalControllerAddress()
returns B1.

CTI Manager Redundancy Handling with Least Priority
CTIManager Configured

Identify a CTIManager as least priority:

Application can mark one of the CTIManagers in the initial CTIManager redundancy group or configure a
new one (not part of the initial group) by invoking setLeastPriorityCtiServer().

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
803

Message Sequence Charts
CTI Manager Redundancy Handling with Least Priority CTIManager Configured

CTI Manager Redundancy Handling with Least Priority CTI
Server Set

Scenario 1: Set least priority without specifying fallback Initiation time

1. Start application and set a CTIManager as least priority. Assume CTIManager redunancy list is
CT1,CTI2,CTI3.

2. Application loses connectivity to CTI1.

3. Application loses connectivity to CTI3.

4. CTI1 is reachable now.

5. Fallback is started 5 min from now if a CTI server is reachable post it.

6. Post 5 min, CTI1 is still reachable.

EventsAction

Application invokes
CiscoProvider.setLeastPriorityCtiServer(CTI2).

Application connects to CTI3.

CiscoProvConnToLeastPriorCtiServerEvApplication connects to CTI2.

CiscoProvPrimNwReachableEvJTAPI is able to identify CTI1 reachability.

Once connected to CTI1, JTAPI delivers CiscoProvFallbackToPrimNwCompltdEv
event

JTAPI initiates application fallback to CTI1

Scenario 2: Application initiates a forced fallback

1. Start application and set a CTIManager as least priority. Assume CTIManager redunancy list is
CT1,CTI2,CTI3.

2. Application loses connectivity to CTI1.

3. Application loses connectivity to CTI3.

4. CTI1 is reachable now.

5. Application monitors if CTI2 is reachable now.

ResultEventsAction

Application invokes
CiscoProvider.setLeastPriorityCtiServer(CTI2,600)
where 600 is the fallback initiation time.

Application connects to CTI3.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
804

Message Sequence Charts
CTI Manager Redundancy Handling with Least Priority CTI Server Set

ResultEventsAction

CiscoProvConnToLeastPriorCtiServerEvApplication connects to CTI2.

CiscoProvPrimNwReachableEv delivered

Application queries

CiscoProvPrimNwReachableEv.

getReachableCtiServers()

returns CTI1

JTAPI is able to identify CTI1 reachability.

JTAPI return true if CTI2 was
reachable now.

Application invokes
CiscoProvider.isCtiServerAvailable(CTI2)

JTAPI initiates fallback to CTI2 if
reachable.

CiscoProvFallbackTo

PrimNwCompltdEv

event is returned if fallback was
successful.

Application invokes
CiscoProvider.initiateFallback(CTI2)

CTI Remote Device
Use Cases

• Group 1: Get/Add/Remove/Update on Remote Destinations
• Group 2: CTIRD Incoming/Outgoing/Disconnect/Redirect/Hold/Resume and shared-line call scenarios)
• Group 3 (CUCSF registration and unregistration, for Normal SIP mode <-> Extend mode, and terminal
switching scenarios

• Group 4: Set/Reset Active Remote Destination scenarios
• Group 5: CTIRD Transfer/Conference/Multiple-Calls call scenarios
• Group 6: CTIRD URI-Dialing basic Incoming & Outgoing DVO call scenarios

CTI Remote Device Use Cases Group 1

Scenario 1-1 (Expose All RDs Information on a CTI Remote Device to Application)

User1 has "CTI Remote Device A" in the control list. User invokes
CiscoRemoteTerminal.getAllRemoteDestinations() on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
805

Message Sequence Charts
CTI Remote Device

Call infoEventsAction

TermA.getAllRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

User1 invokes
CiscoRemoteTerminal.
getAllRemoteDestinations() on
TermA.

Use Cases Group 1: Get/Add/Remove/Update on Remote Destinations

Pre-conditions on Use Cases group 1 below with default jtapi.ini settings, unless specified explicitly:

• Provider is IN_SERVICE state.

• Device A (CTI Remote Device - Name: "CTIRD-A", Line A (DN: 1000))

• Remote Destination 1 (Name: "RD1-A", Number: "4081001111", Active RD: true)

• Remote Destination 2 (Name: "RD2-A", Number: "4081002222", Active RD: false)

• Device B (IP Phone - Name: "SEP000DED47D023", Line B (DN: 2000)

• Device C (CTI Remote Device - Name: "CTIRD-C", Line C (DN: 3000))

• No Remote Destination configured.

Scenario 1-2 (Expose Active RDs Information on a CTI Remote Device to Application)

User1 has "CTI Remote Device A" in the control list. User invokes
CiscoRemoteTerminal.getActiveRemoteDestinations() on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

TermA.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

User1 invokes
CiscoRemoteTerminal.
getActiveRemoteDestinations() on
TermA.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
806

Message Sequence Charts
Message Sequence Charts

Scenario 1-3 (Fetch RD Information on a CTI Remote Device That Has No RD Configured)

User1 has "CTI Remote Device C" in the control list. User invokes
CiscoRemoteTerminal.getAllRemoteDestinations() on terminal C.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

TermC.getAllRemoteDestinations() = null.User1 invokes
CiscoRemoteTerminal.
getAllRemoteDestinations() on
TermC.

Scenario 1-4 (Fetch RD Information on a 'Non-CTI Remote Device')

User1 has "Device B" IP Phone in the control list. User invokes
CiscoRemoteTerminal.getAllRemoteDestinations() on terminal B.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

TermB.getAllRemoteDestinations() = null.User1 invokes
CiscoRemoteTerminal.
getAllRemoteDestinations() on
TermB.

Scenario 1-5 (Fetch Active RD Information on a CTI Remote Device That Has No Active RD Configured)

User1 has "CTI Remote Device C" in the control list. User invokes
CiscoRemoteTerminal.getActiveRemoteDestinations() on terminal C.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

TermC.getActiveRemoteDestinations() = null.User1 invokes
CiscoRemoteTerminal.
getAllRemoteDestinations() on
TermC.

Scenario 1-6 (Set a Non-Active RD as a New Active RD on a 'CTI Remote Device', Where There Is Already
an Existing Active RD for This Device)

User1 has "CTI Remote Device A" in the control list. User invokes
CiscoRemoteTerminal.setActiveRemoteDestination("4081002222", true) on terminal A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
807

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds
a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber()
= "4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber()
= "4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminal
RemoteDestination ChangedEv

User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination
("4081002222", true) on
TermA.

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber()
= "4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber()
= "4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = true

CiscoProvTerminal
RemoteDestinationChangedEv

Scenario 1-7 (Add a New Non-Active RD on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes addRemoteDestination("RD3-A",
"4081003333", false) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
808

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() = CiscoRemoteDestinationInfo[3].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoRemoteDestinationInfo[2].getRemoteDestinationName() =
"RD3-A"

CiscoRemoteDestinationInfo[2].getRemoteDestinationNumber() =
"4081003333"

CiscoRemoteDestinationInfo[2].getIsActiveRD() = false

CiscoProvTerminal
RemoteDestination
ChangedEv

User1 invokes
CiscoRemoteTerminal.
addRemoteDestination ("RD3-A",
"4081003333", false) on TermA.

Scenario 1-8 (Add a New Active RD on a 'CTI Remote Device', with Another Existing Active RD)

User1 has "CTI Remote Device A" in the control list. User invokes addRemoteDestination("RD3-A",
"4081003333", true) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTermina
lRemoteDestination
ChangedEv

User1 invokes
CiscoRemoteTerminal.
addRemoteDestination ("RD3-A",
"4081003333", true) on TermA.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
809

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[3].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoRemoteDestinationInfo[2].getRemoteDestinationName() =
"RD3-A"

CiscoRemoteDestinationInfo[2].getRemoteDestinationNumber() =
"4081003333"

CiscoRemoteDestinationInfo[2].getIsActiveRD() = true

CiscoProvTerminalRemote
DestinationChangedEv

Scenario 1-9 (Add a New RD on a 'CTI Remote Device' with a Number That Is the Same as Another Existing
RD's Number)

User1 has "CTI Remote Device A" in the control list. User invokes addRemoteDestination("RD3-A",
"4081003333", false) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
810

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Let 'ex' be an instanceof PlatformException:

((CiscoJtapiException) ex).getErrorCode() = CiscoJtapiException.
CTIERR_DUPLICATED_REMOTE_DESTINATION_NUMBER.

TermA.getAllRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

Caught exception:
com.cisco.jtapi.
PlatformException
Impl: Duplicated
Remote Destination
Number

User1 invokes
CiscoRemoteTerminal.
addRemoteDestination
("AnyName", "4081002222", false)
on TermA.

Scenario 1-10 (Remove a RD From a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes removeRemoteDestination("4081002222")
on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
removeRemoteDestination
("4081002222") on TermA.

Scenario 1-11 (Remove All RD(s) From a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes removeAllRemoteDestinations() on
terminal A.

JTAPI will loop through the terminal/device's existing remote destinations one by one, so the total number
of CiscoProvTerminalRemoteDestinationChangedEv sent to an application should be the same number of
available remote destinations being removed. And the order and content of each event can vary, depending
on how each remote destination is stored in JTAPI's local cache RD list.

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
811

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
removeAllRemote
Destinations() on TermA.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= null.

CiscoProvTerminalRemote
DestinationChangedEv

Scenario 1-12 (Update a RD Name on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes updateRemoteDestinationName
("4081001111", "MyHome") on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"MyHome"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
Name ("4081001111",
"MyHome") on TermA.

Scenario 1-13 (Update a RD Number on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes updateRemoteDestinationNumber
("4081001111", "6268210080") on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
812

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"6268210080"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
Name ("4081001111",
"6268210080") on TermA.

Scenario 1-14 (Add a New RD with an Invalid RD Number on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes addRemoteDestination ("iPhone5",
"IAmNotANumber", true) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

Let 'ex' be an instanceof PlatformException:

((CiscoJtapiException) ex).getErrorCode() = CiscoJtapiException.
CTIERR_INVALID_REMOTE_DESTINATION_NUMBER.

TermA.getAllRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

Caught exception:
com.cisco.jtapi.
PlatformExceptionImpl:
Invalid Remote Destination
Number

User1 invokes
CiscoRemoteTerminal.
addRemoteDestination
("iPhone5",
"IAmNotANumber", true)
on TermA.

Scenario 1-15 (Update RD Name with an Invalid/Not-Associated RD Number on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes updateRemoteDestinationName
("4085268222", "MyBossOffice") on terminal A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
813

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

Let 'ex' be an instanceof PlatformException:

((CiscoJtapiException) ex).getErrorCode() = CiscoJtapiException.
CTIERR_INVALID_REMOTE_DESTINATION_NUMBER.

TermA.getAllRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

Caught exception:
com.cisco.jtapi.
PlatformExceptionImpl:
Invalid Remote Destination
Number

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
Name ("4085268222",
"MyBossOffice") on
TermA.

Scenario 1-16 (Update RD Name with a Null RD Number on a 'CTI Remote Device')

User1 has "CTI Remote Device A" in the control list. User invokes updateRemoteDestinationName (null,
"MyBossOffice") on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

TermA.getAllRemoteDestinations() = CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = true

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

Caught exception:
com.cisco.jtapi.
InvalidArgument
ExceptionImpl: Invalid
Remote Destination
Number/Name
(updateRemoteDestination
Name parameter).

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
Name (null,
"MyBossOffice") on
TermA.

Scenario 1-17 (Clear an Existing Active RD as a Non-Active RD on a 'CTI Remote Device')

Explicit Pre-condition: (RD1-A: "4081001111", True; RD2-A: "4081002222", False; RD3-A: "4081003333",
False)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
814

Message Sequence Charts
Message Sequence Charts

User1 has "CTI Remote Device A" in the control list. User invokes
CiscoRemoteTerminal.setActiveRemoteDestination("4081001111", false) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[3].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD1-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoRemoteDestinationInfo[2].getRemoteDestinationName()= "RD3-A"

CiscoRemoteDestinationInfo[2].getRemoteDestinationNumber() =
"4081003333"

CiscoRemoteDestinationInfo[2].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination
("4081001111", false) on
TermA.

Scenario 1-18 (Remove All RD(s) From a 'CTI Remote Device')

User1 Has "CTI Remote Device C" in the Control List. User Invokes removeAllRemoteDestinations() on
Terminal C.

Call info5EventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Nothing is removed as there is no RD on this device.
JTAPI won't be sending any request to CTI. No
CiscoJtapiException will be thrown either.

NoteUser1 invokes CiscoRemoteTerminal.
removeAllRemoteDestinations() on
TermC.

Scenario 1-19 (Remove All 5 RD(s) From a 'CTI Remote Device')

Explicit Pre-condition: RD1-A: "4081001111", true; RD2-A: "4081002222", false; RD3-A: "4081003333",
false; RD4-A: "4081004444", false; RD5-A: "4081005555", false.

User1 has "CTI Remote Device A" in the control list. User invokes removeAllRemoteDestinations() on
terminal A.

Note that JTAPI will loop through the terminal/device's existing remote destinations one by one, so the total
number of CiscoProvTerminalRemoteDestinationChangedEv sent to an application should be the same number

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
815

Message Sequence Charts
Message Sequence Charts

of available remote destinations being removed. And the order and content of each event can vary, depending
on how each remote destination is stored in JTAPI's local cache RD list.

Also note currently there is no checking in JTAPI to limit only up to 5 RDs per CTI Remote Device. If
application tries to add a new RD to an existing CTI Remote Device that already has 5 RDs, JTAPI will simply
send the add request to CTI and let it decide on pass/fail.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[4].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD3-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081003333"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoRemoteDestinationInfo[2].getRemoteDestinationName()= "RD4-A"

CiscoRemoteDestinationInfo[2].getRemoteDestinationNumber() =
"4081004444"

CiscoRemoteDestinationInfo[2].getIsActiveRD() = false

CiscoRemoteDestinationInfo[3].getRemoteDestinationName()= "RD5-A"

CiscoRemoteDestinationInfo[3].getRemoteDestinationNumber() =
"4081005555"

CiscoRemoteDestinationInfo[3].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
removeAllRemote

Destinations() on TermA.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
816

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[3].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD3-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081003333"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD4-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081004444"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoRemoteDestinationInfo[2].getRemoteDestinationName()= "RD5-A"

CiscoRemoteDestinationInfo[2].getRemoteDestinationNumber() =
"4081005555"

CiscoRemoteDestinationInfo[2].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD4-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081004444"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD5-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081005555"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName()= "RD5-A"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081005555"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= null.

CiscoProvTerminalRemote
DestinationChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
817

Message Sequence Charts
Message Sequence Charts

Scenario 1-20 (Update a RD's Name and Number and Set It as ActiveRD on a 'CTI Remote Device' at the Same
Time)

User1 has "CTI Remote Device A" in the control list. User invokes updateRemoteDestination ("4081002222",
"MyVacationHome", "4081009999", true) on terminal A.

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and
adds a provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"MyHome"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName()= "RD2-A"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
("4081002222",
"MyVacationHome",
"4081009999", true) on
TermA.

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"MyHome"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"MyVacationHome"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081002222"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
818

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.getRemoteDestinations()
= CiscoRemoteDestinationInfo[2].

CiscoRemoteDestinationInfo[0].getRemoteDestinationName() =
"MyHome"

CiscoRemoteDestinationInfo[0].getRemoteDestinationNumber() =
"4081001111"

CiscoRemoteDestinationInfo[0].getIsActiveRD() = false

CiscoRemoteDestinationInfo[1].getRemoteDestinationName() =
"MyVacationHome"

CiscoRemoteDestinationInfo[1].getRemoteDestinationNumber() =
"4081009999"

CiscoRemoteDestinationInfo[1].getIsActiveRD() = true

CiscoProvTerminalRemote
DestinationChangedEv

CTI Remote Device Use Cases Group 2

Use Cases Group 2: CTIRD Incoming/Outgoing/Disconnect/Redirect/Hold/Resume and Shared-Line Call
Scenarios

Pre-conditions on Use Cases group 2 below with default jtapi.ini settings, unless specified explicitly. Note
that the CTI Ports have Auto-Accept enabled:

• Provider is IN_SERVICE state.

• Device A (CTI Remote Device - Name: "irvCTIRD1", Line A (DN: 8881000))

• Remote Destination 1 (Name: "IRVOffice", Number: "919498231202", Active RD: true)

• Device B (CTI Port - Name: "irvCTIPort1", Line B (DN: 8881000))

• Device C (CTI Port - Name: "irvCTIPort6", Line C (DN: 8886000))

• Device D (CTI Port - Name: "irvCTIPort7", Line C (DN: 8887000))

• Device E (CTI Remote Device - Name: "irvCTIRD2", Line E (DN: 8889000))

• Remote Destination 1 (Name: "IRVCell1", Number: "916267829523", Active RD: true)

• Device F (CTI Remote Device - Name: "irvCTIRD3", Line E (DN: 8889001))

• Remote Destination 1 (Name: "IRVCell2", Number: "916267829526", Active RD: true)

Scenario 2-1 (Incoming Call From CTI Port to CTI Remote Device)

C calls E, Application is observing both C and E on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
819

Message Sequence Charts
CTI Remote Device Use Cases Group 2

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CallingAddress = 8886000,

CalledAddress = 8889000,

CurrentCallingAddress = 8886000,

CurrentCalledAddress = 8889000,

ModifiedCallingAddress = 8886000,

ModifiedCalledAddress = 8889000,

No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Scenario 2-2 (Incoming Call From CTI Port to Non-Observed CTI Remote Device)

C calls E, Application is observing C only on address and terminal. No observer on E. GC1 is the GCID of
the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
820

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Scenario 2-3 (Incoming Call From CTI Port to CTI Remote Device, but No Answer on Remote Destination)

C calls E, Application is observing both C and E on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
821

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1: CallCtlConnDisconnectedEv
8886000

GC1: CallInvalidEv 8889000

GC1: CallObservationEndedEv

irvCTIRD2's Active remote destination of
916267829523 does not answers the call
and time out.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
822

Message Sequence Charts
Message Sequence Charts

Scenario 2-4 (Incoming Call From CTI Port to CTI Remote Device, and Redirect to Another CTI Port)

C calls E, and E redirects the call to D, Application is observing all C, D, E on addresses and terminals. GC1
is the GCID of the call.

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
823

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8886000 ::
LastRedirectedPartyAddress: 8889000

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

User1 invokes connection on
irvCTIRD2.redirect (8887000,
REDIRECT_NORMAL,
DEFAULT_SEARCH_SPACE,
CALLED_ADDRESS_UNCHANGED,
REDIRECT, 8887000, null,
REDIRECT_WITHOUT_
MODIFIED_CALLING_PARTY, 1)

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8886000 ::
LastRedirectedPartyAddress: 8889000

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 answers the call.

Scenario 2-5 (Incoming Call From CTI Port to CTI Remote Device, and Redirect to Another CTI Remote Device)

C calls E, and E redirects the call to F, and C redirect the call to E. Application is observing all C, E, F on
addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
824

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
825

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889001 ::
CurrentCallingAddress: 8886000 ::
LastRedirectedPartyAddress: 8889000

GC1: ConnCreatedEvent 8889001

GC1: ConnInprogressEvent 8889001

GC1: CallCtlConnOfferedEv 8889001

GC1: ConnAlertingEvent 8889001

GC1: CallCtlConnAlertingEv 8889001

GC1: TermConnCreatedEvent irvCTIRD3

GC1: TermConnRingingEvent irvCTIRD3

GC1: CallCtlTermConnRingingEv
irvCTIRD3

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

User1 invokes connection on
irvCTIRD2.redirect(8889001,
REDIRECT_NORMAL,
DEFAULT_SEARCH_SPACE,
CALLED_ADDRESS_UNCHANGED,
REDIRECT, 8889001, null,
REDIRECT_WITHOUT_MODIFIED_
CALLING_PARTY, 1)

CurrentCalledAddress: 8889001 ::
CurrentCallingAddress: 8886000 ::
LastRedirectedPartyAddress: 8889000

GC1: ConnConnectedEvent 8889001

GC1: CallCtlConnEstablishedEv 8889001

GC1: TermConnActiveEvent irvCTIRD3

GC1: CallCtlTermConnTalkingEv
irvCTIRD3

irvCTIRD3's Active remote destination of
916267829526 answers the call.

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889001 ::
LastRedirectedPartyAddress: 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1: CallCtlConnDisconnectedEv
8886000

User1 invokes connection on
irvCTIPort6.redirect(8889000,
REDIRECT_NORMAL,
DEFAULT_SEARCH_SPACE,
CALLED_ADDRESS_UNCHANGED,
REDIRECT, 8889000, null,
REDIRECT_WITHOUT_MODIFIED_
CALLING_PARTY, 1)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
826

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889001 ::
LastRedirectedPartyAddress: 8886000

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

GC1: TermConnDroppedEv irvCTIRD3

GC1: CallCtlTermConnDroppedEv
irvCTIRD3

GC1: ConnDisconnectedEvent 8889001

GC1: CallCtlConnDisconnectedEv
8889001

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Scenario 2-6 (Incoming Call From CTI Port to CTI Remote Device with a Shared-Line of Another CTI Port)

C calls A (with a shared line with B), Application is observing A, B, and C on addresses and terminals. GC1
is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
827

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8881000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8881000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8881000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnRingingEvent irvCTIRD1

GC1: CallCtlTermConnRingingEv
irvCTIRD1

User1 invokes call.connect(irvCTIPort6,
8886000, 8881000).

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEvent irvCTIRD1

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

irvCTIRD1's Active remote destination of
919498231202 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
828

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1:CallCtlConnDisconnectedEv8886000

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from irvCTIPort6.

Scenario 2-7 (Incoming Call From CTI Port to CTI Port with a Shared-Line of a CTI Remote Device)

C calls B (with a shared line of A), Application is observing A, B, and C on addresses and terminals. GC1 is
the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
829

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8881000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8881000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8881000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnRingingEvent irvCTIRD1

GC1: CallCtlTermConnRingingEv
irvCTIRD1

User1 invokes call.connect(irvCTIPort6,
8886000, 8881000).

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEvent irvCTIPort1

GC1: CallCtlTermConnTalkingEv
irvCTIPort1

irvCTIPort1 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
830

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1:CallCtlConnDisconnectedEv8886000

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from irvCTIPort6.

Scenario 2-8 (Outgoing Call From CTI Remote Device to CTI Port)

E calls D, Application is observing both D and E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
831

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = 8889000,
CurrentCalledAddress = 8887000,
ModifiedCallingAddress = 8889000,
ModifiedCalledAddress = 8887000,
No LastRedirectedPartyAddress

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 rings and answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8889000
connection.

Scenario 2-9 (Outgoing Call From CTI Remote Device (with a Shared Line of CTI Port) to Another CTI Port)

A (with a shared line of B) calls D, Application is observing both A, B, and D on addresses and terminals.
GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
832

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8881000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8881000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8881000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

User1 invokes call.connect(irvCTIRD1,
8881000, 8887000).

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

irvCTIPort7 rings

CallingAddress = Unknown,
CalledAddress = 8881000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8881000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8881000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnActiveEvent irvCTIRD1

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

irvCTIRD1's Active remote destination of
919498231202 answers the call.

CallingAddress = Unknown,
CalledAddress = 8887000,
CurrentCallingAddress = 8881000,
CurrentCalledAddress = 8887000,
ModifiedCallingAddress = 8881000,
ModifiedCalledAddress = 8887000,
No LastRedirectedPartyAddress

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

irvCTIPort7 rings

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
833

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000::
No LastRedirectedPartyAddress

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8881000
connection.

Scenario 2-10 (Outgoing Call From CTI Remote Device to CTI Port, but No Answer on Active Remote Destination)

E calls D, Application is observing both E and D on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
834

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

irvCTIRD2's Active remote destination of
916267829523 does not answer the call and
time out.

Scenario 2-11 (Outgoing Call From CTI Remote Device to CTI Port, but No Answer on CTI Port)

E calls D, Application is observing both D and E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
835

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = 8889000,
CurrentCalledAddress = 8887000,
ModifiedCallingAddress = 8889000,
ModifiedCalledAddress = 8887000,
No LastRedirectedPartyAddress

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

irvCTIPort7 rings.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: ConnFailedEvent 8889000

GC1: CallCtlConnFailedEv 8889000

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

irvCTIPort7 does not answer the call, time
out.

Scenario 2-12 (Outgoing Call From Non-Observed CTI Remote Device to CTI Port)

E calls D, Application is observing only on D on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: Unknown ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

From another provider, User1 invokes
call.connect(irvCTIRD2, 8889000,
8887000).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
836

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: ConnCreatedEvent 8889000

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

irvCTIRD2's Active remote destination of
916267829523 answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 answers the call.

Scenario 2-13 (Outgoing Call From CTI Remote Device to Non-Observed CTI Port)

E calls D, Application is observing only on E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: Unknown ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

From another provider, User1 invokes
call.connect(irvCTIRD2, 8889000,
8887000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: Unknown::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
837

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

irvCTIPort7 rings and answers the call from
another provider.

Scenario 2-14 (Outgoing Call From CTI Remote Device to Another CTI Remote Device)

E calls F, Application is observing both E and F on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8889001).

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
838

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnCreatedEvent 8889001

GC1: ConnInprogressEvent 8889001

GC1: CallCtlConnOfferedEv 8889001

GC1: ConnAlertingEvent 8889001

GC1: CallCtlConnAlertingEv 8889001

GC1: TermConnCreatedEvent irvCTIRD3

GC1: TermConnRingingEvent irvCTIRD3

GC1: CallCtlTermConnRingingEv
irvCTIRD3

GC1: ConnConnectedEvent 8889001

GC1: CallCtlConnEstablishedEv 8889001

GC1: TermConnActiveEvent irvCTIRD3

GC1: CallCtlTermConnTalkingEv
irvCTIRD3

irvCTIRD3's Active remote destination of
916267829526 answers the call.

CallingAddress = Unknown,
CalledAddress = 8889000,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIRD3

GC1: CallCtlTermConnDroppedEv
irvCTIRD3

GC1: ConnDisconnectedEvent 8889001

GC1: CallCtlConnDisconnectedEv
8889001

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8889000
connection.

Scenario 2-15 (Outgoing Call From CTI Remote Device to Another CTI Remote Device, Then Redirect Again
to a Third CTI Remote Device with a Shared-Line)

E calls F, then F redirect to A (with a shared-line with B), Application is observing all A, B, E and F on
addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
839

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: Unknown::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8889001).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: Unknown::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

CurrentCalledAddress: 8889001 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8889001

GC1: ConnCreatedEvent 8889001

GC1: ConnInprogressEvent 8889001

GC1: CallCtlConnOfferedEv 8889001

GC1: ConnAlertingEvent 8889001

GC1: CallCtlConnAlertingEv 8889001

GC1: TermConnCreatedEvent irvCTIRD3

GC1: TermConnRingingEvent irvCTIRD3

GC1: CallCtlTermConnRingingEv
irvCTIRD3

GC1: ConnConnectedEvent 8889001

GC1: CallCtlConnEstablishedEv 8889001

GC1: TermConnActiveEvent irvCTIRD3

GC1: CallCtlTermConnTalkingEv
irvCTIRD3

irvCTIRD3's Active remote destination of
916267829526 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
840

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8889001

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

GC1: TermConnDroppedEv irvCTIRD3

GC1: CallCtlTermConnDroppedEv
irvCTIRD3

GC1: ConnDisconnectedEvent 8889001

GC1: CallCtlConnDisconnectedEv
8889001

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnRingingEvent irvCTIRD1

GC1: CallCtlTermConnRingingEv
irvCTIRD1

User invokes connection on
irvCTIRD3.redirect(8881000,
REDIRECT_NORMAL,
DEFAULT_SEARCH_SPACE,
CALLED_ADDRESS_UNCHANGED,
REDIRECT, 8881000, null,
REDIRECT_WITHOUT_MODIFIED_
CALLING_PARTY, 1).

Both irvCTIRD1 and irvCTIPort1 are
ringing.

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8889001

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEvent irvCTIRD1

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

irvCTIRD1's Active remote destination of
919498231202 answers the call. Terminal
connection of irvCTIRD1 goes to 'talking'
and irvCTIPort1 goes to 'bridged'.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
841

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8889001

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8889000
connection.

Scenario 2-16 (Disconnect an Incoming Call on CTI Remote Device After Answer While Talking)

C calls E, Application is observing both C and E on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
842

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
843

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1: CallCtlConnDisconnectedEv
8886000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

User invokes connection.disconnect on
irvCTIRD2 while talking.

Scenario 2-17 (Disconnect an Incoming Call on CTI Remote Device After Answer While Talking)

C calls E, Application is observing both C and E on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
844

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv
irvCTIRD2

User1 invokes call.connect(irvCTIPort6,
8886000, 8889000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: ConnFailedEvent 8886000

GC1: CallCtlConnFailedEv 8886000

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1: CallCtlConnDisconnectedEv
8886000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

User invokes connection.disconnect on
irvCTIRD2while it's still ringing on Active
remote destination of 16267829523.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
845

Message Sequence Charts
Message Sequence Charts

Scenario 2-18 (Disconnect an Outgoing Call From CTI Remote Device to CTI Port; Disconnect After Answering
on Remote Destination and Answering on Called CTI Port)

E calls D, Application is observing both D and E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 rings and answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
846

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8889000
connection.

Scenario 2-19 (disconnect an Outgoing Call From CTI Remote Device to CTI Port; Disconnect After Answering
on Remote Destination but Before Answering on Called CTI Port)

E calls D, Application is observing both D and E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv
irvCTIRD2

irvCTIRD2's Active remote destination of
916267829523 answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
847

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

irvCTIPort7 rings

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8889000 ::
LastRedirectedPartyAddress: 8887000

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv
irvCTIRD2

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8889000
connection.

Scenario 2-20 (Disconnect an Outgoing Call From CTI Remote Device to CTI Port; Drop the Call Before Even
Answering on Remote Destination. Note That Only One Connection on CTI Remote Device Which Is in Offering
State)

E calls D, Application is observing both D and E on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

User1 invokes call.connect(irvCTIRD2,
8889000, 8887000).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
848

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8889000 ::
CurrentCallingAddress: 8889000 ::
No LastRedirectedPartyAddress

GC1: ConnDisconnectedEvent 8889000

GC1: CallCtlConnDisconnectedEv
8889000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

irvCTIRD2's Active remote destination of
916267829523 rings, User1 drops the call
to disconnect from 8889000 connection.

Scenario 2-21 (Incoming Call From CTI Port to CTI Remote Device with a Shared-line of Another CTI Port).
Note That irvCTIRD1 Remote Destination Answers the Call; Hold irvCTIRD1, Unhold irvCTIRD1; Then Hold
irvCTIRD1, Unhold irvCTIPort1 Which Results irvCTIRD1 Got Disconnected; Then Hold irvCTIPort6, Unhold
irvCTIPort6, Then Disconnect 8886000)

C calls A (with a shared line with B) with several hold/resume operations on different terminals. Application
is observing A, B, and C on addresses and terminals. GC1 is the GCID of the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
849

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnRingingEvent irvCTIRD1

GC1: CallCtlTermConnRingingEv
irvCTIRD1

User1 invokes call.connect(irvCTIPort6,
8886000, 881000).

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEvent irvCTIRD1

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

irvCTIRD1's Active remote destination of
919498231202 answers the call.

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1:CallCtlTermConnHeldEv irvCTIRD1

GC1: TermConnActiveEvent irvCTIPort1

GC1: CallCtlTermConnHeldEv
irvCTIPort1

User invoke hold on terminalconnection of
irvCTIRD1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
850

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

User invoke unhold on terminalconnection
of irvCTIRD1

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1:CallCtlTermConnHeldEv irvCTIRD1

GC1: TermConnActiveEvent irvCTIPort1

GC1: CallCtlTermConnHeldEv
irvCTIPort1

User invoke hold on terminalconnection of
irvCTIRD1

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallCtlTermConnTalkingEv
irvCTIPort1

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

User invoke unhold on terminalconnection
of irvCTIPort1 (while it's in Bridged state).
This results in irvCTIRD1 being dropped.

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: CallCtlTermConnHeldEv
irvCTIPort6

User invoke hold on terminalconnection of
irvCTIPort6

GC1: CallCtlTermConnTalkingEv
irvCTIPort6

User invoke unhold on terminalconnection
of irvCTIPort6

CurrentCalledAddress: 8881000 ::
CurrentCallingAddress: 8886000 ::
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIPort6

GC1: CallCtlTermConnDroppedEv
irvCTIPort6

GC1: ConnDisconnectedEvent 8886000

GC1:CallCtlConnDisconnectedEv8886000

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from connection of
irvCTIPort6.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
851

Message Sequence Charts
Message Sequence Charts

Scenario 2-22 (Outgoing Call From CTI Remote Device (with a Shared Line of CTI Port) to Another CTI Port).
Note That irvCTIPort1 Rings and Remote Destination on irvCTIRD1 Rings, Remote Destination Answers the
Call, Call Is Then Offered on irvCTIPort7. After Answer on irvCTIPort7, Disconnect From 8881000 Connection)

A (with a shared line of B) calls D, then with several hold/unhold operations at different terminals. Application
is observing both A, B, and D on addresses and terminals. GC1 is the GCID of the call.

Call infoEventsAction

CurrentCalledAddress: 8881000::
CurrentCallingAddress: 8881000::
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8881000

GC1: ConnInprogressEvent 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnAlertingEvent 8881000

GC1: CallCtlConnAlertingEv 8881000

User1 invokes call.connect(irvCTIRD1,
8881000, 8887000).

GC1: TermConnCreatedEvent irvCTIPort1

GC1: TermConnRingingEvent irvCTIPort1

GC1: CallCtlTermConnRingingEv
irvCTIPort1

irvCTIPort7 rings

CurrentCalledAddress: 8881000::
CurrentCallingAddress: 8881000::
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnCreatedEvent irvCTIRD1

GC1: TermConnActiveEvent irvCTIRD1

GC1: CallCtlTermConnTalkingEv
irvCTIRD1

irvCTIRD1's Active remote destination of
919498231202 answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000 ::
No LastRedirectedPartyAddress

GC1: TermConnPassiveEvent irvCTIPort1

GC1: CallCtlTermConnBridgedEv
irvCTIPort1

irvCTIPort7 rings

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
852

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000::
LastRedirectedPartyAddress: 8887000

GC1: ConnCreatedEvent 8887000

GC1: ConnInprogressEvent 8887000

GC1: CallCtlConnOfferedEv 8887000

GC1: ConnAlertingEvent 8887000

GC1: CallCtlConnAlertingEv 8887000

GC1: TermConnCreatedEvent irvCTIPort7

GC1: TermConnRingingEvent irvCTIPort7

GC1: CallCtlTermConnRingingEv
irvCTIPort7

GC1: ConnConnectedEvent 8887000

GC1: CallCtlConnEstablishedEv 8887000

GC1: TermConnActiveEvent irvCTIPort7

GC1: CallCtlTermConnTalkingEv
irvCTIPort7

irvCTIPort7 answers the call.

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000 ::
LastRedirectedPartyAddress: 8887000

GC1:CallCtlTermConnHeldEv irvCTIRD1

GC1: TermConnActiveEvent irvCTIPort1

User invoke hold on terminalconnection of
irvCTIRD1

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000 ::
LastRedirectedPartyAddress: 8887000

GC1: CallCtlTermConnHeldEv
irvCTIPort1

GC1: CallCtlTermConnTalkingEv
irvCTIPort1

GC1: TermConnDroppedEv irvCTIRD1

GC1: CallCtlTermConnDroppedEv
irvCTIRD1

User invoke unhold on terminalconnection
of irvCTIPort1 (while it's in Bridged state).
This results in irvCTIRD1 being dropped.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
853

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CurrentCalledAddress: 8887000 ::
CurrentCallingAddress: 8881000 ::
LastRedirectedPartyAddress: 8887000

GC1: TermConnDroppedEv irvCTIPort1

GC1: CallCtlTermConnDroppedEv
irvCTIPort1

GC1: ConnDisconnectedEvent 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: TermConnDroppedEv irvCTIPort7

GC1: CallCtlTermConnDroppedEv
irvCTIPort7

GC1: ConnDisconnectedEvent 8887000

GC1: CallCtlConnDisconnectedEv
8887000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect the call from 8881000
connection.

Scenario 2-23 (Superprovider Acquires a CTIRD That Is Not on User Control List)

User1 open a provider which can observe any terminal (User1 with "Standard CTI Allow Control of All
Devices" role), and then acquire a CTI Remote Device "CTIRD_UP" that is not on User1's control list).

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CiscoAddrCreatedEv: 8889999

CiscoTermCreatedEv: CTIRD_UP

User1 invokes
provider.createTerminal(CTIRD_UP).

CTI Remote Device Use Cases Group 3

Use Cases Group 3 (CUCSF Registration and Unregistration, for Normal SIP Mode <-> Extend Mode, and
Terminal Switching Scenarios)

Pre-conditions on Use Cases group 3 below with default jtapi.ini settings, unless specified explicitly:

• Provider is IN_SERVICE state.

• Device A (CUCSF - Name: "irvCSF1", Line A (DN: 7771000))

• Remote Destination 1 (Name: "IRVCell", Number: "916267829523", Active RD: true)

• Scenario 3-1 (Registration of CUCSF in between Extend mode and SIP mode).:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
854

Message Sequence Charts
CTI Remote Device Use Cases Group 3

Device A is registered in normal SIP mode when Webex with Jabber client is running and configured this
device as its associated phone. User1 open provider and add observers on this device to bring it in service.
Now exit Webex to unregister it from SIP, and then User1 calls CiscoTerminal.register() to register it to
Extend mode from JTAPI, then add observers back to bring it in service. NowUser1 unregister it from Extend
mode in JTAPI by calling CiscoRemoteTerminal.unregister(). Now open Webex again to register this device
back to SIP mode, and add observers back to bring it in service.

InfoEventsAction

CiscoTerminal.getProtocol = 2

CiscoTerminal.isRegistered() = true

CiscoRemoteTerminal.getType() = 503

CiscoRemoteTerminal.getTypeName() = Cisco
Unified Client Services Framework

Provider: ProvInServiceEv

7771000: CiscoAddrOutOfServiceEv

irvCSF1: CiscoTermInServiceEv

7771000: CiscoAddrInServiceEv

irvCSF1: CiscoTermInServiceEv

Webex is opened.

User1 adds provider
observer.

registerFeature 1235 on
provider.

addObserver on address
7771000.

addObserver on terminal
irvCSF1.

CiscoTerminal.getProtocol = 2

CiscoTerminal.isRegistered() = false

Provider: CiscoProvTerminalUnRegisteredEv
irvCSF1

7771000: CiscoAddrOutOfServiceEv

irvCSF1: CiscoTermOutOfServiceEv

Exit Webex

CiscoTerminal.getProtocol = 3

CiscoTerminal.isRegistered() = true

CiscoRemoteTerminal.getRegistrationType() = 8

CiscoRemoteTerminal.isRegisteredByThisApp() =
true

Provider: CiscoAddrRemovedEv 7771000

Provider: CiscoTermRemovedEv irvCSF1

Provider: CiscoAddrCreatedEv 7771000

Provider: CiscoTermCreatedEv irvCSF1

Provider: CiscoProvTerminalRegisteredEv

irvCSF1: CiscoTermInServiceEv

7771000: CiscoAddrOutOfServiceEv

7771000: CiscoAddrInServiceEv

irvCSF1: CiscoTermInServiceEv

User1 calls
CiscoTerminal.register()
on irvCSF1.

addObserver on address
7771000.

addObserver on terminal
irvCSF1.

CiscoTerminal.getProtocol = 3

CiscoTerminal. isRegistered() = false

CiscoRemoteTerminal.getRegistrationType() = -1

CiscoRemoteTerminal. isRegisteredByThisApp() =
false

7771000: CiscoAddrOutOfServiceEv

irvCSF1: CiscoTermOutOfServiceEv

Provider: CiscoProvTerminalUnRegisteredEv

User1 calls
CiscoRemoteTerminal.
unregister()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
855

Message Sequence Charts
Message Sequence Charts

InfoEventsAction

CiscoTerminal.getProtocol = 2

CiscoTerminal.isRegistered() = true

Provider: CiscoAddrRemovedEv 7771000

Provider: CiscoTermRemovedEv irvCSF1

Provider: CiscoAddrCreatedEv 7771000

Provider: CiscoTermCreatedEv irvCSF1

Provider: CiscoProvTerminalRegisteredEv

7771000: CiscoAddrOutOfServiceEv

irvCSF1: CiscoTermInServiceEv

7771000: CiscoAddrInServiceEv

irvCSF1: CiscoTermInServiceEv

Open Webex

addObserver on address
7771000.

addObserver on terminal
irvCSF1.

CTI Remote Device Use Cases Group 4

Use Cases Group 4 (Set/Reset Active Remote Destination Scenarios)

Pre-conditions on Use Cases group 4 below with default jtapi.ini settings, unless specified explicitly:

• Provider is IN_SERVICE state. Single node.

• Device A (CTI Remote Device - Name: "irvCTIRD2", Line A (DN: 8881000))

• Remote Destination 1 (Name: "IRVCell1", Number: "916267829523", Active RD: false)

• Scenario 4-1 (User1 opens provider P1, set RD1 as active. Now User1 opens another provider P2, and
set same RD1 as active again. Now stop CTI Manager service in this single node, the active RD would
be clear out. Now restart CTIManager, JTAPI will do a provider retry, and upon successfully connection,
it will automatically reset the same RD1 as active again seamlessly.):

InfoEventsAction

P1: ProvInServiceEvUser1 open Provider P1
and adds provider
observer.

P1 changed event: Remote Terminal: irvCTIRD2 ::
[Remote Destination 1: Name:IRVCell1,
Number:916267829523, IsActiveRD:true] ::
IsMyAppLastToSetActiveRD : true

CiscoRemoteTerminal.
isMyAppLastToSetActiveRD() = true

P1:
CiscoProvTerminalRemoteDestinationChangedEv

User1 calls
CiscoRemoteTerminal.
setActiveRemote
Destination
("916267829523", true)
from P1.

P2: ProvInServiceEvUser1 open Provider P2
and adds provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
856

Message Sequence Charts
CTI Remote Device Use Cases Group 4

InfoEventsAction

P1 changed event: Remote Terminal: irvCTIRD2 ::
[Remote Destination 1: Name:IRVCell1,
Number:916267829523, IsActiveRD:true] ::
IsMyAppLastToSetActiveRD : false

CiscoRemoteTerminal.
isMyAppLastToSetActiveRD() = false

P2 changed event: Remote Terminal: irvCTIRD2 ::
[Remote Destination 1: Name:IRVCell1,
Number:916267829523, IsActiveRD:true] ::
IsMyAppLastToSetActiveRD : true

CiscoRemoteTerminal.
isMyAppLastToSetActiveRD() = true

P1: CiscoProvTerminalRemote
DestinationChangedEv

P2: CiscoProvTerminalRemote
DestinationChangedEv

User1 calls
CiscoRemoteTerminal.
setActiveRemote
Destination
("916267829523", true)
from P2.

P1: ProvOutOfServiceEv

P2: ProvOutOfServiceEv

Stop CTI Manager on
this single node where P1
& P2 are connected to.
And this active RD will
be clear out automatically
from CTI/CCM side.

Note that no CiscoProvTerminalRemote
DestinationChangedEv will be sent to application
because it is the same active RD that application
previously set.

P1: ProvInServiceEv

P2: ProvInServiceEv

Start this CTI Manager.
And JTAPI will
automatically reset the
sameRD1 as active again
seamlessly.

Scenario 4-2 (User1 Opens Provider P1, Add All Observers on Provider, Terminals, Addresses, Then Set RD1
as Active. Now Stop CTI Manager Service, the Active RD Would Be Clear Out. Now Restart CTI Manager,
JTAPI Will Do a Provider Retry, and Upon Successfully Connection, It Will Automatically Reset the Same
RD1 as Active Again Seamlessly)

InfoEventsAction

P1: ProvInServiceEvUser1 open Provider P1
and adds provider
observer.

P1 changed event: Remote Terminal: irvCTIRD2 ::
[Remote Destination 1: Name:IRVCell1,
Number:916267829523, IsActiveRD:true] ::
IsMyAppLastToSetActiveRD : true

CiscoRemoteTerminal.
isMyAppLastToSetActiveRD() = true

P1: CiscoProvTerminalRemote
DestinationChangedEv

User1 calls
CiscoRemoteTerminal.
setActiveRemote
Destination
("916267829523", true)
from P1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
857

Message Sequence Charts
Message Sequence Charts

InfoEventsAction

8881000:: Event: CiscoAddrOutOfServiceEv

irvCTIRD2:: Event: CiscoTermOutOfServiceEv

P1: ProvOutOfServiceEv

Stop CTIManager where
P1 is connected to. And
this active RD will be
clear out automatically
from CTI/CCM side.

Note that no CiscoProvTerminalRemote
DestinationChangedEv will be sent to application
because it is the same active RD that application
previously set.

P1: ProvInServiceEv

irvCTIRD2:: Event: CiscoTermInServiceEv

8881000:: Event: CiscoAddrInServiceEv

Start this CTI Manager.
And JTAPI will
automatically reset the
sameRD1 as active again
seamlessly.

CTI Remote Device Use Cases Group 5

Use Cases Group 5 (CTIRD Transfer/Conference/Multiple-Calls Call Scenarios)

Pre-conditions on Use Cases group 5 below with default jtapi.ini settings, unless specified explicitly (Note:
The CTI Ports have Auto-Accept enabled):

• Provider is IN_SERVICE state.

• Device A (CTI Remote Device - Name: "irvCTIRD2", Line A (DN: 8889000))

• Remote Destination 1 (Name: "IRVCell1", Number: "916267829523", Active RD: true)

• Device B (CTI Port - Name: "irvCTIPort4", Line B (DN: 8884000))

• Device C (CTI Port - Name: "irvCTIPort5", Line B (DN: 8884000))

• Device D (CTI Port - Name: "irvCTIPort6", Line D (DN: 8886000))

• Device E (CTI Remote Device - Name: "irvCTIRD3", Line E (DN: 8889001))

• Remote Destination 1 (Name: "IRVHome1", Number: "916268210080", Active RD: true)

Scenario 5-1 (Direct Transfer on CTI Remote Device to CTI Port)

D calls A with GC1 as GCID of call; A calls B with GC2 as GCID of call. Set A as transfer controller, and
then transfer call from GC2 to GC1. Application is observing all A, B, D.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
858

Message Sequence Charts
CTI Remote Device Use Cases Group 5

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv irvCTIRD2

User1 invokes call.
connect (irvCTIPort6,
8886000, 8889000)

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv irvCTIRD2

irvCTIRD2's Active
remote destination of
916267829523 answers
the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
859

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

CallingAddress = 8889000,
CalledAddress = 8884000,
CurrentCallingAddress = 8889000,
CurrentCalledAddress = 8884000,
ModifiedCallingAddress = 8889000,
ModifiedCalledAddress = 8884000,
No LastRedirectedPartyAddress

GC1: CallCtlTermConnHeldEv irvCTIRD2

GC2: CallActiveEvent

GC2: ConnCreatedEvent : Address: 8889000

GC2: ConnConnectedEvent : Address: 8889000

GC2: CallCtlConnInitiatedEv : Address: 8889000

GC2: TermConnCreatedEvent : Terminal:
irvCTIRD2

GC2: TermConnActiveEvent : Terminal: irvCTIRD2

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIRD2

GC2: CallCtlConnDialingEv : Address: 8889000

GC2: CallCtlConnEstablishedEv :Address: 8889000

GC2: ConnCreatedEvent : Address: 8884000

GC2: ConnInprogressEvent : Address: 8884000

GC2: CallCtlConnOfferedEv : Address: 8884000

GC2: ConnAlertingEvent : Address: 8884000

GC2: CallCtlConnAlertingEv : Address: 8884000

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort4

GC2: TermConnRingingEvent : Terminal:
irvCTIPort4

GC2: CallCtlTermConnRingingEv : Terminal:
irvCTIPort4

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort5

GC2: TermConnRingingEvent : Terminal:
irvCTIPort5

User1 invokes call.
connect (irvCTIRD2,
8889000, 8884000) , and
answer() on irvCTIPort4
terminal connection.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
860

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: CallCtlTermConnRingingEv : Terminal:
irvCTIPort5

GC2: ConnConnectedEvent : Address: 8884000

GC2: CallCtlConnEstablishedEv :Address: 8884000

GC2: TermConnActiveEvent : Terminal:
irvCTIPort4

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIPort4

GC2: TermConnPassiveEvent : Terminal:
irvCTIPort5

GC2: CallCtlTermConnInUseEv : Terminal:
irvCTIPort5

CallingAddress = 8889000,
CalledAddress = 8884000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8886000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8886000,
LastRedirectedPartyAddress = 8889000

CallingAddress = 8886000, CalledAddress =
8889000, CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000, No
LastRedirectedPartyAddress

GC2: CiscoTermConnSelectChangedEv : Terminal:
irvCTIRD2

GC1: CiscoTermConnSelectChangedEv : Terminal:
irvCTIRD2

User1 invokes
GC2.setTransferController
(terminal connection of
irvCTIRD2).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
861

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8889000,
CalledAddress = 8884000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8886000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8886000,
LastRedirectedPartyAddress = 8889000

GC2: CiscoTransferStartEv

GC1: TermConnDroppedEv irvCTIRD2

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC1: ConnDisconnectedEvent : Address: 8889000

GC1: CallCtlConnDisconnectedEv : Address:
8889000

GC2: TermConnDroppedEv : Terminal: irvCTIRD2

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC2: ConnDisconnectedEvent : Address: 8889000

GC2: CallCtlConnDisconnectedEv : Address:
8889000

GC1: CiscoCallChangedEv

GC2: ConnCreatedEvent : Address: 8886000

GC2: ConnConnectedEvent : Address: 8886000

GC2: CallCtlConnEstablishedEv :Address: 8886000

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort6

GC2: TermConnActiveEvent : Terminal:
irvCTIPort6

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIPort6

GC1: TermConnDroppedEv : Terminal: irvCTIPort6

User1 invokes
GC2.transfer(GC1).

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort6

GC1: ConnDisconnectedEvent : Address: 8886000

GC1: CallCtlConnDisconnectedEv : Address:
8886000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

GC2: CiscoTransferEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
862

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8889000,
CalledAddress = 8884000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8886000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8886000,
LastRedirectedPartyAddress = 8889000

GC2: TermConnDroppedEv irvCTIPort6

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort6

GC2: ConnDisconnectedEvent : Address: 8886000

GC2: CallCtlConnDisconnectedEv : Address:
8886000

GC2: TermConnDroppedEv : Terminal: irvCTIPort4

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort4

GC2: TermConnDroppedEv : Terminal: irvCTIPort5

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort5

GC2: ConnDisconnectedEvent : Address: 8884000

GC2: CallCtlConnDisconnectedEv : Address:
8884000

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

disconnect() the call on
8886000 connection.

Scenario 5-2 (Conference Call on CTI Remote Device and CTI Port with Another CTI Remote Device)

D calls A with GC1 as GCID of call; A calls E with GC2 as GCID of call. Set A as conference controller,
and then conference/join call from GC2 to GC1. Application is observing all A, D, E.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
863

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv irvCTIRD2

User1 invokes call.
connect (irvCTIPort6,
8886000, 8889000)

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv irvCTIRD2

irvCTIRD2's Active
remote destination of
916267829523 answers
the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
864

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

CallingAddress = 8889000,
CalledAddress = 8889001,
CurrentCallingAddress = 8889000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8889000,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC1: CallCtlTermConnHeldEv irvCTIRD2

GC2: CallActiveEvent

GC2: ConnCreatedEvent : Address: 8889000

GC2: ConnConnectedEvent : Address: 8889000

GC2: CallCtlConnInitiatedEv : Address: 8889000

GC2: TermConnCreatedEvent : Terminal:
irvCTIRD2

GC2: TermConnActiveEvent : Terminal: irvCTIRD2

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIRD2

GC2: CallCtlConnDialingEv : Address: 8889000

GC2: CallCtlConnEstablishedEv :Address: 8889000

GC2: ConnCreatedEvent : Address: 8889001

GC2: ConnInprogressEvent : Address: 8889001

GC2: CallCtlConnOfferedEv : Address: 8889001

GC2: ConnAlertingEvent : Address: 8889001

GC2: CallCtlConnAlertingEv : Address: 8889001

GC2: TermConnCreatedEvent : Terminal:
irvCTIRD3

GC2: TermConnRingingEvent : Terminal:
irvCTIRD3

GC2: CallCtlTermConnRingingEv : Terminal:
irvCTIRD3

User1 invokes call.
connect (irvCTIRD2,
8889000, 8889001).

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = Unknown,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = Unknown,
LastRedirectedPartyAddress: 8889000

GC2: ConnConnectedEvent : Address: 8889001

GC2: CallCtlConnEstablishedEv :Address: 8889001

GC2: TermConnActiveEvent : Terminal: irvCTIRD3

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIRD3

irvCTIRD3's Active
remote destination of
916268210080 answers
the call.

GC2: CiscoTermConnSelectChangedEv : Terminal:
irvCTIRD2

GC2: CiscoTermConnSelectChangedEv : Terminal:
irvCTIRD2

User1 invokes
GC2.setConference
Controller (terminal
connection of
irvCTIRD2).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
865

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8889000,
CalledAddress = 8889001,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = Unknown,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = Unknown,
LastRedirectedPartyAddress: 8889000

GC2: CiscoConferenceStartEv

GC1: TermConnDroppedEv : Terminal: irvCTIRD2

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC1: ConnDisconnectedEvent : Address: 8889000

GC1: CallCtlConnDisconnectedEv : Address:
8889000

GC1: CiscoCallChangedEv

GC2: ConnCreatedEvent : Address: 8886000

GC2: ConnConnectedEvent : Address: 8886000

GC2: CallCtlConnEstablishedEv :Address: 8886000

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort6

GC2: TermConnActiveEvent : Terminal:
irvCTIPort6

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIPort6

GC1: TermConnDroppedEv : Terminal: irvCTIPort6

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort6

GC1: ConnDisconnectedEvent : Address: 8886000

GC1: CallCtlConnDisconnectedEv : Address:
8886000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

GC2: CiscoConferenceEndEv

User1 invokes
GC2.conference(GC1).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
866

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8889000,
CalledAddress = 8889001,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = Unknown,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = Unknown,
LastRedirectedPartyAddress: 8889000

GC2: TermConnDroppedEv : Terminal: irvCTIRD2

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC2: ConnDisconnectedEvent : Address: 8889000

GC2: CallCtlConnDisconnectedEv : Address:
8889000

GC2: TermConnDroppedEv : Terminal: irvCTIRD3

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD3

GC2: ConnDisconnectedEvent : Address: 8889001

GC2: CallCtlConnDisconnectedEv : Address:
8889001

disconnect() the call on
8889000 connection.

CallingAddress = 8889000,
CalledAddress = 8889001,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889001,
LastRedirectedPartyAddress: 8889000

GC2: TermConnDroppedEv : Terminal: irvCTIPort6

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort6

GC2: ConnDisconnectedEvent : Address: 8886000

GC2: CallCtlConnDisconnectedEv : Address:
8886000

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

disconnect() the call on
8889001 connection.

Scenario 5-3 (Multiple Calls on CTI Remote Device)

D calls A with GC1 as GCID of call; B calls A with GC2 as GCID of call. Application is observing all A, B,
D.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
867

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8886000

GC1: ConnConnectedEvent 8886000

GC1: CallCtlConnInitiatedEv 8886000

GC1: TermConnCreatedEvent irvCTIPort6

GC1: TermConnActiveEvent irvCTIPort6

GC1: CallCtlTermConnTalkingEv irvCTIPort6

GC1: CallCtlConnDialingEv 8886000

GC1: CallCtlConnEstablishedEv 8886000

GC1: ConnCreatedEvent 8889000

GC1: ConnInprogressEvent 8889000

GC1: CallCtlConnOfferedEv 8889000

GC1: ConnAlertingEvent 8889000

GC1: CallCtlConnAlertingEv 8889000

GC1: TermConnCreatedEvent irvCTIRD2

GC1: TermConnRingingEvent irvCTIRD2

GC1: CallCtlTermConnRingingEv irvCTIRD2

User1 invokes call.
connect (irvCTIPort6,
8886000, 8889000)

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889000

GC1: CallCtlConnEstablishedEv 8889000

GC1: TermConnActiveEvent irvCTIRD2

GC1: CallCtlTermConnTalkingEv irvCTIRD2

irvCTIRD2's Active
remote destination of
916267829523 answers
the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
868

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8884000,
CalledAddress = 8889000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

CallingAddress = 8889000,
CalledAddress = 8889001,
CurrentCallingAddress = 8889000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8889000,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC2: CallActiveEvent

GC2: ConnCreatedEvent : Address: 8884000

GC2: ConnConnectedEvent : Address: 8884000

GC2: CallCtlConnInitiatedEv : Address: 8884000

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort4

GC2: TermConnActiveEvent : Terminal:
irvCTIPort4

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIPort4

GC2: CallCtlConnDialingEv : Address: 8884000

GC2: TermConnCreatedEvent : Terminal:
irvCTIPort5

GC2: TermConnPassiveEvent : Terminal:
irvCTIPort5

GC2: CallCtlTermConnInUseEv : Terminal:
irvCTIPort5

GC2: CallCtlConnEstablishedEv :Address: 8884000

GC2: ConnCreatedEvent : Address: 8889000

GC2: ConnInprogressEvent : Address: 8889000

GC2: CallCtlConnOfferedEv : Address: 8889000

GC2: ConnAlertingEvent : Address: 8889000

GC2: CallCtlConnAlertingEv : Address: 8889000

GC2: TermConnCreatedEvent : Terminal:
irvCTIRD2

GC2: TermConnRingingEvent : Terminal:
irvCTIRD2

GC2: CallCtlTermConnRingingEv : Terminal:
irvCTIRD2

User1 invokes call.
connect (irvCTIPort4,
8884000, 8889000)

CallingAddress = 8884000,
CalledAddress = 8889000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallCtlTermConnHeldEv : Terminal:
irvCTIRD2

GC2: ConnConnectedEvent : Address: 8889000

GC2: CallCtlConnEstablishedEv :Address: 8889000

GC2: TermConnActiveEvent : Terminal: irvCTIRD2

GC2: CallCtlTermConnTalkingEv : Terminal:
irvCTIRD2

User1 invokes
GC2.answer(terminal
connection of
irvCTIRD2).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
869

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 8884000,
CalledAddress = 8889000,
CurrentCallingAddress = 8884000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8884000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC2: TermConnDroppedEv : Terminal: irvCTIRD2

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC2: ConnDisconnectedEvent : Address: 8889000

GC2: CallCtlConnDisconnectedEv : Address:
8889000

GC2: TermConnDroppedEv : Terminal: irvCTIPort4

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort4

GC2: TermConnDroppedEv : Terminal: irvCTIPort5

GC2: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort5

GC2: ConnDisconnectedEvent : Address: 8884000

GC2: CallCtlConnDisconnectedEv : Address:
8884000

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

disconnect() the GC2 call
on 8889000 connection.

CallingAddress = 8886000,
CalledAddress = 8889000,
CurrentCallingAddress = 8886000,
CurrentCalledAddress = 8889000,
ModifiedCallingAddress = 8886000,
ModifiedCalledAddress = 8889000,
No LastRedirectedPartyAddress

GC1: CallCtlTermConnTalkingEv

GC1: TermConnDroppedEv : Terminal: irvCTIRD2

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIRD2

GC1: ConnDisconnectedEvent : Address: 8889000

GC1: CallCtlConnDisconnectedEv : Address:
8889000

GC1: TermConnDroppedEv : Terminal: irvCTIPort6

GC1: CallCtlTermConnDroppedEv : Terminal:
irvCTIPort6

GC1: ConnDisconnectedEvent : Address: 8886000

GC1: CallCtlConnDisconnectedEv : Address:
8886000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

User1 invokes unhold()
on GC1 terminal
connection of
irvCTIRD2.

disconnect() the GC1 call
on 8889000 connection.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
870

Message Sequence Charts
Message Sequence Charts

CTI Remote Device Use Cases Group 6

Use Cases Group 6 (CTIRD URI-Dialing Basic Incoming and Outgoing DVO Call Scenarios)

Pre-conditions on Use Cases group 6 below with default jtapi.ini settings, unless specified explicitly (Note:
The CTI Ports have Auto-Accept enabled):

• Provider is IN_SERVICE state.

• Device A (CTI Remote Device - Name: "irvCTIRD3", Line A (DN: 8889001, Directory URIs:
"8889001A@cisco.com"))

• Remote Destination 1 (Name: "IRVCell1", Number: "916267829523", Active RD: true)

• Device B (CTI Port - Name: "irvCTIPort2", Line B (DN: 8882000, Directory URIs:
"8882000A@cisco.com"))

Scenario 6-1 (Basic Incoming Call From CTI Port to CTI Remote Device Via URI)

B calls A with GC1 as GCID of call. Application is observing both A and B.

Call infoEventsAction

CallingAddress = 8882000,
CalledAddress = 8889001,
CurrentCallingAddress = 8882000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8882000,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8882000

GC1: ConnConnectedEvent 8882000

GC1: CallCtlConnInitiatedEv 8882000

GC1: TermConnCreatedEvent irvCTIPort2

GC1: TermConnActiveEvent irvCTIPort2

GC1: CallCtlTermConnTalkingEv irvCTIPort2

GC1: CallCtlConnDialingEv 8882000

GC1: CallCtlConnEstablishedEv 8882000

GC1: ConnCreatedEvent 8889001

GC1: ConnInprogressEvent 8889001

GC1: CallCtlConnOfferedEv 8889001

GC1: ConnAlertingEvent 8889001

GC1: CallCtlConnAlertingEv 8889001

GC1: TermConnCreatedEvent irvCTIRD3

GC1: TermConnRingingEvent irvCTIRD3

GC1: CallCtlTermConnRingingEv irvCTIRD3

User1 invokes call.
connect (irvCTIPort2,
8882000,
"8889001A@cisco.com")

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
871

Message Sequence Charts
CTI Remote Device Use Cases Group 6

Call infoEventsAction

CallingAddress = 8882000,
CalledAddress = 8889001,
CurrentCallingAddress = 8882000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8882000,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889001

GC1: CallCtlConnEstablishedEv 8889001

GC1: TermConnActiveEvent irvCTIRD3

GC1: CallCtlTermConnTalkingEv irvCTIRD3

irvCTIRD3's Active
remote destination of
916267829523 answers
the call.

CallingAddress = 8882000,
CalledAddress = 8889001,
CurrentCallingAddress = 8882000,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = 8882000,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIPort2

GC1: CallCtlTermConnDroppedEv irvCTIPort2

GC1: ConnDisconnectedEvent 8882000

GC1: CallCtlConnDisconnectedEv 8882000

GC1: TermConnDroppedEv irvCTIRD3

GC1: CallCtlTermConnDroppedEv irvCTIRD3

GC1: ConnDisconnectedEvent 8889001

GC1: CallCtlConnDisconnectedEv 8889001

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect() the call on
8882000 connection.

Scenario 6-2 (Basic Outgoing DVO Call From CTI Remote Device to CTI Port Via URI)

A calls B with GC1 as GCID of call. Application is observing both A and B.

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress = 8889001,
CurrentCallingAddress = Unknown,
CurrentCalledAddress = 8889001,
ModifiedCallingAddress = Unknown,
ModifiedCalledAddress = 8889001,
No LastRedirectedPartyAddress

GC1: CallActiveEvent

GC1: ConnCreatedEvent 8889001

GC1: ConnInprogressEvent 8889001

GC1: CallCtlConnOfferedEv 8889001

User1 invokes call.
connect (irvCTIRD3,
8889001,
"8882000A@cisco.com")

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
872

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = Unknown,
CalledAddress 8889001,
CurrentCallingAddress = 8889001,
CurrentCalledAddress = 8882000,
ModifiedCallingAddress = 8889001,
ModifiedCalledAddress = 8882000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8889001

GC1: CallCtlConnEstablishedEv 8889001

GC1: TermConnCreatedEvent irvCTIRD3

GC1: TermConnActiveEvent irvCTIRD3

GC1: CallCtlTermConnTalkingEv irvCTIRD3

GC1: ConnCreatedEvent 8882000

GC1: ConnInprogressEvent 8882000

GC1: CallCtlConnOfferedEv 8882000

GC1: ConnAlertingEvent 8882000

GC1: CallCtlConnAlertingEv 8882000

GC1: TermConnCreatedEvent irvCTIPort2

GC1: TermConnRingingEvent irvCTIPort2

GC1: CallCtlTermConnRingingEv irvCTIPort2

irvCTIRD3's Active
remote destination of
916267829523 answers
the call.

CallingAddress = Unknown,
CalledAddress = 8889001,
CurrentCallingAddress = 8889001,
CurrentCalledAddress = 8882000,
ModifiedCallingAddress = 8889001,
ModifiedCalledAddress = 8882000,
No LastRedirectedPartyAddress

GC1: ConnConnectedEvent 8882000

GC1: CallCtlConnEstablishedEv 8882000

GC1: TermConnActiveEvent irvCTIPort2

GC1: CallCtlTermConnTalkingEv irvCTIPort2

Answer() the call on
8882000 terminal
connection.

CallingAddress = Unknown,
CalledAddress = 8889001,
CurrentCallingAddress = 8889001,
CurrentCalledAddress = 8882000,
ModifiedCallingAddress = 8889001,
ModifiedCalledAddress = 8882000,
No LastRedirectedPartyAddress

GC1: TermConnDroppedEv irvCTIRD3

GC1: CallCtlTermConnDroppedEv irvCTIRD3

GC1: ConnDisconnectedEvent 8889001

GC1: CallCtlConnDisconnectedEv 8889001

GC1: TermConnDroppedEv irvCTIPort2

GC1: CallCtlTermConnDroppedEv irvCTIPort2

GC1: ConnDisconnectedEvent 8882000

GC1: CallCtlConnDisconnectedEv 8882000

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Disconnect() the call on
8889001 connection.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
873

Message Sequence Charts
Message Sequence Charts

CTI RD Call Forward
Table 264: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Not Set and "Route Calls to All Remote Destinations When Client Is Not Connected"
Is Enabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2, E - Enterprise Line

Call InfoEventsAction

ProvInServiceEvUser1Opens Provider and adds a provider observer

Add Call Observer on A, B and E

All RDD's
will ring

CallActiveEv on A, B, E

ConnCreatedEv on A, B, E

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B, E

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnCreatedEv on B

ConnInProgressEv on B, E

CallCtlConnOfferedEv on B, E

ConnAlertingEv on A, B, E

CallCtlConnAlertingEv on A, B, E

TermConnCreated on Term B

TermConnRingingEv on B, E

CallCtlTermConnRingingEv on B, E

A calls B

At Step 3:

ConnConnectedEv on B

CallCtlConnEstablishedEv on B

TermConnActiveEvent on B

CallCtlTermConnTalkingEv on B

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
874

Message Sequence Charts
CTI RD Call Forward

Call InfoEventsAction

At Step 4:

TermConnDroppedEv on A, B, E

CallCtlTermConnDroppedEv on A, B, E

ConnDisconnectedEv on A, B, E

CallCtlConnDisconnectedEv on A, B, E

CallInvalidEv

CallObservationEndedEv on A, B, E

Disconnects the call

Table 265: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Not Set and "Route Calls to All Remote Destinations When Client Is Not Connected
"is Disabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Opens only A and no events for B

CallActiveEv on A, B,

ConnCreatedEv on A, B,

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B,

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B,

CallCtlConnAlertingEv on A, B,

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

GC1: A calls B

USER_BUSY on
Shared enterprise line

ConnFailedEv for ACall will disconnect with message
USER_BUSY

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
875

Message Sequence Charts
Message Sequence Charts

Table 266: Phone A Calls CTIRD When CTI Remote Device Is Observed, Remote Destination Is Not Configured and "Route Calls to All Remote Destinations When
Client Is Not Connected" Is Enabled; A- IP Phone, B - CTI-RD. VoiceMail Is Configured

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CallActiveEv on A, B,

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnInProgressEv on VoiceMail of B

CallCtlConnOfferedEv on VoiceMail of B

ConnAlertingEv on VoiceMail of B

CallCtlConnAlertingEv on VoiceMail of B

GC1: A calls B

Call will route to
voice mail number

Call will Route to Voice mail number

Table 267: Phone A Calls CTIRD When CTI Remote Device Is Observed, Remote Destination Is Not Configured and "Route Calls to All Remote Destinations When
Client Is Not Connected" Is Disabled; A - IP Phone, B - CTI-RD. VoiceMail Is Configured for B

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Only A is observed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
876

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallActiveEv on A, B

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B, C

CallCtlConnAlertingEv on A, B

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

A calls B

Call will route to
voice mail number

Call will Route to Voice mail number

Table 268: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Set and "Route Calls to All Remote Destinations When Client Is Not Connected"
Is Enabled; A IP Phone, B CTI-RD, C RDD1, D RDD2

Call
Info

EventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider observer

Applications adds C as the active remote destination
on B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
877

Message Sequence Charts
Message Sequence Charts

Call
Info

EventsAction

CallActiveEv on A, B

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B

CallCtlConnAlertingEv on A, B

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on

CallCtlTermConnRingingEv on B

A calls B

ConnConnectedEv on B

CallCtlConnEstablishedEv on B

TermConnActiveEvent on B

CallCtlTermConnTalkingEv on B

C answers the call

TermConnDroppedEv on A, B

CallCtlTermConnDroppedEv on A, B

ConnDisconnectedEv on A, B

CallCtlConnDisconnectedEv on A, B

CallObservationEndedEv on A, B

C Disconnects the call

Table 269: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Set and "Route Calls to All Remote Destinations When Client Is Not Connected"
Is Disabled; A IP Phone, B CTI-RD, C RDD1, D RDD2

Call
Info

EventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider observer

Applications adds C as the active remote destination
on B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
878

Message Sequence Charts
Message Sequence Charts

Call
Info

EventsAction

CallActiveEv on A, B

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B,

CallCtlConnAlertingEv on A, B

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

A calls B

ConnConnectedEv on B

CallCtlConnEstablishedEv on B

TermConnActiveEvent on B

CallCtlTermConnTalkingEv on B

C answers the call

TermConnDroppedEv on A, B

CallCtlTermConnDroppedEv on A, B

ConnDisconnectedEv on A, B

CallCtlConnDisconnectedEv on A, B

CallObservationEndedEv on A, B

C Disconnects the call

Table 270: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Not Set and "Route Calls to All Remote Destinations When Client Is Not Connected"
Is Enabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2, E - Enterprise Line

Call InfoEventsAction

ProvInServiceEvUser1Opens Provider and adds a provider observer

Add Call Observer on A, B and E

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
879

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

All RDD will
ring

CallActiveEv on A, B, E

ConnCreatedEv on A, B, E

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B, E

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B, E

CallCtlConnAlertingEv on A, B, E

ConnInProgressEv on B, E

CallCtlConnOfferedEv on B, E

TermConnRingingEv on B, E

CallCtlTermConnRingingEv on B, E

A calls B

ConnConnectedEv on B

CallCtlConnEstablishedEv on B

TermConnActiveEvent on B

CallCtlTermConnTalkingEv on B

C answers the call

TermConnDroppedEv on A, B, E

CallCtlTermConnDroppedEv on A, B, E

ConnDisconnectedEv on A, B, E

CallCtlConnDisconnectedEv on A, B, E

CallObservationEndedEv on A, B, E

C Disconnects the call

Table 271: Phone A Calls CTIRD When CTI Remote Device Is Observed, Active RD Is Not Set and "Route Calls to All Remote Destinations When Client Is Not Connected
"is Disabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Add Call Observers on A and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
880

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

All RDD will ringCallActiveEv on A, B,

ConnCreatedEv on A, B,

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B,

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B,

CallCtlConnAlertingEv on A, B,

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

A calls B

USER_BUSYonShared
enterprise line

call will disconnect with message
USER_BUSY

Table 272: Phone A Calls CTIRD When CTI Remote Device Is Observed, Remote Destination Is Not Configured and "Route Calls to All Remote Destinations When
Client Is Not Connected" Is Enabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Add Call Observers on A and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
881

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallActiveEv on A, B,

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B

CallCtlConnAlertingEv on A, B

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

A calls B

Call will route to
voice mail number

Call will Route to Voice mail number

Table 273: Phone A Calls CTIRD When CTI Remote Device Is Observed, Remote Destination Is Not Configured and "Route Calls to All Remote Destinations When
Client Is Not Connected" Is Disabled; A - IP Phone, B - CTI-RD, C - RDD1, D - RDD2

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Add Call Observers on A and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
882

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallActiveEv on A, B

ConnCreatedEv on A, B

ConnConnectedEv on A

CallCtlConnInitiatedEv on A

TermConnCreatedEv on A, B

TermConnActiveEvent on A

CallCtlTermConnTalkingEv on A

CallCtlConnDialingEv on A

CallCtlConnEstablishedEv on A

ConnAlertingEv on A, B, C

CallCtlConnAlertingEv on A, B

ConnInProgressEv on B

CallCtlConnOfferedEv on B

TermConnRingingEv on B

CallCtlTermConnRingingEv on B

A calls B

Call will route to
voice mail number

Call will Route to Voice mail number

CTI Video Support
Use cases related to CTI Video Support feature are mentioned below:

Scenario 1:

Phone A is video capable, telepresence capable, with 1 screen and a camera, and in registered state. User1
has phone A in the control list. User invokes
CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability() before opening the device.

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA. getCiscoMultiMediaCapabilityInfo(). getVideoCapability()
= VIDEO_ENABLED

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMultiMediaCapabilityInfo(). getTelepresenceInfo
() = TELEPRESENCEINTEROP_ENABLED

User1 invokes CiscoTerminal.i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
883

Message Sequence Charts
CTI Video Support

Call infoEventsAction

termA. getCiscoMultiMediaCapabilityInfo(). getScreenCount ()
= 1

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 2

Phone A is not video capable, not telepresence capable with 0 screens. User1 has phone A in the control list.
The user invokes CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability() before opening
device

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA. getCiscoMultiMediaCapabilityInfo(). getVideoCapability()
= NONE

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMultiMediaCapabilityInfo(). getTelepresenceInfo
() = TELEPRESENCEINTEROP_NONE

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

termA. getCiscoMultiMediaCapabilityInfo(). getScreenCount ()
= 0

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 3

Phone A is video capable, telepresence capable, with 1 screen and a camera. User1 has phone A in the control
list. The user invokes CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability() after opening
the device.

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = NONE

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = VIDEO_ENABLED

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () =
TELEPRESENCEINTEROP_ENABLED

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
884

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

termA. getCiscoMultiMediaCapabilityInfo().
getScreenCount () = 1

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 4

Phone A is video not capable, not telepresence capable with 0 screens. User1 has phone A in the control list.
The user invokes CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability() after opening the
device.

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = NONE

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () =
TELEPRESENCEINTEROP_NONE

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

termA. getCiscoMultiMediaCapabilityInfo().
getScreenCount () = 0

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 5

Phone A is video capable, telepresence capable, with 1 screen and a camera. User1 does not have phone A in
the control list. User1 has Super provider capabilities.

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermCreatedEv TermA

CiscoAddrCreatedEv A

User1 aquires phone A using
prov.createTerminal("phoneA")

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = VIDEO_ENABLED

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
885

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

termA. getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () =
TELEPRESENCEINTEROP_ENABLED

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

termA. getCiscoMultiMediaCapabilityInfo().
getScreenCount () = 1

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 6

Phone A is not video capable, not telepresence capable and has 0 screens. User1 does not have phone A in
the control list. User1 has Super provider capabilities

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermCreatedEv TermA

CiscoAddrCreatedEv A

User1 aquires phone A using
prov.createTerminal("phoneA")

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = NONE

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () =
TELEPRESENCEINTEROP_NONE

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

termA. getCiscoMultiMediaCapabilityInfo().
getScreenCount () = 0

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 7

Phone A is a CTI Port or RoutePoint. User1 has phone A in the control list. The user invokes
CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability().

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA and registeres it

The API returnsMethodNotSupportedException - Not
supported on Media Terminals and RPs and Remote
Terminals

User1 invokes CiscoTerminal.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
886

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

The API returnsMethodNotSupportedException - Not
supported on Media Terminals and RPs and Remote
Terminals

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo () on termA

The API returnsMethodNotSupportedException - Not
supported on Media Terminals and RPs and Remote
Terminals

User1 invokes CiscoTerminal. i
getCiscoMultiMediaCapabilityInfo().
getScreenCount () on termA

Scenario 8

Basic Video call: Phone A is video enabled, telepresence enabled with 1 screen. Phone B is video disabled ,
telepresence disabled with 0 screens. Both the phones are in the control list of User1.

Call infoEventsAction

ProvInServiceEvUser Opens provider and adds observer

CiscoTermInServiceEv TermA

CiscotermInServiceEv TermB

User adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User adds callObserves on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
887

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEvA

GC1:TermConnCreatedEv
TermA

GC1:TermConnActiveEv
TermA

GC1:CallCtlTermConnTalkingEv
TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv
A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1
CallCtlTermConnRingingEvImpl
B

User makes a call from A to B

GC1 ConnConnectedEv B

GC1CallCtlConnEstablishedEv
B

GC1 TermConnActiveEv B

GC1
CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv
TermA

CiscoRTPInputStartedEv
TermB

CiscoRTPOutputStartedEv
TermA

CiscoRTPOutputStartedEv
TermB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
888

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

The API returns 1, indicating video capable device(
VIDEO_ENABLED) for TermA(far-end party).

App does CiscoCall.
getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1

The API returns 1, indicating telepresence capable
device(TELEPRESENCEINTEROP_ENABLED) for
TermA(far-end party).

App does CiscoCall.
getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1

The API returns 1, indicating device has 1 screen, for
TermA(far-end party).

App does CiscoCall.
getCallingTerminalMulti
MediaCapabilityInfo. getScreenCount() on
GC1

The API returns 0, indicating video capable device(
NONE) for Term B

App does CiscoCall.
getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1

The API returns 1, indicating device is not telepresence
capable (TELEPRESENCEINTEROP_NONE) for
TermA(far-end party).

App does CiscoCall.
getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1

The API returns 1, indicating device has 0 screens, for
TermA(far-end party).

App does CiscoCall.
getCalledTerminalMulti
MediaCapabilityInfo .getScreenCount() on
GC1

Scenario 9

Phone A is video disabled (in CUCM Admin Phone page, the Video Capabilities field is 'Disabled') , but
the device has an an external camera (USB or CUVA) plugged in. Phone A is in registered state.

Call infoEventsAction

ProvInServiceEvUser1 Opens Provider and
adds a provider observer

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = NONE

User1 invokes
CiscoTerminal.
getCiscoMulti
MediaCapabilityInfo().
getVideoCapability() on
termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
889

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = VIDEO_ENABLED

CiscoProvTerminalMultiMedia
CapabilityChangedEv

In Device Configuration
CUCM Admin pages- Video
Capabilities field is changed
to'Enabled'

No event is delivered, as the device is still a video
capable device as it can receive video

The external camera is
removed, or the Cisco
Camera field in CUCM
Admin Phone page is
'Disabled'

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = VIDEO_ENABLED

User1 invokes
CiscoTerminal.
getCiscoMulti
MediaCapabilityInfo().
getVideoCapability() on
termA

termA. getCiscoMultiMediaCapabilityInfo().
getVideoCapability() = NONE

CiscoProvTerminalMultiMedia
CapabilityChangedEv

In Device Configuration
CUCM Admin pages- Video
Capabilities field is changed
to'Disabled'

Device and Line Restriction
EventsScenarioS.No

Application has Devices T1, T2, T3 whose lines are A1,
A2, A3 in the control list. T1 and A3 is added into the
restricted list. Application opens the provider

1

CiscoTerminal.isRestricted() returns true for T1 and false for T2
and T3

Application queries for is Restricted on T1, T2, T3

CiscoAddress.isRestricted() returns true for A1, A3, false for A2.Application queries for is Restricted on Address A1, A2,
A3

CiscoAddress.getRestrictedAddrTerminals() on A1, A3 returns
T1, T3 respectively, returns null for A2.

addObserver and addCallObserver fails for T1, A1, A3. For T3
observer is added, but no events are received on A3. For A2,
application will be able to add observers successfully and events
will be received

Application tries to addObserver and addCallObserver
on T1, T2, T3, A1, A2, A3

Application has Devices T1, T2, T3 whose lines are A1,
A2, A3 in the control list.

2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
890

Message Sequence Charts
Device and Line Restriction

EventsScenarioS.No

CiscoTermRestrictedEv for T1
CiscoAddrRestrictedEv for L1
CiscoAddrRestrictedEv for A2 sent to providerObserver.

Application opens the provider and adds observer on all
terminals and addresses.

CiscoTermOutOfServiceEv for T1
CiscoAddrOutOfServiceEv for L1
CiscoAddrOutOfServiceEv for A2

T1 and A2 are added to the restrictedlist.

CiscoTermActivatedEv for T1 and
CiscoAddrActivatedEv for A1
CiscoAddrActivatedEv for A2 sent to providerObserver.
CiscoTermInServiceEv for T1 and
CiscoAddrInServiceEv for A1
CiscoAddrInServiceEv for A2 sent to terminal and address
observers.

T1 and L2 are removed from restricted list

Application has Devices T1, T2, T3 whose lines are A1,
A1, A2 in the control list. A1 is the shared line on T1 and
T2

3

Application opens provider and adds observer on all
terminals/addresses

Application will see CiscoTermRestrictedEv for T1 and
CiscoAddrRestrictedOnTerminalEv which contains getAddress
is L1 and getTerminal as T1. Application will also see
CiscoTermOutOfServiceEv for T1 and CiscoAddrOutOfService
for A1/T1

T1 is added into the restricted list.

CiscoTermActivatedEv for T1
CiscoAddrActivatedEv for L1
CiscoTermInServiceEv for T1
CiscoAddrInServiceEv for A1/T1

T1 is removed from the restricted list

Application has Devices T1, T2, T3 whose lines are A1,
A1, A1 in the control list. A1 is the shared line on T1, T2
and T3

4

Application opens the provider and adds observer on all
terminals and addresses

CiscoAddrRestrictedOnTerminalEv for A1/T1
CiscoAddrOutOfServiceEv for A1/T1

A1 on T1 is added to the restricted list

CiscoAddrRestrictedOnTerminalEv for A1/T2
CiscoAddrOutOfServiceEv for A1/T2

A1 on T2 is added to therestricted list

CiscoAddrRestrictedEv for A1
CiscoAddrOutOfServiceEv for A1/T3

A1 on T3 is added to therestricted list

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
891

Message Sequence Charts
Message Sequence Charts

EventsScenarioS.No

CiscoAddrActivatedOnTerminalEv for A1/T1
CiscoAddrInServiceEv for A1/T1

A1 on T1 is removed from the restricted list

CiscoAddrActivatedOnTerminalEv for A1/T2
CiscoAddrInServiceEv for A1/T2

A1 on T2 is removed from the restricted list

CiscoAddrActivatedEv for A1
CiscoAddrInServiceEv for A1/T3

A1 on T3 is removed from the restricted list

Application has Devices T1, T2, T3 whose lines are A1,
A2, A3 in the control list.

5

CiscoAddrRestrictedEv for A1
CiscoAddrOutOfServiceEv for A1

Application opens the provider and adds observer on all
terminals and addresses. A1 is involved in a call with
party X.

A1 is added into the restricted list.

ConnDisconnectedEv
CallCtlConnDisconnectedEv
TermConnDroppedEv
CallCtlConnDroppedEv
CallInvalidEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
892

Message Sequence Charts
Message Sequence Charts

Device State Server

Do Not Disturb
Configuration: Application is observing terminal A and terminal B.

Scenario One

Application adds Terminal observer to terminal A using Terminal.addObserver(). Filter is enabled via
setDNDChangedEvFilter. DND is enabled on the terminal. Application invokes getDNDStatus() from
CiscoTerminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
893

Message Sequence Charts
Device State Server

Call infoEventsAction

N.ANEWMETA EVENT_________

META_CALL_STARTING

CiscoTermDNDStatusChangedEv A

Cause: CAUSE_NORMAL for DND Status: true

DND status = true is returned to the application

Application adds terminal observer to terminal A. Filter
is enabled via setDNDChangedEvFilter() in
CiscoTermEvFilter. DND is enabled on the terminal
through phone or admin page.

Application invokes getDNDStatus() fromCiscoTerminal.

Scenario Two

Application enables filter to receive events. Application adds Terminal observer to terminal A using
Terminal.addObserver(). DND is enabled on the terminal. Application invokes getDNDStatus() from
CiscoTerminal.

Call infoEventsAction

N.ANEWMETA

EVENT_________META_CALL_STARTING

CiscoTermDNDStatusChangedEv A Cause:
CAUSE_NORMAL for DND Status: true

DND status = true is returned to the application

Application enables filter to receive events. Application
adds terminal observer to terminal

A. DND is enabled on the device through phone or admin
pages.

Application invokes getDNDStatus() fromCiscoTerminal.

Scenario Three

Application adds Terminal observer to terminal A using Terminal.addObserver(). Filter is disabled via
setDNDChangedEvFilter() in CiscoTermEvFilter. Application invokes getDNDStatus() from CiscoTerminal.

Call infoEventsAction

N.ACiscoTermDNDStatusChangedEv is not delivered to
application.

Application adds Terminal observer to terminal A using
Terminal.addObserver(). Filter is disabled via
setDNDChangedEvFilter() in CiscoTermEvFilter.

Application invokes getDNDStatus() fromCiscoTerminal.

Scenario Four

Application does not add Terminal observer to terminal. Application invokes getDNDStatus() from
CiscoTerminal.

Call infoEventsAction

N.AInvalidStateException is thrownApplication does not add Terminal observer to terminal.
Application invokes getDNDStatus() fromCiscoTerminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
894

Message Sequence Charts
Message Sequence Charts

Scenario Five

Application does not enable the filter to receive events. Application adds Terminal observer to terminal A.
DND status is set to true through the phone or admin pages. Application now enables the filter to receive
events. Application invokes getDNDStatus() from CiscoTerminal.

Call infoEventsAction

N.ACiscoTermDNDStatusChangedEv is not delivered to
application.

NEW META EVENT_________

META_CALL_STARTING

CiscoTermDNDStatusChangedEv A Cause:
CAUSE_NORMAL for DND Status: true

DND status = true is returned to application

Application does not enable the filter to receive
events.Application adds Terminal observer to terminal A.
DND status is set to true through the phone or admin
pages.

Application now enables the filter to receive events

Application invokes getDNDStatus() from

CiscoTerminal.

Scenario Six

Application sets DND status to false by invoking the setDNDStatus() interface on CiscoTerminal.

Call infoEventsAction

N.ANEWMETA EVENT_________

META_CALL_STARTING

CiscoTermDNDStatusChangedEv A

Cause: CAUSE_NORMAL for DND Status: false

Application invokes setDNDStatus() fromCiscoTerminal.

Scenario Seven

Application 1 and Application 2 are observing terminal a, and both the applications have enabled the filter to
receive events. Application 1 sets DND status to false on Terminal A. Application 2 is observing Terminal
A.

Call infoEventsAction

N.ANEWMETA EVENT_________

META_CALL_STARTING

CiscoTermDNDStatusChangedEv A

Cause: CAUSE_NORMAL for DND Status: false

Application invokes setDNDStatus() fromCiscoTerminal.

Scenario Eight

DND Type is RingerOff and CFNA is not set. Terminal B calls Terminal A. Call is presented to A and call
is not answered.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
895

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

N.ACall is presented to the device, irrespective of the DND
settings on the device. CER call overrides DND setting.

Application invokes redirect() API with feature priority
set to 3 from CiscoCall.

N.ACall is presented to the device, irrespective of the DND
settings on the device. CER call overrides DND setting.

Application invokes selectRoute() APIwith feature priority
set to 3 from CiscoRouteSession.

Scenario Nine

Call infoEventsAction

N.AConnFailedEv Cause: CAUSE_NO ANSWERDND Type is RingerOff and CFNA is not set. Terminal
B calls Terminal A .Call is presented to A and call is not
answered.

Scenario Ten

DND Type is CallReject and CFB is not set. Terminal B calls Terminal A. Call is not presented to A.

Call infoEventsAction

N.AConnFailedEv Cause: CAUSE_USER BUSYDND Type is CallReject and CFB is not set. Terminal B
calls Terminal A. Call is not presented to A

Scenario Eleven

DND is enabled on the terminal A. Terminal A comes IN_SERVICE. Application invokes getDNDStatus()
on CiscoTerm in ServiceEv.

Call infoEventsAction

N.ACiscoTermInServiceEv

Cause: CAUSE_NORMAL

DND Status = true

DND is enabled on the terminal A. Terminal A comes
IN_SERVICE.

Scenario Twelve

DND is enabled on terminal A. Terminal A comes IN_SERVICE. Application invokes setDNDStatus(). DB
failure happens after the setDNDStatus() request is sent.

Call infoEventsAction

N.APlatformException is thrown “Could not meet post
conditions of setDNDStatus()”

No CiscoTermDNDStatusChangedEv is received.

DND is enabled on the terminal A. Terminal A comes
IN_SERVICE. Application invokes setDNDStatus(). DB
failure follows and value is not updated in DB.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
896

Message Sequence Charts
Message Sequence Charts

Scenario Thirteen

DND is enabled on the terminalA. Terminal A comes IN_SERVICE, DND status is currently true in
phone/admin. Application tries to set the same value i.e. invokes setDNDStatus(true).

Call infoEventsAction

N.AInvalidStateException is caught: DND status with value
true is already set

No CiscoTermDNDStatusChangedEv is received.

DND is enabled on the terminal A. Terminal A comes
IN_SERVICE.DND status is currently true in
phone/admin.Application tries to set the same value i.e.
invokes setDNDStatus(true).

DND-R

Scenario One

Application adds Terminal observer to terminal A using Terminal.addObserver (). DND-R is enabled on the
terminal B via the Admin page or the Common profile page.

Call infoEventsAction

N.ANEWMETA EVENT_________

META_CALL_STARTING

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for ACause: CAUSE_NORMAL

ConnFailedEv B Cause:.

Cause: CAUSE_USERBUSY.

Application adds terminal observers to terminal A and B.
DND-R is enabled on the terminal B through phone or
admin page.

A issues Call.connect to B with the feature Priority = 1
(Normal)

Scenario Two

Application adds Terminal observer to terminal A using Terminal.addObserver (). DND-R is enabled on the
Terminal B via the Admin page or the Common profile page.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
897

Message Sequence Charts
DND-R

Call infoEventsAction

Calling: A

Called: B

NEWMETA EVENT_________

META_CALL_STARTING

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for ACause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause:CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause:
CAUSE_NORMAL

ConnCreatedEv for B cause:CAUSE_NORMAL

ConnInProgressEv for B Cause:CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause:CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

Application adds terminal observers to terminal A and B.
DND-R is enabled on the terminal B through phone or
admin page.

A issues Call.connect to B with the feature Priority = 3
(Emergency)

Scenario Three

DND-Call reject with CFB not set.

Call infoEventsAction

NANEWMETA EVENT_________

META_CALL_STARTING

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause:CAUSE_NORMAL

ConnConnectedEv for A Cause:CAUSE_NORMAL

CallCtlConnInitiatedEv for ACause:CAUSE_NORMAL

ConnFailedEv B Cause:CAUSE_USERBUSY.

Application adds terminal observers to terminal A and B.
DND-R is enabled on the terminal B through phone or
admin page with no CFB Setting.

Terminal A issues Call.connect to Terminal B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
898

Message Sequence Charts
Message Sequence Charts

Scenario Four

DND – Call reject with CFB set to C.

Call infoEventsAction

Calling: A

Called: C

LastRedirectedParty: B

NEWMETA EVENT_________

META_CALL_STARTING

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause:CAUSE_NORMAL

ConnConnectedEv forACause:CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause:
CAUSE_NORMAL

TernConnActiveEv for A Cause:
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause:
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause:
CAUSE_NORMAL

ConnCreatedEv for C cause: REDIRECTEDCALL

ConnInProgressEv for C Cause: REDIRECTED
CALL

CallCtlConnOfferedEv for CCause: REDIRECTED
CALL

ConnAlertingEv for CCause REDIRECTEDCALL

CallCtlConnAlertingEv for CCause: REDIRECTED
CALL

TermConnCreatedEv for C Cause: REDIRECTED
CALL

TermConnRingingEv for C Cause: REDIRECTED
CALL

CallCtlTermConnTalkingEv Cause:
CAUSE_REDIRECTED

Application is Observing Terminal A, B & C.

DND-R is Enabled in Terminal B with CFB set to
Terminal C.

Terminal A issues Call.connect to Terminal B.

Call is not Presented on Terminal B and is
Forwarded to Terminal C.

Dynamic CTIPort Registration Per Call
The following diagram illustrates the message flows for Dynamic CTIPort Registration per call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
899

Message Sequence Charts
Dynamic CTIPort Registration Per Call

E911 Teleworker
SelectRoute Method

Call infoEventsUse Case

No changes in the callinfoNo changes in the eventsNo changes in use case with selectRoute
Method

Redirect Method

Call infoEventsUse Case

No changes in the callinfoNo changes in the eventsNo changes in use case with redirect
Method

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
900

Message Sequence Charts
E911 Teleworker

Encryption Enhancement
Table 274: Service Parameter "Require Public Key Encryption" Is Set to "False". Application Is Using a Pre 10.x CiscoJTAPI Version

InfoResultAction

ProvInServiceEvApplication opens a provider and adds a provider
observer

Table 275: Service Parameter "Require Public Key Encryption" Is Set to "True". Application Is Using a Pre 10.x CiscoJTAPI Version

InfoResultAction

getErrorCode() = CiscoJtapiException.
INCOMPATIBLE_PROTOCOL_ VERSION

PlatformExceptionApplication opens a provider

Table 276: Service Parameter "Require Public Key Encryption" Is Set to "False". Application Is Using a 10.x CiscoJTAPI Version

InfoResultAction

ProvInServiceEvApplication opens a provider and adds a provider
observer

Table 277: Service Parameter "Require Public Key Encryption" Is Set to "True". Application Is Using a 10.x CiscoJTAPI Version

InfoResultAction

ProvInServiceEvApplication opens a provider and adds a provider
observer

Table 278: SP Is Set to "True". Application Is Using 10.x CiscoJTAPI Lib. Application Has Provided Pub and Sub Ctimanager IP in the ProviderString

InfoResultAction

ProvInServiceEvApplication opens a provider and adds a provider
observer

ProvOutOfServiceCTIManager on the server to which app is connected
goes down

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
901

Message Sequence Charts
Encryption Enhancement

End to End Call Tracing
Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID1

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(TB) returns ID1

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(term) will throw
InvalidStateException

GC1: CallActiveEv

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

…

…

GC1: TermConnCreatedEv for TB

GC1: TermConnActiveEvent for TB

GC1: CallCtlTermConnTalkingEv for TB

1.a) Both A and B are in
user’s control list.

Basic Call

A calls B; App is
observing only B

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID1

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(TB) returns ID1

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(term) will throw
PrivilegeViolationException

GC1: CallActiveEv

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

……

……

GC1: TermConnCreatedEv for TB

GC1: TermConnActiveEvent for TB

GC1: CallCtlTermConnTalkingEv for TB

1.b) Only B is in User’s
control list

Basic Call

A calls B; App is
observing only B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
902

Message Sequence Charts
End to End Call Tracing

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) returns ID2

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID3

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID4

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: TermConnCreatedEv for TB

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnOfferedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B

GC1: CallCtlConnDisconnectedEv for B

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlConnEstablishedEv for C

GC1: CallCtlTermConnTalkingEv for TC

2.a) Redirect in offering
state Scenario All
Observed

A calls B;

B redirects the call to C
in offering state

C Accepts the call

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
903

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) returns ID6

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID7

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID8

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: TermConnCreatedEv for TB

GC1: ConnConnectedEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnOfferedEv for C

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv for TC

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B

GC1: CallCtlConnDisconnectedEv for B

2.b) Redirect in
connected state Scenario
All Observed

A calls B

B answers

B redirects the call to C
in connected state

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
904

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID10

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) throws
InvalidStateException

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID11

GC1: CallActiveEv

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: TermConnCreatedEv for TB

GC1: TermConnActiveEvent for TB

GC1: CallCtlConnEstablishedEv for A

GC1: CallCtlConnEstablishedEv for B

GC1: CallCtlTermConnTalkingEv for TB

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnOfferedEv for C

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv for TC

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B

GC1: CallCtlConnDisconnectedEv for B

3. Redirect ScenarioOnly
B & C are Observed

A calls B; B answers

B redirects the call to C
in connected state

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
905

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) returns ID12

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID13

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID14

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID15

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID16

4. Conference Scenario;
All observed

GC1: A calls B; B
answers

GC2: B calls C; C
answers

GC1.conference(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
906

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: TermConnCreatedEv for TB

GC1: ConnConnectedEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: CallCtlTermConnHeldEv for TB

GC2: CallActiveEv

GC2: ConnCreatedEv for B

GC2: ConnConnectedEv for B

GC2: CallCtlConnInitiatedEv for B

GC2: TermConnCreatedEv for TB

GC2: TermConnActiveEvent for TB

GC2: CallCtlTermConnTalkingEv for TB

GC2: ConnCreatedEv for C

GC2: ConnConnectedEv for C

GC2: CallCtlConnOfferedEv for C

GC2: TermConnCreatedEv for TC

GC2: ConnConnectedEv for B

GC2: CallCtlConnEstablishedEv for B

GC2: ConnConnectedEv for C

GC1: CiscoConferenceStartEv

GC1: CiscoCallFeatureCancelledEv

GC2: CiscoCallChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
907

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: ConnCreatedEvent for C

GC1: ConnConnectedEvent for C

GC1: CallCtlConnEstablishedEv for C

GC1: TermConnCreatedEvent for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv TC

GC2: TermConnDroppedEv for TC

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEvent for C

GC2: CallCtlConnDisconnectedEv for C

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEvent for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC1: CiscoConferenceEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
908

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) returns ID19

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID20

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID21

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID22

(

(CiscoConnection)(ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID23

5. Transfer Scenario; All
observed

GC1: A calls B; B
answers

GC2: B calls C; C
answers

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
909

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: TermConnCreatedEv for TB

GC1: ConnConnectedEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: CallCtlTermConnHeldEv for TB

GC2: CallActiveEv

GC2: ConnCreatedEv for B

GC2: ConnConnectedEv for B

GC2: CallCtlConnInitiatedEv for B

GC2: TermConnCreatedEv for TB

GC2: TermConnActiveEvent for TB

GC2: CallCtlTermConnTalkingEv for TB

GC2: ConnCreatedEv for C

GC2: ConnConnectedEv for C

GC2: CallCtlConnOfferedEv for C

GC2: TermConnCreatedEv for TC

GC2: ConnConnectedEv for B

GC2: CallCtlConnEstablishedEv for B

GC2: ConnConnectedEv for C

GC2: CallCtlConnEstablishedEv for C

GC1: CiscoTransferStartEv

GC2: CiscoCallChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
910

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnEstablishedEv for C

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv for TC

GC2: TermConnDroppedEv for TC

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B

GC1: CallCtlConnDisconnectedEv for B

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B

GC2: CallCtlConnDisconnectedEv for B

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

GC1: CiscoTransferEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
911

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(TA) returns ID25

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID26

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(T1) returns ID26

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(T2) returns ID26

(Connection of B).getUniqueID(null) returns returns
ID26

(Connection of B).getUniqueID(T1) returns returns
ID26

(Connection of B).getUniqueID(T2) returns returns
ID26

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: CallCtlConnDialingEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnCreatedEv for B

GC1: ConnInProgressEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnAlertingEv for B

GC1: TermConnCreatedEv for T1B

GC1: TermConnRingingEv for T1B

GC1: CallCtlTermConnRingingEv for T1B

GC1: TermConnCreatedEv for T2B

GC1: TermConnRingingEv for T2B

GC1: CallCtlTermConnRingingEv for T2B

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: TermConnActiveEv for T1B

GC1: CallCtlTermConnTalkingEv for T1B

GC1: TermConnPassiveEv for T2B

GC1: CallCtlTermConnBridgedEv

6. Shared Line Scenario;
All Observed; DN B is
present on T1, T2

A calls B;

B(T1) Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
912

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(TA) returns ID27

(Connection of B).getUniqueID(null) returns returns
ID28

(Connection of B).getUniqueID(T1) returns returns
ID28

(Connection of B).getUniqueID(T2) returns returns
ID28

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: CallCtlConnDialingEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnCreatedEv for B

GC1: ConnInProgressEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnAlertingEv for B

GC1: TermConnCreatedEv for T1B

GC1: TermConnRingingEv for T1B

GC1: CallCtlTermConnRingingEv for T1B

GC1: TermConnCreatedEv for T2B

GC1: TermConnRingingEv for T2B

GC1: CallCtlTermConnRingingEv for T2B

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: TermConnActiveEv for T1B

GC1: CallCtlTermConnTalkingEv for T1B

GC1: TermConnPassiveEv for T2B

GC1: CallCtlTermConnBridgedEv

7. Shared Line Barge
Scenario; All Observed;
DN B is present on T1,
T2

A calls B;

B(T1) Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
913

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

((CiscoConnection)(GC2: ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID29

(GC1: Connection of B).getUniqueID(T1) returns
returns ID28

(GC1: Connection of B).getUniqueID(T2) returns
returns ID30

(GC1: Connection of B).getUniqueID(null) is
unpredictible

(can be either of above two)

GC2: CallActiveEv

GC2: ConnCreatedEv for B

GC2: ConnConnectedEv for B

GC2: CallCtlConnInitiatedEv for B

GC2: TermConnCreatedEv for T2B

GC2: TermConnCreatedEv for T1B

GC2: CiscoCallChangedEv

GC1: TermConnActiveEv for T2B

GC1: CallCtlTermConnTalkingEv for T2B

GC2: TermConnDroppedEv for T2B

GC2: CallCtlTermConnDroppedEv for T2B

GC2: TermConnDroppedEv for T2B

GC2: CallCtlTermConnDroppedEv for T2B

GC2: ConnDisconnectedEv for B

GC2: CallCtlConnDisconnectedEv for B

GC2: CallInvalidEv

GC2: CallObservationEndedEv

B(T2) Presses Barge

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
914

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(

(CiscoConnection)(ConnCreatedEv for
A).getConnection()).getUniqueID(null) returns ID31

(

(CiscoConnection)(ConnCreatedEv for
B).getConnection()).getUniqueID(null) returns ID32

((CiscoConnection)(GC1: ConnCreatedEv for
ParkDN).getConnection()).getUniqueID(null)
throws PrivilegeVoilationException

((CiscoConnection)(GC2: ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID34

((CiscoConnection)(GC1: ConnCreatedEv for
C).getConnection()).getUniqueID(null) returns ID35

8. Park/Unpark Scenario
(All Observed)

A calls B; B answers

B does PARK

C Unparks

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
915

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for A

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: ConnCreatedEv for B

GC1: ConnConnectedEv for B

GC1: CallCtlConnOfferedEv for B

GC1: TermConnCreatedEv for TB

GC1: ConnConnectedEv for A

GC1: CallCtlConnEstablishedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: ConnCreatedEv for ParkDN

GC1: CallCtlConnQueuedEv for ParkDN

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B

GC1: CallCtlConnDisconnectedEv for B

GC2: CallActiveEv

GC2: ConnCreatedEv for C

GC2: ConnConnectedEv for C

GC2: CallCtlConnInitiatedEv for C

GC2: TermConnCreatedEv for TC

GC2: CiscoCallChangedEv

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: TermConnCreatedEv for TC

GC1: ConnDisconnectedEv for ParkDN

GC1: CallCtlConnDisconnectedEv for ParkDN

GC2: TermConnDroppedEv for TC

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
916

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC2: CallInvalidEv

GC2: CallObservationEndedEv

(Connection for A).getUniqueID(null) returns ID37

(Connection for B).getUniqueID(null) returns ID38

(GC1: Connection for C).getUniqueID(null) returns
ID39

(Connection for C).getUniqueID(null) returns ID40

(Connection for D).getUniqueID(null) returns ID41

(GC3: Connection for E).getUniqueID(null) returns
ID42

((CiscoConnection)(GC3: ConnCreatedEv for
cBridge-GC1).getConnection()).getUniqueID(null)
throws PrivilegeVoilationException

((CiscoConnection)(GC1: ConnCreatedEv for
cBridge-GC3).getConnection()).getUniqueID(null)
throws PrivilegeVoilationException

(Connection for A).getUniqueID(null) returns ID37

(Connection for B).getUniqueID(null) returns ID38

(Connection for C).getUniqueID(null) returns ID39

(Connection for D).getUniqueID(null) returns ID41

(Connection for E).getUniqueID(null) returns ID42

GC1 and GC3 are created as normal

GC1 has connections for A, B and C(Held)

GC3 has connections for C(Talking), D and E

GC3: ConnCreatedEvent for cBridge-GC1

GC3: CiscoConferenceChainAddedEv

GC3: ConnConnectedEvent for cBridge-GC1

GC3: CallCtlConnEstablishedEv for cBridge-GC1

GC3: TermConnDroppedEv for TC

GC3: CallCtlTermConnDroppedEv for TC

GC3: ConnDisconnectedEvent for C

GC3: CallCtlConnDisconnectedEv C

GC1: CallCtlTermConnTalkingEv for TC

GC1: ConnCreatedEvent for cBridge-GC3

GC1: CiscoConferenceChainAddedEv

GC1: ConnConnectedEvent for cBridge-GC3

GC3: CallCtlConnEstablishedEv for cBridge-GC3

9. Conference Chaining
Scenario; All Observed

GC1: A calls B; B
answers and adds C to
conference

GC3: C calls D; D
answers and adds E to
conference

App sends
GC1.conference(GC3) to
chain two conferences

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
917

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

((CiscoConnection)(GC1: ConnCreatedEv for
D).getConnection()).getUniqueID(null) returns ID43

GC3: TermConnDroppedEv for TE

GC3: CallCtlTermConnDroppedEv for TE

GC3: ConnDisconnectedEvent for E

GC3: CallCtlConnDisconnectedEv E

GC1: ConnDisconnectedEvent for cBridge-GC3

GC1: CiscoConferenceChainRemovedEv

GC1: CallCtlConnDisconnectedEv cBridge-GC3

GC3: CiscoCallChangedEv

GC1: ConnCreatedEvent for D

GC1: ConnConnectedEvent for D

GC1: CallCtlConnEstablishedEv for D

GC1: TermConnCreatedEvent for TD

GC1: TermConnActiveEvent for TD

GC1: CallCtlTermConnTalkingEv for TD

GC3: ConnDisconnectedEvent for cBridge-GC1

GC3: CiscoConferenceChainRemovedEv

GC3: CallCtlConnDisconnectedEv cBridge-GC31

GC3: TermConnDroppedEv for TD

GC3: CallCtlTermConnDroppedEv for TD

GC3: ConnDisconnectedEvent for D

GC3: CallCtlConnDisconnectedEv D

GC3: CallInvalidEvent

GC3: CallObservationEndedEv

Application sends
E.disconnect()

Hunt Log Status for Phone Devices
In the following use cases A, B, C, and D are IP phones where A and B are a part of line group which is
configured to hunt pilot HP. A is the first hunt member and it is logged out of the hunt group and B is the
second hunt member and it is logged in to the hunt group on hunt pilot. For the following use cases the
CiscoTermEvFilter. setHuntLogStatusChangedEvFilter() is set to true.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
918

Message Sequence Charts
Hunt Log Status for Phone Devices

Call To Hunt Pilot where device is logged into hunt group

Call informationEventsAction

Ev.getHutLogStatus() =
CiscoTerminal.DEVICE_HUNT_LOGGED_IN

CiscoTermHuntLogStatusChangedEv on
A

OnA, huntLogStatus is set to CiscoTerminal.
DEVICE_HUNT_LOGGED_IN using the
method setHuntLogStatus(int huntLogStatus).

CurrentCallingParty = C

CurrentCalledParty = A

GC1 CallActiveEv C

GC1 ConnCreatedEv C

GC1 ConnConnectedEv C

GC1 CallCtlConnInitiatedEv C

GC1 TermConnCreatedEv TermC

GC1 TermConnActiveEV TermC

GC1 CallCtlTermConnTalkingEv TermC

GC1 CallCtlConnDialingEv C

GC1 CallCtlConnEstablishedEv C

GC1 CiscoHuntConnCreatedEv HP

GC1 ConnInProgressEv HP

GC1 CallCtlConnOfferedEv HP

C calls Hunt pilot HP.

GC1 ConnCreatedEv A

GC1 ConnInProgressEv A

GC1 CallCtlConnOfferedEv A

GC1 ConnAltertingEv A

GC1 CallCtlConnAlertingEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnRingingEv TermA

GC1 CallCtlTermConnRingingEv TermA

HP offers the call to A as it is the first hunt
member and A starts ringing.

CurrentCallingParty = C

CurrentCalledParty = A

GC1 ConnConnectedEv HP1

GC1 CallCtlConnEstablishedEv HP1

GC1 ConnConnectedEv A

GC1 CallCtlConnEstablishedEv A

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

A answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
919

Message Sequence Charts
Message Sequence Charts

Call To Hunt Pilot where device is logged out of the hunt group

Call informationEventsAction

Ev.getHuntLogStatus() =
CiscoTerminal.DEVICE_HUNT_LOGGED_OUT

CiscoTermHuntLogStatusChangedEv on
A

On A, huntLogStatus is set to
CiscoTerminal.
DEVICE_HUNT_LOGGED_OUT using
the method setHuntLogStatus(int
huntLogStatus) for the terminal to log in to
the huntgroup.

CurrentCallingParty = C

CurrentCalledParty = B

GC1 CallActiveEv C

GC1 ConnCreatedEv C

GC1 ConnConnectedEv C

GC1 CallCtlConnInitiatedEv C

GC1 TermConnCreatedEv TermC

GC1 TermConnActiveEV TermC

GC1 CallCtlTermConnTalkingEv TermC

C calls Hunt pilot HP.

GC1 CallCtlConnDialingEv C

GC1 CallCtlConnEstablishedEv C

GC1 CiscoHuntConnCreatedEv HP

GC1 ConnInProgressEv HP

GC1 CallCtlConnOfferedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAltertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEv TermB

HP offers the call to B as A which is the
first hunt member logged out of the hunt
group and B is the second hunt member. B
starts ringing.

CurrentCallingParty = C

CurrentCalledParty = B

GC1 ConnConnectedEv HP1

GC1 CallCtlConnEstablishedEv HP1

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv TermB

GC1 CallCtlTermConnTalkingEv TermB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
920

Message Sequence Charts
Message Sequence Charts

Updating the value of huntlogstatus on Unsupported device(Route Point/Spark Remote device/CTI Remote
Device)

Call informationEventsAction

com.cisco.jtapi.MethodNotSupportedException:Operation
not allowed

huntLogStatus is set to CiscoTerminal.
DEVICE_HUNT_LOGGED_IN using the
method setHuntLogStatus(int huntLogStatus) for
the route point to log in to the huntgroup.

Updating the value of huntlogstatus on the terminal which is out of service

Call informationEventsAction

com.cisco.jtapi.InvalidStateExceptionhuntLogStatus is set to CiscoTerminal.
DEVICE_HUNT_LOGGED_INusing themethod
setHuntLogStatus(int huntLogStatus) on D which
is not in service

Energywise Deep Sleep Mode
Scenario 1

JTAPI reports new reason“ENERGYWISE_POWER_SAVE_PLUS”in CiscoProvTerminalUnRegisteredEv
and cause“CAUSE_ENERGYWISE_POWER_SAVE_PLUS”in CiscoTermOutOfServiceEv and
CiscoAddrOutOfServiceEv to the application when a terminal/address unregisters from Cisco Unified CM
due to deep sleep time.

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
'A'

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

[Term A] CiscoProvTerminalUnRegisteredEv

[Term A] CiscoTermOutOfServiceEv

[Addr A] CiscoAddrOutOfServiceEv

Terminal 'A' enters Deep
Sleep mode and gets
unregistered

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
921

Message Sequence Charts
Energywise Deep Sleep Mode

Scenario 2

Terminal gets unregistered due to Deep Sleep mode and the user tries to manually register the terminal during
the Deep Sleep time.

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
'A''

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

[Term A] CiscoProvTerminalUnRegisteredEv

[Term A] CiscoTermOutOfServiceEv

[Addr A] CiscoAddrOutOfServiceEv

Terminal 'A' goes to
Deep Sleep mode and
gets unregistered

Cisco Unified IP 7900 Series phones do not
re-register with the Cisco Unified CM during the
Deep Sleep time. This is a limitation of the phone.

Cisco Unified IP 9900 and 6900 Series phones
register back with the Cisco Unified CM by pressing
the select key on the phone.

A user tries to register the
phonewith CiscoUnified
CM during deep sleep
mode.

[Term A] CiscoProvTerminalRegisteredEv

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

Phone registers with the
Cisco Unified CM after
the Deep Sleep time
expires.

Scenario 3

Shared line scenario. Two devices A (Cisco Unified IP Phones 7900 Series phone) and A' (CTI Port) are
configured with the same line. Deep Seep mode is enabled on device A

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

[Term A'] CiscoTermInServiceEv

[Addr A'] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
A and A'

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
922

Message Sequence Charts
Message Sequence Charts

InformationEventsDescription

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

[Term A] CiscoProvTerminalUnRegisteredEv

[Term A] CiscoTermOutOfServiceEv

[Addr A] CiscoAddrOutOfServiceEv

Terminal A goes to Deep
Sleep mode and gets
unregistered.

(Terminal A' remains in
registered state.)

Scenario 4

Shared line scenario. Two devices A and A' (both are Cisco Unified IP Phones 7900 Series phones) that have
are configured with the same line. Deep Sleep mode is enabled on A. Another device B calls the shared line
after device A enters to the Deep Sleep mode.

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

[Term A'] CiscoTermInServiceEv

[Addr A'] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
A and A'

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER

[Term A] CiscoTermOutOfServiceEv

[Addr A] CiscoAddrOutOfServiceEv

Terminal A goes to deep
sleep mode and gets
unregistered.

(Terminal A' remains in
registered state.)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
923

Message Sequence Charts
Message Sequence Charts

InformationEventsDescription

GC1 CallActiveEv

GC1 ConnCreatedEv [Addr B]

GC1 ConnConnectedEv [Addr B]

GC1 CallCtlConnInitiatedEv [Addr B]

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

GC1 ConnCreatedEv [Addr A']

GC1 ConnInProgressEv [Addr A']

GC1 CallCtlConnOfferedEv [Addr A']

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

GC1 ConnConnectedEv [Addr A']

GC1 CallCtlConnEstablishedEv [Addr A']

GC1 TermConnActiveEv [Term A']

GC1 CallCtlTermConnTalkingEv [Term A'

Another terminal B calls
to the shared line DN.

Scenario 5

Shared line scenario. Two device A (Cisco Unified IP Phones Series 9900/6900 phone) and A' (Cisco Unified
IP Phones Series 9900/6900 phone) are configured with the same line. Deep Sleep mode is enabled on both
devices.

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

[Term A'] CiscoTermInServiceEv

[Addr A'] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
A and A'

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
924

Message Sequence Charts
Message Sequence Charts

InformationEventsDescription

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

[Term A] CiscoProvTerminalUnRegisteredEv

[Term A'] CiscoProvTerminalUnRegisteredEv

[Term A] CiscoTermOutOfServiceEv

[Term A'] CiscoTermOutOfServiceEv

[Addr A] CiscoAddrOutOfServiceEv

[Addr A'] CiscoAddrOutOfServiceEv

Terminal A and A' enters
Deep Sleep mode and
gets unregistered

Term A] CiscoProvTerminalRegisteredEv

[Term A'] CiscoProvTerminalRegisteredEv

[Term A] CiscoTermInServiceEv

[Term A'] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

[Addr A'] CiscoAddrInServiceEv

Deep Sleep mode power
off time has expired and
A and A' reregister to the
Cisco Unified CM

Scenario 6

Basic call scenario. Two devices A (CTI port) and B (Cisco Unified IP Phones 7900 Series phone) are
configured on a Cisco Unified CM and Deep Sleep mode is enabled on B with power off time configured for
6:00 PM. A calls B at 5:55 pm and the call continues until 6:10 pm. The idle timer is set for 10 minutes.

InformationEventsDescription

ProvInServiceEv P1

[Term A] CiscoTermInServiceEv

[Addr A] CiscoAddrInServiceEv

[Term B] CiscoTermInServiceEv

[Addr B] CiscoAddrInServiceEv

Application opens the
provider and adds
observer on provider,
terminal and address of
A and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
925

Message Sequence Charts
Message Sequence Charts

InformationEventsDescription

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

GC1 CallActiveEv

GC1 ConnCreatedEv [Addr B]

GC1 ConnConnectedEv [Addr B]

GC1 CallCtlConnInitiatedEv [Addr B]

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

GC1 ConnCreatedEv [Addr A]

GC1 ConnInProgressEv [Addr A]

GC1 CallCtlConnOfferedEv [Addr A]

- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

GC1 ConnConnectedEv [Addr A]

GC1 CallCtlConnEstablishedEv [Addr A]

GC1 TermConnActiveEv [Term A]

GC1 CallCtlTermConnTalkingEv [Term A]

Terminal B calls A at
5:55 pm. A answers the
call and goes to
connected state.

At 6:00 pm Deep Sleep
time is enabled but the
call does not get dropped
and remains active.

GC1 TermConnDroppedEv [Term B]

GC1 CallCtlTermConnDroppedEv [Term B]

GC1 ConnDisconnectedEv [Addr B]

GC1 CallCtlConnDisconnectedEv [Addr B]

GC1 CallInvalidEv

The user disconnects the
call from the phone at
6:10 PM and the idle
timer (set for 10 minutes)
starts.

CiscoProvTerminalUnRegisteredEv.getReason() =
CiscoProvTerminalUnRegisteredEv.
ENERGYWISE_POWER_ SAVE_PLUS

CiscoTermOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

CiscoAddrOutOfServiceEv.getCause() =
CiscoOutOfServiceEv.
CAUSE_ENERGYWISE_POWER_ SAVE_PLUS

[Term B] CiscoProvTerminalUnRegisteredEv

[Term B] CiscoTermOutOfServiceEv

[Addr B] CiscoAddrOutOfServiceEv

There is no action on
phone A for the next 10
minutes. So at 6:20 pm,
after the idle timer has
expired, the terminal
enters Deep Sleep mode
and unregisters from the
Cisco Unified CM.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
926

Message Sequence Charts
Message Sequence Charts

External Call Control
You should assume that all devices in the following use cases are obsereved, unless explicilty stated otherwise
in the use case description.

The first few use cases go through the full event series for the basic call setup. After the first three or four,
the use cases leave this part out, as it is standard for most of the use cases. If you do not see the basic call
event series at the beginning of a use case, you can assume that it was intended to have happened successfully
before the first event in the use case.

The last column in the use cases, that specifies the call info for a various stage of the use case, will initially
have the full method invocation to retrieve the call information, for example
CiscoCall.getModifiedCallingParty(). After the first three or four uses cases, only the method name is specified,
such as .getModifiedCallingParty(). You can assume that this is to be prefixed with CiscoCall unless explicitly
stated otherwise, such as for the CiscoCallChangeEvs.

Use Cases for BasicCall

Basic Call Initiated From JTAPI / Phone

Configuration

Phone A, B are in cluster devices.

Procedure:

Application invokes connect() at A to call B, or physical phone for A dials the number for B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
927

Message Sequence Charts
External Call Control

Call infoEventsActions

CiscoCall.getCurrentCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getCurrntCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall getCallingAddress() = A,

CiscoCall getModifiedCalledAddress() = B,

CiscoCall getCalledAddress() = B,

CiscoCall getCurrentCallingTerminal() = Terminal
of A.

CiscoCall getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

A initiates call to B

Connection of A created,
called party info set

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall getCallingAddress() = A,

CiscoCall getModifiedCalledAddress() = B,

CiscoCall getCalledAddress() = B,

CiscoCall getCurrentCallingTerminal() = Terminal
of A.

CiscoCall getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B,

CiscoCall.getCalledAddress() = B,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = Terminal
of B

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv-B

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-B

GC1-ConnConnectedEvent-B

GC1-CallCtlConnEstablishedEv-B

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

Connection of B created

B starts ringing

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
928

Message Sequence Charts
Message Sequence Charts

Use Cases for Calls Going Through Translation Pattern with CEPN Info in Cc
Signals

Basic Call Initiated From JTAPI to the DN with Translation Pattern Configured to Transform Called Party

Configuration

Phone A, B are in cluster devices.

B has a translation pattern configured where called party get transformed to B1.

Procedure:

Application invokes connect() at A to call B.

Call infoEventsActions

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B1,

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

A initiates call to B

Connection of A created,

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
929

Message Sequence Charts
Use Cases for Calls Going Through Translation Pattern with CEPN Info in Cc Signals

Call infoEventsActions

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getCurrentCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getCurrentCalledAddress() = B1,

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = Terminal
of B1

GC1-ConnCreatedEvent-B1

GC1-ConnInprogressEvent-B1

GC1-CallCtlConnOfferedEv-B1

GC1-ConnAlertingEvent-B1

GC1-CallCtlConnAlertingEv-B1

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-B1

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

Connection of B1 created

B1 starts ringing

B1 Answers

Basic Call Initiated From JTAPI to the DN with Translation Pattern Configured to Transform Calling Party

Configuration

Phone A, B are in cluster devices.

B has a translation pattern configured where calling party gets transformed to A1.

Procedure:

Application invokes connect() at A to call B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
930

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall getCallingAddress() = A,

CiscoCall getCurrentCallingAddress() = A,

CiscoCall getModifiedCalledAddress() = B,

CiscoCall getCalledAddress() = B,

CiscoCall getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv-B

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-B

A initiates call to B

Connection of A created,

Connection of B created

B starts ringin

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B,

CiscoCall.getCalledAddress() = B,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A

CiscoCall.getCurrentCalledTerminal() = Terminal
of B

GC1-ConnConnectedEvent-B

GC1-CallCtlConnEstablishedEv-B

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

B Answers

Basic Call Initiated From JTAPI to the DN with Translation Pattern Configured to Transform Both Calling and
Called Parties

Configuration

Phone A, B are in cluster devices.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
931

Message Sequence Charts
Message Sequence Charts

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B

Call infoEventsAction

CiscoCall.getModifiedCallingAddress() = A,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = “”,

CiscoCall.getCalledAddress() = “”,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall getCallingAddress() = A,

CiscoCall getModifiedCalledAddress() = B1,

CiscoCall getCalledAddress() = B1,

CiscoCall getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B1,

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv-B

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-B

A initiates call to B

Connection of A created,
called party info set

Connection of B1 created

B1 starts ringing

A gets CallStateChg

For Ringback

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
932

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B1,

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A.

CiscoCall.getCurrentCalledTerminal() = Terminal
of B1

GC1-ConnConnectedEvent-B

GC1-CallCtlConnEstablishedEv-B

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

B1 Answers

Called Party Redirects a Call Which Has Transformed Calling and Called Parties

Configuration

Phone A, B, C are in cluster devices.

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. B1 redirects the call in connected state.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
933

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B1,

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() =
Terminal of B1

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = terminal
of A.

CiscoCall.getCurrentCalledTerminal() = null

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B1

GC1-CallCtlConnDisconnectedEv-B1

A and B1 receive
Connected Call State

(Basic Call)

B1 redirects the call to C

Connection for C is
created

C rings

B1 gets dropped

A gets CallStateChg for
Ringback

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = terminal
of A.

CiscoCall.getCurrentCalledTerminal() = terminal
of C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
934

Message Sequence Charts
Message Sequence Charts

Called Party Which Has Transformed Calling and Called Parties Parks the Call and Receives a Park Reminder
Call

Configuration

Phone A, B are in cluster devices. C is a park DN (also in cluster)

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. B1 answers and then B1 parks the call and after park reversion
timer expiry receives the reminder call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
935

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = B1,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getLastRedirectedAddress() = Park DN C,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getLastRedirectedAddress() = Park DN C,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of B1

… See use case 15.7.1.1.1 …

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B1

GC1-CallCtlConnDisconnectedEv-B1

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnQueuedEv-C

GC1-ConnCreatedEvent-B1

GC1-ConnInprogressEvent-B1

GC1-CallCtlConnOfferedEv-B1

GC1-ConnAlertingEvent-B1

GC1-CallCtlConnAlertingEv-B1

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnDisconnectedEvent-C

GC1-CallCtlConnDisconnectedEv-C

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

A and B1 receive
Connected Call State

(Basic Call)

B1 Parks the call

Connection for C is
created

B1 gets park reminder

B1 rings

C gets dropped

B1 Answers

Calling Party Parks the Call and Receives a Park Reminder Call After a Transformation From Called Party
Translation Pattern

Configuration

Phone A, B are in cluster devices. C is a park DN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
936

Message Sequence Charts
Message Sequence Charts

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. B1 answers and then A parks the call and after park reversion
timer expiry receives the reminder call.

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = A,

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = A,

.getCalledAddress() = A,

.getLastRedirectedAddress() = Park DN C,

.getCurrentCallingTerminal() = terminal of B1

.getCurrentCalledTerminal() = null

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-A

GC1-CallCtlConnDisconnectedEv-A

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnQueuedEv-C

GC1-ConnCreatedEvent-A

GC1-ConnInprogressEvent-A

GC1-CallCtlConnOfferedEv-A

GC1-ConnAlertingEvent-A

GC1-CallCtlConnAlertingEv-A

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

A and B1 receive
Connected Call State

(Basic Call)

A Parks the call

Connection for C is
created

A gets park reminder

A rings

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = A,

.getCalledAddress() = A,

.getLastRedirectedAddress() = Park DN C,

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = terminal of A

GC1-ConnDisconnectedEvent-C

GC1-CallCtlConnDisconnectedEv-C

GC1-ConnConnectedEvent-A

GC1-CallCtlConnEstablishedEv-A

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C gets dropped

A Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
937

Message Sequence Charts
Message Sequence Charts

Caller Redirects a Call Which Has Transformed Calling and Called Parties

Configuration

Phone A, B, C are in cluster devices.

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. A redirects the call in connected state.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
938

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

CiscoCall.getModifiedCallingAddress() = A1,

CiscoCall.getCallingAddress() = A,

CiscoCall.getModifiedCalledAddress() = B1,

CiscoCall.getCalledAddress() = B1,

CiscoCall.getCurrentCallingTerminal() = Terminal
of A. CiscoCall.getCurrentCalledTerminal() =
Terminal of B1

CiscoCall.getModifiedCallingAddress() = B1,

CiscoCall.getCallingAddress() = B1,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = A,

CiscoCall.getCurrentCallingTerminal() = terminal
of B1.

CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = B1,

CiscoCall.getCallingAddress() = B1,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = A,

CiscoCall.getCurrentCallingTerminal() = terminal
of B1.

CiscoCall.getCurrentCalledTerminal() = null

CiscoCall.getModifiedCallingAddress() = B1,

CiscoCall.getCallingAddress() = B1,

CiscoCall.getModifiedCalledAddress() = C,

CiscoCall.getCalledAddress() = C,

CiscoCall.getLastRedirectedAddress() = A,

CiscoCall.getCurrentCallingTerminal() = terminal
of B1.

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-A

GC1-CallCtlConnDisconnectedEv-A

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

A and B1 receive
Connected Call State

(Basic Call)

A redirects the call to C

Connection for C is
created

C rings

A gets dropped

B1 gets CallStateChg for
Ringback

C Answers

Called Party Transfers the Call Which Has Transformed Calling and Called Parties

Configuration

Phone A, B, C are in cluster devices.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
939

Message Sequence Charts
Message Sequence Charts

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. B1 consult transfer the call to C.

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = null,

.getCalledAddress() = null,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = null

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

CG1-CallCtlTermConnHeldEv

GC2-ConsultCallActiveEvent

GC2-ConnCreatedEvent-B1

GC2-ConnConnectedEvent-B1

GC2-CallCtlConnInitiatedEv-B1

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-B1

GC2-CallCtlConnEstablishedEv-B1

GC2-ConnCreatedEvent-C

GC2-ConnInprogressEvent-C

GC2-CallCtlConnOfferedEv-C

GC2-ConnAlertingEvent-C

GC2-CallCtlConnAlertingEv-C

GC2-TermConnCreatedEvent

GC2-TermConnRingingEvent

GC2-CallCtlTermConnRingingEv

A and B1 receive
Connected Call State

(Basic Call)

B1 consults call to C

Connection for C is
created (GC2)

C rings

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
940

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = null

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = terminal of C

Ev.getOriginalCall = GC2 (OCall)

Ev.getSurvivingCall = GC1 (FCall)

OCall.getModifiedCallingAddress() = B1,

OCall.getCallingAddress() = B1,

OCall.getModifiedCalledAddress() = C,

OCall.getCalledAddress() = C,

OCall.getLastRedirectedAddress() =

OCall.getCurrentCallingTerminal() = terminal of
B1

OCall.getCurrentCalledTerminal() = terminal of C

FCall.getModifiedCallingAddress() = A1,

FCall.getCallingAddress() = A,

FCall.getModifiedCalledAddress() = B1,

FCall.getCalledAddress() = B1,

FCall.getLastRedirectedAddress() =

FCall.getCurrentCallingTerminal() = terminal of A

FCall.getCurrentCalledTerminal() = terminal of B1

GC2-ConnConnectedEvent-C

GC2-CallCtlConnEstablishedEv-C

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC1-CiscoTermConnSelectChangedEv

GC2-CiscoTermConnSelectChangedEv

GC1-CiscoTransferStartEv

GC2-CiscoCallChangedEv

Transfer starts

Call Changes

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
941

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = B1

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B1

GC1-CallCtlConnDisconnectedEv-B1

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-B1

GC2-CallCtlConnDisconnectedEv-B1

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CiscoTransferEndEv

Connection for C is
created (GC1)

C gets dropped (GC2)

B1 gets dropped

(GC1)

B1 gets dropped

(GC2)

GC2 Invalid

Transfer comple

Called Party Transfers the Call Which Has Transformed Calling and Called Parties to a DN Which Matches
the Translation Pattern with Calling Party Transformation Defined

Configuration

Phone A, B, C are in cluster devices.

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

C matches the the translation pattern with calling party transformation to B2

Procedure:

Application invokes connect() at A to call B. B1 consult transfer the call to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
942

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = B2,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = null,

.getCalledAddress() = null,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B2,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B2,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

CG1-CallCtlTermConnHeldEv

GC2-ConsultCallActiveEvent

GC2-ConnCreatedEvent-B1

GC2-ConnConnectedEvent-B1

GC2-CallCtlConnInitiatedEv-B1

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-B1

GC2-CallCtlConnEstablishedEv-B1

GC2-ConnCreatedEvent-C

GC2-ConnInprogressEvent-C

GC2-CallCtlConnOfferedEv-C

GC2-ConnAlertingEvent-C

GC2-CallCtlConnAlertingEv-C

GC2-TermConnCreatedEvent

GC2-TermConnRingingEvent

GC2-CallCtlTermConnRingingEv

GC2-ConnConnectedEvent-C

GC2-CallCtlConnEstablishedEv-C

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC1-CiscoTermConnSelectChangedEv

GC2-CiscoTermConnSelectChangedEv

A and B1 receive
Connected Call State

(Basic Call)

B1 consults call to C

Connection for C is
created (GC2)

C rings

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
943

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCalledAddress() = C,

.getLastRedirectedAddress() = null

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = terminal of C

Ev.getOriginalCall = GC2 (OCall)

Ev.getSurvivingCall = GC1 (FCall)

OCall.getModifiedCallingAddress() = B2,

OCall.getCallingAddress() = B1,

OCall.getModifiedCalledAddress() = C,

OCall.getCalledAddress() = C,

OCall.getLastRedirectedAddress() =

OCall.getCurrentCallingTerminal() = terminal of
B1

OCall.getCurrentCalledTerminal() = terminal of C

FCall.getModifiedCallingAddress() = A1,

FCall.getCallingAddress() = A,

FCall.getModifiedCalledAddress() = B1,

FCall.getCalledAddress() = B1,

FCall.getLastRedirectedAddress() =

FCall.getCurrentCallingTerminal() = terminal of A

FCall.getCurrentCalledTerminal() = terminal of B1

.getModifiedCallingAddress() = A1,

GC1-CiscoTransferStartEv

GC2-CiscoCallChangedEv

Transfer starts Call
Changes

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
944

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = B1

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B1

GC1-CallCtlConnDisconnectedEv-B1

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-B1

GC2-CallCtlConnDisconnectedEv-B1

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CiscoTransferEndEv

Connection for C is
created (GC1)

C gets dropped (GC2)

B1 gets dropped (GC1)

B1 gets dropped(GC2)

GC2 Invalid

Transfer complete

Called Party with Transformed Calling and Called Parties Conferences a DN

Configuration

Phone A, B, C are in cluster devices.

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

Procedure:

Application invokes connect() at A to call B. B1 consult conference the call to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
945

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = null,

.getCalledAddress() = null,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B1,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = terminal of C

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CiscoTermConnSelectChangedEv

CG1-CallCtlTermConnHeldEv

GC2-CiscoConsultCallActiveEv

GC2-ConnCreatedEvent-B1

GC2-ConnConnectedEvent-B1

GC2-CallCtlConnInitiatedEv-B1

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-B1

GC2-CallCtlConnEstablishedEv-B1

GC2-ConnCreatedEvent-C

GC2-ConnInprogressEvent-C

GC2-CallCtlConnOfferedEv-C

GC2-ConnAlertingEvent-C

GC2-CallCtlConnAlertingEv-C

GC2-TermConnCreatedEvent

GC2-TermConnRingingEvent

GC2-CallCtlTermConnRingingEv

GC2-ConnConnectedEvent-C

GC2-CallCtlConnEstablishedEv-C

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

A and B1 receive
Connected Call State

(Basic Call)

B1 consults call to C

Connection for C is
created (GC2)

C rings

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
946

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

Ev.getOriginalCall = GC2 (OCall)

Ev.getSurvivingCall = GC1 (FCall)

OCall.getModifiedCallingAddress() = B1,

OCall.getCallingAddress() = B1,

OCall.getModifiedCalledAddress() = C,

OCall.getCalledAddress() = C,

OCall.getLastRedirectedAddress() =

OCall.getCurrentCallingTerminal() = terminal of
B1

OCall.getCurrentCalledTerminal() = terminal of C

FCall.getModifiedCallingAddress() = A1,

FCall.getCallingAddress() = A,

FCall.getModifiedCalledAddress() = B1,

FCall.getCalledAddress() = B1,

FCall.getLastRedirectedAddress() =

FCall.getCurrentCallingTerminal() = terminal of A

FCall.getCurrentCalledTerminal() = terminal of B1

GC1-CiscoConferenceStartEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-B1

GC2-CallCtlConnDisconnectedEv-B1

GC1-CiscoTermConnSelectChangedEv

GC1-CallCtlTermConnTalkingEv

GC2-CiscoCallChangedEv

Conference Starts

B1 gets dropped (GC2)

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = null,

.getCalledAddress() = C,

.getLastRedirectedAddress() = B1

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C *

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv-C

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CiscoConferenceEndEv

Connection for C is
created (GC1)

C gets dropped (GC2)

GC2 invalid

Conferece Ends

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
947

Message Sequence Charts
Message Sequence Charts

Called Party with Transformed Calling and Called Parties Conferences a DN Which Matches the Translation
Pattern with Calling Party Transformation Defined

Configuration

Phone A, B, C are in cluster devices.

B has a translation pattern configured where both calling and called parties get transformed to A1 and B1
respectively

C has a translation pattern configured where calling party gets transformed to B2.

Procedure:

Application invokes connect() at A to call B. B1 consult conference the call to C.

Call infoEventsActions

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = Terminal of B1

.getModifiedCallingAddress() = B1,

getCallingAddress() = B1,

.getModifiedCalledAddress() = null,

.getCalledAddress() = null,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = B2,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = null

GC1-ConnConnectedEvent-B1

GC1-CallCtlConnEstablishedEv-B1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CiscoTermConnSelectChangedEv

CG1-CallCtlTermConnHeldEv

GC2-CiscoConsultCallActiveEv

GC2-ConnCreatedEvent-B1

GC2-ConnConnectedEvent-B1

GC2-CallCtlConnInitiatedEv-B1

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-B1

GC2-CallCtlConnEstablishedEv-B1

GC2-ConnCreatedEvent-C

GC2-ConnInprogressEvent-C

GC2-CallCtlConnOfferedEv-C

GC2-ConnAlertingEvent-C

GC2-CallCtlConnAlertingEv-C

GC2-TermConnCreatedEvent

GC2-TermConnRingingEvent

GC2-CallCtlTermConnRingingEv

A and B1 receive
Connected Call State

(Basic Call)

B1 consults call to C

Connection for C is
created (GC2)

C rings

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
948

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = B2,

.getCallingAddress() = B1,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of B1.

.getCurrentCalledTerminal() = terminal of C

Ev.getOriginalCall = GC2 (OCall)

Ev.getSurvivingCall = GC1 (FCall)

OCall.getModifiedCallingAddress() = B2,

OCall.getCallingAddress() = B1,

OCall.getModifiedCalledAddress() = C,

OCall.getCalledAddress() = C,

OCall.getLastRedirectedAddress() =

OCall.getCurrentCallingTerminal() = terminal of
B1

OCall.getCurrentCalledTerminal() = terminal of C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnEstablishedEv-C

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC1-CiscoConferenceStartEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-B1

GC2-CallCtlConnDisconnectedEv-B1

GC1-CiscoTermConnSelectChangedEv

GC1-CallCtlTermConnTalkingEv

GC2-CiscoCallChangedEv

Conference Starts

B1 gets dropped (GC2)

FCall.getModifiedCallingAddress() = A1,

FCall.getCallingAddress() = A,

FCall.getModifiedCalledAddress() = B1,

FCall.getCalledAddress() = B1,

FCall.getLastRedirectedAddress() =

FCall.getCurrentCallingTerminal() = terminal of A

FCall.getCurrentCalledTerminal() = terminal of B1

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = null,

.getCalledAddress() = C,

.getLastRedirectedAddress() = B1

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

GC1-ConnCreatedEvent-C *

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv-C

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CiscoConferenceEndEv

Connection for C is
created (GC1)

C gets dropped (GC2)

GC2 invalid

Conferece Ends

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
949

Message Sequence Charts
Message Sequence Charts

WildCard Routepoint Interaction (Behavior Change)

WildCard RoutePoint Redirects a Basic Incoming Call to IPPhone

Configuration

Phone A, B are in cluster devices. 4XXX is a wildcard routepoint

Service parameter “Use WildCard pattern in CTI Call Info” is set to true.

Procedure:

Application invokes connect() at A to call 4000. 4XXX redirects the call to B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
950

Message Sequence Charts
WildCard Routepoint Interaction (Behavior Change)

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = 4000,

.getCalledAddress() = 4XXX,

.getCurrentCalledAddress() = 4XXX

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = 4XXX,

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-4XXX

GC1-ConnInprogressEvent-4XXX

GC1-CallCtlConnOfferedEv-4XXX

GC1-ConnAlertingEvent-4XXX

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv-B

GC1-TermConnCreatedEvent

A initiates call to 4000

Connection of A created,
called party info set

Connection of 4XXX
created

4XXX Redirects to B

Connection for B created

B is ringing

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
951

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getLastRedirectedAddress() = 4XXX,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCalledAddress() = 4XXX,

.getLastRedirectedAddress() = 4XXX,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of B

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-4XXX

GC1-CallCtlConnDisconnectedEv-4XXX

GC1-ConnConnectedEvent-B

GC1-CallCtlConnEstablishedEv-B

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

4XXX gets dropped

B Answers

WildCard Routepoint Interaction (Original Behavior)

WildCard RoutePoint Redirects a Basic Incoming Call to IPPhone

Notes / Caveats

This configuration is not supported. This use case is only intended to show the call flow or events for the
above use case with the Use WildCard pattern in CTI Call Info service parameter turned off. Applications
should not count on this information to be correct, and to properly support Wildcard Routepoint scenarios,
should look to adapting their applications so that they can support the new service parameter being enabled.

An important thing to note is that a connection is created for the dialed DN, 4000. This connection, as well
as the connection of 4XXX is not dropped from the call until the redirect happens. This means that if aWildcard
DN is configured on a phone or device, you will see connections for the calling party, 4000, and 4XXX. This
basic call will have three connections, whichmay confuse applications, whichmight believe it to be a conference
call. CiscoCall.isConference() would still return false in this scenario. As stated in previous sections, this extra
connection is created in error, and applications should not rely on this connection being there.

Configuration

Phone A, B are in cluster devices. 4XXX is a wildcard routepoint

Service parameter “Use WildCard pattern in CTI Call Info” is set to false / OFF.

Procedure:

Application invokes connect() at A to call 4000. 4XXX redirects the call to B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
952

Message Sequence Charts
WildCard Routepoint Interaction (Original Behavior)

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCurrentCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCurrentCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = 4000,

.getCurrentCalledAddress() = 4000,

.getCalledAddress() = 4000,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-4000

GC1-ConnInprogressEvent-4000

GC1-CallCtlConnOfferedEv-4000

GC1-ConnAlertingEvent-4000

GC1-ConnCreatedEvent-4XXX

GC1-ConnInprogressEvent-4XXX

GC1-CallCtlConnOfferedEv-4XXX

A initiates call to 4000

Connection of A created,
called party info set

Connection of 4000
created

Connection of 4XXX
created

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
953

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCurrentCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = 4000,

.getCurrentCalledAddress() = 4000,

.getCalledAddress() = 4000,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = 4000,

.getLastRedirectedAddress() = 4000,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = 4000,

.getLastRedirectedAddress() = 4000,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of B

GC1-ConnAlertingEvent-4XXX

(note: 3 connections on the 2 party call.)

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-4XXX

GC1-CallCtlConnDisconnectedEv-4XXX

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-4000

GC1-CallCtlConnDisconnectedEv-4000

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv-B

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-B

GC1-CallCtlConnEstablishedEv-B

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

4XXX Redirects to B

Connection for B created

B is ringing

B Answers

External Call Control Use Cases

External Call Control on Translation Pattern and CEPM Returns “continue”

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
954

Message Sequence Charts
External Call Control Use Cases

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns continue and hence call will be presented to B1 (see use case “Basic Call initiated from JTAPI
to the DN with Translation Pattern configured to transform called party” in the Use Cases for Calls Going
Through Translation Pattern with CEPN Info in Cc Signals, on page 929 topic).

External Call Control on Translation Pattern and CEPM Returns “divert”

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divert to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
955

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCurrentCalledAddress() = BXXX,

.getCalledAddress() = BXXX,

.getLastRedirectedAddress() = BXXX

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCurrentCalledAddress() = C,

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

A initiates call to B

Connection of A created,
called party info set

CEPM Returns divert to
C

Connection of C created

C starts ringing

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
956

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCalledAddress() = BXXX,

.getLastRedirectedAddress() = BXXX

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = BXXX,

.getLastRedirectedAddress() = B1

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C Answers

External Call Control on Translation Pattern and CEPM Returns <reject>

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B. The routing rule for B says “Reject”<reject>

CEPM returns reject.

A receives ConnFailedEvent (cause = CtiCallRejected), ConnDisconnectedEv (cause = normal),
CallInvalidEvent (caue = Normal).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
957

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

Cause = CtiCallRejected

Cause = Normal

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnFailedEv-A

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-A

GC1-CallCtlConnDisconnectedEv-A

GC1-CallInvalidEvent

GC1-CallObservationEndedEv

A initiates call to B

Connection of A created,

CEPM Returns Reject

External Call Control on Translation Pattern and CEPM Returns “continue” with Modified Calling and Called
Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns continue with ModifiedCalling = “MA” and ModifiedCalled = “MB”

Call will be extended to “C” (based on description for modified calling and modified called in divertTo routing
directive, overrides the calling & called number transformation configured for translation pattern and the call
is diverted to C. For details, see Use Cases for Calls Going Through Translation Pattern with CEPN Info in
Cc Signals, on page 929.)

Call Events:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
958

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getCurrentCallingAddress() = A

.getModifiedCalledAddress() = MB,

.getCurrentCalledAddess() = MB,

.getCalledAddress() = B1,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = MB,

.getCalledAddress() = MB,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of MB

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-MB

GC1-ConnInprogressEvent-MB

GC1-CallCtlConnOfferedEv-MB

GC1-ConnAlertingEvent-MB

GC1-CallCtlConnAlertingEv-MB

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-MB

GC1-ConnConnectedEvent-MB

GC1-CallCtlConnEstablishedEv-MB

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

A initiates call to B

Connection of A created,
called party info set

CEPM Returns continue
with modified
calling/called

Connection ofMBcreated

MB starts ringing

BAnswers

External Call Control on Translation Pattern and CEPM Returns “divert” with Modified Calling and Called
Parties

Configuration:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
959

Message Sequence Charts
Message Sequence Charts

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Result:

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divertTo = C, with ModifiedCalling = “MA” and ModifiedCalled = “MB”

Call will be extended to “C” (based on description for modified calling and modified called in divertTo routing
directive, overrides the calling & called number transformation configured for translation pattern and the call
is diverted to C. For details, see Use Cases for Calls Going Through Translation Pattern with CEPN Info in
Cc Signals, on page 929.)

Call Events:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
960

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = MB,

.getCurrentCalledAddress() = C

.getCalledAddress() = B1,

.getLastRedirectedAddress() = MB,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = MB,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

A initiates call to B

Connection of A created,
called party info set

CEPM Returns divert to
C, modify Called/Calling

Connection of C created

C starts ringing

C Answers

External Call Control on Translation Pattern and CEPM Returns “divert” with Modified Calling and Called
Parties with resetCallHistory flag = resetLastHop

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
961

Message Sequence Charts
Message Sequence Charts

Procedure:

Application invokes connect at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divertTo = C, with ModifiedCalling = “MA” and ModifiedCalled = “MB”, resetCallHistory
= “resetLastHop”

Call will be extended to “C” (based on description for modified calling and modified called in divertTo routing
directive, overrides the calling & called number transformation configured for translation pattern and the call
is diverted to C. For details, see Use Cases for Calls Going Through Translation Pattern with CEPN Info in
Cc Signals, on page 929.)

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = B1,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C

A initiates call to B

Connection of A created,
called party info set

CEPM Returns divert to
C, modify Called/Calling

Connection of C created

C starts ringing

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
962

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = B1,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C Answers

External Call Control on Translation Pattern and CEPM Returns “divert” with Modified Calling and Called
Parties with resetCallHistory flag = resetAll

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Procedure:

Application invokes connect() at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B.

CEPM returns divertTo = “C”, with ModifiedCalling = “MA” and ModifiedCalled = “MB”

C has a userRule configured to DivertTo = “D” with ModifiedCalling = “MMA”, ModifiedCalled = “MMB”,
resetCallHistory = “resetAll”

Call will be extended to “D”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
963

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A1,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MMA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = D,

.getCurrentCalledAddress() = D,

.getCalledAddress() = B1,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-D

GC1-ConnInprogressEvent-D

GC1-CallCtlConnOfferedEv-D

GC1-ConnAlertingEvent-D

GC1-CallCtlConnAlertingEv-D

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-D

A initiates call to B

Connection of A created,
called party info set

CEPM Returns divert to
C, modify Called/Calling

CEPM Returns divert to
D, modify Called/Calling

Connection of D created

D starts ringing

.getModifiedCallingAddress() = MMA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = D,

.getCalledAddress() = D,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of D

GC1-ConnConnectedEvent-D

GC1-CallCtlConnEstablishedEv-D

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

D Answers

External Call Control on Translation Pattern and CEPM Returns <reject> and Service Parameter CTI Use
Wildcard Pattern as calledPartyDN Is Set to False

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXXwhich has calling and called party
transformation defined to transform A to A1 and B to B1 and External Call Control is also enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
964

Message Sequence Charts
Message Sequence Charts

Procedure:

Application invokes connect() at A to call B.

Result

Dialed number B matches the translation pattern BXXX which has External Call Control enabled. This takes
precedence and CUCM requests CEPM to get routing rule for B. The routing rule for B says “Reject”<reject>

CEPM returns reject.

Jtapi throws platform exception to the application. A receives ConnFailedEvent (cause = CtiCallRejected),
ConnDisconnectedEv (cause = normal), CallInvalidEvent (caue = Normal).

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

Exception info: Could not meet post conditions of
connect()

Cause = CtiCallRejected

Cause = Normal

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnFailedEv-A

Jtapi throws Exception: PlatformException

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-A

GC1-CallCtlConnDisconnectedEv-A

GC1-CallInvalidEvent

GC1-CallObservationEndedEv

A initiates call to B

Connection of A created,

CEPM Returns Reject

Transfer and External Call Control with Modified Calling and Called Parties

Configuration

Phone A, B are in cluster devices. B matches the translation pattern BXXX where External Call Contol is
enabled.

Phone C and D does not match any translation pattern, and have no External Call Control defined.

Procedure:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
965

Message Sequence Charts
Message Sequence Charts

Application invokes connect() at A to call B. CEPM returns divertTo = C, with ModifiedCalling = “MA” and
ModifiedCalled = “MB”.

C initiate transfer to D and completes the transfer.

Result

Transfer is successfully completed

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B1,

.getCalledAddress() = B1,

.getLastRedirectedAddress() = null,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = B1,

.getLastRedirectedAddress() = MB

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C

A initiates call to B

Connection of A created,
called party info set

CEPM Returns divert to
C, modify Called/Calling

Connection of C created

C starts ringing

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
966

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = C,

.getCalledAddress() = C,

.getLastRedirectedAddress() = MB,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C

.getModifiedCallingAddress() = C,

.getCallingAddress() = C,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = C,

.getCallingAddress() = C,

.getModifiedCalledAddress() = D,

.getCalledAddress() = D,

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = C,

.getCallingAddress() = C,

.getModifiedCalledAddress() = D,

.getCalledAddress() = D,

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

CG1-CallCtlTermConnHeldEv

GC2-ConsultCallActiveEvent

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C

GC2-CallCtlConnEstablishedEv-C

GC2-ConnCreatedEvent-D

GC2-ConnInprogressEvent-D

GC2-CallCtlConnOfferedEv-D

GC2-ConnAlertingEvent-D

GC2-CallCtlConnAlertingEv-D

GC2-TermConnCreatedEvent

GC2-TermConnRingingEvent

GC2-CallCtlTermConnRingingEv

GC2-ConnConnectedEvent-D

GC2-CallCtlConnEstablishedEv-D

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

C Answers

C consult transfer to D

Connection for C created
(GC2)

Connection for D created
(GC2)

D Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
967

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C.

.getCurrentCalledTerminal() = terminal of D

Ev.getOriginalCall = GC2 (OCall)

Ev.getSurvivingCall = GC1 (FCall)

OCall.getModifiedCallingAddress() = C,

OCall.getCallingAddress() = C,

OCall.getModifiedCalledAddress() = D,

OCall.getCalledAddress() = D,

OCall.getLastRedirectedAddress() =

OCall.getCurrentCallingTerminal() = terminal of C

OCall.getCurrentCalledTerminal() = terminal of D

FCall.getModifiedCallingAddress() = MA,

FCall.getCallingAddress() = A,

FCall.getModifiedCalledAddress() = C,

FCall.getCalledAddress() = C,

FCall.getLastRedirectedAddress() = MB

FCall.getCurrentCallingTerminal() = terminal of A

FCall.getCurrentCalledTerminal() = terminal of C

.getModifiedCallingAddress() = MA,

.getCallingAddress() = A,

.getModifiedCalledAddress() = D,

.getCurrentCalledAddress() = D,

.getCalledAddress() = B1,

.getLastRedirectedAddress() = C

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of D

GC1-CiscoTermConnSelectChangedEv

GC2-CiscoTermConnSelectChangedEv

GC1-CiscoTransferStartEv

GC2-CiscoCallChangedEv

GC1-ConnCreatedEvent-D

GC1-ConnConnectedEvent-D

GC1-CallCtlConnEstablishedEv-D

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

Transfer Starts

D gets added to GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
968

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-D

GC2-CallCtlConnDisconnectedEv-D

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-C

GC1-CallCtlConnDisconnectedEv-C

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CiscoTransferEndEv

D gets dropped from
GC2

C gets dropped from
GC1

C gets dropped fromGC2

GC2 Invalid

Transfer ends

Chaperone Use Cases

Call Is Redirected to a Hunt List of Chaperones and the Chaperone Enables Call Recording and Conferences
in the Called Party

Configuration

A calls X, X’s DN matches the translation pattern where External Call Control is enabled.

CEPM determines this call needs to have a chaperone’s supervise. CEPM returns the permit decision with
the obligation <divert>, destination HuntPilot B, which is a hunt pilot of chaperones, and a reason string
“chaperone”.

CUCM redirects the call to the hunt pilot B, and the chaperone C1 answers the call.

After talking to A briefly and discovered that A intended to talk to D, the chaperone C1 starts to establish a
conference to D. C1 presses the conference softkey and dials D.

CUCM queries CEPM for the call, with calling user C1 with DN C1, and called user D with DN D.

CEPM returns the response with permit decision with <continue> call routing directive, since the policy server
detects that the caller is the chaperone.

CUCM rings D’s phone and D answers the call.

C1 presses the conference softkey again, and the conference is established.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
969

Message Sequence Charts
Chaperone Use Cases

The chaperone C1 presses the “record” softkey. This triggers the call recording being setup from C1’s IP
phone to the recorder.

As one of the steps to establish recording calls to the recorder, two recording calls setup are first sent to the
BIB of C1’s IP phone (INVITE for SIP phone and SCCP only the media message are involved). Note only
one recording is shown in the picture.

As another step to establish the recording calls to the recorder, the two calls are then redirected to the recorder.

When the call recording is eablished successfully, the recording warning tone is playing to the C1’s phone.
The recording warning tone is enabled by setting service parameter “Play Recording Notification Tone To
Observed Target” to True.

After comfirming the call recording is established successfully, the chaperone reads an announcement to both
A and D and informs them the call is being recorded.

A and D starts to talk under the supervision of the chaperone.

NOTE

Chaperones have limited abilities in what they can do on a call. The most obvious example is that they cannot
put the call on hold, because they are required to be on the call at all times. To learn more about Chaperone
limitations, please see the related sections of the External Call Control FFS.

Call Events:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
970

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getLastRedirectedParty() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-CiscoHuntConnCreatedEv-B

GC1-ConnInProgressEv-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEv-B

GC1-CallCtlConnAlertingEv-B

GC1-ConnCreatedEvent-C1

GC1-ConnInprogressEvent-C1

GC1-CallCtlConnOfferedEv-C1

GC1-ConnAlertingEvent-C1

GC1-CallCtlConnAlertingEv-C1

A initiates call to X

Connection of A created,

Hunt connection created
(see Hunt List section)

Connection of C1 created

C1 starts ringing

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
971

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

Reason=REASON_EXTERNALCALLCONTROL

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C1

Reason=REASON_EXTERNALCALLCONTROL

.getModifiedCallingAddress() = C1,

.getCallingAddress() = C1,

.getModifiedCalledAddress() =

.getCurrentCalledAddress() =

.getCalledAddress() =

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C1

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = C1,

.getCallingAddress() = C1,

.getModifiedCalledAddress() = D

.getCurrentCalledAddress() = D

.getCalledAddress() = D

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C1

GC1-ConnConnectedEvent-C1

GC1-CallCtlConnEstablishedEv-C1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlTermConnHeldEv-TermC1

GC2-CiscoConsultCallActiveEv

GC2-ConnCreatedEv-C1

GC2-CallCtlTermConnTalkingEv-TermC1

GC2-CallCtlConnDialingEv-C1

GC2-CallCtlConnEstablishedEv-C1

GC2-CiscoConnCreatedEv-D

GC2-ConnInProgressEv-D

GC2-CallCtlConnOfferedEv-D

GC2-ConnAlertingEv-D

C1 Answers

C1 initiates conference

Conference consult call
to D , D answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
972

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C1

.getCurrentCalledTerminal() = terminal of D

GC2-CallCtlConnAlertingEv-D

GC2-ConnConnectedEv-D

GC2-CallCtlConnEstablishedEv D

CiscoCallChangedEv final call = GC1, consult call
= GC2

GC1-ConnCreatedEv D

GC1-ConnConnectedEv D

GC1-CallCtlConnEstablishedEvD

GC2-ConnDisconntedEv C1

GC2-ConnDisconntedEv D

GC2-CallCtlConnDisconnectedEv C1

GC2-CallCtlConnDisconnectedEv D

GC2-CallCtlTermConnDroppedEv C1

GC2-CallCtlTermConnDroppedEv D

GC2-CallInvalidEv

Normal recording events when recording is initiated
on a conference call will be received.

InvalidStateException : Did not meet pre conditions.

Call 2 merges

Conn for D created on
GC1

Call 2 cleaned up

Chaperone C1 starts
recording

Chaperone C1 tries to
redirect the call

Call Is Redirected to a Hunt List of Chaperones and the Chaperone Conferences in the Called Party From
Application

Configuration

A calls X, X’s DN matches the translation pattern where External Call Control is enabled.

CUCM redirect the call to the hunt pilot B. Call is intercepted by the chaperone and the chaperone C1 answers
the call.

After talking to A briefly and discovered that A intended to talk to D, the chaperone C1 starts to establish a
conference to D. C1 initiates a consult call to D. A new global call id GC2 is created.

CUCM rings D’s phone and D answers the call.

C1 invokes GC2.conference(GC1) from application.

At this step, request for establishing the conference would fail. Jtapi would throw InvalidStateException with
the error code as “Call state not valid”.

In order to establish a conference successfully, application must invoke the conference by passing the CI of
the call in which chaperone is the controller as the primary CI. So in this case, if application invokes
GC1.conference(GC2), it would be able to establish the conference successfully and if application invokes
GC2.conference(GC1), Jtapi would throw an exception.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
973

Message Sequence Charts
Message Sequence Charts

Also application can use CiscoConnection.isChaperone() API to determine controller is chaperone on which
call.

Call Events:

Call infoEventsActions

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = “”,

.getCalledAddress() = “”,

.getLastRedirectedParty() = “”,

.getCurrentCallingTerminal() = Terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

GC1-CallActiveEvent

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv-A

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-CiscoHuntConnCreatedEv-B

GC1-ConnInProgressEv-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEv-B

GC1-CallCtlConnAlertingEv-B

GC1-ConnCreatedEvent-C1

GC1-ConnInprogressEvent-C1

GC1-CallCtlConnOfferedEv-C1

A initiates call to X

Connection of A created,

Hunt connection created
(see Hunt List section)

Connection of C1 created

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
974

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = null

Reason=REASON_EXTERNALCALLCONTROL

.getModifiedCallingAddress() = A,

.getCallingAddress() = A,

.getModifiedCalledAddress() = B,

.getCurrentCalledAddress() = B

.getCalledAddress() = X,

.getLastRedirectedAddress() = X,

.getCurrentCallingTerminal() = terminal of A.

.getCurrentCalledTerminal() = terminal of C1

Reason=REASON_EXTERNALCALLCONTROL

.getModifiedCallingAddress() = C1,

.getCallingAddress() = C1,

.getModifiedCalledAddress() =

.getCurrentCalledAddress() =

.getCalledAddress() =

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C1

GC1-ConnAlertingEvent-C1

GC1-CallCtlConnAlertingEv-C1

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv-C1

GC1-ConnConnectedEvent-C1

GC1-CallCtlConnEstablishedEv-C1

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlTermConnHeldEv-TermC1

GC2-CiscoConsultCallActiveEv

GC2-ConnCreatedEv-C1

GC2-CallCtlTermConnTalkingEv-TermC1

GC2-CallCtlConnDialingEv-C1

GC2-CallCtlConnEstablishedEv-C1

C1 starts ringing

C1 Answers

C1 initiates conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
975

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

.getCurrentCalledTerminal() = null

.getModifiedCallingAddress() = C1,

.getCallingAddress() = C1,

.getModifiedCalledAddress() = D

.getCurrentCalledAddress() = D

.getCalledAddress() = D

.getLastRedirectedAddress() =

.getCurrentCallingTerminal() = terminal of C1

.getCurrentCalledTerminal() = terminal of

GC2-CiscoConnCreatedEv-D

GC2-ConnInProgressEv-D

GC2-CallCtlConnOfferedEv-D

GC2-ConnAlertingEv-D

GC2-CallCtlConnAlertingEv-D

GC2-ConnConnectedEv-D

GC2-CallCtlConnEstablishedEv D

InvalidStateException : Call state not valid.

CiscoCallChangedEv final call = GC1, consult call
= GC2

GC1-ConnCreatedEv D

GC1-ConnConnectedEv D

GC1-CallCtlConnEstablishedEv D

GC2-ConnDisconntedEv C1

GC2-ConnDisconntedEv D

GC2-CallCtlConnDisconnectedEv C1

GC2-CallCtlConnDisconnectedEv D

GC2-CallCtlTermConnDroppedEv C1

GC2-CallCtlTermConnDroppedEv D

GC2-CallInvalidEv

Conference consult call
to D , D answers

C1 completes the
conference by invoking
GC2.conference(GC1)
from application.

C1 tries to complete the
conference by invoking
GC1.conference(GC2_from
application

Extension Mobility Cross Cluster
Call infoEventsActions

CiscoTerminal.getLoginType() returns
CiscoTerminal.NO_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

CiscoTerminal.getLoginType() returns
CiscoTerminal.VISITOR_LOGIN

Events to provider observer

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

1. User1 has a device profile configured
with DN A in cluster1. This profile is
included in the control list of application.
User1 goes to a visiting cluster and EM
login to a device TERMA. Device registers
to cluster1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
976

Message Sequence Charts
Extension Mobility Cross Cluster

Call infoEventsActions

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoTerminal.getLoginType() returns
CiscoTerminal.NO_LOGIN

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

User1 logs off from the Device

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

CiscoTerminal.getLoginType() returns
CiscoTerminal.NATIVE_LOGIN

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

2. User1 has a device profile configured
with DN A in cluster1. This device profile
is included in the control list of application.
User1 EM into a device TERMA on
cluster1. Device re-registers with DN A.
The device TERMA is not in application
control listapplication control list

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

User1 log off from the device. Device
re-registers to cluster1 with default DN.

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

CiscoAddrRemovedEv X

CiscoAddrCreatedEv A

3. EM into a controlled Device:

User1 has a device profile configured with
DN A in cluster1. This device profile is
included in the control list of application.
User1 EM into a device TERMA on
cluster1. TERMA with default DN X is in
application control list. Device re-registers
with DN A.

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoAddrRemovedEv A

CiscoAddrCreatedEv X

User1 logs out of the device.

Device Unregister, Device and line out of
service

Device Register to CMwith default DN X.

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGIN_
PROFILE_REMOVE

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGOUT_
PROFILE_REMOVE

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

4. Application uses user1 userid. Device
profile agent1 is added to application
control list after application is started

User EMs into a device TERMA and gets
the device profile.

Agent1 device profile is removed from
application control list

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
977

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

getCiscoCause() returns
CiscoProvEv.CAUSE_EM

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoTermCreatedEv TERMX

CiscoAddrAddedToTerminalEv AddrA

CiscoAddrRemovedFromTerminalEv
AddA

CiscoTermRemovedEv TERMx

5. EMCC scenario resulting in
CiscoAddrAddedToTerminalEv and
CiscoAddrRemovedFromTerminalEv

Cluster1 has application with

Terminal TermA (address A) in control list.
User1 is a device profile which is
configured with line A is included in app
control list. User goes to a visiting cluster
and logs into a device (TermX, Addr X).
TermX registers with cluster1 with address
A

User logs out of device TermX

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGIN_ PROFILE_ADD

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGIN_ PROFILE_ADD

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGOUT_
PROFILE_REMOVE

getCiscoCause() returns CiscoProvEv.
CAUSE_EM_LOGOUT_
PROFILE_REMOVE

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

6. Device profile Agent1 with DN A is
logged into a device TERMA.User1 opens
provider and then adds the profile Agent1
to the control list through the admin pages.

User1 then removes the profile from the
control list

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

7. Device profile Agent1 is not in the
applications control list but it is there as a
controlled profiles for extension mobility
for user1. User1 opens provider and logs
into terminal TERMA with profile agent1
and the same user id with which it had
opened the provider.

User1 logs out of the device

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoAddrCreatedEv A

CiscoTermCreatedEv TERMA

CiscoAddrRemovedEv A

CiscoTermRemovedEv TERMA

8. Device profile Agent1 (DN A) is in the
applications control list with user as user1.

User1 opens the provider and does an EM
login into TERMA with profile as agent1.
TERMA is not in control list.

User1 logs out of TERMA.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
978

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGIN

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

getCiscoCause() returns
CiscoProvEv.CAUSE_EM_LOGOUT

CiscoAddrRemovedEv X

CiscoAddrCreatedEv A

CiscoAddrRemovedEv A

CiscoAddrCreatedEv X

9. Device profile Agent1 (DN A) is in the
applications control list with user as user1.

User1 opens the provider and does an EM
login into TERMA with profile as agent1.
TERMA is in control list with default DN
as X.

User1 logs out of TERMA.

End to End Session ID for Calls
Session ID in a Basic Call Scenario

Application has already opened provider and observing TermA and TermB

Call informationEventsAction

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1CallCtlConnInitiatedEv
A

GC1 TermConnCreatedEv
TermA

GC1 TermConnActiveEV
TermA

Application makes a
call between TermA
and TermB

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnA)
= A's LocalUUID

GC1
CallCtlTermConnTalkingEv
TermA

GC1 CallCtlConnDialingEv
A

GC1
CallCtlConnEstablishedEv
A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
979

Message Sequence Charts
End to End Session ID for Calls

Call informationEventsAction

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1CallCtlConnOfferedEv
B

GC1 ConnAltertingEv B

GC1CallCtlConnAlertingEv
B

GC1 TermConnCreatedEv
TermB

Application makes a
call between TermA
and TermB

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnA)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

GC1 TermConnRingingEv
TermB

GC1
CallCtlTermConnRingingEv
TermB

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA)
= A's localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) =
B's localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) =
B's localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) =
A's localUUID

GC1 ConnConnectedEv B

GC1
CallCtlConnEstablishedEv
B

GC1 TermConNActiveEv B

GC1
CallCtlTermConnTalkingEv
B

B answers

SessionID for a Basic Call involving SIP Endpoints

Application has already opened provider and observing SIP terminals TermA and TermB

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
980

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnA)
= null

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnA)
= null

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnA)
= A's local UUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnA)
= B's localUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= null

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1ConnConnectedEvA

GC1
CallCtlConnInitiatedEv A

GC1TermConnCreatedEv
TermA

GC1 TermConnActiveEV
TermA

GC1
CallCtlTermConnTalkingEv
TermA

GC1
CallCtlConnDialingEv A

GC1
CallCtlConnEstablishedEv
A

GC1 ConnCreatedEv B

GC1ConnInProgressEv B

GC1
CallCtlConnOfferedEv B

GC1 ConnAltertingEv B

GC1
CallCtlConnAlertingEv B

GC1TermConnCreatedEv
TermB

GC1TermConnRingingEv
TermB

GC1
CallCtlTermConnRingingEv
TermB

Applicationmakes a
call between TermA
and TermB

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
981

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) =A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) = A's
localUUID

GC1ConnConnectedEvB

GC1
CallCtlConnEstablishedEv
B

GC1 TermConNActiveEv
B

GC1
CallCtlTermConnTalkingEv
B

B answers

SessionIDs for Calls Involving Shared Lines and Hold Resume

B and B are lines shared on two terminals. Application has opened provider and observed A, B and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
982

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnA)
= A's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnA)
= B's or (B')'s LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB')
= (B')'s LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB')
= A's LocalUUID

Application makes
a call between
TermA and TermB

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
983

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1ConnConnectedEv
A

GC1
CallCtlConnInitiatedEv
A

GC1
TermConnCreatedEv
TermA

GC1
TermConnActiveEV
TermA

GC1
CallCtlTermConnTalkingEv
TermA

GC1
CallCtlConnDialingEv
A

GC1
CallCtlConnEstablishedEv
A

GC1 ConnCreatedEv B

GC1ConnInProgressEv
B

GC1
CallCtlConnOfferedEv
B

GC1 ConnAltertingEv
B

GC1
CallCtlConnAlertingEv
B

GC1
TermConnCreatedEv
TermB

GC1
TermConnRingingEv
TermB

GC1
CallCtlTermConnRingingEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
984

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

TermB

GC1
TermConnCreatedEv
TermB'

GC1
TermConnRingingEv
TermB'

GC1
CallCtlTermConnRingingEv
TermB'

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB')
= (B')'s LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB')
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) = A's
localUUID

GC1ConnConnectedEv
B

GC1
CallCtlConnEstablishedEv
B

GC1
TermConNActiveEv B

GC1
CallCtlTermConnTalkingEv
TermB

GC1
TermConnPassiveEv
TermB'

GC1
CallCtlTermConnBridgedEv
TermB'

B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
985

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB')
= (B')'s LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB')
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB') = (B')'s
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB') = A's
localUUID

GC1
TermConNActiveEv
TermB

GC1
CallCtlTermConnHeldState
TermB

GC1
TermConnActiveEv
termB'

GC1
CallCtlTermConnHeldState
TermB'

B puts the call on
hold

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
986

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB')
= (B')'s LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB')
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB') = (B')'s
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = (B')'s
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB') = A's
localUUID

GC1
TermConnActiveEv
TermB'

GC1
CallCtlTermConnTalkingEv
TermB'

GC1
TermConnPassiveEv
TermB

GC1
CallCtlTermConnBridgedEv
TermB

B' resumes the call

SessionID when Call is Redirected to a Third Party

Application has already opened provider and observed A,B and C and establishes a call between A and B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
987

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnB)
= B's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnB)
= A's LocalUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getLocalUUID(termConnB) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = B's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(B)).getPeerUUID(termConnB) = A's
localUUID

GC1 ConnConnectedEv
B

GC1
CallCtlConnEstablishedEv
B

GC1
TermConNActiveEv B

GC1
CallCtlTermConnTalkingEv
B

A calls B and B
answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
988

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

((CiscoConnection)Ev,getConnection()).getLocalUUID(termConnC)
= C's LocalUUID

((CiscoConnection)Ev,getConnection()).getPeerUUID(termConnC)
= A's LocalUUID

CallInfo :

CurrentCallingParty = A

CurrentCalledParty = C

Reason = CiscoFeatureReason.REASON_REDIRECT

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getLocalUUID(termConnA) = A's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(C)).getLocalUUID(termConnC) = C's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(A)).getPeerUUID(termConnA) = C's
localUUID

(CiscoConnection)(CiscoProvider.getCall(gcid,
cid).getConnection(C)).getPeerUUID(termConnC) = A's
localUUID

GC1 CallActiveEv C

GC1 ConnCreatedEv C

GC1 ConnConnectedEv
C

GC1
CallCtlConnInitiatedEv
C

GC1
TermConnCreatedEv
TermC

GC1
TermConnActiveEV
TermC

GC1
CallCtlTermConnTalkingEv
TermC

GC1
CallCtlConnDialingEvC

GC1
CallCtlConnEstablishedEv
C

GC1TerConnDroppedEv
TermB

CallCtlTermConnDroppedEv
TermB

GC1
ConnDisconnectedEv B

GC1
CallCtlConnDisconnectedEv
B

Application redirects
the call from B to C

Forced Authorization and Customer Matter Codes
Scenario One

The application controls A and B; B requires a forced authorization code (FAC) to extend the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
989

Message Sequence Charts
Forced Authorization and Customer Matter Codes

EventAction

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv Cause: CAUSE_NEW_CALL

ConnCreatedEv A Cause: CAUSE_NORMAL

ConnConnectedEv A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

TermConnCreatedEv SEPA Cause: Other: 0

TermConnActiveEv SEPA Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv SEPA Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

NEWMETA EVENT_________META_CALL_PROGRESS

CallCtlConnDialingEv A

NEWMETA EVENT_________META_CALL_PROGRESS

CiscoToneChangedEv

ToneType = CiscoTone.ZIPZIP

cause = CiscoCallEv.CAUSE_FAC_CMC

getWhichCodRequired = CiscoToneChangedEv. FAC_REQUIRED

A calls B by using
call.Connect(), or A
places a consult call to B
by using Call.Consult().

NEW META EVENT_________META_CALL_ADDITIONAL_PARTY

ConnCreatedEv B

ConnInProgressEv B

CallCtlConnOfferedEv B

NEWMETA EVENT_________META_CALL_PROGRESS

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv BTermConnRingingEv B

CallCtlTermConnRingingEv B

ConnConnectedEv B

CallCtlConnEstablishedEv B

Application enters
additional digits by using
CiscoConnection.addToAddress.

TermConnActiveEv BB answers the call.

Scenario Two

The application controls A and B; B requires both an FAC and a CMC (client matter code) to extend the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
990

Message Sequence Charts
Message Sequence Charts

EventAction

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv Cause: CAUSE_NEW_CALL

ConnCreatedEv A Cause: CAUSE_NORMAL

ConnConnectedEv A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

TermConnCreatedEv SEPA Cause: Other: 0

TermConnActiveEv SEPA Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv SEPA Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

NEWMETA EVENT_________META_CALL_PROGRESS

CallCtlConnDialingEv A

NEWMETA EVENT_________META_CALL_PROGRESS

CiscoToneChangedEv

ToneType = CiscoTone.ZIPZIP

cause = CiscoCallEv.CAUSE_FAC_CMC

getWhichCodRequired = CiscoToneChangedEv. FAC_CMC_REQUIRED

A calls B by using call.Connect(), or A
places a consult call to B by using
Call.Consult().

NEW META EVENT_________META_CALL_PROGRESS

CiscoToneChangedEv

ToneType = CiscoTone.ZIPZIP

cause = CiscoCallEv.CAUSE_FAC_CMC

getWhichCodRequired = CiscoToneChangedEv. CMC_REQUIRED

Application enters FAC code digits with #
termination by using
CiscoConnection.addToAddress within the
T302 timer.

NEW META EVENT_________META_CALL_ADDITIONAL_PARTY

ConnCreatedEv B

ConnInProgressEv B

CallCtlConnOfferedEv B

NEWMETA EVENT_________META_CALL_PROGRESS

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv B

TermConnRingingEv B

CallCtlTermConnRingingEv B

Application enters CMC code digits with
terminated by using
CiscoConnection.addToAddress within
T302 timer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
991

Message Sequence Charts
Message Sequence Charts

EventAction

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv B

CallCtlTermConnTalkingEv B

B answers the call.

Scenario Three

The application controls A and B;

B requires a CMC, and the application enters an invalid code.

EventAction

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv Cause: CAUSE_NEW_CALL

ConnCreatedEv A Cause: CAUSE_NORMAL

ConnConnectedEv A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

TermConnCreatedEv SEPA Cause: Other: 0

TermConnActiveEv SEPA Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv SEPA Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

NEWMETA EVENT_________META_CALL_PROGRESS

CallCtlConnDialingEv A

NEWMETA EVENT_________META_CALL_PROGRESS

CiscoToneChangedEvToneType = CiscoTone.ZIPZIP

cause = CiscoCallEv.CAUSE_FAC_CMC

getWhichCodRequired = CiscoToneChangedEv.
CMC_REQUIRED

A calls B by using call.Connect(), or A places a consult call to B
by using Call.Consult().

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
992

Message Sequence Charts
Message Sequence Charts

EventAction

NEWMETA EVENT_________META_CALL_PROGRESS

ConnFailedEv A

CallCtlConnFailedEv A

getCiscoCause () = CiscoCallEv.FAC_CMC

NEWMETA EVENT_________META_CALL_ENDING

TermConnDroppedEv

CallCtlTermConnDropped

ConnDisconnectedEv

CallCtlConnDisconnectedEv

CallInvalidEv

CallObservationEndedEv

The application enters the incorrect CMC digits (# terminated)
by using CiscoConnection.addToAddress within the T302 timer
limit.

The application receives reorder tone.

Scenario Four

The application controls both A and B; A calls B; B redirects the call to C, which needs both an FAC and a
CMC.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
993

Message Sequence Charts
Message Sequence Charts

EventAction

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv Cause: CAUSE_NEW_CALL

ConnCreatedEv A Cause: CAUSE_NORMAL

ConnConnectedEv A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

TermConnCreatedEv SEPA Cause: Other: 0

TermConnActiveEv SEPA Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv SEPA Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

NEWMETA EVENT_________META_CALL_PROGRESS

CallCtlConnDialingEv A

NEWMETAEVENT_________META_CALL_ADDITIONAL_PARTY

ConnCreatedEv B

ConnInProgressEv B

CallCtlConnOfferedEv B

NEWMETA EVENT_________META_CALL_PROGRESS

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv SEPB

TermConnRingingEv SEPB

CallCtlTermConnRingingEv SEPB

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv SEPB

CallCtlTermConnTalkingEv SEPB

A calls B by using call.Connect(), or A
places a consult call to B by using
Call.Consult().

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
994

Message Sequence Charts
Message Sequence Charts

EventAction

NEWMETA EVENT_________META_CALL_REMOVING_PARTY

TermConnDroppedEv SEPB

CallCtlTermConnDroppedEv SEPB Cause: CAUSE_NORMAL

CallControlCause: CAUSE_REDIRECTED CiscoCause:
CAUSE_NORMALUNSPECIFIED

ConnDisconnectedEv B Cause: CAUSE_NORMAL CiscoCause:
CAUSE_NORMALUNSPECIFIED

CallCtlConnDisconnectedEv B Cause: CAUSE_NORMAL

CallControlCause: CAUSE_REDIRECTED CiscoCause:
CAUSE_NORMALUNSPECIFIED

NEWMETA EVENT_________META_CALL_PROGRESS

ConnCreatedEv C Cause: CAUSE_NORMAL CiscoCause:
CAUSE_NORMALUNSPECIFIED

NEWMETA EVENT_________META_CALL_PROGRESS

ConnInProgressEv C Cause: CAUSE_NORMAL CiscoCause:
CAUSE_NORMALUNSPECIFIED

CallCtlConnOfferedEv C Cause: CAUSE_NORMAL CallControlCause:
CAUSE_REDIRECTED CiscoCause: CAUSE_NORMALUNSPECIFIED

NEWMETA EVENT_________META_CALL_PROGRESS

ConnAlertingEv A Cause: CAUSE_NORMAL CiscoCause:
CAUSE_NORMALUNSPECIFIED

CallCtlConnAlertingEv C Cause: CAUSE_NORMAL CallControlCause:
CAUSE_NORMAL CiscoCause: CAUSE_NORMALUNSPECIFIED

NEWMETA EVENT_________META_CALL_PROGRESS

ConnConnectedEv C Cause: CAUSE_NORMAL CiscoCause: CAUSE_NOERROR

CallCtlConnEstablishedEv C Cause: CAUSE_NORMAL CallControlCause:
CAUSE_NORMAL CiscoCause: CAUSE_NOERROR

B issues a redirect request to C and passes
an FAC and a CMC code.

Scenario Five

Application controls the device Route Point (RP) and registers the RP.

A and B are PNO and within the Cisco Unified Communications Manager cluster.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
995

Message Sequence Charts
Message Sequence Charts

FieldsEventAction

State = ROUTE

getCurrentRouteAddress () = RP

getCallingAddress () = A

getCallingTerminal () = SEPA

(Terminal associated with A)

RouteEventCall arrives at RP

State = ROUTE_USED

getCallingAddress () = A

getCallingTerminal () = SEPA

(Terminal associated with A)

getRouteUsed () = B

RouteUsedEventApplication invokes

selectRoute(routeselected[], callingsearchspace,
modifiyingcallingnumber[], preferredOriginalCdNumber[],
preferredOriginalCdOption[], facCode[], cmcCode[]) where
routeSelected[] = BcallingSearchSpace =
CiscoRouteSession.DEFAULT_SEARCH_SPACEmodifyingCgNumber
= null,

preferredOriginalCdNumber = null, preferredOriginalCdOption
= CiscoRouteSession.DONOT_RESET_ORIGINALCALLED,
facCode[] = “facCode for B”cmcCode[] = “cmcCode for B”

State = ROUTE_ENDgetRouteAddress () = RPRouteEndEventApplication invokes

endRoute (ERROR_NONE)

Hairpin Support
ResultExpected BehaviorUse CasePre-ConditionS.No.

A and C are connected.At A: It is connected to B.

A’s type is CiscoAddress.Internal

B’s type is CiscoAddress.External

At C: It is connected to B.

C’s type is CiscoAddress.Internal

B’s type is CiscoAddress.External

A calls B via gateway. B
transfers call to C via
gateway. B completes the
transfer and goes out of
scenario. Now IP Phones A
and C are connected

IP Phones A and C are in
same cluster, IP phone B is
in another cluster. JTAPI
observes A and C. Gateway
does not pass new party
information to each other.
There will be no transfer
start and end events as
transfer controller is not a
controlled device.

1

A and C are connected.At A: It is connected to C.

A’s type is CiscoAddress.Internal

C’s type is CiscoAddress.External

At C: It is connected to A.

C’s type is CiscoAddress.Internal

A’s type is CiscoAddress.External

A calls B via gateway. B
transfers call to C via
gateway. B completes the
transfer and goes out of
scenario. Now IP Phones A
and C are connected.

IP Phones A and C are in
same cluster, IP phone B is
in another cluster. JTAPI
observes A and C. Gateway
is able to pass new party
information to each other.

2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
996

Message Sequence Charts
Hairpin Support

ResultExpected BehaviorUse CasePre-ConditionS.No.

A, B and C are in conference
call.

At A and B,
ConferenceCallStateChanged event
has participantInfo with following
types:

A: CiscoAddress.Internal

B: CiscoAddress.Internal

C: CiscoAddress.External

A calls B. B does a
conference call to C via
gateway. B completes the
conference and all A, B and
C are in conference.

IP Phones A and B are in
same cluster, IP phone C is
in another cluster. JTAPI
observes A and B.

3

A, B and C are in conference
call.

At A and B,
ConferenceCallStateChanged event
has participantInfo with following
types:

A: CiscoAddress.Internal

B: CiscoAddress.Internal

C: CiscoAddress.External

A calls B. B does a
conference call to C via
gateway. B completes the
conference and all A, B and
C are in conference.

IP Phones A and B are in
same cluster, IP phone C is
in another cluster. JTAPI
observes A, B and C.

4

A, B and C are in conference
call.

At A and B,
ConferenceCallStateChanged event
has participantInfo with following
types:

A: CiscoAddress.Internal

B: CiscoAddress.Internal

C: CiscoAddress.External

A calls B. B does a
conference call to D via
gateway. D transfers the call
to C. B completes the
conference and all A, B and
C are in conference.

IP Phones A, B, C are in
same cluster, IP phone D is
in another cluster. JTAPI
observes A, B and C.
Gateway is able to pass new
party information to each
other.

5

A, B and C are in conference
call.

At A and B,
ConferenceCallStateChanged event
has participantInfo with following
types:

A: CiscoAddress.Internal

B: CiscoAddress.Internal

D: CiscoAddress.External

A calls B. B does a
conference call to D via
gateway. D transfers the call
to C. B completes the
conference and all A, B and
C are in conference.

IP Phones A, B, C are in
same cluster, IP phone D is
in another cluster. JTAPI
observes A, B and C.
Gateway does not pass new
party information to each
other.

6

A and C are connected.At A: It is connected to C. A’s type
is CiscoAddress.Internal

C’s type is CiscoAddress.External

At C: It is connected to A.

C’s type is CiscoAddress.Internal

A’s type is CiscoAddress.External

A calls B via gateway. B
redirects call to C. Now IP
Phones A and C are
connected.

IP Phones A and C are in
same cluster, IP phone B is
in another cluster. JTAPI
observes A and C.

7

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
997

Message Sequence Charts
Message Sequence Charts

Half Duplex Media
RTP Event at A and B.

Check InterfaceRTP EventsAction

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

A – CiscoRTPInputStartedEv CiscoRTPOutputStartedEv

B – CiscoRTPInputStartedEv CiscoRTPOutputStartedEv

A calls B, B
answers the call.

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns True

A – CiscoRTPInputStoppedEv CiscoRTPOutputStoppedEv

B – CiscoRTPInputStoppredEv CiscoRTPOutputStoppedEv

A-CiscoRTPInputStartedEv

B puts Call on
hold

Ev.isHalfDuplex() returns True

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

Ev.isHalfDuplex() returns false

A- CiscoRTPInputStoppredEv

A – CiscoRTPInputStartedEv CiscoRTPOutputStartedEv

B – CiscoRTPInputStartedEv CiscoRTPOutputStartedEv

B Retrieves the
Call

Hunt List
Configuration

• HuntList feature is enabled for all use cases, unless otherwise indicated

• HuntList pilot1 : 2000

• HuntList1 LineGroup Member : 3001, 3002, 3003

• HuntList pilot2: 4000

• HuntList2 LineGroup Member : 5001, 5002, 5003

Cisco Hunt Address mentioned in the call models below indicates that CiscoAddress.getType() returns
CiscoAddress.HUNT_PILOT.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
998

Message Sequence Charts
Half Duplex Media

Scenario 1

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

CallingParty = A, current calling = A

Called Party = null, current called = null

Lrp = null

GC1:CallCtlConnDialingEv A

GC1:CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

A (1000) calls Hunt Pilot B (2000), Application is observing only
A. GC1 is the GCID of the call.

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000 type = CiscoAddress.HUNT_PILOT

CurrentCalledParty = 2000 type = CiscoAddress.HUNT_PILOT

LastRedirectingParty = Null

Current called display name = 2000Name.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
999

Message Sequence Charts
Message Sequence Charts

Scenario 2

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

CallingParty = A, current calling = A

Called Party = null, current called = null

Lrp = null

GC1:CallCtlConnDialingEv A

GC1:CallCtlConnEstablishedEv A

GC1:CallCtlConnDialingEv A

GC1:CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

GC1: ConnCreatedEv C

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

A (1000) calls Hunt Pilot B (2000), call is offered at C (3001);
application is observing A. GC1 is the GCID of the call.

C(3001) answers the call

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1000

Message Sequence Charts
Message Sequence Charts

CurrentCalledParty = 2000

LastRedirectingParty = Null

Current called party display name = 3001Name. Called party display name changes to the display name of
the hunt pilot member that answered the call.

Scenario 3

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC:

A (1000) calls Hunt Pilot B(2000), call is offered at C (3001).
Application is observing C. GC1 is the GCID of the call.

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1001

Message Sequence Charts
Message Sequence Charts

Scenario 4

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

\

A (1000) calls Hunt Pilot B (2000), call is offered at C (3001)
Application is observing A and C. GC1 is the GCID of the call.

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1002

Message Sequence Charts
Message Sequence Charts

Scenario 5

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

GC1:CallCtlTermConnTalkingEv TermC

A (1000) calls Hunt Pilot (B or 2000), call is offered at C (3001)
Application is observing A and C. GC1 is the GCID of the call.

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1003

Message Sequence Charts
Message Sequence Charts

Scenario 6

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: CallCtlConnEstablishedEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

CallingParty = A, current calling = A

Called Party = B, current called = B

Lrp = null

GC1:CallCtlTermConnTalkingEv TermC

GC1: CiscoHuntConnCreatedEv D

GC1: ConnAlertingEv D

GC1: CallCtlConnAlertingEv D

GC1: TermConnDroppedEv TA

GC1: CallCtlTermConnDroppedEv TA getCallControlCause ()
= CAUSE_REDIRECTED

GC1: ConnDisconnectedEv A

GC1: CallCtlConnDisconnectedEv A

getCallControlCause () = CAUSE_REDIRECTED

A (1000) calls Hunt Pilot B (2000), call is offered at C (3001).
Application is observing A and C. GC1 is the GCID of the call.

A redirects the call to another Hunt Pilot D(4000)

JTAPI CallInfo

CallingParty = 2000

CurrentCallingParty = 2000

CalledParty = 2000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1004

Message Sequence Charts
Message Sequence Charts

CurrentCalledParty = 4000

LastRedirectingParty = 1000

Scenario 7

ResultScenario

…..

…..

GC1: CiscoHuntConnCreatedEv D

GC1: TermConnDroppedEv TermA

GC1: CallCtlTermConnDroppedEv TermA

getCallControlCause () = CAUSE_REDIRECTED

GC1: ConnDisconnectedEv A

GC1: CallCtlConnDisconnectedEv A

getCallControlCause () = CAUSE_REDIRECTED

GC1: ConnCreatedEv E

GC1: ConnConnectedEv E

GC1: CallCtlConnEstablishedEv E

A (1000) calls Hunt Pilot B (2000), call is offered at C (3001)
Application is observing A and C. GC1 is the GCID of the call.
A redirects the call to D(4000). E(5001) answers the call

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 2000

CalledParty = 2000

CurrentCalledParty = 4000

LastRedirectingParty = 1000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1005

Message Sequence Charts
Message Sequence Charts

Scenario 8

ResultScenario

…..

…..

GC1: ConnCreatedEv E

GC1: ConnInProgressEv E

GC1: CallCtlConnOfferedEv E

getCallControlCause () = CAUSE_REDIRECTED

GC1: CiscoHuntConnCreatedEv D

GC1: TermConnDroppedEv TermA

GC1: CallCtlTermConnDroppedEv TermA

GC1: ConnDisconnectedEv A

GC1: CallCtlConnDisconnectedEv A

GC1: CallCtlConnEstablishedEv E

A (1000) calls Hunt Pilot B(2000), call is offered at C (3001).
Application is observing A, E and C. GC1 is the GCID of the call.
A redirects the call to D(4000). E(5001) answers the call

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 2000

CalledParty = 2000

CurrentCalledParty = 4000

LastRedirectingParty = 1000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1006

Message Sequence Charts
Message Sequence Charts

Scenario 9

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CallCtlConnEstablishedEv B

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: CallCtlConnAlertingEv C

GC1: CallCtlTermConnCreatedEv TermC

GC1: CallCtlTermConnRingingEv TermC

GC1: CallCtlConnAlertingEv D

GC1: CallCtlTermConnCreatedEv TermD

GC1: CallCtlTermConnRingingEv TermD

A (1000) calls Hunt Pilot B(2000), call is offered at C (3001) and
D (3002). Application is observing A, C and D. GC1 is the GCID
of the call.

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1007

Message Sequence Charts
Message Sequence Charts

Scenario 10

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CallCtlConnEstablishedEv B

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: CallCtlConnAlertingEv C

GC1: CallCtlTermConnCreatedEv TermC

GC1: CallCtlTermConnRingingEv TermC

GC1: CallCtlConnAlertingEv D

GC1: CallCtlTermConnCreatedEv TermD

GC1: CallCtlTermConnRingingEv TermD

GC1: CallCtlTermConnTalkingEv TermD

GC1: CallCtlTermConnDroppedEv TermC

GC1: ConnDisconnectedEv C

GC1: CallCtlConnDisconnectedEv C

A (1000) calls Hunt Pilot B(2000), call is offered at C (3001) and
D (3002). Application is observing A, C and D. GC1 is the GCID
of the call.

D answers the call

JTAPI CallInfo

CallingParty = 1000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1008

Message Sequence Charts
Message Sequence Charts

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Scenario 11

ResultScenario

GC1:CallActiveEv

GC1:ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1: CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnCreatedEv D

GC1: ConnOfferedEv D

….

GC1: TermConnCreatedEv TermD

GC1: CallCtlTermConnRingingEv TermD

GC1: ConnCreatedEv C

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: CallCtlTermConnDroppedEv TermD

GC1: ConnDisconnectedEv D

GC1: CallCtlConnDisconnectedEv D

A (1000) calls Hunt Pilot (B or 2000), call is offered at C (3001)
and D (3002). Application is observing A andD. GC1 is the GCID
of the call.

C answers the call

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = 1000

CalledParty = 2000

CurrentCalledParty = 2000

LastRedirectingParty = Null

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1009

Message Sequence Charts
Message Sequence Charts

Scenario 12

ResultScenario

A (1000) calls Hunt Pilot B (2000), call is offered at C (3001)
and is answered. A consults with D (4000) and call is offered at
E(5001). A completes the conference. Application is observing
A.

Initially connection is created to an address with DN = B type =
UNKNOWN

GC1 is the GCID of the final call.

GC2 is the consult call

C answers the call

E answers the call

Conference is completed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1010

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1:CallActiveEv

GC1:ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1: CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B-U

GC1: ConnInProgressEv B-U

GC1: CallCtlConnOfferedEv B-U

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnDisconnectedEv B-U

GC1: CallCtlConnDisconnectedEv B-U

GC1: ConnCreatedEv C

GC1: ConnOfferedEv C

….

GC1: CallCtlConnEstablishedEv C

GC1: CallCtlTermConnHeldEv TermA

GC2: CiscoConsultCallActiveEv

GC2: ConnCreatedEv A

…..

GC2: CallCtlTermConnTalkingEv TermA

GC2: CallCtlConnDialingEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoHuntConnCreatedEv D

GC2: ConnInProgressEv D

GC2: CallCtlConnOfferedEv D

GC2: ConnAlertingEv D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1011

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC2: CallCtlConnAlertingEv D

GC2: ConnCreatedEv E

GC2: ConnConnectedEv E

GC2: CallCtlConnEstablishedEv E

GC2: ConnConnectedEv D

GC2: CallCtlConnEstablishedEv D

CiscoCallChangedEv final call –GC1, consult call = GC2

GC1: CiscoHuntConnCreatedEv B

GC1: ConnCreatedEv C

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: CiscoHuntConnCreatedEv E

GC1: ConnCreatedEv E

GC1: ConnConnectedEv E

GC1: CallCtlConnEstablishedEv E

GC2: ConnDisconntedEv B

GC2: ConnDisconntedEv C

GC2: CallCtlConnDisconnectedEv C

GC2: ConnDisconntedEv D

GC2: ConnDisconntedEv E

GC2: CallCtlConnDisconnectedEv E

GC2: CallCtlTermConnDroppedEv TermA

..

GC2: ConnDisconntedEv A

GC2: CallCtlConnDisconnectedEv A

GC2: CallInvalidEv

JTAPI CallInfo

CallingParty = 1000

CurrentCallingParty = [No guaranted for conference scenario]

CalledParty = 2000

CurrentCalledParty = [No guaranted for conference scenario]

LastRedirectingParty = 1000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1012

Message Sequence Charts
Message Sequence Charts

Scenario 13

Transfer to a line group member.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1013

Message Sequence Charts
Message Sequence Charts

ResultScenario

A (1000) calls B(1001), consult to Hunt Pilot P (2000), call is
offered at C (3001) and is answered. B completes the transfer.
Application is observing A, B and C.

GC1 is the GCID of the final call.

GC2 is the consult call

B answers the call

B consults to Hunt pilot

C answers the call

Transfer is completed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1014

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1:CallActiveEv

GC1:ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1: CallCtlConnEstablishedEv A

GC1: ConnCreatedEv B

GC1: ConnOfferedEv B

…

GC1: TermConnRingingEv TermB

GC1: TermConnTalkingEv TermB

GC1: CallCtlTermConnHeldEv TermB

GC2: CiscoConsultCallActiveEv

GC2: ConnCreatedEv B

…..

GC2: CallCtlTermConnTalkingEv TermB

GC2: CiscoHuntConnCreatedEv P

GC2: ConnInProgressEv P

GC2: CallCtlConnOfferedEv P

GC2: ConnCreatedEv C

GC2: ConnOfferedEv C

GC2: TermConnRingingEv TermC

GC2: ConnConnectedEv P

GC2: CallCtlConnEstablishedEv P

GC2: CiscoHuntConnCreatedEv P

GC2: ConnInProgressEv P

GC2: CallCtlConnOfferedEv P

GC2: ConnAlertingEv P

GC2: CallCtlConnAlertingEv P

GC2: ConnDisconnectedEv P

GC2: CallCtlConnDisconnectedEv P

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1015

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC2: ConnConnectedEv P

GC2: CallCtlConnEstablishedEv P

GC2: ConnConnectedEv C

GC2: CallCtlConnEstablishedEv C

GC2: TermConnTalkingEv TermC

GC1: CiscoHuntConnCreatedEv P

GC1: ConnInProgressEv P

GC1: CallCtlConnOfferedEv P

GC1: ConnAlertingEv P

GC1: CallCtlConnAlertingEv P

CiscoCallChangedEv final call –GC1, consult call = GC2

GC1: ConnCreatedEv C

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: TermConnTalkingEv TC

GC1: ConnConnectedEv P

GC1: CallCtlConnEstablishedEv P

GC2: ConnDisconntedEv P

GC2: CallCtlConnDisconnectedEv P

GC2: ConnDisconntedEv B

GC2: CallCtlConnDisconnectedEv B

…

….

GC2: ConnDisconntedEv C

GC2: CallCtlConnDisconnectedEv C

..

GC2: CallInvalidEv

GC1: ConnDisconntedEv B

GC1: CallCtlConnDisconnectedEv B

GC1: TermConnDroppedEv TB

GC1: CallCtlTermConnDroppedEv TB

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1016

Message Sequence Charts
Message Sequence Charts

Scenario 14

Pickup from line group

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1017

Message Sequence Charts
Message Sequence Charts

ResultScenario

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). Application is observing A, C and D.

C and D are in the same pickup group.

D picks up the call ringing at C.

GC2 is the initial call at D.

A and D are connected on GC1

D goes off-hook and answers call from C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1018

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC2: CallActiveEv

GC2: ConnCreatedEv D

GC2: ConnConnectedEv D

GC2: CallCtlConnInitiatedEv D

GC2: TermConnCreatedEv TD

GC2: TermConnActiveEv TD

GC2: CallCtlTermConnTalkingEv TD

GC2: CiscoCallChangedEv GC2->GC1

GC1: ConnCreatedEv D

GC1: ConnConnectedEv D

GC1: CallCtlConnInitiatedEv D

GC1: TermConnCreatedEv TD

GC1: TermConnActiveEv TD

GC1: CallCtlTermConnTalkingEv TD

GC2: TermConnDroppedEv TD

GC2: CallCtlTermConnDroppedEv TD

GC2: ConnDisconnectedEv D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1019

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC2: CallCtlConnDisconnectedEv D

GC2: CallInvalidEv

GC1: TermConnDroppedEv TC

GC1: TermConnTermConnDroppedEv TC

GC1: ConnDisconnectedEv B

GC1: CallCtlConnDisconnectedEv B

Note: For this scenario, if the pickup is done from the address of the hunt member that is currently ringing
with Auto Pickup disabled, then getCiscoHuntConnection() returns the connection to the hunt pilot. If the
pickup is done from an address that is in the pickup group but is not the current ringing terminal, then
getCiscoHuntConnection() returns null. If Auto Pickup is enabled, then getCiscoHuntConnection() always
returns null after the call is picked up (it does not matter whether the pickup is done from the ringing terminal
or from another address in the pickup group). This is true for Pickup, Group Pickup, Other Pickup, and Directed
Call Pickup.

Note

Scenario 15

Gpickup a ringing hunt list member.

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). Application is observing A, C and D.

D picks up the call ringing at C.

GC2 is the initial call at D.

A and D are connected on GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1020

Message Sequence Charts
Message Sequence Charts

ResultScenario

D goes off-hook and dials the pickup number Z.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1021

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC2: CallActiveEv

GC2: ConnCreatedEv D

GC2: ConnConnectedEv D

GC2: CallCtlConnInitiatedEv D

GC2: TermConnCreatedEv TD

GC2: TermConnActiveEv TD

GC2: CallCtlTermConnTalkingEv TD

GC2: CallCtlConnDialingEv D

GC2: ConnCretatedEv Z

GC2: ConnInProgressEv Z

GC2: CallCtlConnOfferedEv Z

GC2: CallCtlConnEstablishedEv D

GC2: CiscoCallChangedEv GC2->GC1

GC1: ConnCreatedEv D

GC1: ConnCreatedEv Z

GC1: ConnConnectedEv D

GC1: CallCtlConnEstablishedEv D

GC1: TermConnCreatedEv TD

GC1: TermConnActiveEv TD

GC1: CallCtlTermConnTalkingEv TD

GC1: ConnInProgressEv Z

GC1: CallCtlConnOfferedEv Z

GC2: ConnDisconnectedEv Z

GC2: CallCtlConnDisconnectedEv Z

GC2: TermConnDroppedEv TD

GC2: CallCtlTermConnDroppedEv TD

GC2: ConnDisconnectedEv D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1022

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC2: CallCtlConnDisconnectedEv D

GC2: CallInvalidEv

GC1: ConnDisconnectedEv Z

GC1: CallCtlConnDisconnectedEv Z

GC1: TermConnDroppedEv TC

GC1: TermConnTermConnDroppedEv TC

GC1: ConnDisconnectedEv B

GC1: CallCtlConnDisconnectedEv B

For this scenario, if the pickup is done from the address of the hunt member that is currently ringing with
Auto Pickup disabled, getCiscoHuntConnection() returns the connection to the hunt pilot. If the pickup is
done from an address that is in the pickup group but is not the current ringing terminal,
getCiscoHuntConnection() returns null. If the Auto Pickup is enabled, getCiscoHuntConnection() always
returns null after the call is picked up (it does not matter whether the pickup is done from the ringing terminal
or from another address in the pickup group). This is true for Pickup, Group Pickup, Other Pickup, and Directed
Call Pickup.

Note

Scenario 16

Redirect by a hunt member:

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnEstablishedEv B

GC1: ConnAlertingEv B

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). Application is observing A, C and D.

C redirects the call to D. D is not a member.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1023

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: CallCtlEstablishedEv C

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

getCallControlCause() = CAUSE.REDIRECTED

GC1: CallCtlConnDisconnectedEv B

GC1: CallCtlConnDisconnected C

GC1: TermConnDisconnEv C

GC1: CallCtlTermConnDisconnectedEv C

getCallControlCause() = CAUSE.REDIRECTED

Call info:

Current calling A

Current Called D

LRP B type CiscoAdress.UNKNOWN

C answers the call.

Application redirects the call from C to D

Scenario 17

Calls Moving Between Members

When call is moving between hunt members, the call could go to invalid state.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1024

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallActiveEv

…

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: CallCtlConnEstablishedEv B

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: ConnAlertingEv D

GC1: CallCtlConnAlertingEv D

GC1: TermConnCreatedEv TD

GC1: TermConnRingingEv TD

GC1: CallCtlTermConnRingingEv TD

GC1: TermConnDroppedEv TC

GC1: CallCtlTermConnDroppedEv TC

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEvTC

GC1: CallCtlConnDisconnectedEv TC

getCallControlCause() = CAUSE.REDIRECTED

Call info:

Current calling A

Current Called D

LRP = null

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). C does not answer the call, call is offered at D.

Application is observing C and D

Call moves to D.

Scenario 18

Not All Members Are Observed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1025

Message Sequence Charts
Message Sequence Charts

If all members are not observed call could go to invalid state when moving between hunt members

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). C does not answer the call, call moves to D, and to E
where it is answered.

C, D, E and F are the members. Application is observing C and
E.

GC1: ConnDisconnectedEv B

GC1: CallCtlConnDisconnectedEv B

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv A

GC1: CallCtlConnDisconnectedEv A

getCallControlCause() = CAUSE.REDIRECTED

GC1: TermConnDroppedEv TC

GC1: CallCtlTermConnDroppedEv

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv C

GC1: CallCtlConnDisconnectedEv C

getCallControlCause() = CAUSE.REDIRECTED

GC1: CallInvalidEv

GC1: CallActiveEv

Call moves to D (not unobserved).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1026

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: ConnCreatedEv E

GC1: ConnInProgressEv E

GC1: CallCtlConnOfferedEv E

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: ConnAlertingEv E

GC1: CallCtlConnAlertingEv E

GC1: TermConnRingingEv TE

GC1: CallCtlTermConnRingingEv TE

Call moves from D to E.

GC1: ConnConnectedEv E

GC1: CallCtlConnEstablishedEv E

GC1: TermConnActiveEv TE

GC1: CallCtlTermConnTalkingEv TE

Call info:

Current calling A

Current Called E

LRP = null

E answers the call.

Scenario 19

Not All Members Are Observed, but Calling Party Is Observed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1027

Message Sequence Charts
Message Sequence Charts

ResultScenario

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). C does not answer the call, call moves to D, and to E
where it is answered.

C, D, E and F are the members. Application is observing A, C
and E.

Call moves to D (not unobserved).

Call moves from D to E.

E answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1028

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1: ConnConnectedEv A

GC1: CallCtlConnInitiatedEv A

GC1: TermConnCreatedEv TA

GC1: TermConnActiveEv TA

GC1: CallCtlTermConnTalkingEv TA

GC1: CallCtlConnDialingEv A

GC1: CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1; ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: TermConnDroppedEv TC

GC1: CallCtlTermConnDroppedEv

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv C

GC1: CallCtlConnDisconnectedEv C

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnCreatedEv E

GC1: ConnInProgressEv E

GC1: CallCtlConnOfferedEv E

GC1: ConnAlertingEv E

GC1: CallCtlConnAlertingEv E

GC1: TermConnRingingEv TE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1029

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallCtlTermConnRingingEv TE

GC1: ConnConnectedEv E

GC1: CallCtlConnEstablishedEv E

GC1: TermConnActiveEv TE

GC1: CallCtlTermConnTalkingEv TE

Call info:

Current calling A

Current Called E

LRP = null

Scenario 20

Calling and All Hunt List Members Are Observed; the Call Is Not Answered and Goes to Hunt No Answer
Forward Destination

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1030

Message Sequence Charts
Message Sequence Charts

ResultScenario

A (1000) calls (GC1) Hunt Pilot B (2000), call is offered at C
(3001). C does not answer the call, call moves to D, and to E. The
call goes to hunt no answer forward destination F which is
observed.

C, D, E and F are the members.Application is observing A, C, D,
E and F.

Call moves to D.

Call moves from D to E.

Call moves to F.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1031

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1: ConnConnectedEv A

GC1: CallCtlConnInitiatedEv A

GC1: TermConnCreatedEv TA

GC1: TermConnActiveEv TA

GC1: CallCtlTermConnTalkingEv TA

GC1: CallCtlConnDialingEv A

GC1: CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1; ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: ConnAlertingEv D

GC1: CallCtlConnAlertingEv D

GC1: TermConnCreatedEv TD

GC1: TermConnRingingEv TD

GC1: CallCtlTermConnRingingEv TD

GC1: TermConnDroppedEv TC

GC1: CallCtlTermConnDroppedEv

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1032

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallCtlConnDisconnectedEv C

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnCreatedEv E

GC1: ConnInProgressEv E

GC1: CallCtlConnOfferedEv E

GC1: ConnAlertingEv E

GC1: CallCtlConnAlertingEv E

GC1: TermConnRingingEv TE

GC1: CallCtlTermConnRingingEv TE

GC1: TermConnDroppedEv TD

GC1: CallCtlTermConnDroppedEv TD

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv D

GC1: CallCtlConnDisconnectedEv D

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnCreatedEv F

GC1: ConnInProgressEv F

GC1: CallCtlConnOfferedEv F

GC1: ConnAlertingEv F

GC1: CallCtlConnAlertingEv F

GC1: TermConnRingingEv TF

GC1: CallCtlTermConnRingingEv TF

GC1: ConnDisconnectedEv B

GC1: CallCtlConnDisconnectedEv B

GC1: TermConnDroppedEv TE

GC1: CallCtlTermConnDroppedEv TE

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv E

GC1: CallCtlConnDisconnectedEv E

getCallControlCause() = CAUSE.REDIRECTED

Call info:

Current calling A

Current Called F

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1033

Message Sequence Charts
Message Sequence Charts

ResultScenario

LRP = null

Scenario 21

Forward Hunt No Answer to Another Hunt Pilot

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1: ConnConnectedEv A

GC1: CallCtlConnInitiatedEv A

GC1: TermConnCreatedEv TA

GC1: TermConnActiveEv TA

GC1: CallCtlTermConnTalkingEv TA

GC1: CallCtlConnDialingEv A

GC1: CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv HP1

GC1; ConnInProgressEv HP1

GC1: CallCtlConnOfferedEv HP1

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnConnectedEv HP1

GC1: CallCtlConnEstablishedEv HP1

A (1000) calls (GC1) Hunt Pilot HP1 (2000), call is offered at C
(3001). C does not answer the call, call moves to D, and to E. The
call goes to hunt no answer forward destination F which is
observed.

C, D, E are the members .

HP2 is the forward hunt no answer destination.

H, L are its members. All parties are observed.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1034

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: ConnAlertingEv D

GC1: CallCtlConnAlertingEv D

GC1: TermConnCreatedEv TD

GC1: TermConnRingingEv TD

GC1: CallCtlTermConnRingingEv TD

GC1: TermConnDroppedEv TC

GC1: CallCtlTermConnDroppedEv

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv C

GC1: CallCtlConnDisconnectedEv C

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnCreatedEv E

GC1: ConnInProgressEv E

GC1: CallCtlConnOfferedEv E

GC1: ConnAlertingEv E

GC1: CallCtlConnAlertingEv E

GC1: TermConnRingingEv TE

GC1: CallCtlTermConnRingingEv TE

GC1: TermConnDroppedEv TD

GC1: CallCtlTermConnDroppedEv TD

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv D

GC1: CallCtlConnDisconnectedEv D

getCallControlCause() = CAUSE.REDIRECTED

Call moves to D

Call moves from D to E.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1035

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: ConnCreatedEv H

GC1: ConnInProgressEv H

GC1: CallCtlConnOfferedEv H

GC1: CiscoHuntConnCreatedEv HP2

GC1: ConnAlertingEv H

GC1: CallCtlConnAlertingEv H

GC1: TermConnRingingEv TH

GC1: CallCtlTermConnRingingEv TH

GC1: ConnConnectedEv HP2

GC1: CallCtlConnEstablishedEv HP2

GC1: ConnCreatedEv L

GC1: ConnInProgressEv L

GC1: CallCtlConnOfferedEv L

GC1: ConnAlertingEv L

GC1: CallCtlConnAlertingEv L

GC1: TermConnRingingEv TL

GC1: CallCtlTermConnRingingEv TL

GC1: ConnDisconnectedEv HP1

GC1: CallCtlConnDisconnectedEv HP1

GC1: TermConnDroppedEv TH

GC1: CallCtlTermConnDroppedEv TH

getCallControlCause() = CAUSE.REDIRECTED

GC1: ConnDisconnectedEv H

GC1: CallCtlConnDisconnectedEv H

getCallControlCause() = CAUSE.REDIRECTED

Call info:

Current calling A

Current Called F

LRP = null

Call goes t HP2, call is offered at H

Call moves from H to L

Scenario 22

Consult Transfer by a Member to Another Hunt Pilot

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1036

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: CallActiveEv

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv HP1

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: ConnConnectedEv HP1

GC1: CallCtlConnEstablishedEv HP1

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1: TermConnRingingEv TC

GC1: CallCtlTermConnRingingEv TC

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: TermConnActiveEv TC

GC1: CallCtlTermConnTalkingEv TC

GC1: CiscoTermConnSelectChangedEv TC

GC1: CallCtlTermConnHeldEv TC

GC2: ConsultCallActive

GC2: ConnCreatedEv C

GC2: ConnConnectedEv C

GC2: CallCtlConnInitiatedEv C

GC2: TermConnCreatedEv C

GC2: TermConnActiveEv C

GC2: CallCtlTermConnTalkingEv TC

GC2: CallCtlConnDialingEv TC

GC2: CallCtlConnEstablishedEv TC

GC2: CiscoHuntConnCreatedEv HP2

GC2: ConnInProgressEv HP2

GC2: CallCtlConnOfferedEv HP2

A (1000) calls (GC1) Hunt Pilot HP1 (2000), call is offered at C
(3001). C answers the call and consult to HP2. L in HP2 is ringing.
C completes the transfer.

C and L are observed

C answers the call

C consults with HP2 (GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1037

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC2: ConnCreatedEv L

GC2: ConnInProgressEv L

GC2: CallCtlConnOfferedEv L

GC2: ConnAlertingEv L

GC2: CallCtlConnAlertingEv L

GC2: TermConnRingingEv TL

GC2: CallCtlTermConnRingingEv TL

GC2: ConnConnectedEv HP2

GC2: CallCtlConnEstablishedEv HP2

GC2: CiscoCallChangedEv

GC1: ConnCreatedEv L

GC1: ConnAlertingEv L

GC1: CallCtlConnAlertingEv L

GC1: TermConnCreatedEv TL

GC1: TermConnRingingEv TL

GC1: CallCtlTermConnRingingEv TL

GC2: ConnDisconnectedEv HP2

GC2: CallCtlConnDisconnectedEv HP2

GC2: TermConnDroppedEv TL

GC2: CallCtlTermConnDroppedEv TL

GC2: ConnDisconnectedEv L

GC2: CallCtlConnDisconnectedEv L

GC2: TermConnDroppedEv C

GC2: CallCtlTermConnDroppedEv C

GC2: ConnDisconnectedEv C

GC2: CallCtlConnDisconnectedEv C

GC1: ConnDisconnectedEv HP1

GC1: CallCtlConnDisconnectedEv HP1

GC2: CallInvalidEv

GC1: CiscoHuntConnCreatedEv HP2

GC2: ConnConnectedEv HP2

GC2: CallCtlConnEstablishedEv HP2

Call is offered to L

C completes the transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1038

Message Sequence Charts
Message Sequence Charts

ResultScenario

GC1: TermConnDroppedEv C

GC1: CallCtlTermConnDroppedEv C

GC1: ConnDisconnectedEv C

GC1: CallCtlConnDisconnectedEv C

GC1: ConnConnectedEv L

GC1: CallCtlConnEstablishedEv L

GC1: TermConnActiveEv L

GC1: CallCtlTermConnTalkingEv TL

L answers the call

The following call scenarios are generally un-supported and applications are encouraged to enable the huntlist
feature and adapt to the event flows described above.

Following are the expected events when the feature is disabled.

Scenario 23

Hunt list feature is disabled.

Basic call to hunt pilot

ResultScenario

GC1:CallActiveEv

GC1:ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1: CallCtlConnEstablishedEv A

GC1: ConnCreatedEv P

GC1: ConnOfferedEv P

…

GC1: ConnAlertingEv P

GC1: ConnConnected P

GC1: CallCtlConnEstablishedEv A

A (1000) calls Hunt Pilot P (2000), call is offered at C (3001) and
is answered. Application is observing A. GCID is the call is GC1.

C answers the call

bvHunt list feature is disabled

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1039

Message Sequence Charts
Message Sequence Charts

Scenario 24

Consult – Transfer Scenario

ResultScenario

GC1:CallActiveEv

GC1:ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1: CallCtlConnEstablishedEv A

GC1: ConnCreatedEv B

GC1: ConnOfferedEv B

…

GC1: TermConnRingingEv TermB

GC1: TermConnTalkingEv TermB

GC1: CallCtlTermConnHeldEv TermB

GC2: CiscoConsultCallActiveEv

GC2: ConnCreatedEv B

…..

GC2: CallCtlTermConnTalkingEv TermB

GC2: ConnCreatedEv P

..

..

GC2: ConnAlertingEv P

GC2: CallCtlConnEstablishedEv P

A (1000) calls B(1001), consult to Hunt Pilot P (2000), call is
offered at C (3001) and is answered. B completes the transfer.
Application is observing A and B.

GC1 is the GCID of the final call.

GC2 is the consult call

B answers the call

B consults to Hunt pilot

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1040

Message Sequence Charts
Message Sequence Charts

ResultScenario

CiscoTransferStartEv final call –GC1, consult call = GC2

GC1: ConnCreatedEv P

CiscoCallChangedEv GC2 = >GC1

GC2: ConnDisconnectedEv P

GC2: ConnDisconntedEv B

GC2: CallCtlConnDisconnectedEv B

…

….

GC2: CallInvalidEv

GC1: CallCtlConnEstablishedEv P

GC1: ConnDisconnectedEv B

CiscoTransferEndEv

Transfer is completed

Scenario 25

Hunt list feature is disabled

Consult – Transfer Scenario

ResultScenario

UnSupported ConfigurationA (1000) calls B(1001), consult to Hunt Pilot P (2000), call is
offered at C (3001) and is answered. B completes the transfer.
Application is observing A, B and C.

Hunt List Connected Number
Hunt pilot B configured with "Display Line Group Member DN as Connected Party" enabled. B has HL1 as
its hunt list which has C and D as its hunt members

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1041

Message Sequence Charts
Hunt List Connected Number

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCallingAddress = A

Call.getCurrentCalledAddress = null

Call.getModifiedCalledAddress = null

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = C

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1:CallCtlConnEstablishedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnCreatedEv C

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

A calls B, Application is
observing A only. GC1
is the GCID of the call.

Call is offered on the
huntmember C and C
answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1042

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = C

GC1: CallActiveEv

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: ConnCreatedEv A

GC1: CiscoHuntConnCreatedEv B

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC:

GC1: ConnConnectedEv C

GC1: CallCtlConnEstablishedEv C

GC1: TermConnActiveEv TermC

CG1: CallCtlTermConnTalkingEv termC

A calls Hunt Pilot B, call
is offered at C.
Application is observing
C. GC1 is the GCID of
the call.

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1043

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = C

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

GC1:CallCtlTermConnTalkingEv TermC

A calls Hunt Pilot B, call
is offered at C
Application is observing
A and C. GC1 is the
GCID of the call.

C answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1044

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = D

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

GC1: ConnCreatedEv D

GC1: ConnAlertingEv D

GC1: ConnDisConnEv C

GC1: CallCtlConnDiscConnEv C

GC1:TermConnDroppedEv TermC

GC1: CallCtlTermConnDroppedEv TermC

GC1: ConnConnectedEv D

GC1: CallCtlConnEstablishedEv D

GC1: TermConnActiveEv TermD

CG1: CallCtlTermConnTalkingEv termD

A calls Hunt Pilot B, call
is offered at C and then
to D Application is
observing A, C and D.
GC1 is the GCID of the
call.

Call moves to D and D
answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1045

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = C

GC1: CallActiveEv

GC1: ConnCreatedEv A

...

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv C

GC1: ConnInProgressEv C

GC1: CallCtlConnOfferedEv C

GC1: CiscoHuntConnCreatedEv B

GC1: ConnInProgressEv B

GC1: CallCtlConnOfferedEv B

GC1: ConnAlertingEv B

GC1: CallCtlConnAlertingEv B

GC1: ConnAlertingEv C

GC1: CallCtlConnAlertingEv C

GC1:TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC

GC1: CallCtlTermConnRingingEvTermC

GC1:CallCtlTermConnTalkingEv TermC

GC2: CallActiveEv

GC2: ConnCreatedEv C

...

GC2: CallCtlTermConnTalkingEv A

A calls Hunt Pilot B, call
is offered at C
Application is observing
A, C and D. GC1 is the
GCID of the call.

C answers the call.

C consults D and
completes transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1046

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = C

Call.getModifiedCalledAddress = C

Call.getCurrentCalledAddress = D

Call.getModifiedCalledAddress = D

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = D

Call.getModifiedCalledAddress = D

GC2: ConnCreatedEv D

GC2: ConnInProgressEv D

GC2: CallCtlConnOfferedEv D

...

GC2: ConnAlertingEv D

GC2: CallCtlConnAlertingEv D

GC2:TermConnCreatedEv TermD

GC2: TermConnRingingEv TermD

GC2:CallCtlTermConnRingingEvTermD

GC2:CallCtlTermConnTalkingEv TermD

CiscoTransferStartEv

GC1 ConnCreatedEv D

GC1: CallCtlConnEstablishedEv D

GC1:CallCtlTermConnTalkingEv TermD

...

...

GC1 ConnDroppedEv C

GC1 ConnDroppedEv B

...

GC2 CallInvalidEv

CiscoTransferEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1047

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = D

Call.getModifiedCalledAddress = D

GC1: CallActiveEv

GC1: ConnCreatedEv A

…

GC1: CallCtlTermConnTalkingEv A

GC1: ConnCreatedEv D

GC1: ConnInProgressEv D

GC1: CallCtlConnOfferedEv D

GC1: ConnAlertingEv D

GC1: CallCtlConnAlertingEv D

GC1:TermConnCreatedEv TermD

GC1: TermConnRingingEv TermD

GC1: CallCtlTermConnRingingEvTermD

GC1 CallCtlConnEstablishedEv D

GC1:CallCtlTermConnTalkingEv TermD

GC2: CallActiveEv

GC2: ConnCreatedEv D

...

GC2: CallCtlTermConnTalkingEv D

GC2: ConnCreatedEv C

GC2: ConnInProgressEv C

GC2: CallCtlConnOfferedEv C

GC2: ConnCreatedEv D

GC2: CiscoHuntConnCreatedEv B

GC2: ConnConnectedEv D

GC2: CallCtlConnEstablishedEv A

GC2: ConnConnectedEv B

GC2: CallCtlConnEstablishedEv B

A calls D.

D calls HP B, call is
offered on C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1048

Message Sequence Charts
Message Sequence Charts

Call infoExpected resultsScenario

Call.getCurrentCallingAddress = D

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = D

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = D

Call.getModifiedCalledAddress = B

Call.getCurrentCallingAddress = D

Call.getModifiedCalledAddress = C

Call.getCurrentCallingAddress = A

Call.getModifiedCalledAddress = A

Call.getCurrentCalledAddress = B

Call.getModifiedCalledAddress = C

GC2: CallCtlConnAlertingEv C

GC2:TermConnCreatedEv TermC

GC2: TermConnRingingEv TermC

GC2: CallCtlTermConnRingingEvTermC:

GC2 CallCtlConnEstablishedEv C

GC2 CallCtlTermConnTalkingEv termC

CiscoTransferStartEv

GC1 ConnCreatedEv C

GC1 CiscoHuntConnectionCreatedEv B

GC1: ConnConnectedEv B

GC1: CallCtlConnEstablishedEv B

GC1: CallCtlConnEstablishedEv C

GC1:CallCtlTermConnTalkingEv TermD

...

...

GC1 ConnDroppedEv D

...

GC2 CallInvalidEv

CiscoTransferEndEv

C answers the call

D completes transfer

Intercom
Configuration: terminal T1 has intercom line A with TargetDN B, label Bob, Unicode label UBob. Terminal
T2 has intercom line B. Application provider has both T1 and T2 in control list.

C, Carol, UCarol is in the same intercom group as A, and B.

D, David, UDavid is not in the same intercom group as A, B and C.

Call infoResultAction

N.AJTAPI returns A and B as array of
CiscoIntercomAddress.

Application opens provider, after provider comes in
service, application issues
provider.getIntercomAddresses()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1049

Message Sequence Charts
Intercom

Call infoResultAction

N.AJTAPI will return B as target DN and Bob and UBob as
target label.

Application issues
CiscoIntercomAddress.getIntercomTargetDN(),

CiscoIntercomAddress.getIntercomTargetLabel() and
CiscoIntercomAddress.getIntercomUnicodeTarget
Label() request at A.

N.AJTAPI will return B as target DN and Bob and UBob as
target label.

Application issues
CiscoIntercomAddress.getDafaultIntercomTargetDN(),

CiscoIntercomAddress.getDefaultIntercomTargetLabel()
and
CiscoIntercomAddress.getDefaultIntercomUnicodeTargetLabel()
request at A.

N.AAddressObserver at A:
CiscoAddrIntercomInfoChangedEv Cause:
CAUSE_NORMAL

JTAPI will return C as target DN and Carol and UCarol
as target label.

Application issues
CiscoIntercomAddres.setIntercomTarget(C, Carol,
UCarol) on intercom address A.

After successful response, Application issues
CiscoIntercomAddress.getIntercomTargetDN(),
CiscoIntercomAddress.getIntercomTargetLabel() and
CiscoIntercomAddress.getIntercomUnicodeTargetLabel()
request at A.

N.AApp1 : AddressObserver at A:
CiscoAddrIntercomInfoChangedEv Cause:
CAUSE_NORMAL

Application1 is observing CiscoIntercomAddress A and
has AddressObserverAdded to it. Application2 sets
intercom target, label to C, Carol, UCarol.

N.AException will be thrown to application as another
application instance has already set the target to C, Carol,
UCarol.

After above step Application1 issues
CiscoIntercomAddres.setIntercomTarget(B, Bob, UBob)
on intercom address A.

N.AException will be thrown as D, David, UDavid is not in
the same intercom group.

Intercom target DN and label for intercom address A is
set to default, now application issues
CiscoIntercomAddres.setIntercomTarget(D, David,
UDavid) on intercom address A.

N.AAddressObserver at A:
CiscoAddrIntercomInfoChangedEv Cause:
CAUSE_NORMAL

JTAPI will return C as target DN and Carol and UCarol
as target label.

Application has set intercom target DN and label to C,
Carol, UCarol for intercom address A. Now CTI
Manager goes out of service, JTAPI failover to another
CTIManager node. After intercom address A come back
in service, JTAPI will restore intercom target DN and
label to C, Carol, UCarol respectively.

Application issues
CiscoIntercomAddress.getIntercomTargetDN(),
CiscoIntercomAddress.getIntercomTargetLabel() and
CiscoIntercomAddress.getIntercomUnicodeTargetLabel()
request at A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1050

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

N.AAddressObserver at A:
CiscoAddrIntercomInfoRestorationFailedEv Cause:
CAUSE_NORMAL

Application has set intercom target DN and label to C,
Carol for intercom address A. Now CTI Manager goes
out of service, JTAPI failsover to another CTIManager
node. After intercom address A come back in service,
JTAPI tries to restore intercom target DN, label and
UnicodeLabel to C, Carol, UCarol respectively, however
due to race condition some other application has already
set the target DN, JTAPI get failure response from CTI.

N.AAddressObserver at A:

CiscoAddrIntercomInfoChangedEv Cause:
CAUSE_NORMAL

JTAPI will return C as target DN and Carol and UCarol
as target label.

Application is connected to a CTIManager node, Cisco
Unified Communications Manager node goes down,
intercom device failsover to another Cisco Unified
CommunicationsManager node, after intercom address
comes back in service. CTIManager should restore
intercom target Dn and label.

Application issues
CiscoIntercomAddress.getIntercomTargetDN(),
CiscoIntercomAddress.getIntercomLabel() and
CiscoIntercomAddress.getIntercomUnicodeTargetLabel()
request at A.

N.AAddressObserver at A:
CiscoAddrIntercomInfoRestorationFailedEv Cause:
CAUSE_NORMAL

Application is connected to a CTIManager node, Cisco
Unified Communications Manager node goes down,
intercom device failsover to another Cisco Unified
CommunicationsManager node, after intercom address
comes back in service. CTIManager tries to restore
intercom target Dn and label, however due to race
condition some other application has already set the
target Dn and Label, hence CTI is not able to restore the
intercom target DN and label.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1051

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

Cg = A

Cd = B

CurrentCg = A

CurredCd = B

LRP = null

CallObserver at A and B:

CallActiveEv GC1 Cause:
CAUSE_NORMALConnCreatedEv A, Cause:
CAUSE_NORMALConnConnectedEv A Cause:
CAUSE_NORMAL

CallCtlConnInitiatedEv A Cause: CAUSE_NORMAL
CallCtlCause =
CAUSE_NORMALTermConnCreatedEvA- T1Cause:
CAUSE_NORMAL TermConnActiveEv A- T1 Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv A - T1 Cause:
CAUSE_NORMAL

CallCtlCause = CAUSE_NORMAL

CallCtlConnDialingEv A Cause: CAUSE_NORMAL

CallCtlCause = CAUSE_NORMAL

CallCtlConnEstablishedEv A Cause:
CAUSE_NORMAL

CallCtlCause = CAUSE_NORMAL

ConnCreatedEv B, Cause: CAUSE_NORMAL
ConnConnectedEv B Cause: CAUSE_NORMAL
CallCtlConnOfferedEv B Cause: CAUSE_NORMAL
CallCtlCause = CAUSE_NORMAL

CallCtlConnEstablishedEv B Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

TermConnCreatedEvB- T2Cause: CAUSE_NORMAL
TermConnPassiveEvB–T2Cause: CAUSE_NORMAL

CallCtlTermConnBridgeEv B – T2 Cause:
CAUSE_NORMAL CallCtl Cause =
CAUSE_NORMAL

CiscoToneChangedEv – T1 –GC1

CiscoToneChangedEv – T2 –GC1

CiscoRTPOutputStartedEv – T1

CiscoRTPInputStartedEv – T2

Application is observing intercom addresses A and B.
A has target set to B. User initiates intercom call.

Intercom call is successful.

Cg = A

Cd = B

CurrentCg = A

CurredCd = B

LRP = null

CallObserver at A and B:

TermConnActiveEv B - T2 Cause: CAUSE_NORMAL
CallCtlTermConnTalkingEv B – T2 Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

CiscoRTPOutputStartedEv –
T2CiscoRTPInputStartedEv – T1

User at B presses talkback softkey to get connected to
intercom initiator.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1052

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

Cg = A

Cd = B

CurrentCg = A

CurredCd = B

LRP = null

CallObserver at A and B :

CallActiveEv GC1 Cause: CAUSE_NORMAL
ConnCreatedEv A Cause: CAUSE_NORMAL
ConnConnectedEv A Cause: CAUSE_NORMAL
CallCtlConnInitiatedEv A Cause: CAUSE_NORMAL
CallCtlCause = CAUSE_NORMAL

TermConnCreatedEv T1 Cause: CAUSE_NORMAL
TermConnActiveEv T1 Cause: CAUSE_NORMAL
CallCtlTermConnTalkingEv T1 Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

CallCtlConnDialingEv A Cause: CAUSE_NORMAL
CallCtlConnEstablishedEv A Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

ConnCreatedEv B Cause: CAUSE_NORMAL C
ConnConnectedEv B Cause: CAUSE_NORMAL
CallCtlConnOfferedEv B Cause: CAUSE_NORMAL
CallCtlCause = CAUSE_NORMAL

CallCtlConnEstablishedEv B Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

TermConnCreatedEvB- T2Cause: CAUSE_NORMAL
TermConnPassiveEvB–T2Cause: CAUSE_NORMAL
CallCtlTermConnBridgeEv B – T2 Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

CiscoToneChangedEv – T1 –GC1

CiscoToneChangedEv – T2 –GC1

CiscoRTPOutputStartedEv – T1

CiscoRTPInputStartedEv – T2

Intercom address A has target defined as B. Application
initiates an intercom call by calling interface
Address.ConnectIntercom() with dialeddigit as empty.

Intercom call is successful.

Cg = A

Cd = B

CurrentCg = A

CurredCd = B

LRP = null

CallObserver at A and B :

TermConnActiveEvB – T2Cause: CAUSE_NORMAL
CallCtlTermConnTalkingEv B – T2 Cause:
CAUSE_NORMALCallCtlCause=CAUSE_NORMAL

CiscoRTPOutputStartedEv – T2
CiscoRTPInputStartedEv – T1

Application initiate TerminalConnection.join() request
on TerminalConnection of B to talkback.

Request is successful.

N.APlatformException will be thrown, intercom call stay
connected.

Application tried to put the intercom call on hold at A
by issuing TerminalConnection.hold()

N.APlatformException will be thrown, intercom call stay
connected.

Application tried to accept intercom call at intercom
target by issuing connection.accept() at connection of
B.

N.AIntercom call will be disconnected.Application tried to reject intercom call at intercom
target by issuing connection.reject() at connection of B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1053

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

N.APlatformException will be thrown, intercom call stay
connected.

Application tried to redirect intercom call by issuing
connection.redirect() at connection of A or B.

N.APlatformException will be thrown, intercom call stay
connected.

Application tried to park call by issuing
connection.park() at Connection of A or B.

N.ANo event to GC1 call, it will stay in Connected State.Terminal T1 has intercom address Awhich has intercom
target set to B.

Terminal T2 has intercom address B and another address
C. C is in call with D, GC1.

A initiates intercom call to B, intercom call is
auto-answered at B

N.APlatformException will be thrown.Application tries to set forward on intercom address A
by issuing CiscoIntercomAddress. setForwarding ()

N.APlatformException will be thrown.Application tries to setRingerStatus on intercom address
A by issuing CiscoIntercomAddress. setRingerStatus()

N.APlatformException will be thrown.Application tries to setMessageWaiting on intercom
address A by issuing
CiscoIntercomAddress.setMessageWaiting()

N.APlatformException will be thrown.Application tries to setAutoAcceptEnabled on intercom
address A at CTIPort by issuing CiscoIntercomAddress.
setAutoAcceptStatus ()

N.APlatformException will be thrown.Application tries to getAutoAcceptEnabled on intercom
address A at CTIPort by issuing CiscoIntercomAddress.
getAutoAcceptStatus ()

DeviceState Whisper Scenario

Configuration: Terminal T1 has intercom address B, Terminal T2 has intercom address A. Application has
set CiscoTermEvFilter to enable CiscoTermDeviceStateWhisperEv as well as all other DeviceState filters on
T1 and T2. Application had added Terminal observer on both T1 and T2.

Call infoEventsAction

N.AEvent received at TerminalObserver of T1

CiscoTermDeviceStateActiveEv T1 Cause:
CAUSE_NORMAL

Event received at TerminalObserver of T2

CiscoTermDeviceStateWhisperEv T1 Cause:
CAUSE_NORMAL

Intercom address A has target defined as B. Application
initiates an intercom call by calling interface
Address.ConnectIntercom() with dialeddigit as empty.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1054

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

N.AEvent received at TerminalObserver of T1

None.

Event received at TerminalObserver of T2

CiscoTermDeviceStateActiveEv T1 Cause:
CAUSE_NORMAL

Application issue join() request on TerminalConnection
of T2 (intercomTarget) to talkback to
T1(intecomInitiator)

N.AEvent received at TerminalObserver of T2

CiscoTermDeviceStateWhisperEv T1 Cause:
CAUSE_SNAPSHOT

Terminal T2 already have intercom target call,
Application enables CiscoTermFilter for
CiscoTermDeviceStateWhisperEv.

iSac Codec
CiscoMediaTerminal Static Registration with iSac Codec

Call infoEventsActions

CiscoTermInServirceEv for TA

CiscoAddrInServiceEv for A

1. Observe both
A(CiscoMediaTerminal)
and B

Static Register A with
media capability as
CiscoMediaCapability.
ISAC

A calls B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1055

Message Sequence Charts
iSac Codec

Call infoEventsActions

(CiscoRTPInputStartedEv for
TA).getRTPInputProperties().getPayloadType() will
return CiscoRTPPayload.ISAC

(CiscoRTPInputStartedEv for
TA).getRTPInputProperties().getBitRate() is not
deterministic

(CiscoRTPInputStartedEv for
TA).getRTPInputProperties().getPacketSize() is not
deterministic

(CiscoRTPOutputStartedEv for
TA).getRTPOutputProperties().getPayloadType()
will return CiscoRTPPayload.ISAC

(CiscoRTPOutputStartedEv for
TA).getRTPOutputProperties().getBitRate() is not
deterministic

(CiscoRTPOutputStartedEv for
TA).getRTPOutputProperties().getPacketSize() is
not deterministic

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: CallCtlConnDialingEv for A

GC1: CallCtlConnEstablishedEv for B

GC1: ConnCreatedEv for B

GC1: ConnInProgressEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnAlertingEv for B

GC1: CallCtlConnAlertingEv for B

GC1: TermConnCreatedEv for TB

GC1: TermConnRingingEv for TB

GC1: CallCtlTermConnRingingEv for TB

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: TermConnActiveEv for TB

GC1: CallCtlTermConnTalkingEv for TB

TB: CiscoRTPOutputStartedEv for TB

TA: CiscoRTPInputStartedEv for TA

TA: CiscoRTPOutputStartedEv for TB

TB: CiscoRTPInputStartedEv for TA

B answers

CiscoMediaTerminal Dynamic Registration with iSac Codec

Call infoEventsActions

CiscoTermInServirceEv for TB

CiscoAddrInServiceEv for B

1. Observe both A and B
(CiscoMediaTerminal)

Dynamic Register Bwith
media capability as
CiscoMediaCapability.
ISAC

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1056

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: CallCtlConnDialingEv for A

GC1: CallCtlConnEstablishedEv for B

GC1: ConnCreatedEv for B

GC1: ConnInProgressEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnAlertingEv for B

GC1: CallCtlConnAlertingEv for B

GC1: TermConnCreatedEv for TB

GC1: TermConnRingingEv for TB

GC1: CallCtlTermConnRingingEv for TB

A calls B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1057

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

CiscoMediaOpenLogicalChannelEv.getPayloadType()
will return CiscoRTPPayload.ISAC

CiscoMediaOpenLogicalChannelEv.getPacketSize()
is not deterministic

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getPayloadType() will
return CiscoRTPPayload.ISAC

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getBitRate() is not
deterministic

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getPacketSize() is not
deterministic

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getPayloadType()
will return CiscoRTPPayload.ISAC

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getBitRate() is not
deterministic

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getPacketSize() is
not deterministic

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: TermConnActiveEv for TB

GC1: CallCtlTermConnTalkingEv for TB

TB: CiscoMediaOpenLogicalChannelEv for TB

TB: CiscoRTPOutputStartedEv for TA

TA: CiscoRTPInputStartedEv for TB

TA: CiscoRTPOutputStartedEv for TB

TB: CiscoRTPInputStartedEv for TA

B answers

App sets RTP params on
B

CiscoRouteTerminal Dynamic Registration with iSac Codec

Call infoEventsActions

CiscoTermInServirceEv for TB

CiscoAddrInServiceEv for B

1. Observe both A and B
(CiscoRouteTerminal)

Dynamic Register Bwith
media capability as
CiscoMediaCapability.
ISAC

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1058

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

GC1: CallActiveEv

GC1: ConnCreatedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnInitiatedEv for A

GC1: TermConnCreatedEv for TA

GC1: TermConnActiveEvent for TA

GC1: CallCtlTermConnTalkingEv for TA

GC1: CallCtlConnDialingEv for A

GC1: CallCtlConnEstablishedEv for B

GC1: ConnCreatedEv for B

GC1: ConnInProgressEv for B

GC1: CallCtlConnOfferedEv for B

GC1: ConnAlertingEv for B

GC1: CallCtlConnAlertingEv for B

GC1: TermConnCreatedEv for TB

GC1: TermConnRingingEv for TB

GC1: CallCtlTermConnRingingEv for TB

A calls B

CiscoMediaOpenLogicalChannelEv.getPayloadType()
will return CiscoRTPPayload.ISAC

CiscoMediaOpenLogicalChannelEv.getPacketSize()
is not deterministic

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

GC1: TermConnActiveEv for TB

GC1: CallCtlTermConnTalkingEv for TB

TB: CiscoMediaOpenLogicalChannelEv for TB

B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1059

Message Sequence Charts
Message Sequence Charts

Call infoEventsActions

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getPayloadType() will
return CiscoRTPPayload.ISAC

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getBitRate() is not
deterministic

(CiscoRTPInputStartedEv for
TB).getRTPInputProperties().getPacketSize() is not
deterministic

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getPayloadType()
will return CiscoRTPPayload.ISAC

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getBitRate() is not
deterministic

(CiscoRTPOutputStartedEv for
TB).getRTPOutputProperties().getPacketSize() is
not deterministic

TB: CiscoRTPOutputStartedEv for TA

TA: CiscoRTPInputStartedEv for TB

TA: CiscoRTPOutputStartedEv for TB

TB: CiscoRTPInputStartedEv for TA

App sets RTP params on
B

JTAPI Cisco Unified IP 7931G Phone Interaction
A and C are JTAPI application controllable Addresses. B1 and B2 are Address on Cisco Unified IP 7931G
Terminal. Cisco Unified IP 7931G Terminal is configured to do Transfer across Addresses. B1 and B2 has
shared Line B1’ and B2’ respectively configured on JTAPI controllable Terminal.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1060

Message Sequence Charts
JTAPI Cisco Unified IP 7931G Phone Interaction

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled = B1

LRP = B1

JTAPI Event received to CallObserver at A

GC-1 CiscoTransferStartedEv (ControllerAddress = B1,

ControllerTerminalConnection =Null, FinalCall = GC1,

TransferredCall = null)

GC-1 ConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN

GC-1 CallCtlConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN CallControlCause:
CAUSE_TRANSFER

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC-1 CiscoTransferEndEv

Scenario:1

Application is observing A:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C: B2 calls
C, C answers - GC2

User presses transfer key to complete transfer.

Calling = A

Called = B1

CurrCalling = A

CurrCalled = B1

LRP = B1

JTAPI Event received to CallObservers at A and B1’

GC-1 CiscoTransferStartedEv (ControllerAddress = B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1,

TransferredCall = null)

GC1- TermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC-1 ConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN

GC-1 CallCtlConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN CallControlCause:
CAUSE_TRANSFER

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:

CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC-1 CiscoTransferEndEv

Scenario:2

Application is observing A, B1’:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses transfer key to complete transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1061

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled = B1

LRP = B1

Scenario:3

Application is observing A, B1’, B2’:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses transfer key to complete transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1062

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI Event received to CallObserver at A and B1’

GC-1 CiscoTransferStartedEv (ControllerAddress = B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1, TransferredCall = GC2)

GC1- TermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC-1 ConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN

GC-1 CallCtlConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN CallControlCause:
CAUSE_TRANSFER

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL
GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- TermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL

CallControlCause: CAUSE_TRANSFER

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC-1 CiscoTransferEndEv

CallControlCause: CAUSE_TRANSFER

GC2- CallInvalidEv Cause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1063

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC-1 CiscoTransferEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1064

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled = B1

LRP = B1

Scenario:4

Application is observing A, B1’, B2’ and C:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses transfer key to complete transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1065

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI Event received to CallObserver at A, B1’, B2’
and C

GC-1 CiscoTransferStartedEv (ControllerAddress = B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1,

TransferredCall = GC2)

GC1- TermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnDroppedEv for TB1’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC-1 ConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN

GC-1 CallCtlConnDisconnectedEv for B1 Cause:
CAUSE_UNKNOWN CallControlCause:
CAUSE_TRANSFER

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC1- TermConnCreatedEv CT Cause: Other: 31

GC1- TermConnActiveEv CT Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnTalkingEv CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- TermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1066

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- TermConnDroppedEv for CT Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for

C Cause: CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC-1 CiscoTransferEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1067

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = B2

Called = C

CurrCalling = A

CurrCalled = C

LRP = B1

Scenario:5

Application is observing C:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and

dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses transfer key to complete transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1068

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI Event received to CallObserver at C

GC1- CallActiveEv for callID = 101 Cause:
CAUSE_NEW_CALL

GC1- ConnCreatedEv for CCause: CAUSE_NORMAL

GC1- ConnCreatedEv for B2 Cause:
CAUSE_NORMAL

GC-1CiscoTransferStartEv (ControllerAddress = B1,

ControllerTerminalConnection =Null, FinalCall = GC1,

TransferredCall = GC2) Cause: CAUSE_NORMAL

GC1- ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC1- TermConnCreatedEv CT Cause: Other: 31

GC1- TermConnActiveEv CT Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnTalkingEv CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- TermConnDroppedEv for CT Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

CallControlCause: CAUSE_TRANSFER

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2-

CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- CallInvalidEv Cause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1069

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC1- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC1- 1CiscoTransferEndEvCause:CAUSE_NORMAL

GC1-ConnCreatedEv for ACause: CAUSE_NORMAL

GC1- ConnConnectedEv for A Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for A Cause:
CAUSE_NORMAL

GC1- ConnConnectedEv for B2 Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

CallControlCause: CAUSE_TRANSFER

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1070

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled = C

LRP = B1

Scenario:6

Application is observing both A and C:

A calls B1, B1 answers – GC1

User presses transfer key on Cisco Unified IP 7931G
phone and

dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses transfer key to complete transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1071

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI events at observer of A & C:

GC-1CiscoTransferStartEv (ControllerAddress = B1,

ControllerTerminalConnection =Null, FinalCall = GC1,

TransferredCall = GC2) Cause: CAUSE_NORMAL

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- TermConnDroppedEv for CT Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC1- 1CiscoTransferEndEvCause:CAUSE_NORMAL

GC1- ConnCreatedEv for CCause: CAUSE_NORMAL

GC1- ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER

GC1- TermConnCreatedEv CT Cause: Other: 31

GC1- TermConnActiveEv CT Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnTalkingEv CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_TRANSFER NEWMETA

GC-1 ConnDisconnectedEv for B1 –GC1 Cause:
CAUSE_UNKNOWN

GC-1CallCtlConnDisconnectedEv for B1 –GC1Cause:
CAUSE_UNKNOWN CallControlCause:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1072

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CAUSE_TRANSFER

Calling = A

Called = B1

CurrCalling = A

CurrCalled =
Conference

LRP = B1

JTAPI Event received to CallObserver at A

GC-1 CiscoConferenceStartedEv (ControllerAddress =
B1,

ControllerTerminalConnection =Null, FinalCall = GC1,
ConsultCall = null)

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC-1 CiscoConferenceEndEv

Scenario:7

Application is observing A:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and

dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference

Calling = A

Called = B1

CurrCalling = A

CurrCalled =
Conference

LRP = B1

JTAPI Event received to CallObserver at A

GC-1 CiscoConferenceStartedEv (ControllerAddress =
B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1,

ConsultCall = null)

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1 TermConnPassiveEv TB1’

GC1 CallCtlTermConnBridgedEv TB1’

GC-1 CiscoConferenceEndEv

Scenario:8

Application is observing A, B1’:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and

dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1073

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled =
Conference

LRP = B1

JTAPI Event received to CallObserver at A, B1’ and
B2’

GC-1 CiscoConferenceStartedEv (ControllerAddress =
B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1, ConsultCall = GC2)

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1 TermConnPassiveEv – TB1’

GC1 CallCtlTermConnBridgedEv – TB1’

GC2- TermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC-1 CiscoConferenceEndEv

Scenario:9

Application is observing

A, B1’, B2’:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1074

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled =
Conference

LRP = B1

Scenario:10

Application is observing A, B1’, B2’, and C:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1075

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI Event received to CallObserver at A, B1’, B2’
and C

GC-1 CiscoConferenceStartedEv (ControllerAddress =
B1,

ControllerTerminalConnection = TC at TB1’, FinalCall
= GC1,

ConsultCall = GC2)

GC-1ConnCreatedEv for CCause: CAUSE_NORMAL

GC-1 ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC-1 CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1 TermConnPassiveEv - TB1’

GC1 CallCtlTermConnBridgedEv - TB1’

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- TermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for TB2’ Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- TermConnDroppedEv for TC Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for TC Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2-

CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- CallInvalidEv Cause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1076

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC-1 CiscoConferenceEndEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1077

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = B2

Called = C

CurrCalling = A

CurrCalled =
Conference

LRP = B1

Scenario:11

Application is observing C:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1078

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

JTAPI Event received to CallObserver at C

GC1- CallActiveEv for callID = 101 Cause:
CAUSE_NEW_CALL

GC1- ConnCreatedEv for CCause: CAUSE_NORMAL

GC1- ConnCreatedEv for B2 Cause:
CAUSE_NORMAL

GC-1CiscoConferenceStartEv (ControllerAddress = B1,

ControllerTerminalConnection =Null, FinalCall = GC1,

ConsultCall = GC2) Cause: CAUSE_NORMAL

GC1- ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- TermConnCreatedEv CT Cause: Other: 31

GC1- TermConnActiveEv CT Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnTalkingEv CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- ConnConnectedEv for B2 Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- TermConnDroppedEv for CT Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1079

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2- CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC1- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC1- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- ConnCreatedEv for ACause: CAUSE_NORMAL

GC1- ConnConnectedEv for A Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for A Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- ConnCreatedEv for B1 Cause:
CAUSE_NORMAL

GC1- ConnConnectedEv for B1 Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for B1 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- 1 CiscoConferenceEndEv Cause:
CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1080

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling = A

Called = B1

CurrCalling = A

CurrCalled =
Conference

LRP = B1

JTAPI events at observer of A & C:

GC-1CiscoConferenceStartEv (ControllerAddress = B1,

ControllerTerminalConnection =Null, FinalCall = GC1,

ConsultCall = GC2) Cause: CAUSE_NORMAL

GC2- CiscoCallChangedEv for C Cause:
CAUSE_NORMAL

GC2- ConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for B2 Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- TermConnDroppedEv for CT Cause:
CAUSE_NORMAL

GC2- CallCtlTermConnDroppedEv for CT Cause:
CAUSE_NORMALCallControlCause:CAUSE_TRAN

CAUSE_CONFERENCE SFER

GC2- ConnDisconnectedEv for C Cause:
CAUSE_NORMAL

GC2- CallCtlConnDisconnectedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC2- CallInvalidEv Cause: CAUSE_NORMAL

GC1- ConnCreatedEv for CCause: CAUSE_NORMAL

GC1- ConnConnectedEv for C Cause:
CAUSE_NORMAL

GC1- CallCtlConnEstablishedEv for C Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- TermConnCreatedEv CT Cause: Other: 31

GC1- TermConnActiveEv CT Cause:
CAUSE_NORMAL

GC1- CallCtlTermConnTalkingEv CT Cause:
CAUSE_NORMAL CallControlCause:
CAUSE_CONFERENCE

GC1- 1 CiscoConferenceEndEv Cause:
CAUSE_NORMAL

Scenario:12

Application is observing both A and C:

A calls B1, B1 answers – GC1

User presses conference key on Cisco Unified IP 7931G
phone and dials C, call initiated from B2 to C:

B2 calls C, C answers - GC2

User presses conference key to complete conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1081

Message Sequence Charts
Message Sequence Charts

Locale Infrastructure Development Scenarios

Scenario 1—JTAPI Client Machine Has Connectivity to CallManager TFTP Server

• During install, JTAPI client would prompt user to enter TFTP IP address.

• TFTP-IP Address is stored in JTAPI.ini parameter.

• JTAPI Preferences application is run first time, it will take user to language tab to language selection.

• User can select language for running JTAPI Preference application.

• JTAPI Preference application is run second time, it will present UI in the language that user selected
before.

Scenario 2—JTAPI Client Machine Doesn’t Have Connectivity to CallManager TFTP Server

• During install JTAPI Client would prompt user to Enter TFTP-IP Address

• TFTP-IP Address is stored in JTAPI.ini parameter.

• JTAPI Preferences application is run first time, it will take user to language tab to language selection but
user will have only English language to select.

• JTAPI Preference application is run second time, it will present UI in the English languages.

• TFTP connectivity is restored. Now JTAPI Preferences UI is run, it will take user to language selection

Scenario 3—JTAPI Client Machine Has Connectivity to CallManager TFTP Server

• During install JTAPI Client would prompt user to Enter TFTP-IP Address

• TFTP-IP Address is stored in JTAPI.ini parameter.

• JTAPI Preferences application is run first time, it will take user to language tab to language selection.

• User can select language for running JTAPI Preference application.

• JTAPI Preference application is run second time, it will present UI in the language that user selected
before.

• Now new locale files are available with added support for a new languages.

• User runs JTAPI Preferences application, JTAPI Preferences application would notify user about available.

• Application restart JTAPI Preferences application, user will be support for new language.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1082

Message Sequence Charts
Locale Infrastructure Development Scenarios

Calling Party Normalization

Scenario 1—Incoming Call From a PSTN Number (Local) to JTAPI Observed Terminal

Call infoEventsAction

Calling: A (55555555)

Called: B (2222)

getModifiedCallingAddress (): A
(55555555)

getModifiedCalledAddress (): B (2222.)

getCurrentCalledAddress(): B (2222)

getCurrentCalledPartyInfo(): B (2222)

getGlobalizedCallingParty: A
+140855555555

getCurrentCallingPartyInfoNumberType().
getNumberType() would return: Subscriber

NEW META EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause:CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A call is offered
from a PSTN
Number [55555555]
A & the Number
type is [Subscriber]
through the gateway
to a JTAPI Observed
Terminal [2222] B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1083

Message Sequence Charts
Calling Party Normalization

Scenario Two—Incoming Call From a National PSTN Number to JTAPI Observed Terminal

Call infoEventsAction

Calling: A (97255555555)

Called: B (2222)

getModifiedCallingAddress ():
97255555555

getModifiedCalledAddress (): 2222

getCurrentCalledAddress(): 2222

getCurrentCalledPartyInfo(): 2222

getGlobalizedCallingParty ():
+197255555555

getCurrentCallingPartyInfoNumberType().
getNumberType() would return: National

NEW META EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A call is offered
from a Dallas PSTN
Number [55555555]
A & the Number
type is [National]
through a gateway to
a JTAPI Observed
Terminal [2222] B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1084

Message Sequence Charts
Message Sequence Charts

Scenario Three—Incoming Call From Inter-National PSTN Number to JTAPI Observed Terminal

Call infoEventsAction

Calling: A (918028520261)

Called: B (2222)

getModifiedCallingAddress ():
918028520261

getModifiedCalledAddress (): 2222

getCurrentCalledAddress(): 2222

getCurrentCalledPartyInfo(): 2222

getGlobalizedCallingParty ():
+918028520261

getCurrentCallingPartyInfoNumberType().
getNumberType() would return:
Inter-National

NEW META EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A Call is offered
from India PSTN
Number
[918028520261] &
the Number type is
[Inter-national]
through a San Jose
Gateway to a JTAPI
observed Terminal
[2222]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1085

Message Sequence Charts
Message Sequence Charts

Scenario Four—Outgoing Call From JTAPI Observed Terminal to PSTN Number [SUBSCRIBER]

Call infoEventsAction

Calling: A (2222)

Called: B (44444444)

getModifiedCallingAddress (): 2222

getModifiedCalledAddress (): 44444444

getCurrentCalledAddress(): 44444444

getCurrentCalledPartyInfo(): 44444444

getGlobalizedCallingParty (): 2222

getCurrentCallingPartyInfo NumberType
(). getNumberType () would return:
Unknown.

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A call is initiated
from a JTAPI
Observed Terminal
2222 through a San
Jose gateway to a
PSTN number
[44444444] and the
Number type is
[SUBSCRIBER]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1086

Message Sequence Charts
Message Sequence Charts

Scenario Five—Outgoing Call From JTAPI Observed Terminal to National PSTN Number

Call infoEventsAction

Calling: A (2222)

Called: B (97244444444)

getModifiedCallingAddress (): 2222

getModifiedCalledAddress (): 97244444444

getCurrentCalledAddress(): 97244444444

getCurrentCalledPartyInfo(): 97244444444

getGlobalizedCallingParty (): 2222
getCurrentCallingPartyInfoNumberType().
getNumberType() would return: Unknown.

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A call is initiated
from a JTAPI
Observed Terminal
2222 through a San
Jose gateway to a
Dallas PSTN
number
[97244444444] &
the Number type is
[NATIONAL]

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1087

Message Sequence Charts
Message Sequence Charts

Scenario Six—Outgoing Call From JTAPI Observed Terminal to International PSTN Number

Call infoEventsAction

Calling: A (2222)

Called: B (918028520261)

getModifiedCallingAddress (): 2222

getModifiedCalledAddress ():
918028520261

getCurrentCalledAddress():918028520261

getCurrentCalledPartyInfo():
918028520261

getGlobalizedCallingParty (): 2222

getCurrentCallingPartyInfoNumberType().
getNumberType() would return: Unknown.

NEWMETA EVENT_________META_CALL_STARTING

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause: CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

A call is initiated
from a JTAPI
Observed Terminal
2222 through a San
Jose gateway to
India PSTN number
[918028520261] &
the Number type is
[INTERNATIONAL]

Scenario Seven—Incoming Call From PSTN Redirected to Another PSTN by JTAPI Observed Terminal

Call infoEventsAction

Calling: A (55555555)Called: B (2222)NEWMETA EVENT_________META_CALL_STARTINGA call is offered
from PSTN
[55555555] through
a San Jose

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1088

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

getModifiedCallingAddress (): 55555555

getModifiedCalledAddress (): 2222

getCurrentCalledAddress(): 2222

getCurrentCalledPartyInfo(): 2222

getGlobalizedCallingParty ():
+140855555555

getCurrentCallingPartyInfoNumberType().
getNumberType() would return:
SUBSCRIBER

destinationAddress: 44444444.

getCurrentCallingPartyInfoNumberType().
getNumberType() would return: Unknowns

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

ConnCreatedEv for A Cause:CAUSE_NORMAL

ConnConnectedEv for A Cause: CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause: CAUSE_NORMAL

TermConnCreatedEv for A Cause: CAUSE_NORMAL

TernConnActiveEv for A Cause: CAUSE_NORMAL

CallCtlConnDialingEv for A Cause: CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause: CAUSE_NORMAL

ConnCreatedEv for B cause:CAUSE_NORMAL

ConnInProgressEv for B Cause: CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause: CAUSE_NORMAL

ConnAlertingEv for B Cause: CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause: CAUSE_NORMAL

TermConnCreatedEv for B Cause: CAUSE_NORMAL

TermConnRingingEv for B Cause: CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause: CAUSE_NORMAL

CallRedirectReq Redirect Address = C CallRedirectRes

ConnCreatedEv at C Cause: CAUSE_REDIRECTED

ConnInProgress Calling party:A, Called Party: C, LRP: B

CallRedirectResCallStateChangedEv (IDLE)Reason:REDIRECT

Gateway to a JTAPI
observed terminal
[2222] which
redirects the call to
another San Jose
PSTN [44444444].

In CallState [Idle]
the fwdDestination
Address (Redirect
Address) should be
a minus (-).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1089

Message Sequence Charts
Message Sequence Charts

Scenario Eight—Incoming Call From PSTN Number (Local) to JTAPI Observed Terminal Who Transfers to
Another JTAPI Observed Terminal

Call infoEventsAction

After Transfer:

Calling: A (55555555)

Called: B (2222)

getModifiedCallingAddress (): A (+140855555555)

getModifiedCalledAddress (): B (2222.)

getCurrentCalledAddress(): B (2222)

getCurrentCalledPartyInfo(): B (2222)

getGlobalizedCallingParty: A +140855555555

getCurrentCallingPartyInfo NumberType(). getNumberType()
would return: Subscriber

After Transfer:

GC1:

CiscoTransferStartEv

ConnCreatedEv for B

ConnConnectedEv for B

CallCtlConnEstablishedEv for B

TermConnDroppedEv for X

ConnDisconnectedEv for X

CallCtlConnDisconnectedEv for X

CiscoTransferStartEv

GC2:

CiscoTransferStartEv

TermConnDroppedEv for X

ConnDisconnectedEv for X

CallCtlConnDisconnectedEv for X

CiscoTransferStartEv

A call is offered
from a PSTN
Number [55555555]
A & the Number
type is [Subscriber]
through a San Jose
gateway to a JTAPI
observed Terminal
[1111] X which
transfers the call to
another JTAPI
Observed Terminal
[2222] B

Click to Conference
A, B, C and D are addresses and TermA, TermB, TermC and TermD are corresponding terminals.

Call infoEventsAction

callingAddress = unknown
calledAddress = C

CurrentCalling = unknown

CurrentCalled = C

GC2: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason: REASON_CONFERENCE

GC2: ConnCreatedEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

GC2: ConnInProgressEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

A and B are in a call GC1 created
using click-to-call. User adds C to
the conference call. GC2 is the initial
call at C. Application is observing
only C

GC2: CallCtlConnOfferedEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1090

Message Sequence Charts
Click to Conference

Call infoEventsAction

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1091

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: ConnAlertingEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

GC2: CallCtlConnAlertingEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

GC2: TermConnCreatedEv TermC

GC2: TermConnRingingEvTermCCiscoFeatureReason
= REASON_CONFERENCE Cause:
CAUSE_NORMAL

GC2: CallCtlTermConnRingingEv TermC
CiscoFeatureReason = REASON_CONFERENCE
Cause: CAUSE_NORMAL

CiscoCallChangedEv GC2->GC1 CiscoFeatureReason
= REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE

GC1: ConnCreatedEv C CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnAlertingEv C GC1 CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: CallCtlConnAlertingEv C GC1
CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: TermConnCreatedEv TermC

GC1: TermConnRingingEv TermC
CiscoCallChangedEv GC2->GC1 CiscoFeatureReason
= REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC2: TermConnDroppedEvTermCCiscoFeatureReason
= REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC2: CallCtlTermConnDroppedEv TermC
CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC2: ConnDisconnectedEv C CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1092

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: CallCtlConnDisconnectedEv C
CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC2: CallInvalidEv CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnCreatedEv B CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnConnectedEv B CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: CallCtlConnEstablishedEvBCiscoFeatureReason
= REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnCreatedEv A CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnConnectedEv A CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: CallCtlConnEstablishedEvACiscoFeatureReason
= REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnConnectedEv C CiscoFeatureReason =
REASON_NORMALCause: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEvCCiscoFeatureReason
= REASON_NORMALCause: CAUSE_NORMAL

GC1: TermConnTalkingEv TermCCiscoFeatureReason
= REASON_NORMALCause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1093

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling address: A

Called address: B

Current calling: A

Current called: B

Last redirecting party = null

After C is conferenced, callinfo is
not applicable.

A calls B using click-to-call – GC1.
A adds C to the call using
click-2-conf. Application has call
observer on A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1094

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason: REASON_REFER

GC1: ConnCreatedEv A CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: ConnInProgressEv A CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: CallCtlConnOfferedEv A CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: ConnAlertingEv A CiscoFeatureReason =
REASON_NORMAL Cause: CAUSE_NORMAL

GC1: CallCtlConnAlertingEvACiscoFeatureReason =
REASON_NORMAL Cause: CAUSE_NORMAL

GC1: TermConnCreatedEv TermA

GC1: TermConnRingingEvTermACiscoFeatureReason
= REASON_NORMAL Cause: CAUSE_NORMAL

GC1: CallCtlTermConnRingingEv TermA
CiscoFeatureReason = REASON_NORMAL Cause:
CAUSE_NORMAL

GC1: GC1: ConnConnectedEv A CiscoFeatureReason
= REASON_NORMAL cause: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEvACiscoFeatureReason
= REASON_NORMAL Cause: CAUSE_NORMAL

TermConnActiveEv TermA CiscoFeatureReason =
REASON_NORMAL Cause: CAUSE_NORMAL

GC1: TermConnTalkingEv TermACiscoFeatureReason
= REASON_NORMAL Cause: CAUSE_NORMAL

GC1: ConnCreatedEv B CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: ConnInProgressEv B CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: CallCtlConnOfferedEv B CiscoFeatureReason =
REASON_REFER Cause: CAUSE_NORMAL

GC1: ConnAlertingEv B CiscoFeatureReason =
REASON_NORMAL Cause: CAUSE_NORMAL

GC1: CallCtlConnAlertingEv B CiscoFeatureReason =
REASON_NORMAL Cause: CAUSE_NORMAL

GC1: GC1: ConnConnectedEv B CiscoFeatureReason
= REASON_NORMAL: CAUSE_NORMAL

GC1: CallCtlConnEstablishedEvBCiscoFeatureReason
= REASON_NORMAL Cause: CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1095

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: ConnCreatedEv C CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: ConnAlertingEv C CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

GC1: CallCtlConnAlertingEv TermC
CiscoFeatureReason =
REASON_CLICK_TO_CONFERENCE Cause:
CAUSE_NORMAL

For consult call GC3: Calling
address: A

Called address: D

Callinfo not applicable after
conference is completed.

GC1: TermConnHeldEv TermA

GC3: ConsultCallActiveEv

GC3: ConnCreatedEv A

GC3: ConnCreatedEv D

GC3: CallCtlConnAlerting D

GC3: ConnConnectedEv D

GC3: CallCtlConnEstablishedEv B

CiscoConferenceStartEv GC3->GC1

GC3: CallCtlConnDisconnectedEv A

GC3: CallCtlConnDisconnectedEv D

GC1: ConnCreatedEv D

GC1: CallCtlConnEstablishedEv D

GC1: TermConnTalkingEv TermA

GC3: CallInvalidEv

CiscoConferenceEndEvent

A consults with D-GC3. A completes
conference. The events received by
application remains the same (as that
of consult conference).

Calling address: A

Called address: B

GC1: ConnDisconnectedEv D CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv D
CiscoFeatureReason = REASON_CONFERENCE
Cause: CAUSE_NORMAL

GC1: ConnDisconnectedEv C CiscoFeatureReason =
REASON_CONFERENCECause:CAUSE_NORMAL

GC1: CallCtlConnDisconnectedEv C
CiscoFeatureReason = REASON_CONFERENCE
Cause: CAUSE_NORMAL

User drops D using click-2-conf
feature

User drops C using
click-2-conference interface

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1096

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Calling address: A

Called address: B

GC2: Calling address = unknown

Called address: C

GC1: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason: REASON_REFER

GC1: ConnCreatedEv A Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_REFER

Drop all parties a conference.

A calls B using click-2-call. User
adds C to the conference using
click-2-conference.

All parties are dropped using click
to conference.

Application has call observers on A,
B and C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1097

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1098

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: ConnInProgressEvACause: CAUSE_NORMAL
CiscoFeatureReason: REASON_REFER

GC1: CallCtlConnOfferedEv A Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_REFER

GC1: ConnAlertingEv A Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_REFER

GC1: CallCtlConnAlertingEv A Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_REFER

GC1: TermConnCreatedEv TermA

GC1: TermConnRingingEv TermA Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallCtlTermConnRingingEv TermA

GC1: ConnConnectedEvACause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC1: CallCtlConnEstablishedEv A Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: TermConnActiveEv TermA Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallCtlTermConnTalkingEv TermA Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: ConnCreatedEv B Cause: CAUSE_NORMAL
CiscoFeatureReason:REASON_REFER

GC1: ConnInProgressEvBCause: CAUSE_NORMAL
CiscoFeatureReason: REASON_REFER

GC1: CallCtlConnOfferedEv B Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_REFER

GC1: ConnAlertingEv B Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC1: CallCtlConnAlertingEv B Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: TermConnCreatedEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1099

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: TermConnRingingEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallCtlTermConnRingingEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: ConnConnectedEvBCause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC1: CallCtlConnEstablishedEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: TermConnActiveEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallCtlTermConnTalkingEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason: REASON_CONFERENCE

GC2: ConnCreatedEv Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_CONFERENCE

GC2: ConnInProgressEvCCause: CAUSE_NORMAL
CiscoFeatureReason: REASON_CONFERENCE

GC2: CallCtlConnOfferedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CONFERENCE

GC2: ConnAlertingEv C Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC2: CallCtlConnAlertingEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnCreatedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnRingingEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: CallCtlTermConnRingingEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1100

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: CiscoCallChangedEv GC2->GC1 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnCreatedEv C Cause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnInProgressEvCCause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnOfferedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnAlertingEv C Cause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnAlertingEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnCreatedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason
REASON_CLICK_TO_CONFERENCE

GC1: TermConnRingingEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlTermConnRingingEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: TermConnDroppedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: CallCtlTermConnDroppedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: ConnDisconnectedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: CallCtlConnDisconnectedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: CallInvalidEv Cause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1101

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: ConnConnectedEvCCause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnEstablishedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnActiveEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlTermConnTalkingEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

All parties are dropped using click-2-conference

GC1: TermConnDroppedEv TermA Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlTermConnDroppedEv TermA Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: ConnDisconnectedEv A Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv A Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: TermConnDroppedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlTermConnDroppedEv TermC Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: ConnDisconnectedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: TermConnDroppedEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1102

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1: CallCtlTermConnDroppedEv TermB Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: ConnDisconnectedEv B Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallInvalidEv

NAGC1: TermConnDroppedEvTermCCiscoFeatureReason
= REASON_CONFERENCE

A calls B using click-to-call – GC1.
A adds C to the call using
click-2-conf. User drops party C.
Application has call observer on C
only.

GC1: CallCtlTermConnDroppedEv TermC
CiscoFeatureReason = REASON_CONFERENCE

GC1: ConnDisconnectedEv C CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv C
CiscoFeatureReason = REASON_CONFERENCE

GC1: ConnDisconnectedEv A CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv A
CiscoFeatureReason = REASON_CONFERENCE

GC1: ConnDisconnectedEv B CiscoFeatureReason =
REASON_CONFERENCE

GC1: CallCtlConnDisconnectedEv B
CiscoFeatureReason = REASON_CONFERENCE

GC1: CallInvalidEv

Calling = unknown

Called = C

Last redirecting = null

GC2: CallActiveEv CallActiveEv Cause:
CAUSE_NEW_CALL CiscoFeatureReason:
REASON_CONFERENCE

A calls B using GC1. Address C is
configured on TermC1 and TermC2.
Application has call observer on C

GC2: ConnCreatedEv C Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_CONFERENCE

User uses click-to-conference to C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1103

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1104

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: ConnInProgressEvCCause: CAUSE_NORMAL
CiscoFeatureReason: REASON_CONFERENCE

GC2: CallCtlConnOfferedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CONFERENCE

GC2: ConnAlertingEv C Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC2: CallCtlConnAlertingEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnCreatedEv TermC1 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnRingingEv TermC1 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnCreatedEv TermC2 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC2: TermConnRingingEv TermC2 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallActiveEv Cause: CAUSE_NEW_CALL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnCreatedEv C Cause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

CiscoCallChangedEv GC2->GC1 TermConn TermC1
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnAlertingEv C Cause:CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnAlertingEv C
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnCreatedEv TermC1
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnRingingEv TermC1
Cause:CAUSE_NORMAL CiscoFeatureReason:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1105

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

REASON_CLICK_TO_CONFERENCE

CiscoCallChangedEv GC2->GC1 TermConn TermC2
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnCreatedEv TermC2
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: TermConnRingingEv TermC2
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: CallCtlConnDisconnectedEv C
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: TermConnDroppedEv TermC1
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: TermConnDroppedEv TermC2
Cause:CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC2: CallInvalidEv

GC1: ConnCreatedEv B Cause:CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnConnectedEvBCause: CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnEstablishedEv B Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnCreatedEv A Cause:CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: ConnConnectedEv A Cause:CAUSE_NORMAL
CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

GC1: CallCtlConnEstablishedEv A Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_CLICK_TO_CONFERENCE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1106

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

C answers at TermC1GC1: ConnConnectedEvCCause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC1: CallCtlConnEstablishedEv C Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: CallCtlTermConnTalkingEv TermC1 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

GC1: TermConnPassEv TermC2 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL Cause: CAUSE_NORMAL
CiscoFeatureReason: REASON_NORMAL

GC1: CallCtlTermConnInUseEv TermC2 Cause:
CAUSE_NORMAL CiscoFeatureReason:
REASON_NORMAL

Call Pickup
The basic test case for the fix was the following:

1. B and C are devices in a call pick up group. A is a device not in it.

2. A calls B.

3. C goes off-hook, and presses the Pickup softkey.

4. C is now on the call with A.

This test was run with variations in which devices were observed, and the full matrix was run. This included:

• Observing A, B, and C

• Observing A and B

• Observing A and C

• Observing B and C

• Observing only A

• Observing only B

• Observing only C

The final test run, observing only C, was the primary concern for this fix, based on customer usage. The
feature request was, when only observing C, being able to get information about the original called party (A)
on Pickup. All test cases passed and the correct information was displayed for all of them.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1107

Message Sequence Charts
Call Pickup

For cases 3 and 4, the call information depends on the order of events that JTAPI delivers. If JTAPI delivers
the
GC1-CallInvalidEvent/CallObservationEndedEv events before the
GC2-CiscoCallChangedEv, then the call information, such as calling and called addresses, will be what was
seen in
GC2. Conversely, if JTAPI delivers the
GC1-CallInvalidEvent/CallObservationEndedEv events after the
GC2-CiscoCallChangedEv, then the call information, such as calling and called addresses, will be what was
seen in
GC1.

As an example, if JTAPI delivers the
GC1-CallInvalidEvent/CallObservationEndedEv events before the
GC2-CiscoCallChangedEv, the Calling Address = C, Called Address = Pickup Number. If JTAPI delivers
the
GC1-CallInvalidEvent/CallObservationEndedEv events after the
GC2-CiscoCallChangedEv, the Calling Address = A, Called Address = B.

These test cases were run with auto-pickup enabled and disabled, and there was much difference in the
functionality of the two. Most of the test cases are enumerated below.

The basic call from A to B is the same in all cases, and is only shown in the first case below.

Scenario One

Observing all devices and auto-pickup enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1108

Message Sequence Charts
Message Sequence Charts

Call info (GCID info)EventsAction

Calling: A, CCalled: NONE

Calling: A, Called: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

CCalling: A, CCalled: B

Calling: A, Called: B

CCalling: C, CCalled: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

REASON_CALLPICKUP

CCalling: A, CCalled: C

LRP: NONE

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

LRP: NONE

REASON_NORMAL

REASON_CALLPICKUP

CCalling: A, CCalled: C

REASON_NORMAL

A goes off-hook and
dials B (Basic Call) B is
ringing. C goes off-hook
and presses Pickup
softkey. Connection for
C is dropped, B is
dropped / cleaned up, C
connection on Call 1 is
established

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1109

Message Sequence Charts
Message Sequence Charts

Call info (GCID info)EventsAction

GC1-CallActiveEvent-NONE

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CiscoCallChangedEv

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnInitiatedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1110

Message Sequence Charts
Message Sequence Charts

Call info (GCID info)EventsAction

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B

GC1-CallCtlConnDisconnectedEv-B

GC1-CallCtlConnEstablishedEv-C

Both B and C in the following scenarios have exactly the same behavior and events. Only the behavior of
device C (the one picking up the call) changes.

Note

Scenario Two

Observing all devices with auto-pickup disabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1111

Message Sequence Charts
Message Sequence Charts

Call ID InfoEventsAction

CCalling C, CCalled: NONE

LRP: NONE

REASON_NORMAL

REASON_CALLPICKUP

CCalling A, CCalled: C

Calling: A, Called: C, LRP: B

REASON_CALLPICKUP

Calling A, CCalled: C

Calling: A, Called: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

REASON_NORMAL

GC2-CallActiveEvent

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-ConnCreatedEvent-C
GC1-ConnInprogressEvent-C
GC1-CallCtlConnOfferedEv-C

GC1-TermConnDroppedEv
GC1-CallCtlTermConnDroppedEv
GC1-ConnDisconnectedEvent-B
GC1-CallCtlConnDisconnectedEv-B

GC1-ConnAlertingEvent-C
GC1-CallCtlConnAlertingEv-C
GC1-TermConnCreatedEvent
GC1-TermConnRingingEvent
GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv

C goes off-hook and
presses Pickup softkey

Call 2 gets dropped or
invalidated

C gets a connection on
Call 1

B is dropped from Call 1

C is ringing

C is on call with A

The flow of events differs greatly when the auto-pickup option is enabled or disabled.When Auto Call Pickup
is disabled and a user presses the Pickup softkey (C), the phone rings. The user has to answer the phone as if
it is a normal call. When the phone is ringing, the original call that was created when they went offhook is
terminated, they are connected to the existing call, and the old party (B) is removed from the call. There is no
CiscoCallChangedEv generated when Auto Call Pickup is disabled, because the call does not change, it is
terminated before C joins the new call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1112

Message Sequence Charts
Message Sequence Charts

A Group Pickup scenario follows, during which the Group Pickup softkey is used in place of the Pickup
softkey. This required actually dialing the number for the pickup group. Group Pickup also is subject to the
Auto Call Pickup service parameter. The general flow and call events are identical to the normal Call Pickup
scenarios, except with added events for the required dialing of the pickup number.

Scenario Three

Observing all devices with group pickup and auto-pickup enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1113

Message Sequence Charts
Message Sequence Charts

Call ID InfoCall eventAction

CCalling: C, CCalled: NONE

LRP: NONE

REASON_NORMAL

CCalling: C,
CCalled: NONE
REASON_CALLPICKUP
CCalling: C, CCalled: PU, LRP: PU

CCalling C, CCalled: PU
CCalling: A, CCalled: C, LRP: B
Calling: A, Called: B
REASON_CALLPICKUP

CCalling: A, CCalled: C, LRP:B
REASON_CALLPICKUP, LRP: PU

CCalling: C, CCalled: PU
REASON_CALLPICKUP

CCalling: A, CCalled C, LRP: B
REASON_CALLPICKUP

CCalling: A, CCalled C, LRP: B
REASON_CALLPICKUP

GC1 [add to others to clarify]

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C
GC2-ConnCreatedEvent-PU
GC2-ConnInprogressEvent-PU
GC2-CallCtlConnEstablishedEv-C
GC2-CiscoCallChangedEv

GC1-ConnCreatedEvent-C
GC1-ConnCreatedEvent-PU
GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C
GC1-TermConnCreatedEvent
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv
GC1-ConnInprogressEvent-PU
GC1-CallCtlConnOfferedEv-PU

GC2-ConnDisconnectedEvent-PU
GC2-CallCtlConnDisconnectedEv-PU
GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-ConnDisconnectedEvent-PU
GC1-CallCtlConnDisconnectedEv-PU

GC1-TermConnDroppedEv
GC1-CallCtlTermConnDroppedEv
GC1-ConnDisconnectedEvent-B
GC1-CallCtlConnDisconnectedEv-B

C goes offhook and
presses Group Pickup
softkey

C is dialing the PU
Number

C is added to the original
call

Pickup added to original
call

Pickup # is removed Call
2C is dropped from Call
2Pickup # is removed
Call 1

B is dropped / invalidated

There are only a handful of changes for the above Group Pickup case, and they all directly relate to the extra
required step of dialing the pickup number.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1114

Message Sequence Charts
Message Sequence Charts

Scenario Four

Observing all devices with Group Pickup and Auto-Pickup disabled.

Call infoEventAction

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PU

CCalling: C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

CCalling: A, CCalled: C, LRP: B

Calling: A, Called: B

REASON_CALLPICKUP

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

CCalling: A, CCalled: C, LRP: B

REASON_NORMAL

GC1

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C
GC2-ConnCreatedEvent-PU
GC2-ConnInprogressEvent-PU
GC2-CallCtlConnEstablishedEv-C

GC2-ConnDisconnectedEvent-PU
GC2-CallCtlConnDisconnectedEv-PU
GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-ConnCreatedEvent[ADDRS]
GC1-ConnInprogressEvent
GC1-CallCtlConnOfferedEv

GC1-TermConnDroppedEv
GC1-CallCtlTermConnDroppedEv
GC1-ConnDisconnectedEvent
GC1-CallCtlConnDisconnectedEv
GC1-ConnAlertingEvent
GC1-CallCtlConnAlertingEv
GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent
GC1-CallCtlTermConnRingingEv
GC1-ConnConnectedEvent
GC1-CallCtlConnEstablishedEv
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv

C goes offhook and
pressed “Group Pickup”
softkey

C is dialing the PU
number

PU is removed from Call
2

C is removed from Call
2

Call 2 is destroyed

C gets a connection on
Call 1

B is dropped from Call 1

C is ringingC picks up

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1115

Message Sequence Charts
Message Sequence Charts

The tables above have scenarios during which all of the devices were observed. The devices were run with
every possible combination, across all varieties of Pickup and Group Pickup. Parts of the scenarios had the
exact same output and others were redundant and are not shown here. For example, device A and B were
identical and shown only once.

Scenario Five

Only observing device B.

Call IDs/Call infoCall eventsAction

CCalling: A, CCalled: B,

Calling: A, Called: B, LRP: NONE

REASON_NORMAL

REASON_CALLPICKUP

REASON_NORMAL

GC1-CallActiveEvent-NONE
GC1-ConnCreatedEvent-B
GC1-ConnInprogressEvent-B
GC1-CallCtlConnOfferedEv-B
GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-A
GC1-CallCtlConnEstablishedEv-A
GC1-ConnAlertingEvent-B
GC1-CallCtlConnAlertingEv-B
GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent
GC1-CallCtlTermConnRingingEv

GC1-ConnDisconnectedEvent-A
GC1-CallCtlConnDisconnectedEv-A

GC1-TermConnDroppedEv
GC1-CallCtlTermConnDroppedEv
GC1-ConnDisconnectedEvent-B
GC1-CallCtlConnDisconnectedEv-B
GC1-CallInvalidEvent
GC1-CallObservationEndedEv

A is in the process of
calling B

B is ringing

A is removed from Call
1

B is removed from Call
1

Scenario Six

Observing only device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1116

Message Sequence Charts
Message Sequence Charts

Call IDs/Call infoCall eventsAction

CCalling: A, CCalled: NO, NO LRP

REASON_NORMAL

CCalling A, CCalled B,

Called: NOT SET LRP: NONE

CCalling: A, CCalled: C, LRP: B

Called: NOT SET

REASON_CALLPICKUP

REASON_NORMAL

REASON_CALLPICKUP

REASON_NORMAL

GC1-CallActiveEvent-NONE
GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-A
GC1-CallCtlConnInitiatedEv-A
GC1-TermConnCreatedEvent
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv
GC1-CallCtlConnDialingEv-A
GC1-CallCtlConnEstablishedEv-A
GC1-ConnCreatedEvent-B
GC1-ConnInprogressEvent-B
GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B
GC1-CallCtlConnAlertingEv-B
GC1-ConnCreatedEvent-C
GC1-ConnInprogressEvent-C
GC1-CallCtlConnOfferedEv-C

GC1-ConnAlertingEvent-C
GC1-CallCtlConnAlertingEv-C

GC1-ConnDisconnectedEvent-B
GC1-CallCtlConnDisconnectedEv-B
GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C

A goes offhook and dials
B

B is ringing

C is ringing

B is removed from Call
1

Scenario Seven

Observing only device C with Auto-Pickup enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1117

Message Sequence Charts
Message Sequence Charts

Call IDs/Call infoCall eventsAction

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

REAON_CALLPICKUP

CCalling A, CCalled: NONE

LRP: NONE

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

REASON_CALLPICKUP

REASON_CALLPICKUP

CCalling A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv
GC2-CiscoCallChangedEv
GC1-CallActiveEvent-NONE
GC1-ConnCreatedEvent-C
GC1-ConnConnectedEvent-C
GC1-CallCtlConnInitiatedEv
GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-A
GC1-CallCtlConnEstablishedEv-A
GC1-CallCtlConnEstablishedEv-C

C goes offhook and
presses “Pickup” hotkey

C is connected to Call 1

C is dropped from Call
2Call 2 is invalidated /
cleared

A and C are connected on
Call 1

Scenario Eight

Observing only device C with Auto-Pickup disabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1118

Message Sequence Charts
Message Sequence Charts

Call IDs/Call infoCall eventsAction

CCalling: C, CCalled: NO, NO LR

PREASON_NORMAL

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

REASON_NORMAL

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

CCalling: A, CCalled: C, LRP: B

REASON_NORMAL

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-CallActiveEvent
GC1-ConnCreatedEvent-C
GC1-ConnInprogressEvent-C
GC1-CallCtlConnOfferedEv-C
GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-A
GC1-CallCtlConnEstablishedEv-A
GC1-ConnAlertingEvent-C
GC1-CallCtlConnAlertingEv-C
GC1-TermConnCreatedEvent
GC1-TermConnRingingEvent
GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv

C goes offhook and
pressed “Pickup” softkey

Call 2 is destroyed

C is added to Call 1, but
does not pick upC is
ringing

C picks up, and is
connected to Call 1

Scenario Nine

Observing only device C with Group Pickup and AutoPickup enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1119

Message Sequence Charts
Message Sequence Charts

Call IDs/Call infoCall eventAction

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PUCCalling: C,

CCalled: PU, LRP: PU

REASON_CALLPICKUP

REASON_NORMAL

REASON_CALLPICKUP

CCalling: A, C Called: C

CCalling: A, CCalled: C, LRP: B

Calling: A, Called: B

REASON_CALLPICKUP

CCalling C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

CCalling C, CCalled: PU, LRP: PU

REASON_CALLPICKU

PREASON_NORMAL

CCalling: A, CCalled: C

REASON_CALLPICKUP

CCalling: A, CCalled: C

REASON_CALLPICKUP

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C
GC2-ConnCreatedEvent-PU
GC2-ConnInprogressEvent-PU
GC2-CallCtlConnEstablishedEv-C
GC2-CiscoCallChangedEv
GC1-CallActiveEvent

GC1-ConnCreatedEvent-C
GC1-ConnCreatedEvent-PU
GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C
GC1-TermConnCreatedEvent
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv
GC1-ConnInprogressEvent-PU
GC1-CallCtlConnOfferedEv-PU

GC2-ConnDisconnectedEvent-PU
GC2-CallCtlConnDisconnectedEv-PU
GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent
GC2-CallObservationEndedEv

GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-PU
GC1-CallCtlConnEstablishedEv-PU
GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C

GC1-ConnDisconnectedEvent-PU
GC1-CallCtlConnDisconnectedEv-PU

C goes offhook and
presses “Pickup” softkey

C dials the Pickup
Number

C is added to Call 1PU is
added to Call 1

PU # is removed from
Call 2

C is removed from Call
2Call 2 I invalidated /
cleared

C is connected to Call 1

PU is removed from Call
1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1120

Message Sequence Charts
Message Sequence Charts

Scenario Ten

Observing only device C with Group Pickup and Auto-Pickup disabled.

Call IDs/Call infoCall eventsAction

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

REASON_NORMAL

REASON_CALLPICKUP

REASON_CALLPICKUP

REASON_NOTMAL

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

GC2-CallActiveEvent-NONE
GC2-ConnCreatedEvent-C
GC2-ConnConnectedEvent-C
GC2-CallCtlConnInitiatedEv-C
GC2-TermConnCreatedEvent
GC2-TermConnActiveEvent
GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C
GC2-ConnCreatedEvent-PU
GC2-ConnInprogressEvent-PU
GC2-CallCtlConnEstablishedEv-C

GC2-ConnDisconnectedEvent-PU
GC2-CallCtlConnDisconnectedEv-PU
GC2-TermConnDroppedEv
GC2-CallCtlTermConnDroppedEv
GC2-ConnDisconnectedEvent-C
GC2-CallCtlConnDisconnectedEv-C
GC2-CallInvalidEvent

GC1-CallObservationEndedEv

GC1-CallActiveEvent
GC1-ConnCreatedEvent-C
GC1-ConnInprogressEvent-C
GC1-CallCtlConnOfferedEv-C
GC1-ConnCreatedEvent-A
GC1-ConnConnectedEvent-A
GC1-CallCtlConnEstablishedEv-A
GC1-ConnAlertingEvent-C
GC1-CallCtlConnAlertingEv-C
GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent
GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-C
GC1-CallCtlConnEstablishedEv-C
GC1-TermConnActiveEvent
GC1-CallCtlTermConnTalkingEv

C goes offhook, and
presses “Group Pickup”
softkey

C dials the PU Number

PU is dropped from Call
2C is dropped from Call
2Call 2 is destroyed

C is added to Call 1

C is ringing

C is connected to A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1121

Message Sequence Charts
Message Sequence Charts

selectRoute() with Calling Search Space and Feature Priority
The selectRoute() API with calling search space and feature priority as array of int. is shown in the following
table.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1122

Message Sequence Charts
selectRoute() with Calling Search Space and Feature Priority

Call infoEventsAction

calling: C

lastRedirected:RP

called: A

GC1 CallActiveEv

GC1 ConnCreatedEv C:

GC1 ConnConnectedEv C

GC1 CallCtlConnInitiatedEv C:

GC1 TermConnCreatedEv TC

GC1 TermConnActiveEv TC

GC1 CallCtlTermConnTalkingEv TC

GC1 CallCtlConnDialingEv C:

GC1 CallCtlConnEstablishedEv C:

GC1 ConnCreatedEv RP:

GC1 ConnInProgressEv RP:

GC1 CallCtlConnOfferedEv RP:

After redirect request is processed

GC1 ConnCreatedEv A:

GC1 ConnInProgressEv A:

GC1 CallCtlConnOfferedEv A:

GC1 ConnDisconnectedEv RP:

GC1 CallCtlConnDisconnectedEv RP:

GC1 ConnAlertingEv A:

GC1 CallCtlConnAlertingEv A:

GC1 TermConnCreatedEv TA

GC1 TermConnRingingEv TA

GC1 CallCtlTermConnRingingEvImpl TA

GC1 ConnConnectedEv A:

GC1 CallCtlConnEstablishedEv A:

GC1 TermConnActiveEv A

GC1 TermConnActiveEv A

[C] CiscoRTPInputStartedEv

[A] CiscoRTPOutputStartedEv

[A] CiscoRTPInputStartedEv

[C] CiscoRTPOutputStartedEv

Add call observer on phones A, B, C, D.

Register Route Point RP

Register route call back, with select route API with
three rows

route selected: A,CSS: 0, FP: 1

route selected: B,CSS: 1, FP:3

route selected: D,CSS: 1, FP:1

C calls RP

Call rings at A.

A answers. C-A call is connected.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1123

Message Sequence Charts
Message Sequence Charts

Extension Mobility Login Username
Terminal A is in control list of user, Terminal B is not in control list of User. ExtensionMobility login username
is John, end user id user for application is John.

Call infoResultAction

NAInvalidStateException is thrown.Open provider, Terminal A doesn't have any
observer, Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal A.

NAApplication should get empty string “” for username.Open provider, Add Observer to Terminal A,
Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal A.

NAApplication should get String “John”Open provider, User “John” EMLogin to
Terminal A and add observer to the Terminal A,
Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal A

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

NAApplication should get String “John”User “John” EMLogin to Terminal A, now open
provider, add observer to Terminal A,
Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal A.

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

NAApplication should get empty string “” for usernameUser “John” EMLogin to Terminal A, now open
provider, add observer to Terminal A, User
“John” EMLogout of Terminal A, Application
calls CiscoTerminal.getEMLoginUserName() at
Terminal A.

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1124

Message Sequence Charts
Extension Mobility Login Username

Call infoResultAction

NAApplication should get String “John”OpenProvider, User “John” EMLogin to
Terminal B, add observer, application calls
CiscoTerminal.getEMLoginUserName() at
Terminal B

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

NAApplication should get String “John”User “John” EMLogin to Terminal B,
OpenProvider, add observer to Terminal B,
Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal B

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

Terminal A is in control list of user and configured with the Extension Mobility logout profile of user Kerry.
The Kerry profile is configured with logout username as Kerry. There is another profile with login username
of John.

Call infoResultAction

NA

NA

Application should get String John.

Application should get String Kerry.

User John logs into Terminal A, OpenProvider
and add observer to Terminal A. Application
calls CiscoTerminal.getEMLoginUserName() at
Terminal A.

John logs out at Terminal A. Application calls
CiscoTerminal.getEMLoginUserName() at
Terminal A.

Application verifies if EM login
has been done by invoking
CiscoTerminal.getLoginType().

Note

Calling Party IP Address
The following are some examples of call scenarios.

Basic Call Scenario

• JTAPI application monitors party B

• Party A is an IP phone

• A calls B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1125

Message Sequence Charts
Calling Party IP Address

• IP Address of A is available to JTAPI application monitoring party B

Consultation Transfer Scenario

• JTAPI application monitors party C

• Party B is an IP phone

• A talking B

• B initiates a consultation transfer call to C

• IP Address of B is available to JTAPI application monitoring party C.

Consultation Conference Scenario

• JTAPI application monitors party C

• Party B is an IP phone

• A talking B

• B initiates a consultation conference call to C

• IP Address of B is available to JTAPI application monitoring party C.

Redirect Scenario

• JTAPI application monitors party B and party C

• Party A is an IP phone

• A calls B

• IP Address of A is available to JTAPI application monitoring party B

• Party A redirects B to party C (

• Calling IP address is not available to JTAPI application monitoring party B (not a supported scenario).

• Calling IP address of B is provided to JTAPI application monitoring party C.

CiscoJtapiProperties
1. Set Socket Connect Timeout to 5 seconds; Plug out the Ethernet cable for PRIMARY CTI Manager and

do a normal provider open. Expected Result: Socket Connect to Primary CTI Manager should fail in not
more than 5 secs

2. Set Socket Connect Timeout to 5 seconds; Plug out the Ethernet cable for PRIMARY CTI Manager, set
security options to True and do a secured provider open. Expected Result: Socket Connect to Primary
CTI Manager should fail in not more than 5 secs (Socket Connect timed-out in ~5 seconds, though it took
some additional time initially for verifying security certificates)

3. Set Socket Connect Timeout to 0 seconds; Plug out the Ethernet cable for PRIMARY CTI Manager, set
security options to true and do a secured provider open. Expected Result: Socket Connect to Primary CTI

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1126

Message Sequence Charts
CiscoJtapiProperties

Manager will no longer rely on new Service Parameter (Socket Connect timed-out in ~23 seconds, though
it took some additional time initially for verifying security certificates).

IPv6 Support

Use Case1 - Basic Call Scenario: Calling Is IPv6 Enabled Phone; Called Is IPv6

Call info/Expected resultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return IPv6 format
address for A as an InetAddress object.

getCallingPartyIpAddr() will return null

getRemoteAddress() on CiscoRTPOutputProperties
in CiscoOutputStartedEv will contain the far-end
Ipv6 RTP address(of A)

getRemoteAddress() on CiscoRTPInputProperties
in CiscoRTPInputStartedEv will contain the Ipv6
RTP address of the monitored phone(B)

NEWMETA
EVENT_________META_CALL_STARTING

IPv6 enabled phone A
calls JTAPI Observed
IPv6 enabled device B
using GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1127

Message Sequence Charts
IPv6 Support

Call info/Expected resultEventsAction

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B cause : CAUSE_NORMAL

ConnInProgressEv for B Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause :
CAUSE_NORMAL

ConnAlertingEv for BCause : CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause :
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TermConnRingingEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1128

Message Sequence Charts
Message Sequence Charts

Use Case2 - Basic Call Scenario: Calling Is IPv6 Enabled Phone; Called Is IPv4

Call info/Expected resultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return IPv6 format
address for A as an InetAddress object.

getCallingPartyIpAddr() will return null

getRemoteAddress() on CiscoRTPOutputProperties
in CiscoRTPOutputStartedEv will contain the
far-end Ipv4 RTP address which corresponds to the
MTP that was automatically inserted by Call
Manager to perform Ipv4/Ipv6 conversion.

getLocalAddress() on CiscoRTPInputProperties in
CiscoRTPInputStartedEv will contain the Ipv4 RTP
address of the monitored phone

NEWMETA
EVENT_________META_CALL_STARTING

IPv6 enabled phone A
calls JTAPI Observed
IPv4 enabled device B
using GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1129

Message Sequence Charts
Message Sequence Charts

Call info/Expected resultEventsAction

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B cause : CAUSE_NORMAL

ConnInProgressEv for B Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause :
CAUSE_NORMAL

ConnAlertingEv for BCause : CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause :
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TermConnRingingEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1130

Message Sequence Charts
Message Sequence Charts

Use Case3 - Basic Call Scenario: Calling Is IPv4 Enabled Phone; Called Is IPv6

Call info/Expected ResultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return IPv4 format
address for A in an InetAddress object.

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return null

getRemoteAddress() on CiscoRTPOutputProperties
in CiscoRTPOutputStartedEv will contain the
far-end Ipv6 RTP address which corresponds to the
MTP that was automatically inserted by Call
Manager to perform Ipv4/Ipv6 conversion.

getLocalAddress() on CiscoRTPInputProperties in
CiscoRTPInputStartedEv will contain the Ipv6 RTP
address of the monitored phone

NEWMETA
EVENT_________META_CALL_STARTING

IPv4 enabled phone A
calls JTAPI Observed
IPv6 enabled device B
using GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1131

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B cause : CAUSE_NORMAL

ConnInProgressEv for B Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause :
CAUSE_NORMAL

ConnAlertingEv for BCause : CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause :
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TermConnRingingEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1132

Message Sequence Charts
Message Sequence Charts

Use Case4 - Basic Call Scenario: Calling Is IPv4 Enabled Phone; Called Is IPv4

Call info/Expected ResultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return IPv4 format
address for A in an InetAddress object.

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return null

getRemoteAddress() on CiscoRTPOutputProperties
in CiscoRTPOutputStartedEv will contain the
far-end Ipv4 RTP address.

getLocalAddress() on CiscoRTPInputProperties in
CiscoRTPInputStartedEv will contain the Ipv4 RTP
address of the monitored phone

NEWMETA
EVENT_________META_CALL_STARTING

IPv4 enabled phone A
calls JTAPI Observed
IPv4 enabled device B
using GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1133

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B cause : CAUSE_NORMAL

ConnInProgressEv for B Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for B Cause :
CAUSE_NORMAL

ConnAlertingEv for BCause : CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause :
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TermConnRingingEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1134

Message Sequence Charts
Message Sequence Charts

Use Case5 - Consultation Transfer Scenario, IPv6 Device Consults

Call info/Expected ResultEventsAction

For Consult Call:

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return IPv6 format
address for B in an InetAddress object to the JTAPI
Application observing C.

While, CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return null

NEW META
EVENT_________META_CALL_STARTING

GC1: Call between A &
B

Consult Call:

IPv6 enabled phone B
consults JTAPI Observed
device C for Transfer
using GC2.

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for B Cause: CAUSE_NORMAL

ConnConnectedEv for B Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for B Cause:
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TernConnActiveEv for B Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for B Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for B Cause :
CAUSE_NORMAL

ConnCreatedEv for C cause : CAUSE_NORMAL

ConnInProgressEv for C Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for C Cause :
CAUSE_NORMAL

ConnAlertingEv for CCause : CAUSE_NORMAL

CallCtlConnAlertingEv for C Cause :
CAUSE_NORMAL

TermConnCreatedEv for C Cause :
CAUSE_NORMAL

TermConnRingingEv for C Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1135

Message Sequence Charts
Message Sequence Charts

Use Case6 - Consultation Transfer Scenario, IPv4 Device Consults

Call info/Expected ResultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return IPv4 format
address for B in an InetAddress object to the JTAPI
Application observing C

While, CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return null

NEW META
EVENT_________META_CALL_STARTING

GC1: Call between A &
B

Consult Call:

IPv4 enabled phone B
consults JTAPI Observed
device C for Transfer
using GC2.

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for B Cause: CAUSE_NORMAL

ConnConnectedEv for B Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for B Cause:
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TernConnActiveEv for B Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for B Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for B Cause :
CAUSE_NORMAL

ConnCreatedEv for C cause : CAUSE_NORMAL

ConnInProgressEv for C Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for C Cause :
CAUSE_NORMAL

ConnAlertingEv for CCause : CAUSE_NORMAL

CallCtlConnAlertingEv for C Cause :
CAUSE_NORMAL

TermConnCreatedEv for C Cause :
CAUSE_NORMAL

TermConnRingingEv for C Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1136

Message Sequence Charts
Message Sequence Charts

Use Case7: Redirect Scenario

Call info/Expected ResultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return IPv6 format
address for A in an InetAddress object to the JTAPI
Application observing C

While, CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return null

New Meta
Event_______META_CALL_STARTING

GC1: Call between
A(IPv6) & B

Redirect Call:

phone B redirects call to
JTAPI Observed device
C using GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1137

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1138

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for B Cause: CAUSE_NORMAL

ConnConnectedEv for B Cause :
CAUSE_NORMAL

CallCtlConnEstablishedEv for B Cause:
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TernConnActiveEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv for B Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for B Cause :
CAUSE_NORMAL

ConnCreatedEv for ACause : CAUSE_NORMAL

CallCtlConnEstablishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for C cause : CAUSE_NORMAL

ConnInProgressEv for C Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for C Cause :
CAUSE_NORMAL

ConnAlertingEv for CCause : CAUSE_NORMAL

CallCtlConnAlertingEv for C Cause :
CAUSE_NORMAL

TermConnCreatedEv for C Cause :
CAUSE_NORMAL

TermConnRingingEv for C Cause :
CAUSE_NORMAL

TermConnDroppedEv for B Cause :
CAUSE_NORMAL

ConnDisconnectedEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnDroppedEv for B Cause :
CAUSE_REDIRECTED

ConnConnectedEv for C Cause :
CAUSE_NORMAL

TermConnActiveEv for C Cause :

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1139

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

Use Case8: Redirect Scenario (IPv4)

Call info/Expected resultsEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return IPv4 format
address for A in an InetAddress object to the JTAPI
Application observing C

While, CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr_v6() will return null

New Meta
Event_______META_CALL_STARTING

GC1: Call between
A(IPv4) & B

Redirect Call:

phone B redirects call to
JTAPI Observed device
C using GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1140

Message Sequence Charts
Message Sequence Charts

Call info/Expected resultsEventsAction

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1141

Message Sequence Charts
Message Sequence Charts

Call info/Expected resultsEventsAction

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for B Cause: CAUSE_NORMAL

ConnConnectedEv for B Cause :
CAUSE_NORMAL

CallCtlConnEstablishedEv for B Cause:
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TernConnActiveEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv for B Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for B Cause :
CAUSE_NORMAL

ConnCreatedEv for ACause : CAUSE_NORMAL

CallCtlConnEstablishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for C cause : CAUSE_NORMAL

ConnInProgressEv for C Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for C Cause :
CAUSE_NORMAL

ConnAlertingEv for CCause : CAUSE_NORMAL

CallCtlConnAlertingEv for C Cause :
CAUSE_NORMAL

TermConnCreatedEv for C Cause :
CAUSE_NORMAL

TermConnRingingEv for C Cause :
CAUSE_NORMAL

TermConnDroppedEv for B Cause :
CAUSE_NORMAL

ConnDisconnectedEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnDroppedEv for B Cause :
CAUSE_REDIRECTED

ConnConnectedEv for C Cause :
CAUSE_NORMAL

TermConnActiveEv for C Cause :

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1142

Message Sequence Charts
Message Sequence Charts

Call info/Expected resultsEventsAction

CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

Use Case9: Redirect Scenario, Calling Device Redirects

Call info/Expected ResultEventsAction

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() will return IPv4 format
address for B in an InetAddress object to the
JTAPI Application observing C

CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr() or,
CiscoCallCtlConnOfferedEv.
getCallingPartyIpAddr()_v6 will not return IP
address for A in an InetAddress object to the
JTAPI Application observing B after redirect.

New Meta
Event_______META_CALL_STARTING

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

GC1: A calls B(IPv4)

Redirect Call:

Phone A redirects call to JTAPI
Observed device C using GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1143

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

C Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1144

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

ConnCreatedEv for A Cause:
CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstablishedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B Cause :
CAUSE_NORMAL

CallCtlConnEstablishedEv for B Cause :
CAUSE_NORMAL

ConnCreatedEv for C cause :
CAUSE_NORMAL

ConnInProgressEv for C Cause :
CAUSE_NORMAL

CallCtlConnOfferedEv for C Cause :
CAUSE_NORMAL

ConnAlertingEv for C Cause :
CAUSE_NORMAL

CallCtlConnAlertingEv for C Cause :
CAUSE_NORMAL

TermConnCreatedEv for C Cause :
CAUSE_NORMAL

TermConnRingingEv for C Cause :
CAUSE_NORMAL

TermConnDroppedEv for A Cause :
CAUSE_NORMAL

ConnDisconnectedEv for A Cause :
CAUSE_NORMAL

CallCtlTermConnDroppedEv for A Cause :
CAUSE_REDIRECTED

ConnConnectedEv for C Cause :
CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1145

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

TermConnActiveEv for C Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

Use Case10: Route Scenario, IPv6 Enabled Calls RoutePoint Which Routes Call to IPv6 Device

Call info/Expected ResultEventsAction

CiscoRouteEvent.getCallingPartyIpAddr_v6() will
return IPv6 format address for A as an InetAddress
object.

While, CiscoRouteEvent. getCallingPartyIpAddr()
will return null

getRemoteAddress() on CiscoRTPOutputProperties
in CiscoRTPOutputStartedEv will contain the
far-end Ipv6 RTP address

getLocalAddress() on CiscoRTPInputProperties in
CiscoRTPInputStartedEv will contain the Ipv6 RTP
address of the monitored phone

NEWMETA
EVENT_________META_CALL_STARTING

IPv6 enabled phone A
calls RoutePoint which
routes the call to JTAPI
Observed IPv6 enabled
device B using GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1146

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

ConnCreatedEv for A Cause: CAUSE_NORMAL

ConnConnectedEv for A Cause :
CAUSE_NORMAL

CallCtlConnInitiatedEv for A Cause:
CAUSE_NORMAL

TermConnCreatedEv for A Cause :
CAUSE_NORMAL

TernConnActiveEv for A Cause :
CAUSE_NORMAL

CallCtlConnDialingEv for A Cause :
CAUSE_NORMAL

CallCtlConnEstabilishedEv for A Cause :
CAUSE_NORMAL

ConnCreatedEv for B cause : CAUSE_NORMAL

ConnInProgressEv for B Cause :
CAUSE_NORMAL

CallRouteEv for B Cause : CAUSE_NORMAL

ConnAlertingEv for BCause : CAUSE_NORMAL

CallCtlConnAlertingEv for B Cause :
CAUSE_NORMAL

TermConnCreatedEv for B Cause :
CAUSE_NORMAL

TermConnRingingEv for B Cause :
CAUSE_NORMAL

CallCtlTermConnTalkingEv Cause :
CAUSE_NORMAL

B Answers

Use Case11: Enterprise Parameter “Enable IPv6” is Enabled

Application does an open provider by providing the list of CTI Manager IPs as

• IPv4 address of CTI Manager1

• IPv6 address of CTI Manager1

• IPv4 address of CTI Manager2

• IPv6 address of CTI Manager2

Now once the JTAPI is able to establish a connection with CTI Manager and later on if CTI Manager1 goes
down, in failover attempt application can see delay in connecting as JTAPI will first try to connect with IPv6

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1147

Message Sequence Charts
Message Sequence Charts

address of CTI Manager1 (which is next in the list) even though that IP address is of the same CTI Manager
and only once it times out it will try with the IPv4 address of the CTIManager2 which will succeed (assuming
CTI Manager2 is running).

Provider Open Scenario
1. Service Parameter for Reconnect Attempt is not set(or set to 0), Enterprise parameter “Enable IPv6” is

disabled. Application tries to open a provider with IPv4 address. JTAPI will be able to open a connection
with CTI manager.

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager indefinitely till the CTI
Manager is stared again and connection is restored.

• Enterprise parameter “Enable IPv6”is enabled and CTI manager is restarted – JTAPI will be able to
reconnect to CTI Manager with the same IPv4 address.

2. Service Parameter for Reconnect Attempt is not set (or set to 0), Enterprise parameter “Enable IPv6” is
enabled. Application tries to open a provider with IPv4 address. JTAPI will be able to open a connection
with CTI Manager.

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager indefinitely till the CTI
Manager is stared again and connection is restored.

• Enterprise parameter “Enable IPv6”is disabled and CTI manager is restarted – JTAPI will be able
to reconnect to CTI Manager with the same IPv4 address. But, the existing devices registered with
IPv6 address will be closed with “CiscoTermRegistrationFailedEv” with a new reason code
“IP_CAPABILITY_MISMATCH”

3. Service Parameter for Reconnect Attempt is not set (or set to 0), Enterprise parameter “Enable IPv6” is
enabled. Application tries to open a provider with IPv6 address. JTAPI will be able to open a connection
with CTI Manager.

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager indefinitely till the CTI
Manager is started again and connection is restored.

• Enterprise parameter “Enable IPv6”is disabled and CTI manager is restarted – JTAPI will not be
able to reconnect to CTI Manager, as it no longer supports IPv6 address but JTAPI will try
reconnecting to CTI Manager indefinitely till the time service parameter is again enabled and CTI
Service restarted.

4. Service Parameter for Reconnect Attempt is set to some integer value (say 5), Enterprise parameter “Enable
IPv6” is disabled. Application tries to open a provider with IPv4 address. JTAPI will be able to open a
connection with CTI manager.

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager 5 times before closing all
the opened devices and provider.

• Enterprise parameter “Enable IPv6”is enabled and CTI manager is restarted – JTAPI will be able to
reconnect to CTI Manager with the same IPv4 address.

5. Service Parameter for Reconnect Attempt is set to some integer value (say 5), Enterprise parameter “Enable
IPv6” is enabled. Application tries to open a provider with IPv4 address. JTAPI will be able to open a
connection with CTI Manager.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1148

Message Sequence Charts
Provider Open Scenario

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager 5 times before closing all
the opened devices and provider.

• Enterprise parameter “Enable IPv6”is disabled and CTI manager is restarted – JTAPI will be able
to reconnect to CTI Manager with the same IPv4 address. But, the existing devices registered with
IPv6 address will be closed with “CiscoTermRegistrationFailedEv” with a new reason code
“IP_CAPABILITY_MISMATCH”

6. Service Parameter for Reconnect Attempt is set to some integer value (say 5), Enterprise parameter “Enable
IPv6” is enabled. Application tries to open a provider with IPv6 address. JTAPI will be able to open a
connection with CTI Manager.

• CTI Manager is stopped – JTAPI will try reconnecting to CTI manager 5 times before closing all
the opened devices and provider.

• Enterprise parameter “Enable IPv6”is disabled and CTI manager is restarted – JTAPI will not be
able to reconnect to CTI Manager, as it no longer supports IPv6 address but JTAPI will try
reconnecting to CTI Manager 5 more times (as the same can again be enabled on Cisco Unified
Communications Manager) before closing all the devices and provider.

7. Enterprise parameter “Enable IPv6” is disabled. Application tries to open a provider with IPv6 address.
JTAPI will not be able to open a connection with CTI manager. Retry attempts are applicable only if
connection gets established once, but since in this scenario even the first attempt is failing so there will
be no subsequent reconnect attempts.

Enterprise parameter “Enable IPv6” is enabled. Application does an open provider by providing the list
of CTI Manager IPs as

• IPv4 address of CTI Manager1

• IPv6 address of CTI Manager1

• IPv4 address of CTI Manager2

• IPv6 address of CTI Manager2

Now once the JTAPI is able to establish a connection with CTI Manager and later on if CTI Manager1
goes down, in failover attempt application can see delay in connecting as JTAPI will first try to connect
with IPv6 address of CTI Manager1 (which is next in the list) even though that IP address is of the same
CTI Manager and only onMangerce it times out it will try with the IPv4 address of the CTI Manager2
which will succeed (assuming CTI Manager2 is running).

Calling Party IP Address Scenarios
1. Ipv6 enabled phone calls a CTI controllable device. Subsequently, the CTI controllable device is monitored

by a JTAPI application. JTAPI will generate a CiscoCallCtlConnOfferedEv (non-Route Points) or
CiscoRouteEvent (Route Points) notification containing an Ipv6 calling party IP address.

getCallingPartyIpAddr() will return NULL

getCallingPartyIpAddr_v6() will return the actual calling Party IPv6 address.

2. Ipv4 enabled phone calls a CTI controllable device. Subsequently, the CTI controllable device is monitored
by a JTAPI application. JTAPI will generate a CiscoCallCtlConnOfferedEv (non-Route Points) or
CiscoRouteEvent (Route Points) notification containing an Ipv4 calling party IP address (existing behavior)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1149

Message Sequence Charts
Calling Party IP Address Scenarios

getCallingPartyIpAddr() will return the actual calling Party IPv4 address.

getCallingPartyIpAddr_v6() will return NULL.

3. Ipv6 only phone calls a CTI controllable device that is already monitored by a JTAPI application. JTAPI
will generate a CiscoCallCtlConnOfferedEv (non-Route Points) or CiscoRouteEvent (Route Points)
notification containing an Ipv6 calling party IP address.

getCallingPartyIpAddr() will return NULL

getCallingPartyIpAddr_v6() will return the actual calling Party IPv6 address

4. Ipv4 enabled phone calls a CTI controllable device that is already monitored by a JTAPI application.
JTAPI will generate a CiscoCallCtlConnOfferedEv (non-Route Points) or CiscoRouteEvent (Route Points)
notification containing an Ipv4 formatted calling party IP address.

getCallingPartyIpAddr() will return the actual calling Party IPv4 address.

getCallingPartyIpAddr_v6() will return NULL.

5. Ipv4_v6(Two Stack) phone calls a CTI controllable device. Subsequently, the CTI controllable device is
monitored by a JTAPI application. JTAPI will generate a CiscoCallCtlConnOfferedEv (non-Route Points)
or CiscoRouteEvent (Route Points) notification containing an Ipv4 and Ipv6 calling party IP addresses.

getCallingPartyIpAddr() will return the actual calling Party IPv4 address.

getCallingPartyIpAddr_v6() will return the actual calling Party IPv6 address

6. Ipv4_v6(Two Stack) phone calls a CTI controllable device that is alreadymonitored by a JTAPI application.
JTAPI will generate a CiscoCallCtlConnOfferedEv (non-Route Points) or CiscoRouteEvent (Route Points)
notification containing an Ipv4 and Ipv6 calling party IP addresses.

getCallingPartyIpAddr() will return the actual calling Party IPv4 address.

getCallingPartyIpAddr_v6() will return the actual calling Party IPv6 address

RTP Addresses
1. An Ipv6 enabled phone calls an Ipv6 JTAPI Observed phone and the call is answered. JTAPI will

generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of the monitored phone.

2. An Ipv4 enabled phone calls an Ipv4 JTAPI Observed phone and the call is answered. JTAPI will
generate(existing behavior):

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of the monitored phone.

3. An Ipv4 enabled phone calls an Ipv6 JTAPI Observed device and the call is answered. JTAPI will
generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address which corresponds to the
MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of the monitored phone.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1150

Message Sequence Charts
RTP Addresses

4. An Ipv6 enabled phone calls an Ipv4 JTAPI Observed device and the call is answered. JTAPI will
generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address which corresponds to the
MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of the monitored phone.

5. A Dual stack(Ipv4_v6) phone calls another dual stack(Ipv4_v6) JTAPI Observed device, preferred
media termination is set to IPv6, and the call is answered then JTAPI will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of the monitored phone.

6. A Dual stack(Ipv4_v6) phone calls another dual stack(Ipv4_v6) JTAPI Observed device, preferred
media termination is set to IPv4, and the call is answered then JTAPI will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of the monitored phone.

7. ADual stack(Ipv4_v6) phone calls an Ipv4 JTAPI Observed device and the call is answered then JTAPI
will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of the monitored phone.

8. ADual stack(Ipv4_v6) phone calls an Ipv6 JTAPI Observed device and the call is answered then JTAPI
will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of the monitored phone.

9. An IPv4 phone calls a dual stack (Ipv4_v6) JTAPI Observed device and the call is answered then JTAPI
will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of the monitored phone.

10. An IPv6 phone calls a dual stack (Ipv4_v6) JTAPI Observed device and the call is answered then JTAPI
will generate:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address of the calling device.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of the monitored phone.

11. JTAPI observed IPv6 phone(A) calls JTAPI observed IPv4 phone(B). B answers and consults IPv6
phone(C) for Transfer. C answers and B completes the Transfer, then JTAPI will generate:

• At A:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address of C.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1151

Message Sequence Charts
Message Sequence Charts

• At C:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address of A.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of C.

12. JTAPI observed IPv4 phone(A) calls JTAPI observed IPv4 phone(B). B answers and consults IPv6
phone(C) for Transfer. C answers and B completes the Transfer, then JTAPI will generate:

• At A:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address which corresponds to
the MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of A.

• At C:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address which corresponds to
the MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of C.

13. JTAPI observed IPv6 phone(A) calls JTAPI observed IPv4 phone(B). B answers and consults IPv6
phone(C) for conference. C answers and B completes the conference. Conference Bridge has an IPv4
address. Then JTAPI will generate:

• At A:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address which corresponds to
the MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of A.

• At B:

• CiscoRTPOutputStartedEv containing the far-end Ipv4 RTP address of the Conference Bridge.

• CiscoRTPInputStartedEv containing the Ipv4 RTP address of B.

• At C:

• CiscoRTPOutputStartedEv containing the far-end Ipv6 RTP address which corresponds to
the MTP that was automatically inserted by Call Manager to perform Ipv4/Ipv6 conversion.

• CiscoRTPInputStartedEv containing the Ipv6 RTP address of C.

CTI Port/Route Point Registration Scenarios
1. CTI Port/Route Point has ‘IP AddressingMode’ configured as ‘IPv4_v6’. Application tries to do a static

register of that CTI Port/Route Point to CTIManager with IPv6 address and Application addressing
capability as IPv6. The registration will succeed and CTI Port/Route Point will get registered with
CTIManager with IPv6 address.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1152

Message Sequence Charts
CTI Port/Route Point Registration Scenarios

2. CTI Port/Route Point has ‘IP AddressingMode’ configured as ‘IPv4_v6’. Application tries to do a static
register of that CTI Port/Route Point to CTIManager with IPv4 address and Application addressing
capability as IPv4. The registration will succeed and CTI Port/Route Point will get registered with
CTIManager with IPv4 address.

3. CTI Port/Route Point has ‘IP AddressingMode’ configured as ‘IPv4_v6’. Application tries to do a static
register of that CTI Port/Route Point to CTIManager with IPv4 and IPv6 addresses and Application
addressing capability as IPv4_v6. The registration will succeed and CTI Port/Route Point will get
registered with CTIManager with IPv4 and IPv6 addresses.

4. CTI Port/Route Point has ‘IP Addressing Mode’ configured as ‘IPv4 only’. Application tries to do a
static register of that CTI Port/Route Point to CTIManager with IPv4 address and Application addressing
capability as IPv4. The registration will succeed and CTI Port/Route Point will get registered with
CTIManager with IPv4 address.

5. CTI Port/Route Point has ‘IP Addressing Mode’ configured as ‘IPv6 only’. Application tries to do a
static register of that CTI Port/Route Point to CTIManager with IPv6 address and Application addressing
capability as IPv6. The registration will succeed and CTI Port/Route Point will get registered with
CTIManager with IPv6 address.

6. CTI Port/Route Point has ‘IP Addressing Mode’ configured as ‘IPv4 only’. Application tries a static
register of that CTI Port/Route Point by providing an IPv6 address or/and by advertising application
addressing capability as IPv6 (or Ipv4_v6) only then request will fail with a CiscoRegistrationException.

7. CTI Port/Route Point has ‘IP Addressing Mode’ configured as ‘IPv6 only’. Application tries to
dynamically register that CTI Port/Route Point to CTIManager. IP capabilities advertised by the
application at the time of registration are IPv4 (or IPv4_v6) only. Then the request will be denied with
a CiscoRegistrationException.

8. CTI Port/Route Point has ‘IP AddressingMode’ configured as ‘IPv4 only (or IPv4_v6 both)’. Application
tries to dynamically register that CTI Port/Route Point to CTIManager. IP capabilities advertised by
the application at the time of registration are IPv4 only. Then the registration will succeed and CTI
Port/Route point will get registered with IPv4 address when the same is provided with SetRTPParams
request.

9. CTI Port/Route Point has ‘IP AddressingMode’ configured as ‘IPv6 only (or IPv4_v6 both)’. Application
tries to dynamically register that CTI Port/Route Point to CTIManager. IP capabilities advertised by
the application at the time of registration are IPv6 only. Then the registration will succeed and CTI
Port/Route point will get registered with IPv6 address when the same is provided with SetRTPParams
request.

10. CTI Port/Route Point has ‘IP Addressing Mode’ configured as ‘IPv4_v6 both’. Application tries to
dynamically register that CTI Port/Route Point to CTIManager. IP capabilities advertised by the
application at the time of registration are IPv4_v6 both. Then the registration will succeed and CTI
Port/Route point will get registered with IPv4_v6 address when the same is provided with SetRTPParams
request.

11. If an application tries to dynamically register a CTI Port/Route Point by advertising its IP capabilities
as IPv6, which is already registered to another application with IPv4 address. Then the request will be
declined with a CiscoRegistrationException or “CiscoTermRegistrationFailedEv”will be sent with new
reason code “IP_CAPABILITY_MISMATCH”.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1153

Message Sequence Charts
Message Sequence Charts

Advance Test Cases
1. Application does a provider Open with IPv4 address to a CTI Manager which has enterprise parameter

“Enable IPv6” enabled. Application tries to register a CTI Port/Route point with an IPv6 address whose
device IP AddressingMode is set to “IPv4_v6” by advertising applications addressing capability as “IPv6
only”. The registration request will succeed.

2. JTAPI observed IPv6 device A calls another JTAPI observed IPv4 device B, call is offered and answered
at B. In that case:

CiscoCallCtlConnOfferedEv.getCallingPartyIpAddr() will return NULL

CiscoCallCtlConnOfferedEv.getCallingPartyIpAddr_v6() will the actual calling Party IPv6 address

• At B:

• CiscoRTPInputStartedEv will have B’s IPv4 Address

• CiscoRTPOutputStartedEv will have IPv4 address of the MTP Resource

Interesting thing to notice here is CiscoRTPOutputStartedEv has an IPv4 address while calling party
IP Address is an IPv6 address.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1154

Message Sequence Charts
Advance Test Cases

Direct Transfer Across Lines Use Cases
Call info/Expected ResultEventsAction

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

GC1: CiscoTransferStartEv

GC1: CiscoCallChangedEv

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnEstablishedEv for C

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv TC

GC2: TermConnDroppedEv for TC

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

GC1: CiscoTransferEndEv

Application is observing A, B1,
B2, and C (B1 and B2 are two
Addresses on the same Terminal
TB)

A calls B1, B1 answers – GC1

B2 calls C, C answers – GC2

setTransferController to B1

GC1.transfer(GC2)

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

Application is observing A, B1,
B2, and C (B1 and B2 are two
Addresses on the same Terminal
which allows connected transfer
across lines over phone
manually which supports this
feature)

A calls B1, B1 answers – GC1

B2 calls C, C answers – GC2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1155

Message Sequence Charts
Direct Transfer Across Lines Use Cases

Call info/Expected ResultEventsAction

GC2: CallCtlTermConnHeldEv for TB

GC3: CiscoConsultCallActiveEv

GC3: ConnCreatedEv for B2

GC3: ConnConnectedEv for B2

GC3: CallCtlConnInitiatedEv for B2

GC3: TermConnCreatedEv for TB2

GC3: TermConnActiveEvent for TB2

GC3: CallCtlTermConnTalkingEv for TB2

User B2 presses transfer and
user selects active call(A–> B
call) from the phone UI and
presses transfer again to do
connected Transfer Across
Lines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1156

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

GC3: TermConnDroppedEv for TB2

GC3: CallCtlTermConnDroppedEv for TB2

GC3: ConnDisconnectedEv for B2

GC3: CallCtlConnDisconnectedEv for B2

GC3: CallInvalidEvent

GC3: CallObservationEndedEv

GC2: CiscoTransferStartEv

GC1: CiscoCallChangedEv

GC2: ConnCreatedEv for A

GC2: ConnConnectedEv for A

GC2: CallCtlConnEstablishedEv for A

GC2: TermConnCreatedEv for TA

GC2: TermConnActiveEvent for TA

GC2: CallCtlTermConnTalkingEv for TA

GC1: TermConnDroppedEv for TA

GC1: CallCtlTermConnDroppedEv for TA

GC1: ConnDisconnectedEv for A

GC1: CallCtlConnDisconnectedEv for A

GC2: TermConnDroppedEv for TB2

GC2: CallCtlTermConnDroppedEv for TB2

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC1: TermConnDroppedEv for TB1

GC1: CallCtlTermConnDroppedEv for TB1

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

GC2: CiscoTransferEndEv

User Presses transfer again to
complete connected transfer
across lines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1157

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

GC1: CiscoTransferStartEv

GC1: CiscoCallChangedEv

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnEstablishedEv for C

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

GC1: CiscoTransferEndEv

Application is observing A, B1,
B2:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

setTransferController to B1

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1158

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

GC1: CiscoTransferStartEv

GC1: ConnDisconnectedEv for A

GC1: CallCtlConnDisconnectedEv for A

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC1: CallInvalidEv

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC1: CiscoTransferEndEvGC1:
CallObservationEndedEv

Application is observing B1,
B2:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

setTransferController to B1

GC1.transfer(GC2)

JTAPI will throw PlatformException “Transfer
controller is not set and could not find a suitable
TerminalConnection”. Since JTAPI cannot
get/find call leg for B2 from GC2

Application is observing only
B1:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

setTransferController to B1

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1159

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

GC2: CallActiveEvent

GC2: ConnCreatedEv for A

GC2: ConnCreatedEv for C

GC1: CiscoCallChangedEv

GC2: ConnConnectedEv for A

GC2: CallCtlConnEstablishedEv for A

GC2: TermConnCreatedEv for A

GC2: TermConnActiveEvent for A

GC2: CallCtlTermConnTalkingEv for A

GC2: ConnConnectedEv for C

GC2: CallCtlConnEstablishedEv for C

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC1: TermConnDroppedEv for A

GC1: CallCtlTermConnDroppedEv for A

GC1: ConnDisconnectedEv for A

GC1: CallCtlConnDisconnectedEv for A

GC1: CallInvalidEvent

GC1: CallObservationEndedEv

Application is observing only
A:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

User presses transfer and selects
active call(A –> B call) from the
phone UI and presses Transfer
again to do Connected Transfer
Across Lines

JTAPI will throw PlatformException “Transfer
controller is not set and could not find a suitable
TerminalConnection” Since JTAPI cannot
get/find call leg for B1 from GC1

Application is observing only
B2:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

setTransferController to B1

GC1.transfer(GC2)

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

GC2: CiscoTransferStartEv

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: ConnCreatedEv for A

GC2: ConnConnectedEv for A

GC2: CallCtlConnEstablishedEv for AGC2:
CiscoTransferEndEv

Application is observing only
C:

A calls B1, B1 answers – GC1

B2 calls C, C answers - GC2

User presses transfer and selects
active call(A–>B call) from the
phone UI and preses Transfer
again to do Connected Transfer
Across Lines.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1160

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoProviderCapabilityChangedEv.
hasConnectedTransfer
ConferenceCapabilityChanged() returns True

JTAPI delivers:

ProvInServiceEv

CiscoProviderCapabilityChangedEv

CiscoTermRestrictedEv

CiscoAddrRestrictedEv

(for all the phones that support connected tx/conf
across lines)

New user role(Standard
Supports Connected Xfer/Conf)
is associated with application
user

Application opens a provider
and disassociates the above
mentioned user role

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1161

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoTransferStartEv.
getControllerTerminalName() returns Terminal
name for B1&B2

At Transfer:

GC1: CiscoTransferStartEvGC2:
CiscoCallChangedEv

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnEstablishedEv for C

GC1: TermConnCreatedEv for TC'

GC1: TermConnPassiveEvent for TC'

GC1: CallCtlTermConnInUseEv for TC'

GC2: TermConnDroppedEv for TC'

GC2: CallCtlTermConnDroppedEv for TC'

GC2: CiscoCallChangedEv

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv for TC

GC2: TermConnDroppedEv for TC

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

GC1: CiscoTransferEndEv

Application is observing A, B1,
B2, C and C’ (B1 and B2 are
two Addresses on the same
Terminal, C’ is sharedline of C)

A calls B1, B1 answers – GC1

B2 calls C, C answers – GC2

setTransferController to B1

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1162

Message Sequence Charts
Message Sequence Charts

Call info/Expected ResultEventsAction

CiscoTerminal.isRestricted() returns TRUEPhones that allow connected transfer/conference
across lines are exposed as restricted.

JTAPI throws PlatformExceptionImpl ("Terminal
is restricted",
CiscoJtapiException.CTIERR_DEVICE_RESTRICTED
).

New user role(Standard
Supports Connected Xfer/Conf)
is not associated with
application user

Application tries to add observer
on phone which allows
connected transfer/conference
across lines

CiscoProviderCapabilityChangedEv.
hasConnectedTransferConference
CapabilityChanged() returns True

JTAPI delivers:

ProvInServiceEv

CiscoProviderCapabilityChangedEv

CiscoAddrActivatedEv

CiscoTermActivatedEv

(for all the phones that support connected tx/conf
across lines)

New user role(Standard
Supports Connected Xfer/Conf)
is not associated with
application user

Application opens a provider
and associates the above
mentioned user role

Connected Conference or Join Across Lines Use Cases - New Phones Behavior
Call info/Expected resultEventsAction

New Role “Standard
Supports Connected
Xfer/Conf” to control
phones which support
connected conference
across lines is Not
Associated with
user.Phones TA(Line A),
TB(Lines B1, B2) and
T3(Lines C); TC is a
phones which allows
connected conference
across lines.

Observe All;
GC1: A calls B1,
GC2: B2 calls C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1163

Message Sequence Charts
Connected Conference or Join Across Lines Use Cases - New Phones Behavior

Call info/Expected resultEventsAction

CiscoConferenceStartEv.getControllerAddress()
returns
B1CiscoConferenceStartEv.getControllerTerminalName()
returns TB

App, gets an PlatformExceptionImpl ("Terminal is
restricted",
CiscoJtapiException.CTIERR_DEVICE_RESTRICTED
) when the add observer on TB, B1 and B2

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEvent
GC3: CallObservationEndedEv
GC2: CiscoConferenceStartEv
GC1: CiscoCallChangedEv
GC2: ConnCreatedEv for A
GC2: ConnConnectedEv for A
GC2: CallCtlConnEstablishedEv for A
GC2: TermConnCreatedEv for TA
GC2: TermConnActiveEvent for TA
GC2: CallCtlTermConnTalkingEv for TA
GC1: TermConnDroppedEv for TA
GC1: CallCtlTermConnDroppedEv for TA
GC1: ConnDisconnectedEv for A
GC1: CallCtlConnDisconnectedEv for A
GC1: ConnDisconnectedEv for B
GC1: CallCtlConnDisconnectedEv for B
GC1: CallInvalidEvent
GC1: CallObservationEndedEv
GC2: CiscoConferenceEndEv

Do connectedConference
Across Lines manually
on Phone TB (which
supports this feature) to
conferenceGC1 andGC2

Enhanced MWI Use Cases
ResultAction

Phone displays updated voice and fax counts provided and also
updates the MWI indicator accordingly. A successful response is
returned.

Application calls CiscoAddress.setMessageSummary() to set
voice and fax counts on a phone that supports the enhanced
message waiting counts.

Phone only updates the MWI indicator accordingly—no voice
and fax counts are displayed on the phone. A successful response
is returned

Application calls CiscoAddress.setMessageSummary() to set
voice and fax counts on a phone that does not support the
enhanced message waiting counts.

The request fails with the following error returned:
INVALID_HIGH_PRIORITY_VOICE_COUNTS

Application calls CiscoAddress.setMessageSummary() to set
voice counts, but the “high priority” voice counts provided are
bigger than “total” voice counts provided.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1164

Message Sequence Charts
Enhanced MWI Use Cases

ResultAction

The request fails with the following error returned:
INVALID_TOTAL_FAX_COUNTS

Application calls CiscoAddress.setMessageSummary() to set fax
counts, but the “total” fax counts provided is bigger than
maximum size allowed.

Join Across Lines Enhancements
A, C, D, E and F are addresses on different terminals. B1 and B2 are addresses on the same terminal TermB.

A, B1 and C are in a conference call GC1 with B1 as the controller and connected to conference bridge
Conference-1. B2, D and E are in conference call GC2 with D as controller and connected to bridge
Conference-2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1165

Message Sequence Charts
Join Across Lines Enhancements

EventsAction

Events to CallObserver of A, C and B1:
TermConnActiveEv TermB GC1
CallCtlTermConnTalkingEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1
ConnConnectedEv Conference-2 GC1
CallCtlConnEstablishedEv Conference-2 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv GC1
Ev.getAddedConnection will return connection for Conference-2
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of
Conference-2Ev.getConferenceChain().getChainedConferenceCalls()
will returnGC1

Event for CallObserver at B2, D & E:

ConnDisconnectedEv B2 GC2 Cause = NORMAL
CallCtlConnDisconnectedEv B2 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE
TermConnDroppedEv TermB GC2 Cause = NORMAL
CallCtlTermConnDroppedEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2
ConnConnectedEv Conference-1 GC2
CallCtlConnEstablishedEv Conference-1 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2
Ev.getAddedConnection will return connection of Conference-1
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1 & Conference-2
Ev.getConferenceChain().getChainedConferenceCalls() will return
GC1 & GC2

Application conferences the two calls on
B1 and B2 by invoking
GC1.conference(GC2) to chain two
conference call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1166

Message Sequence Charts
Message Sequence Charts

EventsAction

Event for CallObserver at B2, D & E:

TermConnActiveEv TermB GC2
CallCtlTermConnTalkingEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2
ConnConnectedEv Conference-1 GC2
CallCtlConnEstablishedEv Conference-1 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2
Ev.getAddedConnection will return connection for Conference-1
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1
Ev.getConferenceChain().getChainedConferenceCalls() will return GC2

Events for CallObservers at A, B1 & C:
ConnDisconnectedEv B1 GC1 Cause = NORMAL
CallCtlConnDisconnectedEv B1 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE
TermConnDroppedEv TermB GC1 Cause = NORMAL
CallCtlTermConnDroppedEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1
ConnConnectedEv Conference-2 GC1
CallCtlConnEstablishedEv Conference-2 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC1
Ev.getAddedConnection will return connection for Conference-2
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2
Ev.getConferenceChain().getChainedConferenceCalls() will returnGC1

Application invokesGC2.conference(GC1)
to chain two conference calls.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1167

Message Sequence Charts
Message Sequence Charts

EventsAction

A, B1, C are in conference-1 (GC1), B1,
D, E are in conference-2 (GC2), B2, F, G
are in conference-3 (GC-3)

Application completes conference at C by
initiating GC1.conference(GC2, GC3)
setting B1 as controller.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1168

Message Sequence Charts
Message Sequence Charts

EventsAction

Event for CallObserver at A, B1 & C:

TermConnActiveEv TermB GC1
CallCtlTermConnTalkingEv TermB GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-2 GC1
ConnConnectedEv Conference-2 GC1
CallCtlConnEstablishedEv Conference-2 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC1
Ev.getAddedConnection will return connection for Conference-2
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2
Ev.getConferenceChain().getChainedConferenceCalls() will return GC1

TermConnDroppedEv TermB GC2
CallCtlTermConnDroppedEvTermB GC2

ConnCreatedEv Conference-3 GC1
ConnConnectedEv Conference-3 GC1
CallCtlConnEstablishedEv Conference-3 GC1 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC1
Ev.getAddedConnection will return connection for Conference-3
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-2 & Conference-3
Ev.getConferenceChain().getChainedConferenceCalls() will return GC2
& GC3

Event for CallObserver at B1, D & E:
ConnDisconnectedEv B1 GC2 Cause = NORMAL
CallCtlConnDisconnectedEv B1 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE
TermConnDroppedEv TermB GC2 Cause = NORMAL
CallCtlTermConnDroppedEv TermB GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC2
ConnConnectedEv Conference-1 GC2
CallCtlConnEstablishedEv Conference-1 GC2 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC2
Ev.getAddedConnection will return connection for Conference-1
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1-GC2
Ev.getConferenceChain().getChainedConferenceCalls() will returnGC2

Event for CallObserver at B2, F & G:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1169

Message Sequence Charts
Message Sequence Charts

EventsAction

ConnDisconnectedEv B2 GC3 Cause = NORMAL
CallCtlConnDisconnectedEv B2 GC3 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE
TermConnDroppedEv TermB GC3 Cause = NORMAL
CallCtlTermConnDroppedEv TermB GC3 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

ConnCreatedEv Conference-1 GC3
ConnConnectedEv Conference-1 GC3
CallCtlConnEstablishedEv Conference-1 GC3 Cause = NORMAL,
callCtlCause = CAUSE_CONFERENCE

CiscoConferenceChainAddedEv – GC3
Ev.getAddedConnection will return connection for Conference-1
Ev.getConferenceChain().getChainedConferenceConnections()
will return connections of Conference-1
Ev.getConferenceChain().getChainedConferenceCalls() will return GC3

Call Scenario: A, B1 and C are in conference call GC1 with B1 as controller. B2 is in call GC2 with D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1170

Message Sequence Charts
Message Sequence Charts

EventsAction

A
CiscoConferenceStartEv
CallCtlTermConnTalkingEvTermB GC1
ConnCreatedEv D GC1
ConnConnectedEv D GC1
CallCtlTermConnDroppedEv TermB GC2
CiscoConferenceEndEv

B1

CallCtlTermConnHeldEv TermB GC1
CiscoConferenceStartEv
CallCtlTermConnTalkingEv TermB GC1
ConnCreatedEv D
ConnConnectedEv
CiscoConferenceEndEv

B2

ConnDisconnectedEv B GC2
CallCtlTermConnHeldEv TermB GC2

D
CallActiveEv GC2
ConnAlertingEv D GC2
ConnConnectedEv D GC2

CiscoConferenceStartEv
TermConnDroppedEv TermB GC2

CallActiveEv GC1

CiscoCallChangedEv

TermConnTalkingEv TermB GC1
TermConnDroppedEv TermD GC2
CallObservationEndedEv GC2
CiscoConferenceEndEv

Application sets the requestor as B2 and
calls GC2.conference(GC1)

getControllerAddress() returns B2.

getOriginalControllerAddress() returns B1.

Events are same as aboveIf application uses B1 as request controller
in the above setup

getControllerAddress() returns B1.

getOriginalControllerAddress() returns B1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1171

Message Sequence Charts
Message Sequence Charts

Swap or Cancel and Transfer or Conference Behavior Change
Use Case 1

GC1 &
GC2 call will be created as normal.

Connected Transfer on the
phone which allows connected
Transfer

GC1: CallCtlTermConnHeldEv for TBA calls B, B answers – GC1

B puts A–>B call on hold

B calls C, C answers – GC2

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB

User B presses transfer and user
selects active call(A–>B call)
from the phone UI

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEvent
GC3: CallObservationEndedEv
GC2: CiscoTransferStartEv
GC1: CiscoCallChangedEv
GC2: ConnCreatedEv for A
GC2: ConnConnectedEv for A
GC2: CallCtlConnEstablishedEv for A
GC2: TermConnCreatedEv for TA
GC2: TermConnActiveEvent for TA
GC2: CallCtlTermConnTalkingEv for TA
GC1: TermConnDroppedEv for TA
GC1: CallCtlTermConnDroppedEv for TA
GC1: ConnDisconnectedEv for A
GC1: CallCtlConnDisconnectedEv for A
GC2: TermConnDroppedEv for TB
GC2: CallCtlTermConnDroppedEv for TB
GC2: ConnDisconnectedEv for B
GC2: CallCtlConnDisconnectedEv for B
GC1: TermConnDroppedEv for TB
GC1: CallCtlTermConnDroppedEv for TB
GC1: ConnDisconnectedEv for B
GC1: CallCtlConnDisconnectedEv for B
GC1: CallInvalidEvent
GC1: CallObservationEndedEv
GC2: CiscoTransferEndEv

User B presses transfer again

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1172

Message Sequence Charts
Swap or Cancel and Transfer or Conference Behavior Change

Use case 2

GC1 & GC2 call will be created as normal.

GC1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB|

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEv
GC2: CiscoTransferStartEv
GC1: CiscoCallChangedEv
GC2: ConnCreatedEv for A
GC2: ConnConnectedEv for A
GC2: CallCtlConnEstablishedEv for A
GC2: TermConnCreatedEv for TA'
GC2: TermConnPassiveEvent for TA'
GC2: CallCtlTermConnInUseEv for TA'
GC1: TermConnDroppedEv for TA'
GC1: CallCtlTermConnDroppedEv for TA'
GC2: TermConnCreatedEv for TA
GC2: TermConnActiveEvent for TA
GC2: CallCtlTermConnTalkingEv for TA
GC1: TermConnDroppedEv for TA
GC1: CallCtlTermConnDroppedEv for TA
GC1: ConnDisconnectedEv for A
GC1: CallCtlConnDisconnectedEv for A
GC2:TermConnDroppedEv for TB2
GC2: CallCtlTermConnDroppedEv for TB2
GC2: ConnDisconnectedEv for B2
GC2: CallCtlConnDisconnectedEv for B2
GC1: TermConnDroppedEv for TB1
GC1: CallCtlTermConnDroppedEv for TB1
GC1: ConnDisconnectedEv for B1
GC1: CallCtlConnDisconnectedEv for B1
GC1: CallInvalidEvent
GC1: CallObservationEndedEv
GC2: CiscoTransferEndEv

Connected Transfer on phone
with sharedline (A and A’ are
sharedlines)

A calls B, B answers – GC1

B puts A–>B call on hold

B calls C, C answers – GC2

User B presses transfer and
selects active calls (A–>B call),

User B presses transfer again

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1173

Message Sequence Charts
Message Sequence Charts

Use case 3

CiscoCallFeatureCancelled
Ev.getConsultCall() returns
GC3

GC1 & GC2 call will be created as normal.
GC1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEv
GC2: CiscoCallFeatureCancelledEv

Connected Transfer/Conference
– Cancel feature

A calls B, B answers – GC1

B puts A–>B call on hold

B calls C, C answers – GC2

User B presses transfer hard key

User B presses cancel key

Use case 4a

CiscoCallFeatureCancelled
Ev.getConsultCall() returns null

GC1 & GC2 call will be created as normal.
GC1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEv

GC2: CiscoCallFeatureCancelledEv

Connected Transfer/Conference
– Cancel feature

A calls B, B answers – GC1

B puts A–>B call on hold

B calls C, C answers – GC2

User B presses transfer hard key

User press select active calls
key.

User B presses cancel key

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1174

Message Sequence Charts
Message Sequence Charts

Use case 4b

CiscoCallFeatureCancelled
Ev.getConsultCall() returns
GC1

GC1 & GC2 call will be created as normal.
GC1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEv

GC2: CiscoCallFeatureCancelledEv

Connected Transfer/Conference
– Cancel feature

A calls B, B answers – GC1

B puts A–>B call on hold

B calls C, C answers – GC2

User B presses transfer (or
conference) hard key.

User press select active calls key
and also selects GC1 (A‡B call)

User B presses cancel key

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1175

Message Sequence Charts
Message Sequence Charts

Use case 5

getCiscoFeatureReason() returns
CiscoFeatureReason.
REASON_NORMAL

GC1 & GC2 call will be created as normal.

GC1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB

GC1: CallCtlTermConnTalkingEv for TB

GC1: CiscoTransferStartEv

GC1: CiscoCallChangedEv

GC1: ConnCreatedEv for C

GC1: ConnConnectedEv for C

GC1: CallCtlConnEstablishedEv for C

GC1: TermConnCreatedEv for TC

GC1: TermConnActiveEvent for TC

GC1: CallCtlTermConnTalkingEv TC

GC2: TermConnDroppedEv for TC

GC2: CallCtlTermConnDroppedEv for TC

GC2: ConnDisconnectedEv for C

GC2: CallCtlConnDisconnectedEv for C

GC1: TermConnDroppedEv for TB

GC1: CallCtlTermConnDroppedEv for TB

GC1: ConnDisconnectedEv for B1

GC1: CallCtlConnDisconnectedEv for B1

GC2: TermConnDroppedEv for TB

GC2: CallCtlTermConnDroppedEv for TB

GC2: ConnDisconnectedEv for B2

GC2: CallCtlConnDisconnectedEv for B2

GC2: CallInvalidEvent

GC2: CallObservationEndedEv

GC1: CiscoTransferEndEv

Consult Transfer – Swap calls

A calls B, B answers – GC1

B puts A–>B call on hold

B setup consult Transfer to C,
C answers – GC2

User B presses Swap key,

User B presses transfer to
complete the transfer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1176

Message Sequence Charts
Message Sequence Charts

Use case 6

getCiscoFeatureReason() returns
CiscoFeatureReason. REASON_NORMAL

CiscoCallFeatureCancelledEv.getCall()
returns GC1
CiscoCallFeatureCancelledEv.getConsultCall()
returns
GC2

GC1 & GC2 call will be created as normal.
GC1: CallCtlTermConnHeldEv for TB

For TA (GC2), CallCtlTermConnHeldEv
For TA (GC1), CallCtlTermConnTalkingEv

GC1: CiscoCallFeatureCancelledEv

Consult Transfer – Swap/Cancel

A calls B, B answers – GC1

A puts A–>B call on hold

B setup consult Transfer to C,
C answers – GC2

User B presses press Swap
softkey,

User B presses Cancel softkey

Use case 7

GC1 & GC2 call will be created as normal.

Request will fail with PlatformException
“CTIERR_CONSULTCALL_ALREADY_OUTSTANDING”

Consultative Transfer Initiated from Phone,
App sends SetupTransfer/Conference
request – request fails

A calls B, B answers – GC1

B setups transfer call to C

B calls C, C answers – GC2

Application creates a new call and sends
another consult() request

Use case 8a

getCiscoFeatureReason() returns
CiscoFeatureReason.REASON_NORMAL

CiscoCallFeatureCancelledEv.getCall()
returns GC1

CiscoCallFeatureCancelledEv.getConsultCall()
returns GC2

GC1 and GC2 will be created as normal

For TB (GC2), CallCtlTermConnHeldEv

For TB (GC1), CallCtlTermConnTalkingEv

CiscoCallFeatureCancelledEv

Consult call will go through and GC3 will
be created as normal

Consult Transfer/Conference – Application
Resumes primary call on phone which
supports connected transfer/conference and
sends another consult setup request

GC1: A calls B
GC2: B consults C

Application resumes GC1 on TB

Application creates another call and sends
consult() request to call D; D answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1177

Message Sequence Charts
Message Sequence Charts

Use case 8b

CiscoCallFeatureCancelledEv.getCall()
returns GC1

CiscoCallFeatureCancelledEv.getConsultCall()
returns GC2

GC1 and GC2 will be created as normal

On Manual Resume or Swap, Consult Call
will not be cancelled on the phone, nor will
application get
CiscoCallFeatureCancelledEv.

When application tries to setup another
consult, it will go through (GC3 will be
created as normal) and it will cancel the
existing consult call and application will
get: CiscoCallFeatureCancelledEv

Consult Transfer/Conference – Manually
Resume primary call on phone which
supports connected transfer/conference and
then sends another consult setup request

GC1: A calls B
GC2: B consults C

User manually resumes (SWAP) GC1 on
B

Application creates another call and sends
consult() request to call D; D answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1178

Message Sequence Charts
Message Sequence Charts

Use case 9

GC1 & GC2 call will be created as normal.
C1: CallCtlTermConnHeldEv for TB

GC2: CallCtlTermConnHeldEv for TB
GC3: CiscoConsultCallActiveEv
GC3: ConnCreatedEv for B
GC3: ConnConnectedEv for B
GC3: CallCtlConnInitiatedEv for B
GC3: TermConnCreatedEv for TB
GC3: TermConnActiveEvent for TB
GC3: CallCtlTermConnTalkingEv for TB

GC3: TermConnDroppedEv for TB
GC3: CallCtlTermConnDroppedEv for TB
GC3: ConnDisconnectedEv for B
GC3: CallCtlConnDisconnectedEv for B
GC3: CallInvalidEvent
GC3: CallObservationEndedEv
GC2: CiscoConferenceStartEv
GC1: CiscoCallChangedEv
GC2: ConnCreatedEv for A
GC2: ConnConnectedEv for A
GC2: CallCtlConnEstablishedEv for A
GC2: TermConnCreatedEv for TA
GC2: TermConnActiveEvent for TA
GC2: CallCtlTermConnTalkingEv for TA
GC1: TermConnDroppedEv for TA
GC1: CallCtlTermConnDroppedEv for TA
GC1: ConnDisconnectedEv for A
GC1: CallCtlConnDisconnectedEv for A
GC1: TermConnDroppedEv for TB
GC1: CallCtlTermConnDroppedEv for TB
GC1: ConnDisconnectedEv for B
GC1: CallCtlConnDisconnectedEv for B
GC1: CallInvalidEvent
GC1: CallObservationEndedEv
GC2: CiscoConferenceEndEv

ConnectedConferenceA (Phone
which allows connected
conference) calls B, B answer,
B puts A onhold, B calls C, C
answer

B press “Conference” hardkey,
and picks active call from UI,
and selects A‡B call

B press “Conference” again to
complete connected conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1179

Message Sequence Charts
Message Sequence Charts

Use case 10

getCiscoFeatureReason() returns
CiscoFeatureReason.
REASON_NORMAL

GC1 & GC2 call will be created as normal.

GC2: CallCtlTermConnHeldEv for TB
GC1: CallCtlTermConnTalkingEv for TB

GC2: CiscoConferenceStartEv
GC1: CiscoCallChangedEv
GC2: ConnCreatedEv for A
GC2: ConnConnectedEv for A
GC2: CallCtlConnEstablishedEv for A
GC2: TermConnCreatedEv for TA
GC2: TermConnActiveEvent for TA
GC2: CallCtlTermConnTalkingEv for TA
GC1: TermConnDroppedEv for TA
GC1: CallCtlTermConnDroppedEv for TA
GC1: ConnDisconnectedEv for A
GC1: CallCtlConnDisconnectedEv for A
GC1: TermConnDroppedEv for TB
GC1: CallCtlTermConnDroppedEv for TB
GC1: ConnDisconnectedEv for B
GC1: CallCtlConnDisconnectedEv for B
GC1: CallInvalidEvent
GC1: CallObservationEndedEv
GC2: CiscoTransferEndEv

Consult Conference from
Phone, then Swap and complete
conference through phone

A calls B, B answerB setup
conference to C, C answer

B press “Swap” softkey

A press “Conference”

Use case 11

getCiscoFeatureReason() returns
CiscoFeatureReason.
REASON_NORMAL

CiscoCallFeatureCancelled
Ev.getCall() returns GC1

CiscoCallFeatureCancelled
Ev.getConsultCall() returns
GC2

GC1 & GC2 call will be created as normal.

GC1: CallCtlTermConnTalkingEv for TB
GC2: CallCtlTermConnHeldEv for TB

GC1: CiscoCallFeatureCancelledEv(consultCall =
GC2)

Consult Conference from Phone
and then Swap and Cancel
conference thru phone A calls
B, B answer

B setup conference to C, C
answer

A press “Swap” key, and picks
active call from UI, and selects
A–>B call

B press “Cancel”

Use case 12

Same as JAL scenario but we will have a temporary call GC3Connected Conference Across
Lines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1180

Message Sequence Charts
Message Sequence Charts

Use case 13

At Transfer:
GC1: CiscoTransferStartEv
GC1: CiscoCallChangedEv
GC1: ConnCreatedEvent for C
GC1: ConnConnectedEvent for C
GC1: CallCtlConnEstablishedEv for C
GC1: TermConnCreatedEvent for TC
GC1: TermConnActiveEvent for TC
GC1: CallCtlTermConnTalkingEv TC
GC2: TermConnDroppedEv for TC
GC2: CallCtlTermConnDroppedEv for TC
GC2: ConnDisconnectedEvent for C
GC2: CallCtlConnDisconnectedEv for C
GC1: CiscoCallFeatureCancelledEv
GC1: TermConnDroppedEv for TB
GC1: CallCtlTermConnDroppedEv for TB
GC1: ConnDisconnectedEvent for B1
GC1: CallCtlConnDisconnectedEv for B1
GC2: TermConnDroppedEv for TB
GC2: CallCtlTermConnDroppedEv for TB
GC2: ConnDisconnectedEvent for B2
GC2: CallCtlConnDisconnectedEv for B2
GC2: CallInvalidEvent
GC1: CiscoTransferEndEv

Manual Consult followed by transfer complete by
application

GC1: A calls B1
GC2: B1 setups consult call to C manually over phone

G1.transfer(GC2)

Use case 14

At Conference:
GC1: CiscoCallFeatureCancelledEv
GC1: CiscoConferenceStartEv
GC1: CiscoCallFeatureCancelledEv
GC1: CiscoCallChangedEv
GC1: ConnCreatedEvent for C
GC1: ConnConnectedEvent for C
GC1: CallCtlConnEstablishedEv for C
GC1: TermConnCreatedEvent for TC
GC1: TermConnActiveEvent for TC
GC1: CallCtlTermConnTalkingEv TC
GC2: TermConnDroppedEv for TC
GC2: CallCtlTermConnDroppedEv for TC
GC2: ConnDisconnectedEvent for C
GC2: CallCtlConnDisconnectedEv for C
GC2: TermConnDroppedEv for TB
GC2: CallCtlTermConnDroppedEv for TB
GC2: ConnDisconnectedEvent for B2
GC2: CallCtlConnDisconnectedEv for B2
GC2: CallInvalidEvent
GC1: CiscoConferenceEndEv

Manual consult followed by
conference complete by
application

GC1: A calls B1

GC2: B1 setups consult call to
C manually over phone

G1.conference(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1181

Message Sequence Charts
Message Sequence Charts

Drop Any Party Use Cases
• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to FALSE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “never”

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

InvalidStateException is thrown.

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

CallInvalidEv

A is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of C.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 1

Application is observing A, B
is conference controller. A, B,
and C are in conference.

N.A

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

InvalidStateException is thrown.

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

C is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C.

Use Case 2

Application is observing C, B is
conference controller. A, B, and
C are in conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1182

Message Sequence Charts
Drop Any Party Use Cases

CallInfoResultActionScenario

N.A

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C.

Use Case3

Application is observing A and
C. B is conference controller. A,
B, and C are in conference.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

CallInvalidEv

And B is dropped out of
conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 4

Application is observing B, and
B is conference controller. A,
B, and C are in conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1183

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 5

Application is observing A, B
and C, and B is conference
controller. A, B, and C are in
conference.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to TRUE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “never”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1184

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

CallInvalidEv

A is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of C.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 6

Application is observing A, B
is conference controller. A, B,
and C are in conference.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

C is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C.

Use Case 7

Application is observing C, B is
conference controller. A, B, and
C are in conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1185

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C.

Use Case 8

Application is observing A and
C. B is conference controller. A,
B, and C are in conference.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

CallInvalidEv

B is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 9

Application is observing B, and
B is conference controller. A,
B, and C are in conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1186

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 10

Application is observing A, B
and C, and B is conference
controller. A, B, and C are in
conference.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to FALSE. A and A’ are shared line

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “never”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1187

Message Sequence Charts
Message Sequence Charts

Call infoResultActionScenario

N.A

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

InvalidStateException is thrown.

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

A(abc) is dropped out of
conference

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

Connections of A, and B are
A(abc) is dropped out of
conference.

Application invokes
Connection.getPartyInfo() at
Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 11

Application is observing A, B
is conference controller. A, A’
and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1188

Message Sequence Charts
Message Sequence Charts

Call infoResultActionScenario

N, A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

. A’(“xyz”) is dropped out of
conference...

InvalidStateException is thrown.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

A’(“xyz”) is dropped out of
conference..

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 12

Application is observing A’, B
is conference controller. A, A’,
and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1189

Message Sequence Charts
Message Sequence Charts

Call infoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

InvalidStateException is thrown.

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

A’(xyz) is dropped out of
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc) is dropped out of
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

A(abc) and A’(xyz)is dropped
out of conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 13

Application is observing A and
A’. B is conference controller.
A, A’, and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1190

Message Sequence Charts
Message Sequence Charts

Call infoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

No Events

A’(xyz) is dropped out of
conference.

No Events

A(abc) is dropped out of
conference.

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

CallInvalidEv

B is disconnected from
conference.g

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

Connections of A, and B are
disconnected, A(abc) and
A’(xyz) will be dropped, and
since only B is left, it will also
get dropped and call goes
Invalid.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 14

Application is observing B, and
B is conference controller. A,
A’, and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1191

Message Sequence Charts
Message Sequence Charts

Call infoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

A(xyz), dropped out of
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc), dropped out of
conference.

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is disconnected from
conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 15

Application is observing A, A’
and B, and B is conference
controller. A, A’, and B are in
conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

Connections of A, and B are
disconnected, A(abc) and
A’(xyz) will be dropped, and
since only B is left, it will also
get dropped and call goes
Invalid.

Application invokes
Connection.disconnect() on
Connection of A.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1192

Message Sequence Charts
Message Sequence Charts

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to TRUE. A and A’ are shared line

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “never”

CallInfoResultActionScenario

N.A

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

No Events.

A’(xyz) is disconnected from
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

A(abc) dropped out of
conference

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(abc) is dropped out of
conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 16

Application is observing A, B
is conference controller. A, A’
and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1193

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

No Events.

A(abc) is disconnected from
conference.

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

A’(xyz) dropped out of
conference

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(xyz) is dropped out of
conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 17

Application is observing A’, B
is conference controller. A, A’,
and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1194

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

No Events.

A’(xyz) is disconnected from
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc) dropped out of
conference

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(xyz) is dropped out of
conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 18

Application is observing A and
A’. B is conference controller.
A, A’, and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1195

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

B is disconnected from
conference.

No Events.

A’(xyz) is disconnected from
conference.

No Events

A(abc) dropped out of
conference

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(abc), A(xyz) and B is
dropped out of conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 19

Application is observing B, and
B is conference controller. A,
A’, and B are in conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1196

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

B is dropped out of conference.

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

A’(xyz) is disconnected from
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc) dropped out of
conference

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(abc), A(xyz) and B is
dropped out of conference.

Application invokes
Connection.getDisplayNames
() at Connection of A.

Application invokes
Connection.disconnect () on
Connection of B

Application invokes
Connection.disconnect (xyz) on
Connection of A.

Application invokes
Connection.disconnect (abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of A.

Use Case 20

Application is observing A, A’
and B, and B is conference
controller. A, A’, and B are in
conference.

Display name for A is “abc”,
and displayname for A’ is “xyz”

N..AInterface Returns “True”Application invokes
CiscoCall.isConferenceCall()

A, B, C are in conference.

N..AInterface Returns “False”Application invokes
CiscoCall.isConferenceCall()

A, B, C are in conference. B
drops from conference

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1197

Message Sequence Charts
Message Sequence Charts

N..AInterface Returns “True”Application invokes
CiscoCall.isConferenceCall()

A, B, B’ are in conference.

N..AInterface Returns “False”Application invokes
CiscoCall.isConferenceCall()

A, B, B’ are in conference, B’
drops from conference.

N..AInterface Returns “True”Application invokes
CiscoCall.isConferenceCall()

A, B, C are in conference.
Applications opens provider,
gets snapshot call event

N..AInterface Returns “True”Application invokes
CiscoCall.isConferenceCall()

A, B, B’ are in conference.
Applications opens provider,
gets snapshot call event

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to FALSE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “When
controller leaves”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1198

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

TermConnDropEv

CallCtlTermConnDroppedEv

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

CallInvalidEV

A, B C is dropped out of
conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 21

Application is observing A, B
and C, and B is conference
controller. A, B, and C are in
conference.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to TRUE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “When
controller leaves”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1199

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A is dropped out of conference.

TermConnDropEv-TC

CallCtlTermConnDroppedEv-TC

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

C is dropped out of conference.

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

TermConnDropEv-TC

CallCtlTermConnDroppedEv-TC

ConnDisconnectedEv-C

CallCtlConnDisconnectedEv-C

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A, B, and C are dropped out of
conference.

Application invokes
Connection.disconnect() on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of C

Application invokes
Connection.disconnect() on
Connection of B.

Use Case 22

Application is observing A, B
and C, and B is conference
controller. A, B, and C are in
conference.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to FALSE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “When
controller leaves”

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1200

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

N.A.

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

A(xyz), dropped out of
conference.

Application invokes
Connection.getDisplayNames()
at Connection of A.

Application invokes
Connection.disconnect(xyz) on
Connection of A.

Use Case 23

Application is observing A, A’
and B, and B is conference
controller. A, A’, and B are in
conference.

Displayname for A is “abc”, and
displayname for A’ is “xyz”

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc), dropped out of
conference.

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A, A’ and B is disconnected
from conference.

Application invokes
Connection.disconnect(abc) on
Connection of A.

Application invokes
Connection.disconnect() on
Connection of B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1201

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalidEv

Connections of A, and B are
disconnected, A(abc) and
A’(xyz) will be dropped, and
since only B is left, it will also
get dropped and call goes
Invalid.

Application invokes
Connection.disconnect() on
Connection of A.

• JTAPI INI parameter is enabled to allow dropAnyPartyFeature.

• Cisco Unified Communications Manager service parameter “Advanced Ad Hoc Conference Enable” is
set to TRUE.

• Cisco Unified Communications Manager service parameter “Drop Ad Hoc Conference” set “When
controller leaves”

CallInfoResultActionScenario

N.A.JTAPI returns CiscoPartyInfo[]
with
CiscoPartyInfo.getDisplayName()
of “abc” and “xyz”

Application invokes
Connection.getDisplayNames
() at Connection of A.

Use Case 24

Application is observing A, A’
and B, and B is conference
controller. A, A’, and B are in
conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1202

Message Sequence Charts
Message Sequence Charts

CallInfoResultActionScenario

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_CONFERENCE

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

A, A’ and B is dropped out of
conference.

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

A’(xyz) is disconnected from
conference.

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

A(abc) dropped out of
conference

Application invokes
Connection.disconnect () on
Connection of B

Application invokes
Connection.disconnect (xyz) on
Connection of A.

Application invokes
Connection.disconnect (abc) on
Connection of A.

Display name for A is “abc”,
and displayname for A’ is “xyz”

Cause = CAUSE_NORMAL

CiscoFeatureReason =
REASON_NORMAL

TermConnDropEv-TA

CallCtlTermConnDroppedEv-TA

TermConnDropEv-TA’

CallCtlTermConnDroppedEv-TA’

ConnDisconnectedEv-A

CallCtlConnDisconnectedEv-A

TermConnDropEv-TB

CallCtlTermConnDroppedEv-TB

ConnDisconnectedEv-B

CallCtlConnDisconnectedEv-B

CallInvalid

A(abc), A(xyz) and B is
dropped out of conference.

Application invokes
Connection.disconnect() on
Connection of A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1203

Message Sequence Charts
Message Sequence Charts

Park Monitoring Support
Phone B—Cisco Unified IP Phone 7900 Series with SIP/SCCP

Phone A—Future models.

Phone A’—Cisco Unified IP Phone 7900 Series with SIP/SCCP

Park DN—P1, P2

Phone C—Cisco Unified IP Phone 7900 Series with SIP/SCCP

All the default values for the Park Monitoring Reversion timer and Park Monitoring Forward No reversion
timers apply.

Use Case 1: Park Monitoring States
Initial scenario: Application has added Call Observer on A and B. Application has added Address Observer
on A. B calls A. A answers.

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

Application invokes
CiscoConnection.park()
on connection on A.

Park Monitoring
Reversion timer starts

Cause = CAUSE_NORMAL
park state = REMINDER
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 2

After step 1, Park
Monitoring reversion
timer expires after the
configured time

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1204

Message Sequence Charts
Park Monitoring Support

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = RETRIEVED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC2 CallActiveEv
GC2 ConnCreatedEv C
GC2 ConnConnectedEv C
GC2 CallCtlConnInitiatedEv C
GC2 TermConnCreatedEv TC
GC2 TermConnActiveEv TC
GC2 CallCtlTermConnTalkingEv TC
GC2 CallCtlConnDialingEv C
GC2 CallCtlConnEstablishedEv C

GC2 ConnCreatedEv P1
GC2 ConnInProgressEv P1
GC2 CallCtlConnOfferedEv P1

GC1 CiscoCallChangedEv

GC2 ConnCreatedEv B
GC2 ConnConnectedEv B
GC2 CallCtlConnEstablishedEv B
GC2 TermConnCreatedEv TB
GC2 TermConnActiveEv TB
GC2 CallCtlTermConnTalkingEv TB

GC2 ConnConnectedEv P1
GC2 CallCtlConnEstablishedEv P1
GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv B
GC1 CallInvalidEv

GC2 ConnDisconnectedEv P1
GC2 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 3

After step 1 or 2,
application sends unpark
request
CiscoTerminal.unpark()
on Terminal of C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1205

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = ABANDONED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv B

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1
GC1 CallInvalidEv

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 4

After step 1 or 2 above,
B drops off the call
invoking
CiscoConnection.disconnect()
on the connection of B.

Reason =
CiscoFeatureReason.FORWARD_NO_RETRIEVE

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv F
GC1 ConnInProgressEv F
GC1 CallCtlConnOfferedEv F
GC1 ConnAlertingEv F
GC1 CallCtlConnAlertingEv F

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 5

Consider Park
Monitoring forward no
retrieve destination on A
is configured as F

After step 2, Park
Monitoring Forward no
retrieve timer starts

• Park Monitoring
Forward no retrieve
timer expires.

• Call is forwarded to
F

Reason =
CiscoFeatureReason.FORWARD_NO_RETRIEVE

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 6

Consider Forward no
retrieve destination on A
is configured to self

• After step 2, Park
Monitoring Forward
no retrieve timer
starts

• Park Monitoring
Forward no retrieve
timer expires.

• Call is forwarded to
parker’s line A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1206

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Reason = CiscoFeatureReason.PARKREMINDER

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 7

Consider Forward no
retrieve destination is not
configured

• After step 2, Park
Monitoring Forward
no retrieve timer
starts

• Park Monitoring
Forward no retrieve
timer expires.

• Call is
forwarded/reverted
to parker’s line A

Use Case 2: Shared Line Scenario - Cisco Unified IP Phone Does Park
Initial scenario: Application has added Call Observer on A, B, A’. Application has added Address Observer
on A. B calls A. A/A’ ring. A answers.

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 TermConnDroppedEv TA'
GC1 CallCtlTermConnDroppedEv TA'
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

Application invokes
CiscoConnection.park()
on connection on A.

Park Monitoring
Reversion timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1207

Message Sequence Charts
Use Case 2: Shared Line Scenario - Cisco Unified IP Phone Does Park

Event/Call infoResultAction

Reason = CiscoFeatureReason.PARKREMINDER

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA
GC1 ConnInProgressEv A
GC1 ConnAlertingEv A
GC1 TermConnCreatedEv TA'
GC1 TermConnRingingEv TA'
GC1 CallCtlTermConnRingingEvImpl TA'

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

all shared lines ring as is todayNote

Step 2

Consider Forward no
retrieve destination is not
configured,

• Consider Park
Monitoring
Reversion timer and
Park Monitoring
Forward no
reversion timer
expires.

• Call is
forwarded/reverted
to parker's line A

Use Case 3: Shared Line Scenario - Cisco Unified IP Phone 7900 Series with SIP Does Park
Initial scenario: Application has added Call Observer on A, B, A’. Application has added Address Observer
on A. B calls A. A/A’ ring. A’ answers.

Event/Call infoResultAction

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 TermConnDroppedEv TA'
GC1 CallCtlTermConnDroppedEv TA'
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

New event is not seen as Cisco Unified
IP Phone 7900 Series does park

Note

Step 1

Application invokes
CiscoConnection.park()
on connection on A.

Park reversion timer
starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1208

Message Sequence Charts
Use Case 3: Shared Line Scenario - Cisco Unified IP Phone 7900 Series with SIP Does Park

Event/Call infoResultAction

Reason = CiscoFeatureReason.PARKREMINDEREvents received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA
GC1 ConnInProgressEv A
GC1 ConnAlertingEv A
GC1 TermConnCreatedEv TA'
GC1 TermConnRingingEv TA'
GC1 CallCtlTermConnRingingEvImpl TA'

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

All shared lines including the Cisco
Unified IP Phone (futuremodel) phone
A receives the incoming call

Note

Step 2

Consider Park Reversion
timer expires

• Call is reverted to
parker's line A

Use Case 4: Use Case for Snap Shot Scenario
Initial scenario: Application has added Call Observer on A, B. Application has NOT added Address Observer
on A. B calls A. A answers.

Event/Call infoResultAction

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Step 1

Application invokes
CiscoConnection.park()
on connection on A.

Park Monitoring
reversion timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1209

Message Sequence Charts
Use Case 4: Use Case for Snap Shot Scenario

Event/Call infoResultAction

Cause = CAUSE_SNAPSHOT
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 2

After step 1, application
now adds Address
Observer on A.

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 3a

After step 2, consider
Park Monitoring
Reversion timer expires

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1210

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Call Observer on A, B

GC2 CallActiveEv
GC2 ConnCreatedEv C
GC2 ConnConnectedEv C
GC2 CallCtlConnInitiatedEv C
GC2 TermConnCreatedEv TC
GC2 TermConnActiveEv TC
GC2 CallCtlTermConnTalkingEv TC
GC2 CallCtlConnDialingEv C
GC2 CallCtlConnEstablishedEv C

GC2 ConnCreatedEv P1
GC2 ConnInProgressEv P1
GC2 CallCtlConnOfferedEv P1

GC1 CiscoCallChangedEv

GC2 ConnCreatedEv B
GC2 ConnConnectedEv B
GC2 CallCtlConnEstablishedEv B
GC2 TermConnCreatedEv TB
GC2 TermConnActiveEv TB
GC2 CallCtlTermConnTalkingEv TB

GC2 ConnConnectedEv P1
GC2 CallCtlConnEstablishedEv P1
GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv B
GC1 CallInvalidEv

GC2 ConnDisconnectedEv P1
GC2 CallCtlConnDisconnectedEv P1

Step 3b

After step 1, application
sends unpark request
CiscoTerminal.unpark()
on Terminal of C.

New address event with park

state = RETRIEVED is not received at A, since the
call is already retrieved

Step 4

After step 3, application
now adds Address
Observer on A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1211

Message Sequence Charts
Message Sequence Charts

Use Case 5: Park DN Is Monitored
Initial scenario: Application has added Call Observer on A, B. Application invokes registerFeature() API on
Provider in order to monitor park DN P1. Application has added Address Observer on A. B calls A. A answers.

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Provider Observer Prov1

CiscoProvCallParkEv

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

Application invokes
CiscoConnection.park()
on connection on A.

Park Monitoring
reversion timer starts

Use Case 6: Query Number of Parked Calls
Initial scenario: Application has added Call Observer on A, B, C.

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Step 1

B calls A. A answers. Application invokes
CiscoConnection.park() on connection on
A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1212

Message Sequence Charts
Use Case 5: Park DN Is Monitored

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P2
GC1 ConnInProgressEv P2
GC1 CallCtlConnQueuedEv P2

Step 2

C calls A. A answers. Application invokes
CiscoConnection.park() on connection on
A for the second call on A.

CiscoAddressCallInfo is returned which
includes information about number of
parked calls

getNumParkedCalls() returns 2

Step 3

Application invokes
CiscoAddress.getAddress CallInfo(Term
A)

Application invokes CiscoAddress
CallInfo.getNumParkedCalls()

Use Case 7: Filter Enabling or Disabling
Initial scenario: Application has added Call Observer on A, B. B calls A. A answers.

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on
A

No event received as filter is disabled

Step 1

Initially filter is disabled.

• Application adds AddressObserver on
A.

• Application now invokes
CiscoConnection.park() on connection
on A.

• Park reversion timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1213

Message Sequence Charts
Use Case 7: Filter Enabling or Disabling

Event/Call infoResultAction

Cause = CAUSE_SNAPSSHOT
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 2

After step 1, Application enables filter via
setCiscoAddrPark StatusEvFilter(true) and
then by invoking CiscoAddress.
setFilter(CiscoAddrEvFilter), for being able
to receive the events.

Use Case 8: Filter Enabling or Disabling
Initial scenario: From the phone B calls A. A answers.(Call Observers are not added)

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 1

Initially filter is enabled.

• Application adds AddressObserver on
A.

• Application now invokes park directly
from the phone A.

• Park reversion timer starts

Use Case 9: Filter Enabling or Disabling
Initial scenario: From the phone B calls A. A answers.(Call Observers are not added)

Event/Call infoResultAction

Cause = CAUSE_SNAPSHOT
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

No event received yet, since filter is disabled

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

Initially filter is disabled.

• Application adds
AddressObserve on
A.

• Application now
invokes park
directly from the
phone A.

• Park reversion timer
starts.

• Application now
enables filter and
invokes
CiscoAddress.
setFilter(CiscoAddr
EvFilter)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1214

Message Sequence Charts
Use Case 8: Filter Enabling or Disabling

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = REMINDER
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 2

Park reminder timer
expires

Use Case 10: Filter Enabling or Disabling
Initial Scenario : Initial scenario: Application has added Call Observer on A, B. B calls A. A answers.

Event/Call infoResultAction

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

No event received as filter is disabled

Step 1

Initially all filters are
disabled in
CiscoAddEvFilter

• Application adds
AddressObserver on
A.

• Application now
invokes
CiscoConnection.
park() on
connection on A.

• Park reversion timer
starts

Events received at Address Observer on A

No event received as the address filter is not set.

Step 2

After step 1, Application
invokes
setCiscoAddrPark
StatusEvFilter(true) but
does not invoke
CiscoAddress. setFilter
(CiscoAddrEvFilter)

Cause = CAUSE_SNAPSSHOT
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 3

Now the application
invokes setFilter
(CiscoAddrEvFilter) on
CiscoAddress

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1215

Message Sequence Charts
Use Case 10: Filter Enabling or Disabling

Additional Use Cases for Park Monitoring
Phone B—Cisco Unified IP Phone 7900 Series with SIP/SCCP

Phone A—Future models.

Phone A’—Cisco Unified IP Phone 7900 Series with SIP/SCCP

Park DN—P1, P2

Phone C—Cisco Unified IP Phone 7900 Series with SIP/SCCP

All the default values for the Park Monitoring Reversion timer and Park Monitoring Forward No reversion
timers apply.

1. Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers. Filter value has been set to ‘true’ through
setCiscoAddrParkStatusEvFilter().

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

• Application invokes
CiscoConnection.park() on
connection on A.

• ParkMonitoringReversion
timer starts

Cause = CAUSE_NORMAL
park state = REMINDER
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 2

After step 1, Park Monitoring
reversion timer expires after the
configured time

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1216

Message Sequence Charts
Additional Use Cases for Park Monitoring

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = RETRIEVED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC2 CallActiveEv
GC2 ConnCreatedEv C
GC2 ConnConnectedEv C
GC2 CallCtlConnInitiatedEv C
GC2 TermConnCreatedEv TC
GC2 TermConnActiveEv TC
GC2 CallCtlTermConnTalkingEv TC
GC2 CallCtlConnDialingEv C
GC2 CallCtlConnEstablishedEv C

GC2 ConnCreatedEv P1
GC2 ConnInProgressEv P1
GC2 CallCtlConnOfferedEv P1

GC1 CiscoCallChangedEv

GC2 ConnCreatedEv B
GC2 ConnConnectedEv B
GC2 CallCtlConnEstablishedEv B
GC2 TermConnCreatedEv TB
GC2 TermConnActiveEv TB
GC2 CallCtlTermConnTalkingEv TB

GC2 ConnConnectedEv P1
GC2 CallCtlConnEstablishedEv P1
GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv B
GC1 CallInvalidEv

GC2 ConnDisconnectedEv P1
GC2 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 3

After step 1 or 2, application
sends unpark request
CiscoTerminal.unpark() on
Terminal of C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1217

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = ABANDONED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv B

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1
GC1 CallInvalidEv

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 4

After step 1 or 2 above, B drops
off the call invoking
CiscoConnection.disconnect()
on the connection of B.

Reason =
CiscoFeatureReason.FORWARD_NO_RETRIEVE

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv F
GC1 ConnInProgressEv F
GC1 CallCtlConnOfferedEv F
GC1 ConnAlertingEv F
GC1 CallCtlConnAlertingEv F

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 5

Consider Park Monitoring
forward no retrieve destination
on A is configured as F

• After step 2, Park
Monitoring Forward no
retrieve timer starts

• Park Monitoring Forward
no retrieve timer expires.

• Call is forwarded to F

Reason = FORWARD_NO_RETRIEVE

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B

terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 6

Consider Forward no retrieve
destination on A is configured
to self

• After step 2, Park
Monitoring Forward no
retrieve timer starts

• Park Monitoring Forward
no retrieve timer expires.

• Call is forwarded to
parker’s line A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1218

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Reason = PARKREMINDER

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 7

Consider Forward no retrieve
destination is not configured

• After step 2, Park
Monitoring Forward no
retrieve timer starts

• Park Monitoring Forward
no retrieve timer expires.

• Call is forwarded/reverted
to parker’s line A

2. Initial scenario: Application has added Call Observer on A, B, A’. Application has added Address
Observer on A. B calls A. A/A’ ring. A answers. Filter value has been set to ‘true’ through
setCiscoAddrParkStatusEvFilter().

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A, B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 TermConnDroppedEv TA'
GC1 CallCtlTermConnDroppedEv TA'
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on A

CiscoAddrParkStatusEv A

Step 1

Application invokes
CiscoConnection.park() on
connection on A.

Park Monitoring Reversion
timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1219

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Call Observer on A, B

GC1 ConnCreatedEv A
GC1 ConnInProgressEv A
GC1 CallCtlConnOfferedEv A
GC1 ConnAlertingEv A
GC1 CallCtlConnAlertingEv A
GC1 TermConnCreatedEv TA
GC1 TermConnRingingEv TA
GC1 CallCtlTermConnRingingEvImpl TA
GC1 ConnInProgressEv A
GC1 ConnAlertingEv A
GC1 TermConnCreatedEv TA'
GC1 TermConnRingingEv TA'
GC1 CallCtlTermConnRingingEvImpl TA'

GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

Step 2

Consider Forward no retrieve
destination is not configured,

• Consider Park Monitoring
Reversion timer and Park
Monitoring Forward no
reversion timer expires.

• Call is forwarded/reverted
to parker's line A

Cause = CAUSE_NORMAL
park state = FORWARDED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on A

CiscoAddrParkStatusEv A

All shared lines ring as is todayNote

3. Initial scenario: Application has added Call Observer on A, B. Application has NOT added Address
Observer on A. B calls A. A answers. Filter value has been set to ‘true’ through
setCiscoAddrParkStatusEvFilter().

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Step 1

Application invokes
CiscoConnection.park() on connection on
A.

Park Monitoring reversion timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1220

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Cause = CAUSE_SNAPSHOT
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 2

After step 1, application now adds Address
Observer on A.

Cause = CAUSE_NORMAL
park state = REMINDER
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 3a

After step 2, consider Park Monitoring
Reversion timer expires

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1221

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC2 CallActiveEv
GC2 ConnCreatedEv C
GC2 ConnConnectedEv C
GC2 CallCtlConnInitiatedEv C
GC2 TermConnCreatedEv TC
GC2 TermConnActiveEv TC
GC2 CallCtlTermConnTalkingEv TC
GC2 CallCtlConnDialingEv C
GC2 CallCtlConnEstablishedEv C

GC2 ConnCreatedEv P1
GC2 ConnInProgressEv P1
GC2 CallCtlConnOfferedEv P1

GC1 CiscoCallChangedEv

GC2 ConnCreatedEv B
GC2 ConnConnectedEv B
GC2 CallCtlConnEstablishedEv B
GC2 TermConnCreatedEv TB
GC2 TermConnActiveEv TB
GC2 CallCtlTermConnTalkingEv TB

GC2 ConnConnectedEv P1
GC2 CallCtlConnEstablishedEv P1
GC1 ConnDisconnectedEv P1
GC1 CallCtlConnDisconnectedEv P1

GC1 TermConnDroppedEv TB
GC1 CallCtlTermConnDroppedEv TB
GC1 ConnDisconnectedEv B
GC1 CallCtlConnDisconnectedEv BC1
CallInvalidEv

GC2 ConnDisconnectedEv P1
GC2 CallCtlConnDisconnectedEv P1

Step 3b

After step 1, application sends unpark
request CiscoTerminal.unpark() on
Terminal of C.

New address event with park state =
RETRIEVED is not received at A, since
the call is already retrieved

Step 4

After step 3, application now adds Address
Observer on A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1222

Message Sequence Charts
Message Sequence Charts

4. Initial scenario: Application has added Call Observer on A, B, C. Filter value has been set to ‘true’
through setCiscoAddrParkStatusEvFilter().

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Step 1

B calls A. A answers. Application invokes
CiscoConnection.park() on connection on
A.

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P2
GC1 ConnInProgressEv P2
GC1 CallCtlConnQueuedEv P2

Step 2

C calls A. A answers. Application invokes
CiscoConnection.park() on connection on
A for the second call on A.

CiscoAddressCallInfo is returned which
includes information about number of
parked calls

getNumParkedCalls() returns 2

Step 3

Application invokes
CiscoAddress.getAddressCallInfo(Term
A)

Application invokes
CiscoAddressCallInfo.getNumParkedCalls()

5. Use case to check for address event filter to control event notification- Filter value is set to ‘false’
through setCiscoAddrParkStatusEvFilter(). This is also the default value.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1223

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on
A

No event notification since filter value is
false

Step 1

By default the address event filter value is
false. Application invokes
CiscoConnection.park() on connection on
A.

Park Monitoring Reversion timer starts

6. Use case to check for address event filter to control event notification. Filter value has been set to ‘true’
through setCiscoAddrParkStatusEvFilter().

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers.

Event/Call infoResultAction

Cause = CAUSE_NORMAL
park state = PARKED
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Call Observer on A,
B

GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A

GC1 ConnCreatedEv P1
GC1 ConnInProgressEv P1
GC1 CallCtlConnQueuedEv P1

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 1

Application enables the filter through
CiscoAddrEvFilter.
setCiscoAddrParkStatusEvFilter(true).
Application invokes
CiscoConnection.park() on connection on
A.

Park Monitoring Reversion timer starts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1224

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Address Observer on
A

No event notification as filter is disabled

Step 2

After step 1 above, Application now
disables the filter through
CiscoAddrEvFilter.
setCiscoAddrParkStatusEvFilter(false).

Consider ParkMonitoring Reversion timer
expires

Cause = CAUSE_SNAPSHOT
park state = REMINDER
sub ID = 1234
CiscoCallID = CiscoCallID for GC1
park DN = P1
parked party = B
terminal = TA

Events received at Address Observer on
A

CiscoAddrParkStatusEv A

Step 3

After step 2 above, Application now
enables the filter through
CiscoAddrEvFilter.
setCiscoAddrParkStatusEvFilter(true).

7. Use case to check the value of the filter set for the event CiscoAddrPArkrStatusEv.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers.

Event/Call infoResultAction

The application receives the Boolean value
‘false’.

Step 1

Application disables the filter through
CiscoAddrEvFilter.
setCiscoAddrParkStatusEvFilter(false)

Application invokes the API
getCiscoAddrParkStatusEvFilter() on
CiscoAddrEvFilter.

The Application receives the Boolean value
‘true’.

Step 2

Application enables the filter value through
CiscoAddrEvFilter.
setCiscoAddrParkStatusEvFilter(true)

Application invokes the API
getCiscoAddrParkStatusEvFilter on
CiscoAddrEvFilter.

8. Use case to check the notification of CiscoAddrIntercomInfoChangedEv and the value of the filter for
the event, when the Intercom feature (target DN and/or intercom taget label) has not been changed.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1225

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events received at Address Observer on
A

No address notification as filter is disabled.

The application receives the Boolean value
‘false’.

Step 1

Application has set the filter value to ‘false’
through CiscoAddrEvFilter.
setAddrIntercomInfo
ChangedEvFilter(false)

Application invokes the API
getCiscoAddrIntercomInfo
ChangedEvFilter() on CiscoAddrEvFilter.

Events Received at Address Observer on
A

No events received as the intercom Feature
is unchanged.

The application receives the Boolean value
‘true’.

Step 2

Application enables the filter value through
CiscoAddrEvFilter.
setCiscoAddrIntercomInfo
ChangedEvFilter(true)

Application invokes the API
getCiscoAddrIntercomInfo
ChangedEvFilter on CiscoAddrEvFilter.

9. Use case to check the notification of CiscoAddrIntercomInfoChangedEv and the value of the filter for
the event, when the Intercom feature (target DN and/or intercom taget label) has been changed.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers

Event/Call infoResultAction

Events received at Address Observer on
A

No address notification as filter is disabled.

The application receives the Boolean value
‘false’.

Step 1

Application has set the filter value to ‘false’
through CiscoAddrEvFilter.
setAddrIntercomInfo
ChangedEvFilter(false)

Application issues
CiscoIntercomAddress.setIntercomTarget()
on intercom address A

Application invokes the API
getCiscoAddrIntercomInfo
ChangedEvFilter() on CiscoAddrEvFilter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1226

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events Received at Address Observer on
A

CiscoAddrIntercomInfoChangedEv A

The application receives the Boolean value
‘true’.

Step 2

Application enables the filter value through
CiscoAddrEvFilter.
setCiscoAddrIntercomInfo
ChangedEvFilter(true)

Application issues
CiscoIntercomAddress.setIntercomTarget()
on intercom address A

Application invokes the API
getCiscoAddrIntercomInfo
ChangedEvFilter on CiscoAddrEvFilter.

10. Use case to check the notification of CiscoAddrIntercomInfoRestorationFailedEv and the value of the
filter for this event.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers

Event/Call infoResultAction

Events Received at Address Observer on A

No notification as the filter is disabled.

The Application receives a Boolean value ‘false’

Step 1

• Application has set the filter value to ‘false’
through CiscoAddrEvFilter.
setCiscoAddrIntercomInfo
RestorationEvFilter(false)

• Application has set intercom target DN and
label for intercom address A. Now CTI
Manager goes outofservice, JTAPI failsover to
another CTIManager node. After intercom
address A come back in service, JTAPI tries to
restore intercom target DN , label and
UnicodeLabel to the set values, however due
to race condition some other application has
already set the target DN, JTAPI get failure
response from CTI.

• Applications invokes the API
getCiscoAddrIntercomInfo
RestorationEvFilter() on CiscoAddrEvFilter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1227

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events Received at Address Observer on A

CiscoAddrIntercomInfoRestorationFailedEv A

The Application receives a Boolean value ‘true’

Step 2

• The application enables the filter through the
API CiscoAddrEvFilter.
setCiscoAddrIntercomInfo
RestorationEvFilter(true)

• Application has set intercom target DN and
label for intercom address A. Now CTI
Manager goes outofservice, JTAPI failsover to
another CTIManager node. After intercom
address A come back in service, JTAPI tries to
restore intercom target DN , label and
UnicodeLabel to the set values, however due
to race condition some other application has
already set the target DN, JTAPI get failure
response from CTI.

• Applications invokes the API
getCiscoAddrIntercomInfo
RestorationEvFilter() on CiscoAddrEvFilter.

11. Use case to check the notification of CiscoAddrRecordingConfigChangedEv and the value of the filter
for this event.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers

Recording Profile Configurations Settings have not been changed

Event/Call infoResultAction

Events received at Address Observer on A

No address notification as filter is disabled.

The application receives the Boolean value ‘false’.

Step 1

• Application has set the filter value to ‘false’
through CiscoAddrEvFilter.
setCiscoAddrRecording
ConfigChangedEvFilter is set to default value
(false)

• Application invokes the API
getCiscoAddrRecording
ConfigChangedEvFilter() on
CiscoAddrEvFilter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1228

Message Sequence Charts
Message Sequence Charts

Event/Call infoResultAction

Events Received at Address Observer on A

No events as the Recording settings are unchanged.

The application receives the Boolean value ‘true’.

Step 2

• Application enables the filter value through
CiscoAddrEvFilter. setCiscoAddrRecording
ConfigChangedEvFilter(true)

• Application invokes the API
getCiscoAddrRecording
ConfigChangedEvFilter on CiscoAddrEvFilter.

12. Use case to check the notification of CiscoAddrRecordingConfigChangedEv and the value of the filter
for this event.

Initial scenario: Application has added Call Observer on A and B. Application has added Address
Observer on A. B calls A. A answers

Event/Call infoResultAction

Events received at Address Observer on A

No address notification as filter is disabled.

The application receives the Boolean value ‘false’.

Step 1

• Application has set the filter value to ‘false’
through CiscoAddrEvFilter.
setCiscoAddrRecording
ConfigChangedEvFilter (false)User changes
the Recording Profile Configurations, through
the Admin Pages.

• Application invokes the API
getCiscoAddrRecording
ConfigChangedEvFilter() on
CiscoAddrEvFilter.

Events Received at Address Observer on A

CiscoAddrRecordingConfigChangedEv A

The application receives the Boolean value ‘true’.

Step 2

• Application enables the filter value through
CiscoAddrEvFilter. setCiscoAddrRecording
ConfigChangedEvFilter(true)User changes the
Recording Profile Configurations, through the
Admin Pages.

• Application invokes the API
getCiscoAddrRecording
ConfigChangedEvFilter on CiscoAddrEvFilter.

Use Cases Related to DPark
Initial set up:

-Application has added call observer on B and A

-User has configured DPark DN D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1229

Message Sequence Charts
Use Cases Related to DPark

- B is a future model Cisco Unified IP Phone

-A calls B. B answers with GCID GC1

Expected behaviorCall Scenario

When A(parked party) is connected to D, the following events are received

Events received at Call Observer on B, A

GC1 CallCtlTermConnHeldEv TB (CiscoFeatureReason. REASON_DPARK_CALLPARK)
GC1 CiscoTermConnSelectChangedEv TB
GC1 ConnUnknownEv B
GC1 CallCtlConnUnknownEv B
GC1 TermConnUnknownEv TB (CiscoFeatureReason. REASON_REFER))

GC1 ConnCreatedEv DGC1 ConnInProgressEv DGC1 CallCtlConnQueuedEv D
(CiscoFeatureReason. REASON_REFER))

GC1 TermConnDroppedEv TB GC1 CallCtlTermConnDroppedEv TBGC1 ConnDisconnectedEv
BGC1 CallCtlConnDisconnectedEv B(CiscoFeatureReason. REASON_REFER))

Assisted DPark from a Cisco
Unified IP Phone:

• Cisco Unified IP Phone
phone B (which is on
active call with A) presses
the pre-configured ‘DPark
BLF’ button

• The parked party A will be
connected to D and
hearMoH

No change in behavior. All events/reason remain the same as is todayDPark from Cisco Unified IP
Phone

• Cisco Unified IP Phone
phone B (which is on
active call with A) presses
the ‘Transfer’ softkey

• Parked party A is put on
hold, and parker B dials D

• Parker B is connected to D
and hears MOH.

• Parker B presses"Transfer"
softkey again to complete
the transfer of the parked
party A to Dpark code D.

• Parked party A is
connected to D

No change in behavior. All events/reason remain the same as is todayDPark from JTAPI API

• Application requests for a
consult call from B, using
the consult() API with
destination address as
DPark DN D. Say this call
has GCID–GC2

• Application complete
transfer, using the
transfer() API
GC1.transfer(GC2)

• When transfer is completed
A is connected to DPark
DN

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1230

Message Sequence Charts
Message Sequence Charts

Expected behaviorCall Scenario

No change in behavior. All events/reason remain the same as is todayUnpark from JTAPI API

• Consider application is
observing C.

• After step 3, application
issues a request to unpark
using the connect() API,
with destination address as
the prefix code followed
by DPark code.

• A is connected to C

No change in behavior. B is connected to DPark DN, but no park operation.Redirect to DPark DN via
JTAPI API

• B redirects to DPark code
D, via the redirect() API
with redirect destination as
D.

Logical Partitioning Feature Use Cases
Redirect from a Logical Partition (LP) Restricted Cluster

Terminal TA is configured with address A and is registered to a cluster which is configured with logical
partition restrictions. Terminal TX is registered with address X which is configured to a cluster with no LP
configuration.

ResultAction

PlatformException is thrown to redirect request.

getErrorCode() on the exception returns CiscoJtapiException.
REDIRECT_CALL_PARTITIONING_POLICY

X calls A. A redirects the call to a local
PSTN number

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1231

Message Sequence Charts
Logical Partitioning Feature Use Cases

ResultAction

Originating cluster recognizes that the call is redirect to a PSTN and disconnects the
call

Events delivered to Call Observer of A

GC1 ConnFailedEv A CAUSE:

CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

GC1 CallCtlConnFailedEv CAUSE:

CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

GC1: GC1 TermConnDroppedEv A
GC1 CallCtlTermConnDroppedEv TA
GC1 ConnDisconnectedEv A
GC1 CallCtlConnDisconnectedEv A
GC1 ConnDisconnected X
GC1 CallCtlConnDisconnectedEv X
GC1 CallInvalidEv

A calls X (GC1) , X redirects the call to its
local PSTN number

Call forward: Call to a address which is forward all to PSTM in GeoLocation with “disallowed” policy

ResultAction

Connect() API succeeds but the call is dropped due to restrictions on A side.

Events delivered to call observer of X

GC1ConnFailedEvACAUSE:CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

GC1 CallCtlConnFailedEv CAUSE:
CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

GC1: GC1 TermConnDroppedEv X
GC1 CallCtlTermConnDroppedEv TX
GC1 ConnDisconnectedEv X
GC1 CallCtlConnDisconnectedEv X
GC1 ConnDisconnected A
GC1 CallCtlConnDisconnectedEv A
GC1 CallInvalidEv

setForward on A t o local PSTN

Application is monitoring X.

• X calls A using GC1.connect()

Call Transfer: Transferring a call from different geo location to PSTN by controller in GeoLocation with
“disallowed” policy

ResultAction

Platform exception is thrown to transfer() request.

getErrorCode() returns CiscoJtapiException. TRANSFERFAILED

X calls A, A consults to PSTN number.

Application is monitoring A.

• A completes the transfer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1232

Message Sequence Charts
Message Sequence Charts

Call Conference: Conferencing a call from different location to PSTN by controller in GeoLocation with
“disallowed” policy

ResultAction

Platform exception is thrown to conference() request.

getErrorCode() returns CiscoJtapiException. CTIERR_FEATURE_NOT_AVAILABLE.

X calls A, A consults to PSTN number.

Application is monitoring A.

• A completes the conference.

Call Park / UnPark: Parking and un parking a PSTN call.

A and B are in the same cluster but configured in different geo locations with LP restrictions. PSTN is the
same geo location as B

ResultAction

Call fails:

ConnFailedEv A CAUSE: CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

CallCtlConnFailedEvCAUSE:CiscoCallEv.CAUSE_SERVNOTAVAILUNSPECIFIED

PSTN number calls A, A answers and parks
the call.

Application is monitoring A and B

• B un-parks the call using unpark()
API.

Shared Lines
TermA and TermA’ are in the same cluster but configured in different geo locations with LP restrictions.
PSTN is the same geo location as TermA.

ResultAction

GC1: CallActiveEv
GC1: ConnAlertingEv A
GC1: TermConnRingingEv TermA
GC1: CallCtlTermConnRingingEv TermA

PSTN number calls A. Only TermA rings

Call Park Reversion with Shared Lines in Different Geographic Locations
TermA and TermA’ are in the same cluster but configured in different geo locations with LP restrictions.
PSTN is the same geo location as TermA.

ResultAction

GC1: CallActiveEv
GC1: ConnAlertingEv A
GC1: TermConnRingingEv TermA
GC1: CallCtlTermConnRingingEv TermA

PSTN number calls A, TermA answers and parks the call.

After time out call is offered at TermA and not at TermA’

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1233

Message Sequence Charts
Shared Lines

ComponentUpdater Enhancement Use Cases
ResultAction

Updater.log is creaated in the same directoryApplication calls ComponentUpdater(null)

Updater.log is created in c:\tempApplication calls
ComponentUpdater("C:\\temp\\")

No log is created.Application calls
ComponentUpdater(“readonlydirectory”)

Application does not have write permission
to Readonlydirectory

IPv6 Support
Use case for getIPAddressingMode()

ResultAction

getIPAddressingMode() returns 0Step 1

IP Adrressing mode for terminal A in Cisco Unified
Communications Manager Admin pages is set as IPv4

Application invokes CiscoTerminal.getIPAddressingMode() on
terminal A.

getIPAddressingMode() returns 1(provided user had re-set the
device)

Step 2

After step 1, the IP Addressing mode is changed from IPv4 to
IPv6. User would be prompted to re set the device.

Now application invokes CiscoTerminal.getIPAddressingMode()
on terminal A.

Support for Cisco Unified IP Phone 6900 Series
Events to applicationScenario / Description

CiscoProviderCapabilityChangedEv –
CiscoProvider.canObserverTerminalsWithRoleOver() returns
true.

CiscoProviderCapabilityChangedEv
.hasObserverTerminalsWithRoleOverChanged() returns true.

Events to Provider Observer:

CiscoTermActivatedEv TermA

CiscoTermA ctivatedEv TermB

Application connects to CTIManager.

• TermA is a Cisco Unified IP Phone 6921.
• TermB is a Cisco Unified IP Phone 7931with roll over mode.

Admin now enables the new user role.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1234

Message Sequence Charts
ComponentUpdater Enhancement Use Cases

Events to applicationScenario / Description

CiscoProviderCapabilityChangedEv –
CiscoProvider.canObserverlTerminalsWithRoleOver() returns
false.

CiscoProviderCapabilityChangedEv
.hasObserverTerminalsWithRoleOverChanged() returns true.

Events to Provider Observer:

CiscoTermRestrictedEv TermACiscoTermRestrictedEv TermB

Admin removes the new user role.

PlatformException is thrown. getErrorCode() returns
CiscoJtapiException.CTIERR_DEVICE_RESTRICTED

Term A is a Cisco Unfied IP 6900 series phone. Application does
not have the new role enabled. Term A is in application control
list

Application adds observer on TermA

Call Scenarios:

Events delivered to Terminal Observer

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: CallCtlTermConnTalkingEv TermA

GC1: CallCtlTermConnHeldEv TermA

GC2: CallActiveEvGC2: ConnCreatedEv A:P1

GC2: ConnConnectedEv A:P1

GC2: CallCtlConnInitiatedEv A:P1

Term A is configured with adress A, A:P1, A:P2 where P1 and
P2 are 2 partitions. Application has the new role “Standard CTI
Allow Control of Phones supporting roll over mode”enabled.

TermA is configured to roll over calls to same DNwith max calls
and busy trigger set to 1. Application adds callObserver on
terminal. X calls A, application answers the call (GC1)

Application issues consult request to Y (GC2). Call is created on
A:P1

Events delivered to Terminal Observer

GC1: ConnConnectedEv A
GC1: CallCtlConnEstablishedEv A
GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv
GC2: ConnCreatedEv B
GC2: ConnConnectedEv B
GC2: CallCtlConnInitiatedEv B
GC2: TermConnCreatedEv TernB
GC2: CallCtlConnDialingEv B
GC2: CallCtlConnEstablishedEv B
GC2: ConnFailedEv B.

getCiscoCause() returns CiscoCallEv.CAUSE_USERBUSY

No roll over for incoming calls:

Term A is configured with adress A, A:P1, A:P2 where P1 and
P2 are 2 partitions. Application has the new role “Standard CTI
Allow Control of Phones supporting roll over mode”enabled.

TermA is configured to roll over calls to same DNwith max calls
and busy trigger set to 1. Application adds callObserver on
terminal. X calls A, application answers the call (GC1).

Applications calls A from B using connect API.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1235

Message Sequence Charts
Message Sequence Charts

Events to applicationScenario / Description

Events delivered to Terminal Observer

GC1: ConnConnectedEv A
GC1: CallCtlConnEstablishedEv A
GC1: CallCtlTermConnTalkingEv TermA

PlatformException is thrown. getErrorCode() returns
CiscoJtapiException.CTIERR_MAXCALL_LIMIT_REACHED

Roll over for Transfer and Conference (consult())only:

Term A is configured with adress A, A:P1, A:P2 where P1 and
P2 are 2 partitions. Application has the new role “Standard CTI
Allow Control of Phones supporting roll over mode”enabled.

TermA is configured to roll over calls to same DNwith max calls
and busy trigger set to 1. Application adds callObserver on
terminal. X calls A, application answers the call (GC1).

Applications calls connect() API from Adress A to Y. Similar
exception will be seen for unPark(), startMonitor() requests.

Events delivered to CallObserver on A

GC1: ConnConnectedEv A

GC1: CallCtlConnEstablishedEv A

GC1: CallCtlTermConnTalkingEv TermA

PlatformException is thrown. getErrorDescription() returns
(“No callobserver on address A:P1). getErrorCode() returns
CiscoJtapiException. ASSOCIATED_LINE_NOT_OPEN

Only 1 address has callObserver:

Term A is configured with adress A, A:P1, A:P2 where P1 and
P2 are 2 partitions. Application has the new role “Standard CTI
Allow Control of Phones supporting roll over mode”enabled.

TermA is configured to roll over calls to same DNwith max calls
and busy trigger set to 1. Application adds callObserver on address
A only.

X calls A, call is answered

Applications consults with Y using consult() API. On phone call
consult call is created on A:P1

Events delivered to Terminal Observer

GC1: ConnConnectedEv A
GC1: CallCtlConnEstablishedEv A

GC1: CallCtlTermConnTalkingEv TermA

GC1: CallCtlTermConnHeldEv TermA
GC2: CallActiveEv
GC2: ConnCreatedEv A:P1
GC2: ConnConnectedEv A:P1
GC2: CallCtlConnInitiatedEv A:P1

Roll over to any line:

In roll over, preference is giving to addresses with the same DN.
If an address with the same DN is available it is choosen to roll
over the consult call.

TermA is configured with adress A,B, A:P1 where P1 is partition.
Application has the new role “Standard CTI Allow Control of
Phones supporting roll over mode”enabled. TermA is configured
to roll over calls to any line with max calls and busy trigger set
to 1. Application adds callObserver on TermA

X calls A, application answers the call.

Applicaton consults with Y. The consult call is created on line3.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1236

Message Sequence Charts
Message Sequence Charts

Events to applicationScenario / Description

Events delivered to Terminal Observer

GC2: ConnConnectedEv A
GC2: CallCtlConnEstablishedEv A
GC2: CallCtlTermConnTalkingEv TermA

GC2: CallCtlTermConnHeldEv TermA
GC3: CallActiveEv
GC3: ConnCreatedEv B
GC3: ConnConnectedEv B
GC3: CallCtlConnInitiatedEv B
…
GC3: ConnCreatedEv Y
..
GC3: CallCtlConnAlertingEv Y
..
GC3: ConnConnectedEv Y
GC3: CallCtlConnEstablishedEv Y

CiscoTransferStartEv getTransferControllerAddress() returns
A….CiscoTransferEndEv

Roll over to any line (same DN has another call):

TermA is configured with adress A,B, A:P1 where P1 is partition.
Application has the new role “Standard CTI Allow Control of
Phones supporting roll over mode”enabled. TermA is configured
to roll over calls to any line with max calls and busy trigger set
to 1. Application adds callObserver on TermA

GC1: A:P1 calls Z, A:P1 holds the call

GC2:X calls A, application answers the call

Application consults GC2 to Y (GC3)

Application completes the transfer

Events delivered to Terminal Observer

…
…
GC1: ConnConnectedEv A
GC1: CallCtlConnEstablishedEv A

GC1: CallCtlTermConnTalkingEv TermA

GC1: CallCtlTermConnHeldEv TermA
GC2: CallActiveEv
GC2: ConnCreatedEv A
GC2: ConnConnectedEv A
GC2: CallCtlConnInitiatedEv A

Max call > 1:

Term A is configured with adress A, A:P1 where P1 is partition.
Application has the new role “Standard CTI Allow Control of
Phones supporting roll over mode”enabled. TermA is configured
to roll over calls to any line with max calls and busy trigger set
to 3 and 2 on A. Application adds callObserver on TermA.

X call A, A answers

Application consults with Y

Consult is setup on A (same line)

PlatformException is thrown. getErrorCode() returns
CiscoJtapiException.CTIERR_MAXCALL_LIMIT_REACHED

Term A is configured with address A, A:P1 where P1 is partition.
Application has the new role “Standard CTI Allow Control of
Phones supporting roll over mode”enabled. TermA is configured
to roll over calls to any line with max calls and busy trigger set
to 1/1 on A and A:P1. Application adds callObserver on TermA.

A1 calls X. X answers the call – GC1

Y calls A. A answers the call and calls consult to Z

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1237

Message Sequence Charts
Message Sequence Charts

Terminal and Address Capability Settings Use Cases
Expected behaviorCall Scenario

A.getMaxCalls(TermA) returns 2

A.getMaxCalls(TermA1) returns 3

A.getMaxCalls(null) return 2 or 3

A.getBusyTrigger(TermA) returns 1

A.getBusyTrigger(TermA1) returns 2

A.getButtonPosition(TermA) returns 1

A.getButtonPosition(TermA1) returns 2

Max Calls, busy trigger and Line Button:

Address A is configured on TermA and TermA1. Line on TermA
is configured with max calls 2 and line on TermA1 is configured
with max calls 3.

A on TermA is configured with busy trigger of 1 and A on
TermA1 is configured with busy trigger of 2.

A is on button 1 on TermA and on button 2 on TermA1.

A.getVoiceMailPilot() returns 2001 =

CiscoAddrVoiceMailPilotChangedEv

Ev.getAddress.getVoiceMailPilot() returns 2002

Voice Mail Pilot:

Voice mail profile on address A is configured to point to pilot
2001

Voice mail profile on A is changed to point to to pilot 2002

B.getAsciiLabel(null) returns “asciiB”

B.getUnicodeLabel(null) returns “unicodeB”

B.getAsciiLabel(TermB) returns “asciiB”

B.getUnicodeLabel(TermB) returns “unicodeB”

B.getAsciiLabel(TermC) – throws Exception

Labels:

Address B on TermB is configured with ascii label = assciB and
unicode label unicodeB.

TermC.getIPV4Address() returns a valid InetAddress

TermC.getIPV6Address() returns null

TermD.getIPV6Address() returns a valid InetAddress

TermE.getIPV4Address() returns a valid InetAddress

TermE.getIPV6Address() returns a valid InetAddress

IP Address

TermC is registered in IPV4 mode only

TermD is registered in IPV6 mode only

TermE is registered in dual mode

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1238

Message Sequence Charts
Terminal and Address Capability Settings Use Cases

Expected behaviorCall Scenario

TermF.canDirectTransferAcrossLines(CiscoTerminal
.APPLICATION) returns true;

TermF.canDirectTransferAcrossLines(CiscoTerminal
.PHONE_USER) returns true;

TermG.canDirectTransferAcrossLines(CiscoTerminal
.APPLICATION) returns false;

TermG.canDirectTransferAcrossLines(CiscoTerminal
.PHONE_USER) returns false;

TermH.canDirectTransferAcrossLines(CiscoTerminal
.APPLICATION) returns true;

TermH.canDirectTransferAcrossLines(CiscoTerminal
.PHONE_USER) returns false;

TermI. canJoinAcrossLines (CiscoTerminal .APPLICATION)
returns true;

TermI. canJoinAcrossLines (CiscoTerminal .PHONE_USER)
returns true;

TermJ canJ ConsultCallRollOver (CiscoTerminal
.APPLICATION) returns false;

TermJ canConsultCallRollOver (CiscoTerminal .PHONE_USER)
returns false;

Features:

DTAL:

TermF is Cisco Unified IP Phone model 7970

TermG is a CiscoRouteTerminal

TermH is a CiscoMediaTerminal

Join Across Lines:

TermI has join across lines option enabled

ConsultCallRollOver:

TermJ is Cisco Unified IP Phone model 6921

Provider Observer will get

CiscoProvTermialUnRegisteredEv – getTerminal() returns Term1.

Term1.isRegistered() returns false.

Provider has term1 and term2 in control list and both are registered
to CUCM

Application gets provider and registers for the register and
unregister events.

Provider.registerFeature(CiscoProvFeatureID.
TERMINAL_REGISTER_UNREGISTER_EVENT_NOTIFY

Term1 unregisters

CiscoProvTermialRegisteredEv – getTerminal() returns Term1.

Term1.isRegistered() returns true.

Term1 registers

TermK.getRollOverConfig() returns
CiscoTerminal.ROLLOVER_ANY_DN.

TermL.getRollOverConfig() returnd
CiscoTerminal.NO_ROLLOVER.

Roll Over:

TermK is Cisco Unified IP Phone model 7931 configured with
rollover to any line.

TermL is Cisco Unified IP Phone model 7940

All of the following use cases use the same basic configuration, unless specifically noted in the use case itsellf:

Pickup group1: N:P1 (pickup group number = N, partition = P1)

Pickup group2: M:P1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1239

Message Sequence Charts
Message Sequence Charts

A, B and C are defined to be in pickup group1

D, E, and F are defined to be in pickup group2

Pickup group2 is subgroup for pickup group1

The following scenarios are basic use cases for the new Call Pickup APIs, and do not require an enumerated
event list because of their simplicity. After these, two Call Pickup use cases will be presented so that you can
see the new events in place. Interested parties should refer to the Unison JTAPI Interface Specification
(EDCS-614242) for the full set of Pickup Use Cases. The Use Cases in that document will not have the new
event, but after reading these use cases it should be readily apparent where they belong in the existing use
cases.

ResultActionScenario

API returns N and P1 respectivelyApplication opens provider and issues
CiscoAddress.getPickupGroupDN() and
CiscoAddress.getPickupGroupPartition() at C

JTAPI Application is
observing C

API returns FALSEApplication opens provider and issues
Provider.getCapabilities() and then calls API
CiscoProviderCapabilities.canAutoPickup()

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to false.

API returns TRUEApplication issues Provider.getCapabilities() and
then calls API
CiscoProviderCapabilities.canAutoPickup()

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to true.

i) API returns FALSE

ii). CiscoProviderCapabilityChangedEv is delivered

iii). API returns TRUE

Application opens provider and issues
Provider.getCapabilities() and then calls API
CiscoProviderCapabilities.canAutoPickup()

ii). Now adminitrator sets AutoCallPickupEnabled
service parameter to TRUE,

iii). Application calls API
CiscoProviderCapabilities.canAutoPickup()

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to FALSE.

i) Registration successful.

ii). After Call Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). Unregistration successful.

iv). No Events for pickup alert.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application opens provider and issues
provider.unregisterPickupAlert(N, P1) to register
for pickup alert notification for call pickup group
N:P1.

iv). A calls B

JTAPI Application is
observing C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1240

Message Sequence Charts
Message Sequence Charts

ResultActionScenario

i) Registration successful.

ii). After Call Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B calls starts ringing at C.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application issues
CiscoTerminal.pickup(Address of C) at C

JTAPI Application is
observing C.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to FALSE.

i) Registration successful.

ii). After Call Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B call is answered at C.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application issues
CiscoTerminal.pickup(Address of C) at C

JTAPI Application is
observing C.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B call starts ringing at D.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application issues
CiscoTerminal.groupPickup(Address of D, N) at D

JTAPI Application is
observing C and D

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to FALSE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B call is answered at D.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application issues
CiscoTermina;.groupPickup(Address of D, N) at D

JTAPI Application is
observing C and D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B call starts ringing at D.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii).Application issues
CiscoTerminal.otherPickup(Address of D) at D

JTAPI Application is
observing C and D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to FALSE.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1241

Message Sequence Charts
Message Sequence Charts

ResultActionScenario

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B calls answered at D

i)Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). Application issues
CiscoTerminal.otherPickup(Address of C) at D

JTAPI Application is
observing C and D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

CiscoProvPickupCallAlertEvent with calling E,
Called C, pickup group number : N, pickup group
partition: P1

iii). A-B calls answered at D. (Longest ringing call
is picked up)

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B and then E calls C

iii). Application issues
CiscoTerminal.otherPickup(Address of D) at D

JTAPI Application is
observing C, D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). Application will get PlatformException with
error CTIERR_NO_CALLS_TO_PICKUP.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). A-B call goes IDLE. Then Application issues
CiscoTerminal.pickup(Address of C) at C

JTAPI Application is
observing C, D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). Request successful, new call created, but call
gets disconnected with reason NORMAL.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). A-B call goes IDLE. Then Application issues
CiscoTerminal.groupPickup(Address fo D, N) at D

JTAPI Application is
observing C, D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1242

Message Sequence Charts
Message Sequence Charts

ResultActionScenario

i) Registration successful.

ii). After Calll Pickup Group notification time,
applications gets CiscoProvPickupCallAlertEvent
with calling A, Called B, pickup group number : N,
pickup group partition: P1

iii). Application will get PlatformException with
errorCTIERR_NO_CALLS_TO_PICKUPand cause
NORMAL

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). A calls B

iii). A-B call goes IDLE. Then Application issues
CiscoTerminal.otherPickup(Address of D) at D

JTAPI Application is
observing C, D.

Cisco UCM service
parameter
AutoCallPickupEnabled
is set to TRUE.

i) PlatformException thrown with error
CTIERR_INVALID_GROUP_NUMBERand cause
NORMAL

i). Application opens provider and issues provider.
registerPickupAlert(K, P1) to register for pickup
alert notification for call pickup group K:P1, where
K is not a valid group number

JTAPI Application is
observing C, D.

i). Registration successful

ii.) Registration blocked at the JTAPI layer, and a
InvalidStateException is thrown to the application
with error CTIERR_ALREADY_REGISTERED
and description “Pickup Group already registerred
/ observed”.

i). Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii). Application again issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

i). InvalidStateException thrown to application with
error CTIERR_REGISTRATION_NOT_FOUND
and description, “Pickup group is not registerred
with this provider”.

i). Application opens provider and issues
provider.deregisterPickupAlert(N, P1) to deregister
for pickup alert notification for call pickup group
N:P1, which was not registerred for previously.

i). Registration successful

ii.) After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B calls answered at J in P1.

i). Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) A calls B.

iii.) Application issues
CiscoTerminal.pickup(Address of J in P1) at
terminal of J in P1

JTAPI Application is
observing J.

Cisco UCM service
parameter
“AutoCallPickupEnabled”
is set to true.

J is an address in two
partitions, P1 and P2.

J belongs to the Pickup
Group with number N.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1243

Message Sequence Charts
Message Sequence Charts

ResultActionScenario

i). Registration successful

ii.) After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii). A-B calls answered at J in P2.

i). Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) A calls B.

iii.) Application issues
CiscoTerminal.pickup(Address of J in P2) at
terminal of J in P2

JTAPI Application is
observing J.

Cisco UCM service
parameter
“AutoCallPickupEnabled”
is set to true.

J is an address in two
partitions, P1 and P2.

J belongs to the Pickup
Group with number N..

i). Registration successful

ii.) After Calll Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii.) InvalidStateException thrown to application
with error CTIERR_NO_CALLS_TO_PICKUPand
description, “There are no calls to pickup”.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) A calls B.

iii.) Application issues
CiscoTerminal.groupPickup(Address of K in P3, N)
at terminal of K in P3.

JTAPI Application is
observing K.

Cisco UCM service
parameter
“AutoCallPickupEnabled”
is set to true.

K is an address in
partition P3, and belongs
to Pickup Group 3, in
partiton P3.

Pickup Group 3 has the
same number as Pickup
Group 1, N.

CSS of K is configured
to check P3:P1.

i). Registration successful

ii.) The JTAPI layer sense the failover and
re-registers for the pickup groups that it was registers
for (N, P1).

i.) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) The CUCM crashes / goes offline, and CTI
failsover to the the secondary CUCM server.

i) Registration successful

ii.) Application recieves a
ProviderPickupNotificationRegistrationClosedEvent,
with reason =
CTIERR_PICKUPGROUP_CHANGED

i.) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) An administrator logs into the CUCM Admin
page and changes the DN for the Pickup Group.i).

i.) Registration successful

ii.) Application receives a
CiscoProviderCapabilityChangedEv.
CiscoProviderCapabilities. canAutoPickup() will be
changed to reflect the new setting.

i.) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) An administratior logs in to the CUCM Admin
page and changes the “Auto Pickup Enabled” service
parameter.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1244

Message Sequence Charts
Message Sequence Charts

ResultActionScenario

i) Registration successful

ii.) After Call Pickup Group notification time,
applications gets

CiscoProvPickupCallAlertEvent with calling A,
Called B, pickup group number : N, pickup group
partition: P1

iii.) PlatformException is thrown with reason =
CTIERR_TEMPORARY_FAILUREand description
“Temporary Failure”.

i) Application opens provider and issues provider.
registerPickupAlert(N, P1) to register for pickup
alert notification for call pickup group N:P1.

ii.) A calls B

iii.) Application issues
CiscoTerminal.pickup(Address of J in P3) at
terminal of J in P3.

JTAPI Application is
observing J.

Cisco UCM service
parameter
“AutoCallPickupEnabled”
is set to true.

J is an address in
partition P3.

J belongs to the Pickup
Group with number N, in
P1.

J’s CSS is not configured
to check P1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1245

Message Sequence Charts
Message Sequence Charts

Full-Event Use Case 1: (Observing All Devices): Auto-Pickup Disabled

Call ID / InfoCall eventAction

CCalling: A, CCalled: NONE

Calling: A, Called: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

CCalling: A, CCalled: B

Calling: A, Called: B

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling C, CCalled: NONE

LRP: NONE

REASON_NORMAL

GC1-CallActiveEvent-NONE

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

provider.
registerPickupAlert(N,
P1)

A goes offhook and dials
B (Basic Call)

B is ringing

… pause for Pickup
Group’s delay

Provider receives Pickup
Alert

Application invokes
Terminal.pickup(Address
of C)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1246

Message Sequence Charts
Message Sequence Charts

Call ID / InfoCall eventAction

REASON_CALLPICKUP

CCalling A, CCalled: C

Calling: A, Called: C, LRP: B

REASON_CALLPICKUP

CCalling A, CCalled: C

Calling: A, Called: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

REASON_NORMAL

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B

GC1-CallCtlConnDisconnectedEv-B

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

Call 2 gets dropped /
invalidated

C gets a connection on
Call 1

B is dropped from Call 1

C is ringing

C is on call with A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1247

Message Sequence Charts
Message Sequence Charts

Full-Event Use Case 2 (Observing All Devices): Auto-Pickup Enabled

Call info

(GCID: Info)

EventsActions

CCalling: A, CCalled: NONE

Calling: A, Called: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

CCalling: A, CCalled: B

Calling: A, Called: B

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

GC1-CallActiveEvent-NONE

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

provider.
registerPickupAlert(N,
P1)

A goes offhook and dials
B (Basic Call)

B is ringing

… pause for Pickup
Group’s delay

Provider recieves Pickup
Alert

C invokes
Terminal.pickup(Address
of C)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1248

Message Sequence Charts
Message Sequence Charts

Call info

(GCID: Info)

EventsActions

REASON_CALLPICKUP

CCalling: A, CCalled: C

LRP: NONE

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

LRP: NONE

REASON_NORMAL

REASON_CALLPICKUP

CCalling: A, CCalled: C

LRP: B

REASON_NORMAL

GC2-CiscoCallChangedEv

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnInitiatedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B

GC1-CallCtlConnDisconnectedEv-B

GC1-CallCtlConnEstablishedEv-C

Old Conn for C is
dropped

B is dropped / cleaned up

C’s connection on Call 1
is established

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1249

Message Sequence Charts
Message Sequence Charts

Full-Event Use Case 3 (Observing All Devices): Group Pickup, Auto-Pickup Enabled

Call Id/InfoCall eventAction

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NONE

LRP: NONE

REASON_NORMAL

CCalling: C, CCalled: NONE

REASON_CALLPICKUP

CCalling: C, CCalled: PU, LRP: PU

CCalling C, CCalled: PU

CCalling: A, CCalled: C, LRP: B

Calling: A, Called: B

REASON_CALLPICKUP

CCalling: A, CCalled: C, LRP:B

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C

GC2-ConnCreatedEvent-PU

GC2-ConnInprogressEvent-PU

GC2-CallCtlConnEstablishedEv-C

GC2-CiscoCallChangedEv

GC1-ConnCreatedEvent-C

GC1-ConnCreatedEvent-PU

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-ConnInprogressEvent-PU

GC1-CallCtlConnOfferedEv-PU

provider.
registerPickupAlert(N,
P1)

[Basic call happens, see
case 1]

… pause for Pickup
Group’s delay

Provider receives Pickup
Alert

Application invokes
groupPickup(Address of
C, N)

C is dialing the PU
Number

C is added to the original
call

Pickup added to original
call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1250

Message Sequence Charts
Message Sequence Charts

Call Id/InfoCall eventAction

REASON_CALLPICKUP, LRP: PU

CCalling: C, CCalled: PU

REASON_CALLPICKUP

CCalling: A, CCalled C, LRP: B

REASON_CALLPICKUP

CCalling: A, CCalled C, LRP: B

REASON_CALLPICKUP

GC2-ConnDisconnectedEvent-PU

GC2-CallCtlConnDisconnectedEv-PU

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-ConnDisconnectedEvent-PU

GC1-CallCtlConnDisconnectedEv-PU

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent-B

GC1-CallCtlConnDisconnectedEv-B

Pickup # is removed Call
2

C is dropped from Call 2

Pickup # is removed Call
1

B is dropped / invalidated

As you can see, there are only a handful of changes for this Group Pickup case, and they all directly relate to
the extra required step of dialing the Pickup Number. A similar test was run with Auto-Pickup disabled:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1251

Message Sequence Charts
Message Sequence Charts

Full-Event Use Case 4 (Observing All Devices): Group Pickup, Auto-Pickup Disabled

Call infoEventsAction

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PU

CCalling: C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C

GC2-ConnCreatedEvent-PU

GC2-ConnInprogressEvent-PU

GC2-CallCtlConnEstablishedEv-C

GC2-ConnDisconnectedEvent-PU

GC2-CallCtlConnDisconnectedEv-PU

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

provider.
registerPickupAlert(N,
P1)

[Basic call happens,
see Case 1]

… pause for Pickup
Group’s delay

Provider receives
Pickup Alert

Application invokes
directedPickup(Address
of C, N) at Terminal
for C

C is dialing the PU
number

PU is removed from
Call 2

C is removed from
Call 2

Call 2 is destroyed

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1252

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CCalling: A, CCalled: C, LRP: B

Calling: A, Called: B

REASON_CALLPICKUP

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

CCalling: A, CCalled: C, LRP: B

REASON_NORMAL

GC1-ConnCreatedEvent[ADDRS]

GC1-ConnInprogressEvent

GC1-CallCtlConnOfferedEv

GC1-TermConnDroppedEv

GC1-CallCtlTermConnDroppedEv

GC1-ConnDisconnectedEvent

GC1-CallCtlConnDisconnectedEv

GC1-ConnAlertingEvent

GC1-CallCtlConnAlertingEv

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent

GC1-CallCtlConnEstablishedEv

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C gets a connection
on Call 1

B is dropped from
Call 1

C is ringing

C picks up

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1253

Message Sequence Charts
Message Sequence Charts

Observing Only Device C: Auto-Pickup Enabled

Call IDs/ Call infoCall eventsActions

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

REAON_CALLPICKUP

CCalling A, CCalled: NONE

LRP: NONE

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

REASON_CALLPICKUP

REASON_CALLPICKUP

CCalling A, CCalled: C, LRP: B

REASON_CALLPICKUP

REASON_NORMAL

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CiscoCallChangedEv

GC1-CallActiveEvent-NONE

GC1-ConnCreatedEvent-C

GC1-ConnConnectedEvent-C

GC1-CallCtlConnInitiatedEv

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnEstablishedEv-A

GC1-CallCtlConnEstablishedEv-C

provider.
registerPickupAlert(N,
P1)

Provider receives Pickup
Alert

Application invokes
pickup(Address of C) at
Terminal for C

C is connected to Call 1

C is dropped from Call 2

Call 2 is invalidated /
cleared

A and C are connected on
Call 1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1254

Message Sequence Charts
Message Sequence Charts

Observing Only Device C: Auto-Pickup Disabled

Call events\ Call infoEventsActions

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

REASON_CALLPICKUP

CCalling: C, CCalled: NONE

REASON_NORMAL

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-CallActiveEvent

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnEstablishedEv-A

provider.
registerPickupAlert(N,
P1)

Provider receives Pickup
Alert

Application invokes
pickup(Address of C) at
Terminal for C

Call 2 is destroyed

C is added to Call 1, but
does not pick up

REASON_NORMALGC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

C is ringing

CCalling: A, CCalled: C, LRP: B

REASON_NORMAL

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C picks up, and is
connected to Call 1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1255

Message Sequence Charts
Message Sequence Charts

Observing Only Device C: Group Pickup, Auto-Pickup Enabled

Call ID/ Call infoCall eventActions

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PU

CCalling: C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

REASON_NORMAL

REASON_CALLPICKUP

CCalling: A, C Called: C

CCalling: A, CCalled: C, LRP: B

Calling: A, Called: B

REASON_CALLPICKUP

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C

GC2-ConnCreatedEvent-PU

GC2-ConnInprogressEvent-PU

GC2-CallCtlConnEstablishedEv-C

GC2-CiscoCallChangedEv

GC1-CallActiveEvent

GC1-ConnCreatedEvent-C

GC1-ConnCreatedEvent-PU

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-ConnInprogressEvent-PU

GC1-CallCtlConnOfferedEv-PU

provider.
registerPickupAlert(N,
P1)

Provider receives Pickup
Alert

Application invokes
directedPickup(Address
of C, N) at Terminal for
C

C dials the Pickup
Number

C is added to Call 1

PU is added to Call 1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1256

Message Sequence Charts
Message Sequence Charts

Call ID/ Call infoCall eventActions

CCalling C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

CCalling C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

REASON_NORMAL

CCalling: A, CCalled: C

REASON_CALLPICKUP

CCalling: A, CCalled: C

REASON_CALLPICKUP

GC2-ConnDisconnectedEvent-PUv

GC2-CallCtlTermConnDroppedEvvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC2-CallObservationEnde

GC2-ConnDisconnectedE

GC2-CallCtlConnDisconnectedEv-PU

GC2-TermConnDroppedEdEv

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-PU

GC1-CallCtlConnEstablishedEv-PU

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-ConnDisconnectedEvent-PU

GC1-CallCtlConnDisconnectedEv-PU

PU # is removed from
Call 2

C is removed from Call
2

Call 2 I invalidated /
cleared

C is connected to Call 1

PU is removed from Call
1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1257

Message Sequence Charts
Message Sequence Charts

Observing Only Device C: Group Pickup, Auto-Pickup Disable

Call ID/ Call infoCall eventActions

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling: C, CCalled: NO, NO LRP

REASON_NORMAL

CCalling: C, CCalled: PU, LRP: PU

REASON_CALLPICKUP

REASON_NORMAL

REASON_CALLPICKUP

REASON_CALLPICKUP

REASON_NOTMAL

CCalling: A, CCalled: C, LRP: B

REASON_CALLPICKUP

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent-NONE

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-CallCtlConnDialingEv-C

GC2-ConnCreatedEvent-PU

GC2-ConnInprogressEvent-PU

GC2-CallCtlConnEstablishedEv-C

GC2-ConnDisconnectedEvent-PU

GC2-CallCtlConnDisconnectedEv-PU

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent-C

GC2-CallCtlConnDisconnectedEv-C

GC2-CallInvalidEvent

GC1-CallObservationEndedEv

GC1-CallActiveEvent

GC1-ConnCreatedEvent-C

GC1-ConnInprogressEvent-C

GC1-CallCtlConnOfferedEv-C

GC1-ConnCreatedEvent-A

provider.
registerPickupAlert(N,
P1)

Provider receives Pickup
Alert

Application invokes
directedPickup(Address
of C, N) at Terminal for
C

C dials the PU Number

PU is dropped from Call
2

C is dropped from from
Call 2

Call 2 is destroyed

C is added to Call 1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1258

Message Sequence Charts
Message Sequence Charts

Call ID/ Call infoCall eventActions

REASON_NORMALGC1-ConnConnectedEvent-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnAlertingEvent-C

GC1-CallCtlConnAlertingEv-C

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnConnectedEvent-C

GC1-CallCtlConnEstablishedEv-C

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

C is ringing

C is connected to A

Invoking Pickup on a Ringing Shared Line (CSCsy30964)

This is an odd scenario that normal applications will probably not see.

A calls a shared line DN (B), that has SLT1 and SLT2 on it. B is in pickup group N, P1.

B and B’ ring, and instead of invoking answer(), the application invokes pickup() on B’.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1259

Message Sequence Charts
Message Sequence Charts

Call ID/InfoCall eventAction

CCalling: A, CCalled: NONE

Calling: A, Called: NONE

CAUSE_NEW_CALL

REASON_NORMAL

LRP: NONE

CCalling: A, CCalled: B

Calling: A, Called: B

GC1-CallActiveEvent-NONE

GC1-ConnCreatedEvent-A

GC1-ConnConnectedEvent-A

GC1-CallCtlConnInitiatedEv-A

GC1-TermConnCreatedEvent

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

GC1-CallCtlConnDialingEv-A

GC1-CallCtlConnEstablishedEv-A

GC1-ConnCreatedEvent-B

GC1-ConnInprogressEvent-B

GC1-CallCtlConnOfferedEv-B

GC1-ConnAlertingEvent-B

GC1-CallCtlConnAlertingEv

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1-CallCtlTermConnRingingEv

GC1-ConnInprogressEvent

GC1-ConnAlertingEvent

GC1-TermConnCreatedEvent

GC1-TermConnRingingEvent

GC1- CallCtlTermConnRingingEv

provider.
registerPickupAlert(N,
P1)

A goes offhook and dials
B (Basic Call)

B is ringing on both
shared lines

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1260

Message Sequence Charts
Message Sequence Charts

Call ID/InfoCall eventAction

Calling A, Called B,

PUG Number N, PUG partition P1

CCalling C, CCalled: NONE

LRP: NONE

REASON_NORMAL

CCalling A, CCalled: B

Calling: A, Called: B, LRP: B

REASON_CALLPICKUP

CiscoProvPickupCallAlertEvent

GC2-CallActiveEvent

GC2-ConnCreatedEvent-C

GC2-ConnConnectedEvent-C

GC2-CallCtlConnInitiatedEv-C

GC2-TermConnCreatedEvent

GC2-TermConnActiveEvent

GC2-CallCtlTermConnTalkingEv

GC2-TermConnCreatedEvent

GC2- TermConnPassiveEvent

GC2-CallCtlTermConnInUseEv

GC2-CiscoCallChangedEv

GC1-ConnConnectedEvent

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-CiscoCallChangedEv

GC2-TermConnDroppedEv

GC2-CallCtlTermConnDroppedEv

GC2-ConnDisconnectedEvent

GC2-CallCtlConnDisconnectedEv

GC2-CallInvalidEvent

GC2-CallObservationEndedEv

GC1-TermConnPassiveEvent

GC1-CallCtlTermConnBridgedEv

GC1-CallCtlConnEstablishedEv

GC1-CallCtlTermConnInUseEv

GC1-TermConnActiveEvent

GC1-CallCtlTermConnTalkingEv

… pause for Pickup
Group’s delay

Provider receives Pickup
Alert

Application invokes
Terminal.pickup(Address
of B) on Terminal of
SLT2

Shared line gets a
connection on GC1

GC2 gets cleaned up

SLT1 on Call 1 goes
passive/bridged

SLT2 on Call2 goes
active

SLT2 is talking

Media Termination at Route Point
The following diagrams illustrate the message flows for Media Termination at Route Point.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1261

Message Sequence Charts
Media Termination at Route Point

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1262

Message Sequence Charts
Message Sequence Charts

Mobility Interaction Support
Pre-conditions to mobility interaction use cases, unless specified otherwise:

• Provider is in IN_SERVICE state
• All addresses and terminals are already in service.
• Enable "Route calls to all remote destinations" checkbox for CTIRD1 and CTIRD3.
• CTIRD1 associated to user "Mobility1", dn = 2303

• Remote destination 1 (Name: "C1_CTIRD1_RDD3", Number: "339007")

• CTIRD3 associated to user "Mobility3", dn = 9202

• Remote destination 1 (Name: "C1_CTIRD3_RDD1", Number: "339006")

• RDP1 associated to user "Mobility1", dn = 2303

• Remote destination 1 (Name: "C1_CTIRD1_RDP1", Number: "334007")

• RDP3 associated to user "Mobility3", dn = 9202

• Remote destination 1 (Name: "C1_CTIRD3_RDP1", Number: "334003")
• Remote destination 2 (Name: "C1_CTIRD3_RDD1", Number: "339006")

• Device A (IP Phone - Name: "SEP2401C7824EA3", Line A1 (dn: 9000))

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1263

Message Sequence Charts
Mobility Interaction Support

• User1 has in its control list: Device A, CTIRD1 and CTIRD3. All devices and lines are observed.

Table 279: Call to CTI RD When App Not Active with Unique RD

Call
Info

EventsAction

ProvInServiceEvUser1 opens Provider and adds a provider observer.

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

*Call is offered to the remote destination of RDP1 after delay. Call is
not offered to CTIRD1 or to the remote destination of CTIRD1 (dn =
9007).

A1 calls CTIRD1 in which active rd is not set. User1
invokes Call.connect("SEP2401C7824EA3",
"9000", "2303"). Call is answered at the RD of
RDP1 (dn = 4007).

Table 280: Call to CTI RD When App Active with Unique RD with Answer on RD of RDP

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1264

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoRemoteTerminal.
getActiveRemoteDestinations()
=
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber()
= "339007"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemoteDestinationChangedEvApp sets active rd of CTIRD1 to be
339007. User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("339007",
true).

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

A1 calls CTIRD1 in which active rd is
set. User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "2303").

GC1: CallCtlTermConnRingingEv CTIRD1

*Call is offered to CTIRD1 and to the RD of CTIRD1
without delay. Call is offered to RD of RDP1 after delay.

GC1: TermConnDroppedEv CTIRD1

GC1: CallCtlTermConnDroppedEv CTIRD1

Call is answered at the RD of RDP1 (dn
= 4007).

Table 281: Call to CTI RD When App Active with Unique RD with Answer on RD of CTI RD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1265

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoRemoteTerminal.
getActiveRemoteDestinations()
=
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber()
= "339007"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemoteDestinationChangedEvApp sets active rd of CTIRD1 to be
339007. User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("339007",
true).

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

*Call is offered to CTIRD1 and to the RD of CTIRD1
without delay. Call is offered to RD of RDP1 after delay.

A1 calls CTIRD1 in which active rd is
set. User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "2303").

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

Call is answered at the RD of CTIRD1
(dn = 9007).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1266

Message Sequence Charts
Message Sequence Charts

Table 282: Call to CTI RD When App Not Active with Shared and Unique RD

Call
Info

EventsAction

ProvInServiceEvUser1 opens Provider and adds a provider observer.

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

*Call is offered to the remote destination of RDP3 after delay. Since
339006 is shared between CTIRD3 and RDP3, call is only seen at
339006 after delay.

A1 calls CTIRD3 in which active rd is not set. User1
invokes Call.connect("SEP2401C7824EA3",
"9000", "9202"). Call is answered at the RD of
RDP3 (dn = 4003).

Table 283: Call to CTI RD When App Active with Shared and Unique RD with Answer on RD of CTI RD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CiscoRemoteTerminal.
getActiveRemoteDestinations()
=
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber()
= "339006"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemoteDestinationChangedEvApp sets active rd of CTIRD3 to be
339006. User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("339006",
true).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1267

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1: CallCtlTermConnRingingEv CTIRD3

*Call is offered to CTIRD3 and to the RD of CTIRD3
(which is shared with RDP3) without delay. Call is
offered to the unique RD of RDP3 after delay.

A1 calls CTIRD3 in which active rd is
set. User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202").

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1: CallCtlTermConnTalkingEv CTIRD3

Call is answered at the RD of CTIRD3
(dn = 9006). This is the RD that is shared
between CTIRD3 and RDP3.

Table 284: Call to CTI RD When App Active with Shared and Unique RD with Answer on RD of RDP

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1268

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoRemoteTerminal.
getActiveRemoteDestinations()
=
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber()
= "339006"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemoteDestinationChangedEvApp sets active rd of CTIRD3 to be
339006. User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("339006",
true).

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1: CallCtlTermConnRingingEv CTIRD3

*Call is offered to CTIRD3 and to the RD of CTIRD3
(which is shared with RDP3) without delay. Call is
offered to the unique RD of RDP3 after delay.

A1 calls CTIRD3 in which active rd is
set. User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202").

GC1: TermConnDroppedEv CTIRD3

GC1: CallCtlTermConnDroppedEv CTIRD3

Call is answered at the RD of RDP3 (dn
= 4003).

Modifying Calling Number
The following scenario illustrates the message flows for Modifying Calling Number.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1269

Message Sequence Charts
Modifying Calling Number

Scenario One

The application controls the device Route Point (RP) and registers RP .

A and B are PNO and appear within the Cisco Unified Communications Manager cluster.

A calls RP.

Call arrives at RP

FieldsEventAction

State = ROUTE
getCurrentRouteAddress () = RP
getCallingAddress () = A
getCallingTerminal () = SEPA
(Terminal associated with A)

RouteEventCall Arrives at RP

State = ROUTE_USED
getCallingAddress () = A
getCallingTerminal () = SEPA
(Terminal associated with A)
getRouteUsed () = C

RouteUsedEventApplication invokes

selectRoute(routeselected[],
callingsearchspace,
modifiyingcallingnumber[])
where routeSelected[] = C
callingSearchSpace =
CiscoRouteSession.DEFAULT_SEARCH_SPACE

State = ROUTE_END

getRouteAddress () = RP

RouteEndEventApplication invokes

endRoute (ERROR_NONE)

Scenario Two

The application is controls A and B.

A calls RP, which selects Route call to B with modified calling number as M.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1270

Message Sequence Charts
Message Sequence Charts

FieldsEventAction

getCallingAddress() = A
getCalledAddress() =
getLastRedirectedAddress () =
getCurrentCallingAddress () = A
getCurrentCalledAddress() =
getModifiedCallingAddress() = A
getModifiedCalledAddress() =

getCallingAddress() = A
getCalledAddress() =
getLastRedirectedAddress () =
getCurrentCallingAddress () = A
getCurrentCalledAddress() =
getModifiedCallingAddress() = A
getModifiedCalledAddress() =

getCallingAddress() = A
getCalledAddress() = B
getLastRedirectedAddress () =
getCurrentCallingAddress () = A
getCurrentCalledAddress() = B
getModifiedCallingAddress() = A
getModifiedCalledAddress() = B

NEWMETA EVENT_________META_CALL_STARTING
CallActiveEv Cause:
CAUSE_NEW_CALL
ConnCreatedEv A Cause: CAUSE_NORMAL
ConnConnectedEv A Cause: CAUSE_NORMAL
CallCtlConnInitiatedEv Cause: CAUSE_NORMAL
CallControlCause: CAUSE_NORMAL
TermConnCreatedEv SEPA Cause: Other: 0
TermConnActiveEv SEPA Cause: CAUSE_NORMAL
CallCtlTermConnTalkingEv SEPA Cause: CAUSE_NORMAL

CallControlCause: CAUSE_NORMAL

NEWMETA EVENT_________META_CALL_PROGRESS
CallCtlConnDialingEv A

NEWMETA EVENT_________META_CALL_PROGRESS
CallCtlConnEstablishedEv A
ConnCreatedEv RP
ConnInProgressEv RP
CallCtlConnOfferedEv RP

A calls RP, which is
not in controlled list.

getCallingAddress() = A
getCalledAddress() = B
getLastRedirectedAddress () = RP
getCurrentCallingAddress () = A
getCurrentCalledAddress() = B
getModifiedCallingAddress() = M
getModifiedCalledAddress() = B

getCallingAddress() = A
getCalledAddress() = B
getLastRedirectedAddress () = RP

getCurrentCallingAddress () = A
getCurrentCalledAddress() = B
getModifiedCallingAddress() = M
getModifiedCalledAddress() = B

NEWMETA EVENT_________
META_CALL_ADDITIONAL_PARTY
ConnCreatedEv B
ConnInProgressEv B
CallCtlConnOfferedEv B
ConnDisconnectedEv RP
CallCtlConnDisconnectedEv RP

NEWMETA EVENT_________
META_CALL_PROGRESS
ConnAlertingEv B
CallCtlConnAlertingEv B
TermConnCreatedEv B
TermConnRingingEv B
CallCtlTermConnRingingEv B

Another application
controls the RP
selectRoute to B
with modifying
calling number asM.

getCallingAddress() = A
getCalledAddress() = B
getLastRedirectedAddress () = RP
getCurrentCallingAddress () = A
getCurrentCalledAddress() = B
getModifiedCallingAddress() = M
getModifiedCalledAddress() = B

ConnConnectedEv B
CallCtlConnEstablishedEv B
TermConnActiveEv B
CallCtlTermConnTalkingEv B

B answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1271

Message Sequence Charts
Message Sequence Charts

AutoAccept for CTIPort and RoutePoint

Silent Monitoring Use Cases
A and TA are address and terminal of monitor target or recording initiator

B and TB are address and terminal of monitor initiator.

Scenario One

Administrator enables monitoring capability for the user.

Call infoEventsAction

NACiscoProviderCapabilityChangedEv

hasMonitorCapabilityChanged() on this event returns
true

hasRecordingCapabilityChanged() returns true

NAJTAPI returns trueciscoProvider.getCapabilities().canMonitor()

Scenario Two

Start and Stop monitor: A is monitor target, B is monitor initiator. X calls A, A answers the call GC1 (ci1).
B calls start monitor using GC2. Application has call observer on both A and B. Application has monitoring
capability enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1272

Message Sequence Charts
AutoAccept for CTIPort and RoutePoint

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

GC2:CallActive Cause: CAUSE_NORMAL

GC2: GC1:ConnConnectedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlTermConnTalkingEv TB

GC2: ConnCreatedEv A

(No terminal connection for A or GC2)

GC2: ConnConnectedEv A

GC2:CiscoTermConnMonitorTargetInfoEv Cause:

CAUSE_NORMAL address:A, terminal name: TA, rtphandle = CI1

GC1: CiscoTermConnMonitorStartEv TA

GC1: CiscoTermConnMonitorInitiatorInfoEv TA Cause:

CAUSE_NORMAL address:B, device name: TB

A answers GC1

B calls start monitor
using

GC2 giving CI1,

A and TermA from GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1273

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC2: CiscoRTPOutputStoppedEv

GC1: CiscoRTPOutputStoppedEv

GC1: CallCtlTermConnHeldEv TA

GC2:CiscoRTPInputStoppedEv

GC1: CiscoRTPInputStoppedEv

GC1: CiscoRTPOutputStartedEv

GC2: CiscoRTPOutputStartedEv

GC1: CallCtlTermConnTalking TA

GC2:CiscoRTPInputStartedEv

GC1: CiscoRTPInputStartedEv

GC2: CallCtlTermConnDroppedEv TB

GC2: ConnDisconnEv A

GC1: CiscoTermConnMonitorEndEv TA

GC2: ConnDisconnEv B

GC2: CallInvalidEv

A puts the call on hold

A resumes the call

B calls drop on GC2 to
stop monitoring

Scenario Three

Monitor initiator transfers the call to Y. A is monitor target, B is monitor initiator. X calls A, A answers the
call GC1 (ci1). B calls start monitor using GC2. Application has call observer on both A and B. application
has monitoring capability enabled. B transfers the call to Y.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1274

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnRingingEv TA Cause:
CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause:
CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnConnectedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlTermConnTalkingEv TB

GC2: ConnCreatedEv A

(No terminal connection for A or GC2)

GC2: ConnConnectedEv A

GC2:CiscoTermConnMonitorTargetInfoEv Cause:

CAUSE_NORMALMonitor_TARGET address:A, device name:
TA,

rtphandle = CI1

GC1: CiscoTermConnMonitorStartEv TA

GC1: CiscoTermConnMonitorInitiatorInfoEv TA Cause:

CAUSE_NORMAL address:B, device name: TB rtphandle = ci2

A answers GC1

B calls start monitor using

GC2 and ci2 giving CI1, A and

TermA from GC1

Or using the teminalconnection of A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1275

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: A

Current calling: X

Current called: Y

GC3: CallActiveEv

GC3: ConnConnectedEv B

GC3: CallCtlTermConnTalkingEv TB

GC3: ConnConnectedEv Y

CiscoTransferStartEv(GC3->GC2)

GC3: ConnDisconnectedEv Y

GC1: CiscoTermConnMonitorInitiatorInfoEv TA Cause:

CAUSE_NORMAL address:Y, device name: TY

GC3: ConnDisconnectedEv B

GC3: CallCtlTermConnDroppedEv TB

GC3: CallInvalidEv

GC2: CallCtlTermConnDroppedEv TB

….

GC2: CallInvalidEv

CiscoTransferEndEv

GC3: CallActive

GC3: CallCtlTermConnRingingEv TY

GC3: CallCtlTermConnTalkingEv TY

CiscoTransferStartEv

CiscoCallChangedEv GC3->GC2

GC2: ConnConnectedEv Y

GC2: ConnConnectedEv B

GC2: CiscoTermConnMonitorTargetInfoEv TY Cause:

CAUSE_NORMAL address:A, device name: TA

GC3: ConnDisconnectedEv Y

GC3: CallCtlTermConnDroppedEv TY

GC3: CallInvalidEV

GC2: ConnConnectedEv X

GC2: ConnDisconnectedEv A

CiscoTransferEndEv

(CiscoTermConnMonitorInitiatorInfoEv onGC1 is independent
of transfer events on GC3 and GC2 and can be delivered at any
time before or after end event.)

B consults Y using GC3 and completes
transfer.

Call observer on Y would see

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1276

Message Sequence Charts
Message Sequence Charts

Scenario Four

Monitoring a barged call: A and A’ are shared lines. Caller calls A, A answers the call. A’ barge into the call.
B calls start monitor.

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

GC1: CallCtlTermConnBridgedEv TermA’

GC1: GC1:CallCrlTermConnTalkingEv TA’

Exception is thrown to startMonitor request.

A answers GC1

A’ barges the call

B calls start monitor
using

GC2 giving CI1,

A and TermA from GC1

Scenario Five

Monitor and recording: A is monitor target and has auto recording configured. B is monitor initiator. X calls
A, A answers the call GC1 (ci1). B calls start monitor using GC2. Application has call observer on both A
and B. Application has monitoring capability enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1277

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

GC1: CiscoTermConnRecordingStartEv TA

GC1: CiscoTermConnRecordingTargetInfoEv TA

CiscoRTPInputStartedEv

GC2:CallActive Cause: CAUSE_NORMAL

GC2: GC1:ConnConnectedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlTermConnTalkingEv TB

GC2: ConnCreatedEv A

(No terminal connection for A on GC2)

GC2: ConnConnectedEv A

GC2:CiscoTermConnMonitorTargetInfoEv Cause:

CAUSE_NORMAL address:A, device name: TA, rtphandle = CI1

GC1: CiscoTermConnMonitorStartEv TA

GC1: CiscoTermConnMonitorTargetInfoEv TA Cause:

CAUSE_NORMAL address:B, device name: TB

A answers GC1

B calls start monitor
using

GC2 giving CI1,

A and TermA from GC1

Scenario Six

Observing remote in use shared line in Monitoring: A and A’ are shared lines. Caller calls A, A answers the
call. B calls start monitor. Application has call observer on A’ only. B initiates monitor request for connected
call on A. No start events are delivered to call observer of A’.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1278

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A’ Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnRingingEv TA’ Cause: CAUSE_NORMAL

GC1: CallCtlTermConnBridgedEv TermA’

Cause: CAUSE_NORMAL

GC1: CallCrlTermConnHeldEv TA’

GC1:CallCrlTermConnTalkingEv TA’

GC1: CiscoTermConnMonitorStartEv TA’

GC1: CiscoTermConnMonitorInitiatorInfoEv TA’ Cause:

CAUSE_NORMAL address:B, device name: TB

A answers GC1 and B
initiates monitor

A puts the call on HOLD

A’ answers the call

B drops the call

and initiates start

monitor using

GC3 giving the

terminal connection of A’

in monitor request.

Scenario Seven

Snap Shot events for Monitor and recording: A is monitor target and has auto recording configured. B is
monitor initiator. X calls A, A answers the call GC1 (ci1), B calls start monitor using GC2. Another application
adds call observer on A after monitoring and recording sessions are established.

Call infoEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called: A

CallActiveEv for callID = GC1 Cause: CAUSE_SNAPSHOT

GC1:ConnCreatedEv for A Cause: CAUSE_SNAPSHOT

GC1:ConnConnectedEv for A Cause: CAUSE_SNAPSHOT

GC1: ConnConnectedEv X

…

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_SNAPSHOT

GC1: CiscoTermConnRecordingStartEv TA Cause: CAUSE_SNAPSHOT

GC1: CiscoTermConnRecordingTargetInfoEv TA Cause:

CAUSE_SNAPSHOT

GC1: CiscoTermConnMonitorStartEv TA Cause: CAUSE_SNAPSHOT

GC1: CiscoTermConnMonitorInitiatorInfoEv TA Cause:

CAUSE_SNAPSHOT address:B, device name: TB

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1279

Message Sequence Charts
Message Sequence Charts

Secured Monitoring Use Cases

Monitoring Use Cases

InfoExpected ResultScenario

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

TargetAddress = A TargetTerminal =
TermA

targetCall = GC1

GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv

GC2: ConnCreatedEv S

….

….

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv
TermA

GC1:
CiscoTermConnMonitorInitiatorInfoEv
TermA

GC2: ConnCreatedEv A

….

….

GC2: CallCtlConnEstablishedEv TermA

GC2:CiscoTermConnMonitorTargetInfoEv
TermS

Scenario 1

1. Supervisor and agent’s device security
mode is encrypted

2. Customer and Agent are in a secured call.

3. Supervisor initiates a monitoring request.

GC1: CiscoTermConnMonitoringEndEv
TermA

…

GC1: CallInvalidEv

…

GC2: CallInvalidEv

4. The Agent Customer call is dropped.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1280

Message Sequence Charts
Secured Monitoring Use Cases

InfoExpected ResultScenario

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

Targetaddress = A TargetTerminal =
TermATarget call = GC1

GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv

GC2: ConnCreatedEv S

….

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv

GC1:
CiscoTermConnMonitorInitiatorInfoEv
TermA

GC2: ConnCreatedEv A

….

….

GC2: CallCtlConnEstablishedEv TermA

GC2:CiscoTermConnMonitorTargetInfoEv
TermS

Scenario 2

1. Supervisor and agent’s device security
mode is encrypted

2. Customer and Agent are in a non-secured
call.

3. Supervisor initiates a monitoring request

GC1: CiscoTermConnMonitoringEndEv
TermA

…

GC2: CallInvalidEv

4. Supervisor stops monitoring

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1281

Message Sequence Charts
Message Sequence Charts

InfoExpected ResultScenario

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

Targetaddress = A TargetTerminal =
TermATarget call = GC1

GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv

GC2: ConnCreatedEv S

….

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv
TermA

GC1:
CiscoTermConnMonitorInitiatorInfoEv
TermA

GC2: ConnCreatedEv A

….

….

GC2: CallCtlConnEstablishedEv TermA

GC2:CiscoTermConnMonitorTargetInfoEv
TermS

GC1: CiscoTermConnMonitoringEndEv
TermA

…

GC2: CallInvalidEv

Scenario 3

1. Agent’s Device is non-secured and
supervisor is secured

2. Customer and Agent are in a non secured
call

3. Supervisor initiates a monitoring request

4. Supervisor stops Monitoring

Cause: BCNAUTHORIZEDGC1: CallCtlTermConnTalkingEv TermA

GC2: ConnCreatedEv S

..

GC2: CallCtlConnEstablished TermS

GC2: ConnFailedEv S2

GC2: CallCtlConnFailedEv S2

PriviledgeViolationException
:CTIERR_SECURITY_CAPABILITY_
MISMATCH

(as supervisor’s does not meet the security
capabilities of the Agent)

Scenario 4

1. Agent’s device is secured and supervisor
is non-secured

2. Customer and agent are in a
secured/non-secured call

3. Supervisor initiates a monitoring request

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1282

Message Sequence Charts
Message Sequence Charts

InfoExpected ResultScenario

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

Targetaddress = A TargetTerminal =
TermATarget call = GC1

GC1: CallCtlTermConnTalkingEv TermA

GC2: ConnCreatedEv S

…..

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv
TermA

GC1:
CiscoTermConnMonitorInitiatorInfoEv
TermA

GC2: connCreatedEv A

..

GC2: CallCtlConnEstablishedEv termA

GC2:
CiscoTermConnMonitoringTargetInfoEv

Scenario 5

1. Both supervisor and agent are
non-secured

2. Customer and agent are in a non-secured
call

3. Supervisor initiates a monitoring request

GC1: CiscoTermConnMonitoringEndEv
TermA

…

GC2: CallInvalidEv

4. Supervisor stops monitoring

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

Targetaddress = A TargetTerminal =
TermATarget call = GC1

cause : CAUSE_BCNAUTHORISED

GC1: CallCtlTermConnTalkingEv TermA

GC2: ConnCreatedEv S

…..

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv

GC1:
CiscoTermConnMonitoringInitiatorInfoEv

termA

GC2 : ConnCreatedEv A

..

GC2: CallCtlConnEstablishedEv TermA

GC2:
CiscoTermConnMonitoringTargetInfoEv

Scenario 6

1. Supervisor1 and agent are secured,
supervisor2 is non-secured.

2. Customer and Agent are in a
secured/non-secured call

3. A secured monitoring session is in
progress with supervisor1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1283

Message Sequence Charts
Message Sequence Charts

InfoExpected ResultScenario

TransactionID : xxxx

AgentAddr = A

AgentDevice = termA

AgentCID = agentCI in GC1

Supervisor1 Device Name = TermS1

Cause = BCNAuthorised

CiscoTransferStartEv

…..

CiscoTransferEndEv

The monitoring session is torn down

(since supervisor2 does not meet the
security capabilities of the agent)

GC2: ConnFailedEv S2

GC2: CallCtlConnFailedEv S2

GC1: CiscoTermConnMonitorEndEv

Events Received on Supervisor1

CiscoAddrMonitoringTerminatedEv

4. Supervisor1 transfers the monitoring call
to supervisor2

Initiatortaddress = S InitiatorTerminal =
TermS

InitiatorCall = GC2

Targetaddress = A TargetTerminal =
TermATarget call = GC1

GC1: CallCtlTermConnTalkingEv TermA

GC2: ConnCreatedEv S

…..

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv

GC1:
CiscoTermConnMonitoringInitiatorInfoEv

termA

GC2 : ConnCreatedEv A

..

GC2: CallCtlConnEstablishedEv TermA

GC2:
CiscoTermConnMonitoringTargetInfoEv

Scenario 7

1. Supervisor1 and agent are secured,
supervisor2 is secured.

2. Customer and Agent are in a
secured/non-secured call

3. A secured monitoring session is in
progress with supervisor1.

Targetaddress = A TargetTerminal =
TermATarget call = GC1

CiscoTransferStarteEv

….

CiscoTransferEndEv

GC2: ConnCreatedEv S2

…..

GC2: CallCtlConnEstablishedEv TermS2

GC2:
CiscoTermConnMonitoringTargetInfoEv

4. Supervisor1 transfers the monitoring call
to supervisor2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1284

Message Sequence Charts
Message Sequence Charts

Monitoring and Recording Use Cases

Expected ResultScenario

GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv

GC2: ConnCreatedEv S

….

….

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv TermA

GC1: CiscoTermConnMonitorInitiatorInfoEv TermA

GC2: ConnCreatedEv A

….

….

GC2: CallCtlConnEstablishedEv TermA

GC2: CiscoTermConnMonitorTargetInfoEv TermS

Scenario 1

1. Agent is non-secured, Supervisor and recorder are encrypted

2. Agent is in a non-secured call with customer

3. Supervisor monitors the call in non-secured mode

CiscoTermConnRecordingStartEv

CallCtlTermConnTalkingEv TermS

The recording is done in a secured mode as Both the supervisor
and recorder are secured, but the overall call security is
non-secured.

4. Application requests for recording the call at Supervisor

Native Queuing
1. Hunt Pilot HP has one member B.

2. Check box for “Queue Calls” is checked.

3. “Maximum In Queue timer” is set as 60 seconds.

4. “Destination When Maximum Wait Time is Met” is set as C

5. Queue depth is set to 1

6. “Destination When Queue is Full” is set to C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1285

Message Sequence Charts
Native Queuing

Queuing of Call
Call infoEventAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC1 ConnConenctedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 CallCtltermConnRingingEv termB

GC1 CallCtlConnEstablishedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv B

GC1 CallCtlTermConnTalkingEv termB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1286

Message Sequence Charts
Queuing of Call

Call infoEventAction

Connected.getAddress().getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Connected.getAddress().getType() =

CiscoAddress.INTERNAL

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Connected.getAddress().getType() =

CiscoAddress.HUNT_PILOT

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 ConnInProgessEv HP

GC2 CallCtlConnQueuedEv HP

GC2 CallCtlConnDisconenctedEv HP

GC2 ConnDisconnectedEv HP

D calls HP

(Call gets Queued)

De-queuing of a call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1287

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC1 ConnConenctedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 CallCtltermConnRingingEv termB

GC1 CallCtlConnEstablishedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv B

GC1 CallCtlTermConnTalkingEv termB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1288

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

Connected.getAddress().getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Connected.getAddress().getType() =

CiscoAddress.INTERNAL

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Connected.getAddress().getType() =

CiscoAddress.HUNT_PILOT

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 ConnInProgessEv HP

GC2 CallCtlConnQueuedEv HP

GC2 CallCtlConnDisconenctedEv HP

GC2 ConnDisconnectedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1289

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

Connected.getAddress().getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_DEQUEUING

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = B

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = B

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_DEQUEUING

(AddressImpl)(ConnectionImpl)((ConnEvImpl)

Ev.getConnection()).getAddress()).getType() =
CiscoAddress.INTERNAL

GC1 ConnDisconnectedEv HP

GC1 CallCtlConnDisconnectedEv HP

GC1 TermConnDroppedEv TermB

GC1 CallCtlTermConnDroppedEv termB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconenctedEv B

GC1 TermConnDroppedEv TermA

GC1 CallCtlTermConnDroppedEv termA

GC1 ConnDisconnectedEv A

GC1 CallCtlConnDisconenctedEv A

GC1 CallInvalidEv

GC2 ConnCreatedEv B

GC2 ConnInProgressEv B

GC2 CallCtlConnOfferedEv B

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnAlertinEv B

GC2 CallCtlConnAleringEv B

GC2 TermConnCreatedEv Term B

Gc2 termConnRingingEv TermB

GC2 CallCtlTermConnRingingEv TermB

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

B disconnects the call

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = B

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = B

Call.getLastRedirectedAddress() = HP

GC2 ConnConnectedEv B

GC2 CallCtlConnEstablishedEv B

GC2 TermConnActiveEv Term B

GC2 TermConnCtalkingEv TermB

B Answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1290

Message Sequence Charts
Message Sequence Charts

Maximum In-Queue Timer Expires

Call infoEventAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC1 ConnConenctedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 CallCtltermConnRingingEv termB

GC1 CallCtlConnEstablishedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv B

GC1 CallCtlTermConnTalkingEv termB

B answers the call

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_QUEUING

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlCallOfferedEv HP

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1291

Message Sequence Charts
Maximum In-Queue Timer Expires

Call infoEventAction

Ev.getCiscoFeatureReason() =

CiscoFeatureReason.
REASON_DEQUEUING_TIMER_EXPIRED

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = C

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = C

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() =

CiscoFeatureReason.
REASON_DEQUEUING_TIMER_EXPIRED

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

GC2 ConnCreatedEv C

GC2 ConnInProgressEv C

GC2 CallCtlConnOfferedEv C

GC2 ConnAlertingEv C

GC2 CallCtlConnAlertingEv C

GC2 CallCtltermConnRingingEv termC

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

After 60 seconds

Maximum In-Queue Timer Expires with Destination as Another HP Whose Member E Is Free
All members of HP are busy. The destination when queue timer expires is HP2 whose members E is free

Call infoEventAction

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlCallOfferedEv HP

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1292

Message Sequence Charts
Maximum In-Queue Timer Expires with Destination as Another HP Whose Member E Is Free

Call infoEventAction

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_DEQUEUING_TIMER_EXPIRED

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = E

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = B

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_DEQUEUING_TIMER_EXPIRED

(AddressImpl)(ConnectionImpl)((ConnEvImpl)

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

GC2 ConnCreatedEv E

GC2 ConnInProgressEv E

GC2 CallCtlConnOfferedEv E

GC2 CiscoHuntConnCreatedEv HP2

GC2 ConnAlertinEv E

GC2 CallCtlConnAleringEv E

GC2 TermConnCreatedEv Term E

Gc2 termConnRingingEv TermE

GC2 CallCtlTermConnRingingEv TermE

GC2 ConnConnectedEv HP2

GC2 CallCtlConnEstablishedEv HP2

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

After 60s call gets

offered on HP2

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = E

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = E

Call.getLastRedirectedAddress() = HP

GC2 ConnConnectedEv E

GC2 CallCtlConnEstablishedEv E

GC2 TermConnActiveEv Term E

GC2 TermConnCtalkingEv TermE

E answers

Maximum In-Queue Timer Expires with Destination as Another HP Whose Members Are Busy
All members of HP are busy. The destination when queue timer expires is HP2 whose members (E) is also
busy

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1293

Message Sequence Charts
Maximum In-Queue Timer Expires with Destination as Another HP Whose Members Are Busy

Call infoEventAction

Ev.getConnection()). getAddress()).
getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType()
=

CiscoAddress.INTERNAL

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlCallOfferedEv HP

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1294

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.
REASON_DEQUEUING

Ev.getConnection()).
getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).
getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = E

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = E

Call.getLastRedirectedAddress() = HP

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.
REASON_DEQUEUING

(AddressImpl)(ConnectionImpl)
((ConnEvImpl)

Ev.getConnection()).
getAddress()).getType() =

CiscoAddress.INTERNAL

GC2 ConnCreatedEv E

GC2 ConnInProgressEv E

GC2 CallCtlConnOfferedEv E

GC2 CiscoHuntConnCreatedEv HP2

GC2 ConnAlertinEv E

GC2 CallCtlConnAleringEv E

GC2 TermConnCreatedEv Term E

Gc2 termConnRingingEv TermE

GC2 CallCtlTermConnRingingEv TermE

GC2 ConnConnectedEv HP2

GC2 CallCtlConnEstablishedEv HP2

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

E becomes

Free after >60s

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = E

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = E

Call.getLastRedirectedAddress() = HP

GC2 ConnConnectedEv E

GC2 CallCtlConnEstablishedEv E

GC2 TermConnActiveEv Term E

GC2 TermConnCtalkingEv TermE

E answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1295

Message Sequence Charts
Message Sequence Charts

Queue Is Full

FieldsEventAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC1 ConnConenctedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 CallCtltermConnRingingEv termB

GC1 CallCtlConnEstablishedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv B

GC1 CallCtlTermConnTalkingEv termB

B answers the call

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_QUEUING

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlCallOfferedEv HP

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1296

Message Sequence Charts
Queue Is Full

FieldsEventAction

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =

CiscoFeatureReason.
REASON_DEQUEUING_AGENTS_BUSY

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =

CiscoFeatureReason.
REASON_DEQUEUING_AGENTS_BUSY

GC3 CallActiveEv

GC3 ConnCreatedEv E

GC3 CallCtlConnInitiatedEv E

GC3 ConnCreatedEv E

GC3 CallCtlConnInitiatedEv E

GC3 CallCtlConnEstablishedEv E

GC3 TermConnCreatedEv E

GC3 CallCtlTermConnTalkingEv TermE

GC3 CiscoHuntConnCreatedEv HP

GC3 ConnCreatedEv C

GC3 CallCtlCallOfferedEv C

GC3 ConnAlertinEv C

GC3 CallCtlConnAleringEv C

GC3 TermConnCreatedEv Term C

Gc3 termConnRingingEv TermC

GC3 CallCtlTermConnRingingEv TermC

GC3 CallCtlConnDisconnectedEv HP

GC3 ConnCisconnectedEv HP

E calls HP

Call gets offered on C

Call.getCalledAddress() = HP

Call.getCallingAddress() = E

Call.getCurrentCalledAddress() = C

Call.getCurrentCallingAddress() = E

Call.getModifiedCallingAddress() = E

Call.getModifiedCalledAddress() = C

Call.getLastRedirectedAddress() = HP

GC3 CallCtlConnEstablishedEv C

GC3 CallCtlTermConnTalkingEv termC

C answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1297

Message Sequence Charts
Message Sequence Charts

When Disconnect Is Selected for Queue Full

Call infoEventAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC1 ConnConenctedEv HP

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 CallCtltermConnRingingEv termB

GC1 CallCtlConnEstablishedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv B

GC1 CallCtlTermConnTalkingEv termB

B answers the call

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_QUEUING

Call.getCalledAddress() = HP

Call.getCallingAddress() = D

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = D

Call.getModifiedCallingAddress() = D

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

GC2 CallActiveEv

GC2 ConnCreatedEv D

GC2 CallCtlConnInitiatedEv D

GC2 CallCtlConnEstablishedEv D

GC2 TermConnCreatedEv D

GC2 CallCtlTermConnTalkingEv TermD

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlCallOfferedEv HP

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

D calls HP

(Call gets Queued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1298

Message Sequence Charts
When Disconnect Is Selected for Queue Full

Call infoEventAction

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =

CiscoFeatureReason.REASON_NORMAL

Cause = UserBusy

GC3 CallActiveEv

GC3 ConnCreatedEv E

GC3 CallCtlConnInitiatedEv E

GC3 ConnCreatedEv E

GC3 CallCtlConnInitiatedEv E

GC3 CallCtlConnEstablishedEv E

GC3 TermConnCreatedEv E

GC3 CallCtlTermConnTalkingEv TermE

GC3 CiscoHuntConnCreatedEv HP

GC3 ConnFaileEv E

GC3 CallCtlConnFailedEv E

Gc3 ConnDisconenctedEv HP

Gc3 ConnDisconnectedEv E

Gc3 CallCtlConnDisconenctedEv E

Gc3 CallInvalidEv

E calls HP

Call fails

Same result as above is observed when "Disconnect" is selected for MaxQueueTime and Agents Not Logged
in configs and those conditions get hit.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1299

Message Sequence Charts
Message Sequence Charts

No Agents Are Logged In

Call infoEventAction

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_DEQUEUING_AGENTS_UNAVAILABLE

Ev.getCiscoFeatureReason() = CiscoFeatureReason.
REASON_DEQUEUING_AGENTS_UNAVAILABLE

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 CallCtlConnInitiatedEv A

GC1 CiscoHuntConnCreatedEv HP

GC1 CallCtlConnEstablishedEv A

GC1 TermConnCreatedEv A

GC1 CallCtlTermConnTalkingEv TermA

GC3 ConnCreatedEv C

GC3 CallCtlCallOfferedEv C

GC3 ConnAlertinEv C

GC3 CallCtlConnAleringEv C

GC3 TermConnCreatedEv Term C

Gc3 termConnRingingEv TermC

GC3 CallCtlTermConnRingingEv TermC

GC3 CallCtlConnDisconnectedEv HP

GC3 ConnCisconnectedEv HP

A calls HP

GC1 CallCtlConnEstablishedEv C

GC1 CallCtlTermConnTalkingEv termC

C answers the call

Caller Redirects While in Queue
A calls HP, call offered on B and B answers (GC1). D calls HP and gets queued (GC2).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1300

Message Sequence Charts
No Agents Are Logged In

Call infoEventAction

Ev.getCiscoFeatureReason() =
REASON_REDIRECT

Call.getCalledAddress() = E

Call.getCallingAddress() = HP

Call.getCurrentCalledAddress() = E

Call.getCurrentCallingAddress() = HP

Call.getModifiedCallingAddress() = HP

Call.getModifiedCalledAddress() = E

Call.getLastRedirectedAddress() = D

GC2 ConnCreatedEv E

GC2 CallCtlCallOfferedEv E

GC2 TermConnDroppedEv TermD

GC2 CallCtlTermConnDroppedEv termD

GC2 ConnDisconnectedEv D

GC2 CallCtlTermConnDisconnectedEv D

GC2 ConnAlertinEv E

GC2 CallCtlConnAleringEv E

GC2 TermConnCreatedEv Term E

GC2 TermConnRingingEv TermE

GC2 CallCtlTermConnRingingEv TermE

D redirects the call to E

GC2 CallCtlConnEstablishedEv E

GC2 CallCtlTermConnTalkingEv termE

E answers

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_DEQUEUING

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Call.getCalledAddress() = HP

Call.getCallingAddress() = E

Call.getCurrentCalledAddress() = HP

Call.getCurrentCallingAddress() = E

Call.getModifiedCallingAddress() = E

Call.getModifiedCalledAddress() = HP

Call.getLastRedirectedAddress() = HP

GC1 TermConnDroppedEv TermA

GC1 CallCtlTermConnDroppedEv termA

GC1 ConnDisconnectedEv A

GC1 CallCtlTermConnDisconnectedEv A

GC1 TermConnDroppedEv TermB

GC1 CallCtlTermConnDroppedEv termB

GC1 ConnDisconnectedEv B

GC1 CallCtlTermConnDisconnectedEv B

GC1 CallInvalidEv

GC2 ConnCreatedEv B

GC2 ConnInProgressEv B

GC2 CallCtlConnOfferedEv B

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnAlertinEv B

GC2 CallCtlConnAleringEv B

GC2 TermConnCreatedEv Term B

Gc2 termConnRingingEv TermB

GC2 CallCtlTermConnRingingEv TermB

GC2 ConnConnectedEv HP

GC2 CallCtlConnEstablishedEv HP

B drops GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1301

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

Ev.getCiscoFeatureReason() =
CiscoFeatureReason.REASON_DEQUEUING

(AddressImpl)(ConnectionImpl)((ConnEvImpl)

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

GC2 CallCtlConnEstablishedEv B

GC2 CallCtlTermConnTalkingEv termB

B answers

Caller (Observed) Conferences While in Queue
A calls HP, call offered on B and B answers (GC1). D calls HP and gets queued (GC2).

Call infoEventAction

GC2 callCtltermConnHeldEv termD

GC3 CallActiveEv

GC3 ConnCreatedEv D

GC3 CallCtlConnInitiatedEv D

GC3 CallCtlConnEstablishedEv D

GC3 TermConnCreatedEv D

GC3 CallCtlTermConnTalkingEv TermD

GC3 ConnCreatedEv E

GC3 ConnInProgressEv E

GC3 CallCtlConnOfferedEv E

GC3 ConnAlertingEv E

GC3 CallCtlConnAlertingEv E

GC3 CallCtltermConnRingingEv termE

D initiates a consult call
with E

GC2 CallCtlConnEstablishedEv E

GC2 CallCtlTermConnTalkingEv termE

E answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1302

Message Sequence Charts
Caller (Observed) Conferences While in Queue

Call infoEventAction

Ev.getCiscoFeatureReason() =
REASON_CONFERENCE

Ev.getCiscoFeatureReason() =
REASON_CONFERENCE

Ev.getCiscoFeatureReason()

= REASON_CONFERENCE

Ev.getCiscoFeatureReason() =
REASON_CONFERENCE

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.UNKNOWN

GC2 CiscoConfereceStartedEv

GC3 TermConnDroppedEv TermE

GC3 CallCtlTermConnDroppedEv termE

GC3 ConnDisconnectedEv E

GC3 CallCtlTermConnDisconnectedEv E

GC3 TermConnDroppedEv TermD

GC3 CallCtlTermConnDroppedEv termD

GC3 ConnDisconnectedEv D

GC3 CallCtlTermConnDisconnectedEv D

GC3 CallInvalidEv

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEv HP

GC2 ConnCreatedEv HP

GC2 CallCtlConnEstablishedEv HP

GC2 CiscoConferenceEndEv

D conferences GC1 with
Cg2

GC1.conference(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1303

Message Sequence Charts
Message Sequence Charts

Call infoEventAction

Ev.getCiscoFeatureReason() =REASON_NORMAL

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.UNKNOWN

Ev.getCiscoFeatureReason() =
REASON_DEQUEUING

Ev.getCiscoFeatureReason() =
REASON_DEQUEUING

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

Ev.getConnection()).getAddress()).getType() =
CiscoAddress.HUNT_PILOT

Ev.getCiscoFeatureReason() =
REASON_CONFERENCE

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Ev.getCiscoFeatureReason() =
REASON_CONFERENCE

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.HUNT_PILOT

GC1 TermConnDroppedEv TermA

GC1 CallCtlTermConnDroppedEv termA

GC1 ConnDisconnectedEv A

GC1 CallCtlConnDisconnectedEv A

GC1 TermConnDroppedEv TermB

GC1 CallCtlTermConnDroppedEv termB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectedEv B

GC1 CallInvalidEv

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEvHP

GC2 ConnCreatedEv B

GC2 ConnInProgressEv B

GC2 CallCtlConnOfferedEv B

GC2 CiscoHuntConnCreatedEv HP

GC2 ConnAlertingEv B

GC2 CallCtlConnAlertingEv B

GC2 CallCtltermConnRingingEv termB

Gc2 ConnConenctedEv HP

GC2 CallCtlConnEstablished HP

GC2 ConnCreatedEv HP

Gc2 ConnAlertingEv HP

GC2 CallCtlConnAlertingEv HP

GC2 ConnDisconnectedEv HP

GC2 CallCtlConnDisconnectedEvHP

B drops GC1

Ev.getConnection()).getAddress()).getType() =

CiscoAddress.INTERNAL

Gc2 ConnConenctedEv HP

GC2 CallCtlConnEstablished HP

Gc2 ConnConenctedEv HP

GC2 CallCtlConnEstablished HP

GC2 TermConnActiveEv termb

GC2 CallCtlTermConnTalkingEv termB

B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1304

Message Sequence Charts
Message Sequence Charts

Use Cases for NuRD (Number Matching for Remote Destination)
Prerequisites

Pre-conditions to nurd use cases, unless specified otherwise:

• Provider is in IN_SERVICE state
• All addresses and terminals are already in service.
• Enable "Route calls to all remote destinations" checkbox for CTIRD1 and CTIRD2.
• Clusterwide service parameter "Reroute Remote Destination Calls to Enterprise Number" is set to true.
• ICT Trunk configured with Route pattern is 408XXXXX with no discard digits.
• SIP Trunk configured with Route pattern is 409XXXXX with no discard digits.
• ICT Trunk configured with Route pattern is 33.XXXX with discard digits pre-dot.
• CTIRD1 associated to user "Mobility1", dn = 2303

• Remote destination 1 (Name: "RDD1", Number: "40822077")
• Remote destination 2 (Name: "RDD2", Number: "40922078")

• CTIRD2 associated to user "Mobility2", dn = 9200

• Remote destination 1 (Name: "RDD3", Number: "40812115")
• Remote destination 2 (Name: "RDD4", Number: "40912116")

• CTIRD2 has a shared ip phone D
• RDP2 associated to user "Mobility2", dn = 9200with display and Unicode name configured to be "RDP2".

• Remote destination 1 (Name: "RDD3", Number: "40812115"). This is shared with CTIRD2.
• Remote destination 2 (Name: "RDDP1", Number: "40922095")

• Device A (IP Phone - Name: "SEP2401C7824EA3", Line A1 (dn: 9000)).
• Device B (IP Phone - Name: "SEP2401C7824EAE", Line B1 (dn: 9001)).
• User1 has in its control list: Device A, B, CTIRD1 and CTIRD2. All devices and lines are observed.

Basic Calls Initiated From Remote Destination
Table 285: Remote Destination Initiates Call with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1305

Message Sequence Charts
Use Cases for NuRD (Number Matching for Remote Destination)

Call InfoEventsAction

CallingAddress = 40822077,

CalledAddress = 9000,

CurrentCallingAddress =
40822077,

CurrentCalledAddress = 9000

CurrentCallingAddress.getType
() = External

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConOfferedEv 9000

GC1: ConnCreatedEv 40822077

GC1: ConnConnectedEv 40822077

GC1: CallCtlConnEstablishedEv 40822077

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnRingingEv SEP2401C7824EA3

GC1:CallCtlTermConnRingingEvSEP2401C7824EA3

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

*Direct call between RDD1 and A.

RDD1 calls A1 in which active rd is not
set.

Call is answered at A1 (dn = 9000).

Table 286: Remote Destination Initiates Call with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1
to be RDD1 (dn = 40822077). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1306

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 2303,

CalledAddress = 9000,

CurrentCallingAddress = 2303,

CurrentCalledAddress = 9000

CurrentCallingAddress.getType
() = Internal

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: CallCtlConnDialingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConnOfferedEv 9000

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnRingingEv SEP2401C7824EA3

GC1:CallCtlTermConnRingingEvSEP2401C7824EA3

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

*Call is routed through CTIRD1 so looks like CTIRD1
is initiating a call to A.

RDD1 calls A1 in which active rd is set.

Call is answered at A1 (dn = 9000).

Table 287: Remote Destination Initiates Call with Active RDD with Only CTIRD Observed

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

User1 observes only CTIRD

*If active remote destination is not set, then app will
not see any call events as it would be direct call between
RDD1 and A1.

Set active remote destination of CTIRD1
to be RDD1 (dn = 40822077). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1307

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 2303,

CalledAddress = 9000,

CurrentCallingAddress = 2303,

CurrentCalledAddress = 9000

CurrentCallingAddress.getType
() = Internal

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: CallCtlConnDialingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConnOfferedEv 9000

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

*Call is routed through CTIRD1 so looks like CTIRD1
is initiating a call to A.

RDD1 calls A1 in which active rd is set.

Call is answered at A1 (dn = 9000).

Basic Calls to Remote Destination
Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1308

Message Sequence Charts
Basic Calls to Remote Destination

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress = 40822077,

CurrentCallingAddress = 9000,

CurrentCalledAddress =
40822077

CurrentCalledAddress.getType()
= External

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1:CallCtlTermConnTalkingEvSEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 40822077

GC1: ConnConnectedEv 40822077

GC1: CallCtlConnNetworkReachedEv 40822077

GC1: CallCtlConnNetworkAlertingEv 40822077

GC1: CallCtlConnEstablishedEv 40822077

*Direct call between A and RDD1.

A1 calls RDD1 in which active rd is not
set. User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "40822077"). Call is answered at
RDD1 (dn = 40822077).

Table 288: Call to Remote Destination with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1
to be RDD1 (dn = 40822077). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1309

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress = 40822077,

CurrentCallingAddress = 9000,

CurrentCalledAddress = 2303

CurrentCalledAddress.getType()
= Internal

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1:CallCtlTermConnTalkingEvSEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Call is routed through and offered on CTIRD1 and
extended to RDD1 with no delay.

A1 calls RDD1 in which active rd is set.
User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "40822077"). Call is answered at
RDD1 (dn = 40822077).

Table 289: Call to Remote Destination with Active RDD with Only CTIRD Observed

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

User1 observes only CTIRD

*If active remote destination is not set, then app will
not see any call events as it would be direct call
between A1 and RDD1.

Set active remote destination of CTIRD1
to be RDD1 (dn = 40822077). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1310

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress = 2303,

CurrentCallingAddress = 9000,

CurrentCalledAddress = 2303

CurrentCalledAddress.getType()
= Internal

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Call is routed through and offered on CTIRD1 and
extended to RDD1 with no delay.

A1 calls RDD1 in which active rd is set.
User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "40822077"). Call is answered at
RDD1 (dn = 40822077).

CTIRD/RDP Interaction
Table 290: Remote Destination Shared Between CTIRD and RDP Initiates Call with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1311

Message Sequence Charts
CTIRD/RDP Interaction

Call InfoEventsAction

CallingAddress = 9200,

CalledAddress = 9001,

CurrentCallingAddress = 9200,

CurrentCalledAddress = 9001

CurrentCallingPartyDisplayName
= RDP2

GC1: CallActiveEv

GC1: ConnCreatedEv 9200

GC1: ConnConnectedEv 9200

GC1: CallCtlConnInitiatedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnInUseEv SEP2401C7824EA3

GC1: CallCtlConnEstablishedEv 9200

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv
SEP2401C7824EAE

GC1: ConnConnectedEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EAE

*Call is routed through the RDP.

RDD3 calls B1 in which active rd is not
set.

Call is answered at B1 (dn = 9001).

Table 291: Remote Destination Shared Between CTIRD and RDP Initiates Call with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD2
to be RDD3 (dn = 40812115). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40812115",
true) on CTIRD2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1312

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9200,

CalledAddress = 9001,

CurrentCallingAddress = 9200,

CurrentCalledAddress = 9001

CurrentCallingPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9200

GC1: CallCtlConnDialingEv 9200

GC1: TermConnCreatedEv CTIRD2

GC1: TermConnActiveEv CTIRD2

GC1: CallCtlTermConnTalkingEv CTIRD2

GC1: ConnConnectedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnBridgedEv
SEP2401C7824EA3

GC1: CallCtlConnEstablishedEv 9200

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv
SEP2401C7824EAE

GC1: ConnConnectedEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EAE

*Call is routed through CTIRD2 so looks like CTIRD2
is initiating a call to B.

RDD3 calls B1 in which active rd is set.

Call is answered at B1 (dn = 9001).

Table 292: Remote Destination Unique to CTIRD2 Initates Call with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1313

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 40912116,

CalledAddress = 9001,

CurrentCallingAddress =
40912116,

CurrentCalledAddress = 9001

CurrentCallingPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnCreatedEv 40912116

GC1: ConConnectedEv 40912116

GC1: CallCtlConnEstablishedEv 40912116

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TemConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv
SEP2401C7824EAE

GC1: ConnConnectedEv 9001

GC1: CallCtlTermConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EAE

*Direct call between RDD4 and B1.

RDD4 calls B1 in which active rd is not
set.

Call is answered at B1 (dn = 9001).

Table 293: Remote Destination Unique to CTIRD2 Initates Call with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD2
to be RDD4 (dn = 40912116). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40912116",
true) on CTIRD2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1314

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9200,

CalledAddress = 9001,

CurrentCallingAddress = 9200,

CurrentCalledAddress = 9001

CurrentCallingPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9200

GC1: CallCtlConnDialingEv 9200

GC1: TermConnCreatedEv CTIRD2

GC1: TermConnActiveEv CTIRD2

GC1: CallCtlTermConnTalkingEv CTIRD2

GC1: ConnConnectedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnBridgedEv
SEP2401C7824EA3

GC1: CallCtlConnEstablishedEv 9200

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv
SEP2401C7824EAE

GC1: ConnConnectedEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EAE

*Call is routed through CTIRD2 so looks like CTIRD2
is initiating a call to B.

RDD4 calls B1 in which active rd is set.

Call is answered at B1 (dn = 9001).

Table 294: Remote Destination Unique to RDP Initiates Call with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1315

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9200,

CalledAddress = 9001,

CurrentCallingAddress = 9200,

CurrentCalledAddress = 9001

CurrentCallingPartyDisplayName
= RDP2

GC1: CallActiveEv

GC1: ConnCreatedEv 9200

GC1: ConnConnectedEv 9200

GC1: CallCtlConnInitiatedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnInUseEv SEP2401C7824EA3

GC1: CallCtlConnEstablishedEv 9200

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv
SEP2401C7824EAE

GC1: ConnConnectedEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EAE

*Call is routed through the RDP.

RDDP1 calls B1.

Call is answered at B1 (dn = 9001).

Table 295: Call to Remote Destination Shared with RDP with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1316

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40812115,

CurrentCallingAddress = 9001,

CurrentCalledAddress = 9200

CurrentCalledPartyDisplayName
= RDP2

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnConnectedEv 9001

GC1: CallCtlConnInitatedEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnActiveEv SEP2401C7824EAE

GC1:CallCtlTermConnTalkingEvSEP2401C7824EAE

GC1: CallCtlConnDialingEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: ConnCreatedEv 9200

GC1: ConnInProgressEv 9200

GC1: CallCtlConnOfferedEv 9200

GC1: ConnConnectedEv 9200

GC1: CallCtlConnEstablishedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnInUseEv SEP2401C7824EA3

*Call is routed through RDP.

B1 calls RDD3 in which active rd is not
set. User1 invokes Call.connect
("SEP2401C7824EAE", "9001",
"40812115"). Call is offered to RDD3 after
delay and then answered at RDD3 (dn =
40812115).

Table 296: Call to Remote Destination Shared with RDP with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD2
to be RDD3 (dn = 40812115). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40812115",
true) on CTIRD2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1317

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40812115,

CurrentCallingAddress = 9001,

CurrentCalledAddress = 9200

CurrentCalledPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnConnectedEv 9001

GC1: CallCtlConnInitatedEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnActiveEv SEP2401C7824EAE

GC1:CallCtlTermConnTalkingEvSEP2401C7824EAE

GC1: CallCtlConnDialingEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: ConnCreatedEv 9200

GC1: ConnInProgressEv 9200

GC1: CallCtlConnOfferedEv 9200

GC1: ConnAlertingEv 9200

GC1: CallCtlConnAlertingEv 9200

GC1: TermConnCreatedEv CTIRD2

GC1: TermConnRingingEv CTIRD2

GC1: CallCtlTermConnRingingEv CTIRD2

GC1: ConnConnectedEv 9200

GC1: CallCtlConnEstablishedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1:CallCtlTermConnBridgedEvSEP2401C7824EA3

GC1: TermConnActiveEv CTIRD2

GC1: CallCtlTermConnTalkingEv CTIRD2

*Call is routed through and offered on CTIRD2 and
extended to RDD3 with no delay.

B1 calls RDD3 in which active rd is set.
User1 invokes Call.connect
("SEP2401C7824EAE", "9001",
"40812115"). Call is answered at RDD3
(dn = 40812115).

Table 297: Call to Remote Destination Unique to RDP with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1318

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40922095,

CurrentCallingAddress = 9001,

CurrentCalledAddress = 9200

CurrentCalledPartyDisplayName
= RDP2

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnConnectedEv 9001

GC1: CallCtlConnInitatedEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnActiveEv SEP2401C7824EAE

GC1:CallCtlTermConnTalkingEvSEP2401C7824EAE

GC1: CallCtlConnDialingEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: ConnCreatedEv 9200

GC1: ConnInProgressEv 9200

GC1: CallCtlConnOfferedEv 9200

GC1: ConnConnectedEv 9200

GC1: CallCtlConnEstablishedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1: CallCtlTermConnInUseEv SEP2401C7824EA3

*Call is routed through RDP.

B1 calls RDDP1. User1 invokes
Call.connect ("SEP2401C7824EAE",
"9001", "40922095"). Call is offered to
RDDP1 after delay and then answered at
RDDP1 (dn = 40922095).

Table 298: Call to Remote Destination Unique to CTIRD with No Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1319

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40912116,

CurrentCallingAddress = 9001,

CurrentCalledAddress =
40912116

CurrentCalledPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnConnectedEv 9001

GC1: CallCtlConnInitatedEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnActiveEv SEP2401C7824EAE

GC1:CallCtlTermConnTalkingEvSEP2401C7824EAE

GC1: CallCtlConnDialingEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: ConnCreatedEv 40912116

GC1: ConnConnectedEv 40912116

GC1: CallCtlConnNetworkReachedEv 40912116

GC1: CallCtlConnNetworkAlertingEv 40912116

GC1: CallCtlConnEstablishedEv 40912116

*Direct call between B1 and RDD4.

B1 calls RDD4 in which active rd is not
set. User1 invokes Call.connect
("SEP2401C7824EAE", "9001",
"40912116"). Call is answered at RDD4
(dn = 40912116).

Table 299: Call to Remote Destination Unique to CTIRD with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD2
to be RDD4 (dn = 40912116). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40912116",
true) on CTIRD2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1320

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40912116,

CurrentCallingAddress = 9001,

CurrentCalledAddress = 9200

CurrentCalledPartyDisplayName
=

GC1: CallActiveEv

GC1: ConnCreatedEv 9001

GC1: ConnConnectedEv 9001

GC1: CallCtlConnInitatedEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnActiveEv SEP2401C7824EAE

GC1:CallCtlTermConnTalkingEvSEP2401C7824EAE

GC1: CallCtlConnDialingEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: ConnCreatedEv 9200

GC1: ConnInProgressEv 9200

GC1: CallCtlConnOfferedEv 9200

GC1: ConnAlertingEv 9200

GC1: CallCtlConnAlertingEv 9200

GC1: TermConnCreatedEv CTIRD2

GC1: TermConnRingingEv CTIRD2

GC1: CallCtlTermConnRingingEv CTIRD2

GC1: ConnConnectedEv 9200

GC1: CallCtlConnEstablishedEv 9200

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnPassiveEv SEP2401C7824EA3

GC1:CallCtlTermConnBridgedEvSEP2401C7824EA3

GC1: TermConnActiveEv CTIRD2

GC1: CallCtlTermConnTalkingEv CTIRD2

*Call is routed through and offered on CTIRD2 and
extended to RDD4 with no delay.

B1 calls RDD4 in which active rd is set.
User1 invokes Call.connect
("SEP2401C7824EAE", "9001",
"40912116"). Call is answered at RDD4
(dn = 40912116).

Multiple Calls
Table 300: Make Multiple Calls From Remote Destination with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1321

Message Sequence Charts
Multiple Calls

Call InfoEventsAction

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

CallingAddress = 2303,

CalledAddress = 9000,

CurrentCallingAddress =
2303,

CurrentCalledAddress =
9000

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: CallCtlConnDialingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConnOfferedEv 9000

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnRingingEv SEP2401C7824EA3

GC1: CallCtlTermConnRingingEv SEP2401C7824EA3

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

*Call is routed through CTIRD1.

RDD1 calls A1.

Call is answered at A1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1322

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress =
40822077,

CalledAddress = 9001,

CurrentCallingAddress =
40822077,

CurrentCalledAddress =
9001

GC2: CallActiveEv

GC2: ConnCreatedEv 9001

GC2: ConnInProgressEv 9001

GC2: CallCtlConnOfferedEv 9001

GC2: ConnCreatedEv 40822077

GC2: ConnConnectedEv 40822077

GC2: CallCtlConnEstablishedEv 40822077

GC2: ConnAlertingEv 9001

GC2: CallCtlConnAlertingEv 9001

GC2: TermConnCreatedEv SEP2401C7824EA3

GC2: TermConnRingingEv SEP2401C7824EA3

GC2: CallCtlTermConnRingingEv SEP2401C7824EA3

GC2: ConnConnectedEv 9001

GC2: CallCtlConnEstablishedEv 9001

GC2: TermConnActiveEv SEP2401C7824EAE

GC2: CallCtlTermConnTalkingEv SEP2401C7824EAE

*Direct call between RDD1 and B1.

RDD1 calls B1.

Call is answered at B1.

Table 301: Make Multiple Calls To Remote Destination with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1323

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress =
40822077,

CurrentCallingAddress
= 9000,

CurrentCalledAddress =
2303

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Call is routed through CTIRD1.

A1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EA3", "9000", "40822077").

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1324

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress =
40822077,

CurrentCallingAddress
= 9001,

CurrentCalledAddress =
2303

GC2: CallActiveEv

GC2: ConnCreatedEv 9001

GC2: ConnConnectedEv 9001

GC2: CallCtlConnInitiatedEv 9001

GC2: TermConnCreatedEv SEP2401C7824EAE

GC2: TermConnActiveEv SEP2401C7824EAE

GC2: CallCtlTermConnTalkingEv SEP2401C7824EAE

GC2: CallCtlConnDialingEv 9001

GC2: CallCtlConnEstablishedEv 9001

GC2: ConnCreatedEv 2303

GC2: ConnInProgressEv 2303

GC2: CallCtlConnOfferedEv 2303

GC2: ConnAlertingEv 2303

GC2: CallCtlConnAlertingEv 2303

GC2: TermConnCreatedEv CTIRD1

GC2: TermConnRingingEv CTIRD1

GC2: CallCtlTermConnRingingEv CTIRD1

GC1: CallCtlTermConnHeldEv CTIRD1

GC2: ConnConnectedEv 2303

GC2: CallCtlConnEstablishedEv 2303

GC2: TermConnActiveEv CTIRD1

GC2: CallCtlTermConnTalkingEv CTIRD1

B1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EAE", "9001", "40822077").

Call is offered on CTIRD1 and then answered.

Table 302: Remote Destination First Makes a Call and Then Receives a Call with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1325

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 2303,

CalledAddress = 9000,

CurrentCallingAddress =
2303,

CurrentCalledAddress =
9000

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: CallCtlConnDialingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConnOfferedEv 9000

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnRingingEv SEP2401C7824EA3

GC1: CallCtlTermConnRingingEv SEP2401C7824EA3

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

*Call is routed through CTIRD1.

RDD1 calls A1.

Call is answered at A1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1326

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress =
40822077,

CurrentCallingAddress =
9001,

CurrentCalledAddress =
2303

GC2: CallActiveEv

GC2: ConnCreatedEv 9001

GC2: ConnConnectedEv 9001

GC2: CallCtlConnInitiatedEv 9001

GC2: TermConnCreatedEv SEP2401C7824EAE

GC2: TermConnActiveEv SEP2401C7824EAE

GC2: CallCtlTermConnTalkingEv SEP2401C7824EAE

GC2: CallCtlConnDialingEv 9001

GC2: CallCtlConnEstablishedEv 9001

GC2: ConnCreatedEv 2303

GC2: ConnInProgressEv 2303

GC2: CallCtlConnOfferedEv 2303

GC2: ConnAlertingEv 2303

GC2: CallCtlConnAlertingEv 2303

GC2: TermConnCreatedEv CTIRD1

GC2: TermConnRingingEv CTIRD1

GC2: CallCtlTermConnRingingEv CTIRD1

GC1: CallCtlTermConnHeldEv CTIRD1

GC2: ConnConnectedEv 2303

GC2: CallCtlConnEstablishedEv 2303

GC2: TermConnActiveEv CTIRD1

GC2: CallCtlTermConnTalkingEv CTIRD1

B1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EAE", "9001", "40822077").

Call is offered on CTIRD1 and then answered.

Table 303: Remote Destination First Receives a Call and Then Makes a Call with Active RDD

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1327

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress =
40822077,

CurrentCallingAddress =
9000,

CurrentCalledAddress =
2303

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Call is routed through CTIRD1.

A1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EA3", "9000", "40822077").

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1328

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress =
40822077,

CalledAddress = 9001,

CurrentCallingAddress =
40822077,

CurrentCalledAddress =
9001

GC2: CallActiveEv

GC2: ConnCreatedEv 9001

GC2: ConnInProgressEv 9001

GC2: CallCtlConnOfferedEv 9001

GC2: ConnCreatedEv 40822077

GC2: ConnConnectedEv 40822077

GC2: CallCtlConnEstablishedEv 40822077

GC2: ConnAlertingEv 9001

GC2: CallCtlConnAlertingEv 9001

GC2: TermConnCreatedEv SEP2401C7824EA3

GC2: TermConnRingingEv SEP2401C7824EA3

GC2: CallCtlTermConnRingingEv SEP2401C7824EA3

GC2: ConnConnectedEv 9001

GC2: CallCtlConnEstablishedEv 9001

GC2: TermConnActiveEv SEP2401C7824EAE

GC2: CallCtlTermConnTalkingEv SEP2401C7824EAE

*Direct call between RDD1 and B1.

RDD1 calls B1.

Call is answered at B1.

Table 304: Persistent Call Exists and Remote Destination Initiates Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Create persistent call on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1329

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress =
40822077,

CalledAddress = 9000,

CurrentCallingAddress =
40822077,

CurrentCalledAddress =
9000

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnInProgressEv 9000

GC1: CallCtlConnOfferedEv 9000

GC1: ConnCreatedEv 40822077

GC1: ConnConnectedEv 40822077

GC1: CallCtlConnEstablishedEv 40822077

GC1: ConnAlertingEv 9000

GC1: CallCtlConnAlertingEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnRingingEv SEP2401C7824EA3

GC1: CallCtlTermConnRingingEv SEP2401C7824EA3

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

*Direct call between RDD1 and A1

RDD1 calls A1.

Call is answered at A1.

Disconnect the persistent call. Call
disconnects successfully.

A drops the call. Call disconnects
successfully.

Table 305: Persistent Call Exists and Make Call to Remote Destination

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1
to be RDD1 (dn = 40822077). User1
invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

Create persistent call on CTIRD1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1330

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9000,

CalledAddress = 40822077,

CurrentCallingAddress = 9000,

CurrentCalledAddress = 2303

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Call is offered on CTIRD1.

A1 calls RDD1. User1 invokes
Call.connect ("SEP2401C7824EA3",
"9000", "40822077").

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException)
ex).getErrorCode () =
CiscoJtapiException.

CTIERR_DISCONNECT_
PERSISTENT_CALL_FAILED_
CALL_ACTIVE

Disconnect the persistent call. Disconnect
throws exception.

A drops the call. Call disconnects
successfully.

Disconnect the persistent call. Call
disconnects successfully.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1331

Message Sequence Charts
Message Sequence Charts

Table 306: Call to Remote Destination with Active RDD and Call Forward All Configured on CTIRD with Only CTIRD Observed

Call InfoEventsAction

Configure CallForwardAll on CTIRD1 to
2302.

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

CallingAddress = 9000,

CalledAddress = 2303,

CurrentCallingAddress =
9000,

CurrentCalledAddress =
2303

GC1: CallActiveEv

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

*Nurd features disables CFA.

A1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EA3", "9000", "40822077").

Table 307: Max Calls Limit Reached Where CTIRD Has 2 Calls to the Remote Destination and CTIRD Still Tries to Make a Call

Call InfoEventsAction

Set Max Calls = 2 and Busy Trigger = 2

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1332

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

Set active remote destination of CTIRD1 to
be RDD1 (dn = 40822077). User1 invokes
CiscoRemoteTerminal.
setActiveRemoteDestination ("40822077",
true) on CTIRD1.

CallingAddress = 9000,

CalledAddress = 40822077,

CurrentCallingAddress =
9000,

CurrentCalledAddress =
2303

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 2303

GC1: ConnInProgressEv 2303

GC1: CallCtlConnOfferedEv 2303

GC1: ConnAlertingEv 2303

GC1: CallCtlConnAlertingEv 2303

GC1: TermConnCreatedEv CTIRD1

GC1: TermConnRingingEv CTIRD1

GC1: CallCtlTermConnRingingEv CTIRD1

GC1: ConnConnectedEv 2303

GC1: CallCtlConnEstablishedEv 2303

GC1: TermConnActiveEv CTIRD1

GC1: CallCtlTermConnTalkingEv CTIRD1

A1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EA3", "9000",
"40822077").

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1333

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 9001,

CalledAddress = 40822077,

CurrentCallingAddress =
9001,

CurrentCalledAddress =
2303

GC2: CallActiveEv

GC2: ConnCreatedEv 9001

GC2: ConnConnectedEv 9001

GC2: CallCtlConnInitiatedEv 9001

GC2: TermConnCreatedEv SEP2401C7824EAE

GC2: TermConnActiveEv SEP2401C7824EAE

GC2: CallCtlTermConnTalkingEv SEP2401C7824EAE

GC2: CallCtlConnDialingEv 9001

GC2: CallCtlConnEstablishedEv 9001

GC2: ConnCreatedEv 2303

GC2: ConnInProgressEv 2303

GC2: CallCtlConnOfferedEv 2303

GC2: ConnAlertingEv 2303

GC2: CallCtlConnAlertingEv 2303

GC2: TermConnCreatedEv CTIRD1

GC2: TermConnRingingEv CTIRD1

GC2: CallCtlTermConnRingingEv CTIRD1

GC1: CallCtlTermConnHeldEv CTIRD1

GC2: ConnConnectedEv 2303

GC2: CallCtlConnEstablishedEv 2303

GC2: TermConnActiveEv CTIRD1

GC2: CallCtlTermConnTalkingEv CTIRD1

B1 calls RDD1. User1 invokes Call.connect
("SEP2401C7824EAE", "9001",
"40822077").

Call is offered on CTIRD1 and then
answered.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException)
ex).getErrorCode () =
CiscoJtapiException.

CTIERR_MAXCALL_
LIMIT_REACHED

CTIRD makes outgoing call to 2302. User1
invokes Call.connect ("CTIRD1", "2303",
"2302").

Fail to make outgoing call since max calls
limit reached so throws exception.

Revert back to orig values. Set Max Calls =
4 and Busy Trigger = 2

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1334

Message Sequence Charts
Message Sequence Charts

Partition Support
Since the address hashing mechanism in JTAPI has changed, this feature is expected to have performance
degradation in address lookup time and during load tests.

Using getPartition() API
The example given below illustrates how getPartition(), will be used by JTAPI and applications, to differentiate
between addresses having same DN but belonging to different partitions.

Using getPartition() API

In this case, there are three addresses which belong to three different partitions: A(2001, P1), B(2001, P2)
and C(2001, P3), where 2001 indicates DN and P1, P2, and P3 denote different partitions.

When JTAPI calls provider.getAddress(“2001”), the provider object will return an array of three address
objects containing A, B and C, since all of them have the same DN.

The application and JTAPI will distinguish between the three addresses by using the getPartition() method
of the address object.

Using getAddress (String Number String Partition)
Consider the example shown below to see how JTAPI will use the getAddress (String number, String partition)
API to retrieve the address object corresponding to a particular DN and partition when there are multiple
addresses with same DN and different partitions.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1335

Message Sequence Charts
Partition Support

Using getAddress (String Number, String Partition)

In this case, there are three addresses which belong to three different partitions. Let us denote them byA(2001,
P1), B(2001, P2) and C(2001, P3), where 2001, indicates DN and P1, P2, P3 denote different partitions.

When JTAPI calls provider.getAddress(“2001”, “P1”), the provider object will return the address object which
has the same DN i.e. 2001 and the same partition info, that is P1–as provided in the API. In this case, the
address object A will be returned to the application.

Simple Call Scenario

Consider the following scenario where A calls B. A has DN 1000 and calls B which also has DN
1000. A belongs to partition P1 and B belongs to partition P2. The following diagram illustrates the
various events and the results of API calls pertaining to this scenario, which are relevant to partition
support feature.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1336

Message Sequence Charts
Message Sequence Charts

Figure 20: Simple Call Scenario

Park DN
Park DNs are also treated as addresses in JTAPI. Hence, the same treatment given to normal DN is also given
to park DN. The following message flow illustrates how an application will use park DN partition information
in a call where park DNs are involved.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1337

Message Sequence Charts
Park DN

Park DN Scenario

When the application is monitoring park DN, it is possible to have the park DN to be the same as a regular
DN (while both belong to different partitions).

In this case, C is a park DN having same DN value as A and B while belonging to a different partition.

A receives a call and parks the call at C. B unparks the call. While the call is parked, and unparked,
CiscoProvCallParkEv is generated. The API

getParkingPartyPartition(), getParkedPartyPartition() and getParkPartyPartition() return the associated address
objects as shown in the figure.

Partition Change
Partition attribute is similar to the DN attribute of an address. Hence, whenever the partition attribute changes,
the address object has to be destroyed and recreated. When the partition information of an address is changed,
JTAPI will be restarted during which the current address objects will be deleted and new address objects will
be created, reflecting the changed partition information.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1338

Message Sequence Charts
Partition Change

Change in Partition

When the partition information of an address is changed, the address object will be destroyed and a new
address object will be created.

The new address object will have the new partition information.

In the example given, Address A's partition string was changed to P4. Hence, the current address object of A
will be deleted and a new address object will be created.

A query on the old address object using A.getPartition() will retrieve “P1”, while the same query on the new
object will return “P4”.

When the address partition changes, applications should query the address objects to update their partition
information.

JTAPI Partition Support
The common assumption for all of the following use cases is that CTI provides partition information for all
the lines which the JTAPI opens in the response message and JTAPI stores the partition information for every
address it maintains.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1339

Message Sequence Charts
JTAPI Partition Support

ResultExpected BehaviorScenarioPre-ConditionS.No.

Call is established between A
and B

Two address objects are
created, one for A and one for
B. All the appropriate call
related events are delivered to
both the addresses.

Calls between addresses with
same DN in different device
but different partitions should
go through.

A and B are two addresses in
the same cluster with same
DN and different partitions
(P1, P2) and in same cluster.
A calls B. CSS of A has B’s
partition in it first.

1

Call is established between A
and B.

Two address objects are
created, one for A and one for
B. All the appropriate call
related events are delivered to
both the addresses.

Calls between addresses with
same DN in same device but
different partitions should go
through.

A and B are two addresses
with same DN in same device
but different partitions (P1,
P2) and in same cluster. A
calls B. CSSof A has B’s
partition in it first.

2

C is successfully able to
unpark the call from park DN.

JTAPI should allow C to
unpark the call from park DN.

A calls B. B parks the call. C
unparks the call from a park
DN which is same as C’s DN.

A, B, and C are three different
addresses with different DN.
(P1, P2, P3). A park DN is
configured with same DN as
C and different partition (P4).

3

A is able to call B. B should
be able to park the call at the
park DN.

C should be able to pick up
the call.

JTAPI should allow C to
unpark the call from park DN.

A calls B, B parks call at park
DN. C unparks the call.

A, B, and C are three different
addresses having the sameDN
and different partitions (P1,
P2, P3). Apark DN is
configured with same DN but
belonging to a different
partition (P4)

4

JTAPI maintains the address
objects based on partition info
and DN.

Three address objects are
returned each corresponding
to A, B and C.

JTAPI calls
getPartitionAddress(DN of
A).

A, B, and C are three different
addresses with same DN and
different partitions (P1, P2,
and P3)

5

Partition strings of the
addresses are returned
correctly.

Application calls
getPartition() on the address
objects of A and B.

A and B are addresses with
same DN but belong to
different partitions (P1, P2).

6

Address objects for A and B
are created successfully.

Lines A and Bwill be opened,
but since they have different
DN, user need not specify the
partition info. DN alone is
sufficient to open the lines,
but users can also give
partition info and both modes
of opening lines will be
supported by JTAPI.

JTAPI supports old API to
open lines when DN is
different. There will be no
change in behavior.

A and B are two different
addresses (different DNs)
belonging to different
partitions. A and B are in the
control list of the same user.
Provider open is completed
and the lines are opened.

7

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1340

Message Sequence Charts
Message Sequence Charts

ResultExpected BehaviorScenarioPre-ConditionS.No.

New partition information is
reflected in the new address
object.

JTAPI will delete the current
address object and create a
new address object for A
when it comes in service
again. By querying the
partition info of this address
object, user should get
changed partition info.

Partition information of a DN
is changed. JTAPI should
reflect new partition
information.

A is an address in the control
list of user and is opened by
the user. From the CM admin
page the partition information
of A is changed. The device
is restarted after this.

8

Persistent Connection Use Cases
The following pre-conditions apply to all persistent call use cases, unless specified:

• The provider is in IN_SERVICE state.

• All addresses and terminals are already in service.

• Device A (CTI Remote Device - Name: "CTIRDtapi", Line A1 (dn: 881000))

Remote destination 1 (Name: "rd", Number: "78000")

• Device B (IP Phone - Name: "SEP001319ACCA26", Line B1 (dn: 1000))

• Device C (IP Phone - Name: "SEP00156247EE60", Line C1 (dn: 2000))

• User1 has in its control list: Devices A, B and C. All devices and lines are observed.

Table 308: Call createPersistentCall() on an Address That Is Not Configured to a Remote Terminal Device, i.e. on an IP Phone

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

COMMAND_NOT_IMPLEMENTED
_ON_DEVICE.

Caught exception
com.cisco.jtapi.PlatformException: Internal
callprocessing error :Device does not
support the command

User1 invokes CiscoAddress.
createPersistentCall ("SEP00156247EE60",
"5000", "remote") on device C.

Table 309: Call createPersistentCall()on an Address That Is Configured to a Remote Terminal Device Where Active RD Is Not Set

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1341

Message Sequence Charts
Persistent Connection Use Cases

Call InfoEventsAction

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_REMOTE_DEVICE_REQUEST
_FAILED_ACTIVE_RD_NOT_SET

Caught exception
com.cisco.jtapi.PlatformException: The
active remote destination is not set.

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

Table 310: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD Is Set; Verify That Persistent Call Is
Connected

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestinationInfo[0].
getRemoteDestinationNumber() = "78000"

CiscoRemoteDestinationInfo[0].
getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal
.setActiveRemoteDestination ("78000",
true) on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall ("CTIRDjtapi", "5000",
"remote") on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1342

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv

CTIRDjtapi

Call answered at remote destination, dn =
78000

((CiscoAddress.getPersistentConnection
("CTIRDjtapi")).getCall()).isPersistentCall()
= true.

User1 invokes CiscoAddress.
getPersistentConnection ("CTIRDjtapi")
and verify that the connection for the
persistent call is returned and uses that to
get the Call object and confirm it is for the
persistent call.

Provider.getCalls() = nullUser1 invokes Provider.getCalls()

Address.getConnections() on line A = nullUser1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A = null

User1 invokes Terminal.
getTerminalConnections() on device A.

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Disconnect/drop the persistent call. User1
invokes either Call.drop() or
Connection.disconnect()

Table 311: Call createPersistentCall() on an Address Configured to a Remote Terminal Device Where a Persistent Call Already Exists

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_PERSISTENT_CALL_EXISTS.

Caught exception
com.cisco.jtapi.PlatformException:
Persistent Call exists.

User1 invokes CiscoAddress.
createPersistentCall("CTIRDjtapi", "6000",
"remote2") on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1343

Message Sequence Charts
Message Sequence Charts

Table 312: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active Rd Is Set; Verify That Persistent Call Is
Connected and Then Have Remote Destination Hang Up

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestinationInfo[1].

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =
"78000" CiscoRemoteDestination
Info[0].getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
true) on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1344

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Remote destination with dn = 78000 hangs
up.

Table 313: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True; Verify That Persistent Call Is
Connected; Set Active RD = False and Verify That Persistent Call Is Dropped

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestination Info[1].

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =
"78000" CiscoRemoteDestination
Info[0].getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
true) on device A

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall("CTIRDjtapi", "5000",
"remote") on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1345

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

A.getActiveRemoteDestinations() =
CiscoRemoteDestination Info[1].

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =
"78000"

CiscoRemoteDestination
Info[0].getIsActiveRD() = false

CiscoProvTerminalRemote
DestinationChangedEv

See persistent call gets dropped:

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
false) on device A.

Table 314: Call createPersistentCall() on an Address That Is Configured to a Remote Terminal Device and Where Active RD = True; Verify That Persistent Call Is
Connected; Make Incoming Customer Call to Same Remote Terminal Device

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

A.getActiveRemoteDestinations() =
CiscoRemoteDestination Info[1].

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =
"78000"

CiscoRemoteDestination
Info[0].getIsActiveRD() = true.

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
true) on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1346

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: CallActiveEv

GC1: ConnCreatedEv 8881000

GC1: ConnInProgressEv 8881000

GC1: CallCtlConnOfferedEv 8881000

GC1: ConnCreatedEv 5000

GC1: ConnConnectedEv 5000

GC1: CallCtlConnEstablishedEv 5000

GC1: ConnAlertingEv 8881000

GC1: CallCtlConnAlertingEv 8881000

GC1: TermConnCreatedEv CTIRDjtapi

GC1: TermConnRingingEv CTIRDjtapi

GC1: CallCtlTermConnRingingEv
CTIRDjtapi

User1 invokes CiscoAddress.
createPersistentCall("CTIRDjtapi", "5000",
"remote") on device A.

CallingAddress = 5000,

CalledAddress = 8881000,

CurrentCallingAddress = 5000,

CurrentCalledAddress = 8881000

GC1: ConnConnectedEv 8881000

GC1: CallCtlConnEstablishedEv 8881000

GC1: TermConnActiveEv CTIRDjtapi

GC1: CallCtlTermConnTalkingEv
CTIRDjtapi

Call answered at remote destination, dn =
78000

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1347

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

CallingAddress = 1000,

CalledAddress = 8881000,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 8881000

GC2: CallActiveEv

GC2: ConnCreatedEv 1000

GC2: ConnConnectedEv 1000

GC2: CallCtlConnInitiatedEv 1000

GC2: TermConnCreatedEv
SEP001319ACCA26

GC2: TermConnActiveEv
SEP001319ACCA26

GC2: CallCtlTermConnTalkingEv
SEP001319ACCA26

GC2: CallCtlConnDialingEv 1000

GC2: CallCtlConnEstablishedEv 1000

GC2: ConnCreatedEv 8881000

GC2: ConnInProgressEv 8881000

GC2: CallCtlConnOfferedEv 8881000

GC2: ConnAlertingEv 8881000

GC2: CallCtlConnAlertingEv 8881000

GC2: TermConnCreatedEv CTIRDjtapi

GC2: TermConnRingingEv CTIRDjtapi

GC2: CallCtlTermConnRingingEv
CTIRDjtapi

Call.connect("SEP001319ACCA26",
"1000", "8881000")

GC2: ConnConnectedEv 8881000

GC2: CallCtlConnEstablishedEv 8881000

GC2: TermConnActiveEv CTIRDjtapi

GC2: CallCtlTermConnTalkingEv
CTIRDjtapi

Call is answered at device A

A.getActiveRemoteDestinations() =
CiscoRemoteDestination Info[1].

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =
"78000"

CiscoRemoteDestination
Info[0].getIsActiveRD() = false.

CiscoProvTerminalRemote
DestinationChangedEv

Both persistent call with GC1 and customer
call with GC2 are not dropped/disconnected
even though active rd = false.

User1 invokes CiscoRemoteTerminal.
setActiveRemoteDestination ("78000",
false) on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1348

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

GC2: TermConnDroppedEv
SEP001319ACCA26

GC2: CallCtlTermConnDroppedEv
SEP001319ACCA26

GC2: ConnDisconnectedEv 1000

GC2: CallCtlConnDisconnectedEv 1000

GC2: TermConnDroppedEv CTIRDjtapi

GC2: CallCtlTermConnDroppedEv
CTIRDjtapi

GC2: ConnDisconnectedEv 8881000

GC2: CallCtlConnDisconnectedEv
8881000

GC2: CallInvalidEv

Since there are no active calls on device A
and active rd is now false, the persistent
call with GC1 is now
dropped/disconnected.

GC1: ConnDisconnectedEv 5000

GC1: CallCtlConnDisconnectedEv 5000

GC1: TermConnDroppedEv CTIRDjtapi

GC1: CallCtlTermConnDroppedEv
CTIRDjtapi

GC1: ConnDisconnectedEv 8881000

GC1: CallCtlConnDisconnectedEv
8881000

GC1: CallInvalidEv

Customer call with GC2 is
disconnected/dropped. User1 invokes either
Call.drop() or Connection.disconnect() on
the call with GC2.

Table 315: Have a Persistent Call and Customer Call Connected; Invoke hold() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1349

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT
_ALLOWED_ON_PERSISTENT_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke hold() on the persistent call with
GC1.

Table 316: Have a Persistent Call and Customer Call Connected; Invoke startRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT
_ALLOWED_ON_PERSISTENT_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke startRecording() on the persistent
call with GC1.

Table 317: Have a Persistent Call and Customer Call Connected; Invoke stopRecording() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION_NOT
_ALLOWED_ON_PERSISTENT_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke stopRecording() on the persistent
call with GC1. Make sure Selective call
recording is enabled.

Table 318: Have a Persistent Call and Customer Call Connected; Invoke conference() on the Persistent Call Where Persistent Call Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1350

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where persistent call
with GC1 is the primary call and customer
call with GC2 is the secondary call (jtapi
internally calling join() for this).

Table 319: Have a Persistent Call and Customer Call Connected; Invoke conference() on the Persistent Call Where Persistent Call Is Secondary Which Should Be
Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke conference() where customer call
with GC2 is primary call and persistent call
with GC1 is secondary call (jtapi internally
calling join() for this).

Table 320: Have a Persistent Call and Customer Call Connected; Invoke park() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke park().

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1351

Message Sequence Charts
Message Sequence Charts

Table 321: Have a Persistent Call and Customer Call Connected; Invoke transfer() on the Persistent Call Where PC Is Primary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where persistent call
with GC1 is primary call and customer call
with GC2 is secondary.

Table 322: Have a Persistent Call and Customer Call Connected; Invoke transfer() on the Persistent Call Where PC Is Primary to Another DN Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(String address) where
persistent call with GC1 is primary call to
line C (dn = 2000).

Table 323: Have a Persistent Call and Customer Call Connected; Invoke transfer() on the Persistent Call Where PC Is Secondary Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1352

Message Sequence Charts
Message Sequence Charts

Call InfoEventsActions

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke transfer(Call) where customer call
with GC2 is primary call and persistent call
with GC1 is secondary.

Table 324: Have a Persistent Call and Customer Call Connected; Invoke consult() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Make consult call from device A to line C
(dn = 2000).

Table 325: Have a Persistent Call and Customer Call Connected; Invoke pickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke pickup("8881000") on device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1353

Message Sequence Charts
Message Sequence Charts

Table 326: Have a Persistent Call and Customer Call Connected; Invoke otherPickup() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not allowed.

Invoke otherPickup("8881000") on device
A.

Table 327: Have a Persistent Call and Customer Call Connected; Invoke redirect() on the Persistent Call Which Should Be Rejected

Call InfoEventsActions

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Assume already have a persistent call with
GC1 and customer call with GC2.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.
CTIERR_OPERATION
_NOT_ALLOWED _ON_PERSISTENT
_CALL.

Caught exception
com.cisco.jtapi.PlatformException:
Operation is not allowed on a Persistent
Call.

Invoke redirect("2000") on the persistent
call.

Play Announcement
Prerequisites

Pre-conditions to all play announcement use cases, unless specified otherwise:

• Provider is in IN_SERVICE state
• All addresses and terminals are already in service.
• Device A (CTI Remote Device - Name: "CTIRD3", Line A1 (dn: 9202))

• o Remote destination 1 (Name: "C1_CTIRD3_RDD1", Number: "339006")

• Device B (IP Phone - Name: "SEP2401C7824EA3", Line B1 (dn: 9000))

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1354

Message Sequence Charts
Play Announcement

• Announcement Identifier is Welcome Greeting Sample.
• User1 has in its control list: Devices A, and B. All devices and lines are observed.

Basic Play Announcement Use Cases

Basic Play Announcement Use Cases

Table 328: Play Announcement on CTI Remote Device with Persistent Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1355

Message Sequence Charts
Basic Play Announcement Use Cases

Call InfoEventsAction

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2:CallCtlTermConnTalkingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnOfferedEv Unknown

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: CallCtlConnEstablishedEv 9202

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEvUnknown

GC2: CiscoAnnouncementStartedEv.

Provider.getCalls() returns the
announcement call.

User1 invokes Provider.getCalls()

Address.getConnections() on line A returns
the Connection for the announcement call.

User1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A returns the TerminalConnection
for the announcement call.

User1 invokes
Terminal.getTerminalConnections() on
device A.

Table 329: Play Announcement That Stopped Playing Before the End of the Announcement

Call infoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1356

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2:CallCtlTermConnTalkingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEvUnknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: CiscoAnnouncementStartedEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1357

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

Provider.getCalls() returns the
announcement call.

User1 invokes Provider.getCalls()

Address.getConnections() on line A returns
the Connection for the announcement call.

User1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A returns the TerminalConnection
for the announcement call.

User1 invokes
Terminal.getTerminalConnections() on
device A.

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC2: CiscoAnnouncementEndedEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv
CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv
Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

Disconnect/drop the announcement call.
User1 invokes either Call.drop() or
Connection.disconnect() to stop the
announcement before it finishes playing.

Table 330: Play Announcement with Incoming Customer Call in Ringing State

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1358

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1359

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9000

GC2: ConnConnectedEv 9000

GC2: CallCtlConnInitiatedEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnActiveEv
SEP2401C7824EA3

GC2: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC2: CallCtlConnDialingEv 9000

GC2: CallCtlConnEstablishedEv 9000

GC2: ConnCreatedEv 9202

GC2: ConnInProgressEv 9202

GC2: CallCtlConnOfferedEv 9202

GC2: ConnAlertingEv 9202

GC2: CallCtlConnAlertingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnRingingEv CTIRD3

GC2:CallCtlTermConnRingingEvCTIRD3

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202") and is left ringing.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1360

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC3: CallActiveEv

GC3: ConnCreatedEv 9202

GC3: CallCtlConnDialingEv 9202

GC3: TermConnCreatedEv CTIRD3

GC3: TermConnActiveEv CTIRD3

GC3:CallCtlTermConnTalkingEvCTIRD3

GC3: ConnConnectedEv 9202

GC3: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: ConnCreatedEv Unknown

GC3: ConnInProgressEv Unknown

GC3: CallCtlConnOfferedEv Unknown

GC3: ConnConnectedEv Unknown

GC3: CallCtlConnEstablishedEvUnknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: CiscoAnnouncementStartedEv.

Provider.getCalls() returns both the
customer call and the announcement call

User1 invokes Provider.getCalls()

Address.getConnections() on line A returns
the Connection for both the customer call
and the announcement call.

User1 invokes Address.getConnections()
on line A.

Terminal.getTerminalConnections() on
device A returns the TerminalConnection
for both the customer call and the
announcement call.

User1 invokes
Terminal.getTerminalConnections() on
device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1361

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC3: CiscoAnnouncementEndedEv

GC3: TermConnDroppedEv CTIRD3

GC3: CallCtlTermConnDroppedEv
CTIRD3

GC3: ConnDisconnectedEv Unknown

GC3: CallCtlConnDisconnectedEv
Unknown

GC3: ConnDisconnectedEv 9202

GC3: CallCtlConnDisconnectedEv 9202

GC3: CallInvalidEv

GC3: CallObservationEndedEv

After announcement finishes playing, call
is disconnected.

Table 331: Play Announcement Where the Call Is Answered Before the Full Message Plays

Call InfoEventAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1362

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9000

GC2: ConnConnectedEv 9000

GC2: CallCtlConnInitiatedEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnActiveEv
SEP2401C7824EA3

GC2: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC2: CallCtlConnDialingEv 9000

GC2: CallCtlConnEstablishedEv 9000

GC2: ConnCreatedEv 9202

GC2: ConnInProgressEv 9202

GC2: CallCtlConnOfferedEv 9202

GC2: ConnAlertingEv 9202

GC2: CallCtlConnAlertingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnRingingEv CTIRD3

GC2:CallCtlTermConnRingingEvCTIRD3

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202") and is left ringing.

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC3: CallActiveEv

GC3: ConnCreatedEv 9202

GC3: CallCtlConnDialingEv 9202

GC3: TermConnCreatedEv CTIRD3

GC3: TermConnActiveEv CTIRD3

GC3:CallCtlTermConnTalkingEvCTIRD3

GC3: ConnConnectedEv 9202

GC3: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: ConnCreatedEv Unknown

GC3: ConnInProgressEv Unknown

GC3: CallCtlConnOfferedEv Unknown

GC3: ConnConnectedEv Unknown

GC3: CallCtlConnEstablishedEvUnknown

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1363

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: CiscoAnnouncementStartedEv.

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC3: CallCtlTermConnHeldEv CTIRD3

GC3: CiscoAnnouncementEndedEv

GC3: TermConnDroppedEv CTIRD3

GC3: CallCtlTermConnDroppedEv
CTIRD3

GC3: ConnDisconnectedEv Unknown

GC3: CallCtlConnDisconnectedEv
Unknown

GC3: ConnDisconnectedEv 9202

GC3: CallCtlConnDisconnectedEv 9202

GC3: CallInvalidEv

GC3: CallObservationEndedEv

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalking CTIRD3

Customer call is answered. Announcement
call is dropped/disconnected.

Table 332: Play Announcement Where the Call Is Answered Before the Full Message Plays

Call InfoEventAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1364

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1365

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9000

GC2: ConnConnectedEv 9000

GC2: CallCtlConnInitiatedEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnActiveEv
SEP2401C7824EA3

GC2: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC2: CallCtlConnDialingEv 9000

GC2: CallCtlConnEstablishedEv 9000

GC2: ConnCreatedEv 9202

GC2: ConnInProgressEv 9202

GC2: CallCtlConnOfferedEv 9202

GC2: ConnAlertingEv 9202

GC2: CallCtlConnAlertingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnRingingEv CTIRD3

GC2:CallCtlTermConnRingingEvCTIRD3

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202") and is left ringing.

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC3: CallActiveEv

GC3: ConnCreatedEv 9202

GC3: CallCtlConnDialingEv 9202

GC3: TermConnCreatedEv CTIRD3

GC3: TermConnActiveEv CTIRD3

GC3:CallCtlTermConnTalkingEvCTIRD3

GC3: ConnConnectedEv 9202

GC3: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A

Feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: ConnCreatedEv Unknown

GC3: ConnInProgressEv Unknown

GC3: CallCtlConnOfferedEv Unknown

GC3: ConnConnectedEv Unknown

GC3: CallCtlConnEstablishedEvUnknown

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1366

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: CiscoAnnouncementStartedEv.

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC3: CallCtlTermConnHeldEv CTIRD3

GC3: CiscoAnnouncementEndedEv

GC3: TermConnDroppedEv CTIRD3

GC3: CallCtlTermConnDroppedEv
CTIRD3

GC3: ConnDisconnectedEv Unknown

GC3: CallCtlConnDisconnectedEv
Unknown

GC3: ConnDisconnectedEv 9202

GC3: CallCtlConnDisconnectedEv 9202

GC3: CallInvalidEv

GC3: CallObservationEndedEv

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalking CTIRD3

Customer call is answered. Announcement
call is dropped/disconnected.

Table 333: Play Announcement with Call in Connected State

Call InfoEventAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1367

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1368

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9000

GC2: ConnConnectedEv 9000

GC2: CallCtlConnInitiatedEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnActiveEv
SEP2401C7824EA3

GC2: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC2: CallCtlConnDialingEv 9000

GC2: CallCtlConnEstablishedEv 9000

GC2: ConnCreatedEv 9202

GC2: ConnInProgressEv 9202

GC2: CallCtlConnOfferedEv 9202

GC2: ConnAlertingEv 9202

GC2: CallCtlConnAlertingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnRingingEv CTIRD3

GC2:CallCtlTermConnRingingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalking CTIRD3

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202") and is answered.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

OPERATION_NOT_AVAILABLE_
IN_CURRENT_STATE.

Caught exception
com.cisco.jtapi.PlatformException:
Operation not available in current state.

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Table 334: Play Announcement with Held Customer Call

Call InfoEventAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1369

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1: CallCtlTermConnTalkingEv

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1370

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9000

GC2: ConnConnectedEv 9000

GC2: CallCtlConnInitiatedEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnActiveEv
SEP2401C7824EA3

GC2: CallCtlTermConnTalkingEv
SEP2401C7824EA3

GC2: CallCtlConnDialingEv 9000

GC2: CallCtlConnEstablishedEv 9000

GC2: ConnCreatedEv 9202

GC2: ConnInProgressEv 9202

GC2: CallCtlConnOfferedEv 9202

GC2: ConnAlertingEv 9202

GC2: CallCtlConnAlertingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnRingingEv CTIRD3

GC2:CallCtlTermConnRingingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalking CTIRD3

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9202") and is answered.

GC2: CallCtlTermConnHeldEv CTIRD3User1 puts the customer call on hold.
Invokes TerminalConnection.hold() on
Device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1371

Message Sequence Charts
Message Sequence Charts

Call InfoEventAction

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC3: CallActiveEv

GC3: ConnCreatedEv 9202

GC3: CallCtlConnDialingEv 9202

GC3: TermConnCreatedEv CTIRD3

GC3: TermConnActiveEv CTIRD3

GC3:CallCtlTermConnTalkingEvCTIRD3

GC3: ConnConnectedEv 9202

GC3: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: ConnCreatedEv Unknown

GC3: ConnInProgressEv Unknown

GC3: CallCtlConnOfferedEv Unknown

GC3: ConnConnectedEv Unknown

GC3: CallCtlConnEstablishedEvUnknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: CiscoAnnouncementStartedEv.

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC3: CiscoAnnouncementEndedEv

GC3: TermConnDroppedEv CTIRD3

GC3: CallCtlTermConnDroppedEv
CTIRD3

GC3: ConnDisconnectedEv Unknown

GC3: CallCtlConnDisconnectedEv
Unknown

GC3: ConnDisconnectedEv 9202

GC3: CallCtlConnDisconnectedEv 9202

GC3: CallInvalidEv

GC3: CallObservationEndedEv

After the announcement finishes playing,
call is disconnected.

Table 335: Play Announcment with an Outgoing Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1372

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1373

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: ConnConnectedEv 9202

GC2: CallCtlConnInitiatedEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2:CallCtlTermConnTalkingEvCTIRD3

GC2: CallCtlConnDialingEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: ConnCreatedEv 9000

GC2: ConnInProgressEv 9000

GC2: CallCtlConnOfferedEv 9000

GC2: ConnAlertingEv 9000

GC2: CallCtlConnAlertingEv 9000

GC2: TermConnCreatedEv
SEP2401C7824EA3

GC2: TermConnRingingEv
SEP2401C7824EA3

GC2: CallCtlTermConnRingingEv
SEP2401C7824EA3

Device A makes outgoing call to Device
C. User1 invokes Call.connect("CTIRD3",
"9202", "9000"). Call is left unanswered
(ringing state).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1374

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv
CTIRD3

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: TermConnDroppedEv
SEP2401C7824EA3

GC2: CallCtlTermConnDroppedEv
SEP2401C7824EA3

GC2: ConnDisconnectedEv 9000

GC2: CallCtlConnDisconnectedEv 9000

GC2: CallInvalidEv

GC2: CallObservationEndedEv

GC3: CallActiveEv

GC3: ConnCreatedEv 9202

GC3: CallCtlConnDialingEv 9202

GC3: TermConnCreatedEv CTIRD3

GC3: TermConnActiveEv CTIRD3

GC3:CallCtlTermConnTalkingEvCTIRD3

GC3: ConnConnectedEv 9202

GC3: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: ConnCreatedEv Unknown

GC3: ConnInProgressEv Unknown

GC3: CallCtlConnOfferedEv Unknown

GC3: ConnConnectedEv Unknown

GC3: CallCtlConnEstablishedEvUnknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC3: CiscoAnnouncementStartedEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1375

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC3: CiscoAnnouncementEndedEv

GC3: TermConnDroppedEv CTIRD3

GC3: CallCtlTermConnDroppedEv
CTIRD3

GC3: ConnDisconnectedEv Unknown

GC3: CallCtlConnDisconnectedEv
Unknown

GC3: ConnDisconnectedEv 9202

GC3: CallCtlConnDisconnectedEv 9202

GC3: CallInvalidEv

GC3: CallObservationEndedEv

After announcement finishes playing, call
is disconnected.

Table 336: Play Announcement on an IP Phone

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

COMMAND_NOT_IMPLEMENTED_
ON_DEVICE.

Caught exception
com.cisco.jtapi.PlatformException: Internal
callprocessing error :Device does not
support the command

User1 invokes CiscoAddress.
startAnnouncement("SEP8478ACE7F9B9",
"Welcome Greeting Sample") on ip phone.

Table 337: Play Announcement on the CTI Port

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

COMMAND_NOT_IMPLEMENTED_
ON_DEVICE.

Caught exception
com.cisco.jtapi.PlatformException: Internal
callprocessing error :Device does not
support the command

User1 invokes CiscoAddress.
startAnnouncement("CTI3", "Welcome
Greeting Sample") on CTI Port.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1376

Message Sequence Charts
Message Sequence Charts

Table 338: Play Announcement on CTI Remote Device Without Persistent Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_NO_PERSISTENT_
CALL_EXISTS.

Caught exception
com.cisco.jtapi.PlatformException: No
persistent call exists.

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Table 339: Play Announcement on a CTI Remote Device While a Persistent Call Is Being Set Up

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A.

Call is offered to the remote destination but
not picked up.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_PERSISTENT_CALL_
BEING_SETUP.

Caught exception
com.cisco.jtapi.PlatformException:
Persistent Call is being set up.

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1377

Message Sequence Charts
Message Sequence Charts

Table 340: Play Announcement on CTI Remote Device with a Persistent Call with an Invalid Announcement Identifier

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_INVALID_MEDIA_
RESOURCE_ID.

Caught exception
com.cisco.jtapi.PlatformException: Invalid
Media resource ID.

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3",
"Welcome") on Device A.

Table 341: Play Announcement Back to Back

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1378

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

CiscoAnnouncementStartedEv.
getAnnouncementID() =WelcomeGreeting
Sample

CiscoAnnouncementEndedEv. getSuccess()
= true.

CiscoAnnouncementEndedEv.
getErrorCode() = 0

CiscoAnnouncementEndedEv.
getErrorDescription() = No Error

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2:CallCtlTermConnTalkingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

For these 3 call events, feature reason =
CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEvUnknown

CiscoAnnouncementStartedEv. will have
feature reason = CiscoFeatureReason.
REASON_PLAY_ANNOUNCEMENT

GC2: CiscoAnnouncementStartedEv.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1379

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

GC2: CiscoAnnouncementEndedEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv
CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv
Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

After announcement finishes playing, the
call is disconnected.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex).getErrorCode()
= CiscoJtapiException.

CTIERR_ANNOUNCEMENT_ALREADY_
IN_PROGRESS.

Caught exception
com.cisco.jtapi.PlatformException:
Announcement already in progress.

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Table 342: Play Announcement to Stop IPVMS Service

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a provider
observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1380

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1:CallCtlTermConnRingingEvCTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1:CallCtlTermConnTalkingEvCTIRD3

User1 invokes CiscoAddress.
createPersistentCall("CTIRD3", "1000",
"remote") on device A and remote
destination answers.

Stop IPVMS service on all the nodes.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1381

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoAnnouncementErrorEv.
getErrorCode() = -1932787536

CiscoAnnouncementErrorEv.
getErrorDescription() = Resource Not
Available.

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2:CallCtlTermConnTalkingEvCTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEvUnknown

GC2: CiscoAnnouncementErrorEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv
CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv
Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

User1 invokes CiscoAddress.
startAnnouncement("CTIRD3", "Welcome
Greeting Sample") on Device A.

Play Announcement Feature Interaction Use Cases

Play Announcement Feature Interaction Use Cases

Table 343: Hold Announcement Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1382

Message Sequence Charts
Play Announcement Feature Interaction Use Cases

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1: CallCtlTermConnRingingEv CTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1: CallCtlTermConnTalkingEv CTIRD3

User1 invokes
CiscoAddress.createPersistentCall
("CTIRD3", "1000", "remote") on
device A and remote destination
answers.

CiscoAnnouncementStartedEv.
getAnnouncementID () =
Welcome Greeting Sample

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalkingEv CTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

User1 invokes
CiscoAddress.startAnnouncement
("CTIRD3", "Welcome Greeting
Sample") on Device A.

Feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEv Unknown

CiscoAnnouncementStartedEv
will have feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: CiscoAnnouncementStartedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1383

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException)
ex).getErrorCode () =
CiscoJtapiException.

CTIERR_OPERATION_
NOT_ALLOWED.

Caught exception com.cisco.jtapi.PlatformException:
Operation not allowed.

User1 invokes
TerminalConnection.hold () on the
announcement call.

CiscoAnnouncementEndedEv.
getSuccess () = true.

CiscoAnnouncementEndedEv.
getErrorCode () = 0

CiscoAnnouncementEndedEv.
getErrorDescription () = No Error

GC2: CiscoAnnouncementEndedEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

After announcement finishes
playing, call is disconnected.

Table 344: Redirect Announcement Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1384

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1: CallCtlTermConnRingingEv CTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1: CallCtlTermConnTalkingEv CTIRD3

User1 invokes
CiscoAddress.createPersistentCall
("CTIRD3", "1000", "remote") on
device A and remote destination
answers.

CiscoAnnouncementStartedEv.
getAnnouncementID () =
Welcome Greeting Sample

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalkingEv CTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

User1 invokes
CiscoAddress.startAnnouncement
("CTIRD3", "Welcome Greeting
Sample") on Device A.

Feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEv Unknown

CiscoAnnouncementStartedEv
will have feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: CiscoAnnouncementStartedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1385

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException)
ex).getErrorCode () =
CiscoJtapiException.

CTIERR_OPERATION_
NOT_ALLOWED.

Caught exception com.cisco.jtapi.PlatformException:
Operation not allowed.

User1 invokes Connection.redirect
() on the announcement call.

CiscoAnnouncementEndedEv.
getSuccess () = true.

CiscoAnnouncementEndedEv.
getErrorCode () = 0

CiscoAnnouncementEndedEv.
getErrorDescription () = No Error

GC2: CiscoAnnouncementEndedEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

After announcement finishes
playing, call is disconnected.

Table 345: Park Announcement Call

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1386

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CallingAddress = 1000,

CalledAddress = 9202,

CurrentCallingAddress = 1000,

CurrentCalledAddress = 9202

GC1: CallActiveEv

GC1: ConnCreatedEv 9202

GC1: ConnInProgressEv 9202

GC1: CallCtlConnOfferedEv 9202

GC1: ConnCreatedEv 1000

GC1: ConnConnectedEv 1000

GC1: CallCtlConnEstablishedEv 1000

GC1: ConnAlertingEv 9202

GC1: CallCtlConnAlertingEv 9202

GC1: TermConnCreatedEv CTIRD3

GC1: TermConnRingingEv CTIRD3

GC1: CallCtlTermConnRingingEv CTIRD3

GC1: ConnConnectedEv 9202

GC1: CallCtlConnEstablishedEv 9202

GC1: TermConnActiveEv CTIRD3

GC1: CallCtlTermConnTalkingEv CTIRD3

User1 invokes
CiscoAddress.createPersistentCall
("CTIRD3", "1000", "remote") on
device A and remote destination
answers.

CiscoAnnouncementStartedEv.
getAnnouncementID () =
Welcome Greeting Sample

GC2: CallActiveEv

GC2: ConnCreatedEv 9202

GC2: CallCtlConnDialingEv 9202

GC2: TermConnCreatedEv CTIRD3

GC2: TermConnActiveEv CTIRD3

GC2: CallCtlTermConnTalkingEv CTIRD3

GC2: ConnConnectedEv 9202

GC2: CallCtlConnEstablishedEv 9202

User1 invokes
CiscoAddress.startAnnouncement
("CTIRD3", "Welcome Greeting
Sample") on Device A.

Feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: ConnCreatedEv Unknown

GC2: ConnInProgressEv Unknown

GC2: CallCtlConnOfferedEv Unknown

GC2: ConnConnectedEv Unknown

GC2: CallCtlConnEstablishedEv Unknown

CiscoAnnouncementStartedEv
will have feature reason =
CiscoFeatureReason.
REASON_PLAY_
ANNOUNCEMENT

GC2: CiscoAnnouncementStartedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1387

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException)
ex).getErrorCode () =
CiscoJtapiException.

CTIERR_OPERATION_
NOT_ALLOWED.

Caught exception com.cisco.jtapi.PlatformException:
Operation not allowed.

User1 invokes Connection.park ()
on the announcement call.

CiscoAnnouncementEndedEv.
getSuccess () = true.

CiscoAnnouncementEndedEv.
getErrorCode () = 0

CiscoAnnouncementEndedEv.
getErrorDescription () = No
Error

GC2: CiscoAnnouncementEndedEv

GC2: TermConnDroppedEv CTIRD3

GC2: CallCtlTermConnDroppedEv CTIRD3

GC2: ConnDisconnectedEv Unknown

GC2: CallCtlConnDisconnectedEv Unknown

GC2: ConnDisconnectedEv 9202

GC2: CallCtlConnDisconnectedEv 9202

GC2: CallInvalidEv

GC2: CallObservationEndedEv

After announcement finishes
playing, call is disconnected.

Play Zip Tone
A and B represents the terminals. TermConnB represents the Cisco terminal connection of Terminal B.
TermConnCTI1 represents the Cisco terminal connection of terminal CTI1. CTI1 is a Cisco media terminal.

Events/ResponseScenarioSl.No

User on B hears the ZIP tone.A calls B. B answers the call and the application invokes
TermConnB.playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_LOCALONLY)

1.

User on A hears the ZIP tone.A calls B. B answers the call and application invokes
TermConnB.playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_REMOTEONLY)

2.

Tone is heard by user B.A calls B. B is alerting. Application calls TermConnB.
playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_LOCALONLY)

3.

PlatformException is thrown to application
request.

A calls CTI1. Call is answered by CTI1. Application calls TermCTI.
playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_LOCALONLY)

4.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1388

Message Sequence Charts
Play Zip Tone

Events/ResponseScenarioSl.No

User on A hears the ZIP tone.A calls CTI1. Call is answered by CTI1. Application calls
TermConnCTI1. playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_REMOTEONLY)

5.

User on B hears the ZIP tone.A, B and CTI1 are in conference. Application calls
TermConnB.playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_LOCALONLY)

6.

None of the users on A, B and CTI hear the tone.A, B and CTI1 are in conference. Application calls
TermB.playTone(CiscoTone.ZIPTONE, CiscoCall.
PLAYTONE_REMOTEONLY)

7.

QoS Support
Figure 21: Call Flow Diagram for QoS Support

JTAPI QoS
For QoS to work in Windows, complete the following steps:

1. Start Registry Editor (Regedt32.exe).

2. Go to the following key:

HKEY_LOCAL_ MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\

The registry key is one path.Note

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1389

Message Sequence Charts
QoS Support

1. On the Edit menu, click Add Value.

2. Type DisableUserTOSSetting.

3. Click REG_DWORD in the Data Type box.

4. Click OK.

5. Enter 0 in the prompt box.

6. Quit the Registry Editor.

7. Restart the computer.

For more information on this see http://support.microsoft.com/default.aspx?scid = kb;en-us;248611

JTAPI BehaviorScenario

JTAPI returns the DSCP value received from CTI in
StartTransmissionEvent to the application.

Application uses the JTAPI getPrecedenceValue() API to query
for the new DSCP value, in CiscoRTPOutputStartedEvent.

JTAPI returns the DSCP value received from CTI in
ProviderOpenCompletedEvent to the application.

Application uses the JTAPI getAppDSCPValue() API to query
for the new DSCP value, when it gets ProviderInServiceEvent.

QSIG Path Replacement
The following table shows the JTAPI events that are delivered to applications when calls between PBXs that
are connected by Q.Signaling (QSIG) trunks are transferred and forwarded. This table also shows the events
that are delivered to applications when the real-time path (RTP) is optimized by the QSIG Path Replacement
feature.

Calls going out on a QSIG trunk may not have a connection for the far end if any translation pattern is changing
the pattern. In other words, when the application sees two calls in the trombone case, B may not serve as the
common connection on the calls.

EventActionNo.

These events get delivered to applications:

CallCtrlConnectionEstablishedEv A

CallCtrlConnectionDisConnectEv B

OpenLogicalChannelEvent if C is a CTI device (Dynamically
registered CTIPorts and RP)

A registered with CM1, B is registered with CM2, and C
registered with CM3.

A calls B (GC1); B transfers the call to C. The application is
monitors C. The PR feature replaces the path after the call
gets connected to C.

The same action applies to scenarios that involve call forward
at B. (The called party transfers the call.)

1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1390

Message Sequence Charts
QSIG Path Replacement

http://support.microsoft.com/default.aspx?scid%20=%20kb;en-us;248611

EventActionNo.

In this case, both A are C represent called parties when transfer
completes. After the call is answered, PR replaces the path.
In this case, A and C represent IP phones; the display will be
updated as a part of PR feature operation, that makes either
A or C as calling.

JTAPI events:

GC1: CallCtlConnEstablishedEv A
GC1: CallCtlConnDisconnectedEv B

A registered with CM1, B registered with CM2, and C
registered with CM3. B calls C; C answers; B transfers the
call to A. A answers. The application is monitors only C. (The
calling party transfers the call.)

2

For GC1 Call Observer:

GC1: CallCtlConnEstablishedEv C

GC1: CallCtlConnDisconnected B

Before the PR feature replaces the path, the application sees
two calls: GC1 with connections to A and C (external) and
GC2 with connections to C and A (external).

When the PR feature replaces the path, either GC1 changes
GC2, or GC2 changes to GC1.

Assuming A's GCID changes from GC1 to GC2:

GC1: CiscoCallChangedEv (oldGCID = GC1, newGCID =
GC2)

GC1: CallCtlConnDisconnected for A

GC1: CallCtlConnDisconnected for C

GC1: CallInValid

GC2: TermConnTalkingEvent for TerminalA cause =
CAUSE_QSIG_PR

Trombone case: A registered to CM1, B registered to CM2,
and C registered to CM1. A calls B (GC1); B answers and
transfers the call to C (GC2). Path replacement connects A
and C bypassing CM2. The application observes both A and
C. (The called party transfers the call.)

3

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1391

Message Sequence Charts
Message Sequence Charts

EventActionNo.

Before the PR feature replaces the path, the application will
see two calls: GC1 with connections to A and B (external)
and GC2 with connections to C and B (external). In this case,
the application will not see any transfer start events.

When PR feature replaces the path, it updates the display of
A and C and path gets replaced, resulting in a GCID change.
Assuming A's GCID is changed and made the calling party,
the following JTAPI events occur:

GC1: CiscoCallChangedEv (GC1 to GC2)

GC1: CallCtlConnDisconnected for A

GC1: CallCtlConnDisconnected for C

GC1: CallInValid

GC2: ConnCreatedEv A

GC2: ConnConnectedEv A

GC2: TermConnTalkingEvent for TerminalA cause =
CAUSE_QSIG_PR

Trombone case: A registered to CM1, B registered to CM2,
and C registered to CM1. B calls A and transfers the call to
C. Path replacement connects A and C, bypassing CM2.
Application observes both A and C. (The calling party
transfers the call.)

4

Path replacement gets abandoned.A registered to CM1, B registered to CM2, and C registered
to CM1. A calls B; B transfers the call to C. C answers and
before path replacement completes, C invokes a feature (park,
redirect, and so on).

5

JTAPI:

Exception will be thrown from JTAPI for feature requests.

In some conditions, call processing ignores feature requests
(redirect, park, transfer, and so on). This happens when a setup
request is sent out, and the local CM is waiting for connect
from the other end.

6

No events

JTAPI Apps: Hang up the call

In some cases, the application could receive dead air when
CM goes down when the PR feature is trying to switch the
RTP path. This could happen to a previously connected call.

7

Recording Use Cases
Expose ClusterID in CiscoProvider Interface

Call InfoEventsActiions

Start application and initialize JTAPI

ProvInServiceEvAdd provider observer

JTAPI returns 'StandAloneCluster'Application calls
ciscoProvider.getClusterID()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1392

Message Sequence Charts
Recording Use Cases

Admin changes the clusterID to
'3NodeClusterinSanJose' and restarts the
services

Application calls getClusterID() - JTAPI
returns '

3NodeClusterinSanJose'

ProvOutofService

ProvInServiceEv

Multi-Clusters Gateway Recording Use Cases

Test configurations Specification:

• Cluster 1 = SME Cluster with 1 PUB and 1 SUB (Note: Only use DN's 2xxx, 3xxx, 9xxx)

• Cluster 2 = External Cluster (Note: Only use DN's 1xxx, 4xxx)

• Cluster 3 = Leaf Cluster (Note: Only use DN's 5xxx, 6xxx)

Assumption: All devices have BIB enabled unless specified in the detailed test cases. CTIRD does not support
BIB.

• Cluster 1 and Cluster 2 are connected thru SIP GW which is recording enabled.

• Cluster 1 and Cluster 3 are connected thru SIP trunk ICT.

• Cluster 2 and Cluster 3 are connected thru SIP trunk ICT.

On Cluster 1 Route-Patterns:

• 180.XXXX: SIP ICT trunk from cluster 1 to cluster 3, calledPartyTranformation: remove PreDot.

• 171.XXXX: SIP GW from cluster 1 to cluster 2, calledPartyTranformation: remove PreDot.

On Cluster 2 Route-Patterns:

• 172.XXXX: SIP GW from cluster 2 to cluster 1, calledPartyTranformation: remove PreDot.

• 172180.XXXX: SIP GW from cluster 2 to cluster 1 to cluster 3, calledPartyTranformation: remove
PreDot.

• 180.XXXX: SIP ICT trunk from cluster 2 to cluster 3 directly, calledPartyTranformation: remove PreDot.

On Cluster 3 Route-Patterns:

• 172.XXXX: SIP ICT trunk from cluster 3 to cluster 1, calledPartyTranformation: remove PreDot.

• 172171.XXXX: SIP GW from cluster 3 to cluster 1 to cluster 2, calledPartyTranformation: remove
PreDot.

• 171.XXXX: SIP ICT trunk from cluster 3 to cluster 2 directly, calledPartyTranformation: remove PreDot.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1393

Message Sequence Charts
Message Sequence Charts

Recording IP Phones

Scenario 1

IP phones (Basic): Multi-Clusters Gateway preferred with auto recording

Events and Call InfoSetup and Action

Step 3- Check A1 and B1 CiscoAddres.AUTO_RECORDING

Step 5- Check two recording sessions established on A1 and B1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Check B1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = recorder B device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = device name of B

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster2

Step 6- CheckA1 andB1 get CiscoTermConnRecordingEndEv and disconnect
on recorders.

Cluster 1:

• “Allow trunk use GW recording” is enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP8E0E) has line B1:4006

• GW preferred

• auto recording enabled

• recorder B:2000

Cluster 3:

• Branch recorder: 2000

• PhoneA (SEP3B5F) has lineA1 3601 configured
as:

• GW preferred

• auto recording enabled

• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. Verify A1 have recording type
AUTO_RECORDING

4. A1 (cluster3) call B1 (cluster2) (e.g. 3602 call
1721714006)

5. B1 answers the call

6. A1 drops

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1394

Message Sequence Charts
Recording IP Phones

Scenario 2

IP phones (Basic): Multi-Clusters Gateway preferred with auto recording

Events and Call InfoSetup and Action

Step 3- Check A1 CiscoAddres.SELECTIVE_RECORDING

Step 5- Check auto recording started on B1.

Check B1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check B1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = recorder B device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = device name of B

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster2

Step 6-

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check A1 get CiscoTermConnRecordingEndEv and disconnect on
recorders.

Cluster 1:

• “Allow trunk use GW recording” is enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP8E0E) has line B1:4006

• GW preferred

• auto recording enabled

• recorder B:2000

Cluster 3:

• Branch recorder: 2000

• PhoneA (SEP3B5F) has lineA1 3601 configured
as:

• GW preferred

• selective recording enabled

• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. Verify A1 have recording type
SELECTIVE_RECORDING

4. A1 calls B1 (3601 calls 1721714006)

5. B1 answers

6. A1 requests startRecording(app)

7. A1 requests stopRecording()

8. A1 disconnects B1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1395

Message Sequence Charts
Message Sequence Charts

Scenario 3

IP phones (Basic): Multi-Clusters Gateway preferred with press key invoke recording

Events and Call InfoSetup and Action

Step 3- Check A1 and B1 CiscoAddres.SELECTIVE_RECORDING

Step 6-Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_USER_INITIATED_FROM_DEVICE

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Cluster 1:

• “Allow trunk use GW recording” is enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP723F) has line B1:4008

• GW preferred

• selective recording enabled

• recorder B:2000

Cluster 3:

• Branch recorder: 2000

• Phone A (SEPDB17) has line A1 2303 configured as:

• GW preferred

• selective recording enabled

• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. Verify A1 have recording type
SELECTIVE_RECORDING

4. A1 calls B1 (2303 calls 1721714008)

5. B1 answers

6. Press recording key on A

7. A1 disconnects B1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1396

Message Sequence Charts
Message Sequence Charts

Scenario 4

IP phones (Basic): Multi-Clusters Gateway preferred with selective recording and Cluster 1 fork media to branch recorder on cluster3

Events and Call InfoSetup and Action

Step 5- Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A2 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT

.getTerminalName() = SIPICT-To-Cluster3

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk name – SIP
GW.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Check A1 get CiscoTermConnRecordingEndEv

Cluster 1:

• “Allow trunk use GW recording” is enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP723F) has line B1:4008

• GW preferred

• selective recording enabled

• recorder B:2000

Cluster 3:

• Branch recorder: 2000

• Phone A (SEPDB17) has line A1 1623
configured as:

• GW preferred

• selective recording enabled

• recording profile:rec_profile2: 1802000

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. A1 call B1 (1623 call 1721714008)

4. B1 answer the call

5. Start silent recording on A1

6. Stop recording on A1

7. A1 drop

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1397

Message Sequence Charts
Message Sequence Charts

Scenario 5

IP phones (Basic): Multi-Clusters Device preferred with selective recording and device fork media to central recorder

Events and Call InfoSetup and Action

Step 5-Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 1722000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = device name of A

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster3

Step 6- Check A1 get CiscoTermConnRecordingEndEv and disconnect on
recorder.

Cluster 1:

• “Allow trunk use GW recording” is enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP723F) has line B1:4008

• selective recording enabled

Cluster 3:

• Branch recorder: 2000

• Phone A (SEPDB17) has line A1 2008
configured as:

• Device preferred

• selective recording enabled

• recording profile:rec_profile2: 1722000

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. A1 call B1 (A1 call 70662050

4. B1 answer the call

5. A1 request startRecording(app)

6. A1 request stopRecording()

7. A1 drop

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1398

Message Sequence Charts
Message Sequence Charts

Scenario 6

IP phones (Basic): Multi-Clusters Hold and resume - Gateway preferred with automatic recording

Events and Call InfoSetup and Action

Step 4-Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Check B1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = recorder B device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk 2 device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster2

Step 5- Check A1 get CiscoTermConnRecordingEndEv

Step 6- Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Step 7- Check A1 get CiscoTermConnRecordingEndEv

Cluster 1:

• “Allow trunk use GW recording” is
enabled

• Central recorder: 2000

Cluster 2:

• Phone B (SEP8E0E) has line
B1:4006

• GW preferred

• auto recording enabled

• recorder B:2000

Cluster 3:

• Branch recorder: 2000

• GW preferred

• auto recording enabled

• recording profile:rec_profile1:
2000

• Phone A (SEP3B5F) has line A1
3602 configured as:

1. Open provider Prov1, Prov2, Prov3

2. Observe A1 in Prov3, B1 in Prov2

3. A1 call B1 (3602 call 1721714006)

4. B1 answer the call

5. A1 put call on hold

6. A1 resume the call

7. A1 drop

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1399

Message Sequence Charts
Message Sequence Charts

Scenario 7

IP phones (Basic): Hold and resume - Phone preferred with Selective Recording

Step 4-Check B get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check B TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN = 1505)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = Phone Name

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster

Check B TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = recorder B device name

.getAddress() = Recording profile (DN 1505)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = Phone name

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster

Step 6- Check B get CiscoTermConnRecordingEndEv

Step 7- Check B get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv

Step 8- Check B get CiscoTermConnRecordingEndEv

Phone A has line : 1506

Phone B has line : 1504

• Phone Prefered

• Selective Recording
enabled On Phone B

• Recorder Phone C :
1505

• Recorder Phone D :
1503

• recording profile:
rec_profile : 1505

1. Open provider

2. Observe A, B, C, D in Prov1

3. A call B (1506 calls 1504)

4. B answer the call.

5. Selective recording was
initiated on Phone B.

6. B put call on hold.

7. B resumes the call.

8. A drop the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1400

Message Sequence Charts
Message Sequence Charts

Scenario 8

IP phones (Basic): Multi-Clusters Multiple calls - Gateway preferred with automatic recording

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1401

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

Step 4- Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Cluster 1:

• “Allow trunk use GW recording” is
enabled Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC• Central recorder: 2000

.getTerminalName() = central recording device name
Cluster 2:

.getAddress() = Recording profile (DN 2000)
• Phone B (SEP8E0E) has line B1 1681

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW• GW preferred

• selective recording enabled .getMediaForkingDeviceName() = SIP trunk device name – SIP GW

• recorder B:2000 .getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1
• Phone C (SEP723F) has line B1: 4008

Step 5- Check A1 get CiscoTermConnRecordingEndEv
• GW preferred

Step 7-Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv. (Recording is started onA1 for call A1->C1)• selective recording enabled

Check A1 TermConnection.getCiscoRecorderInfo():• recorder B:2000

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
Cluster 3: .getTerminalName() = central recorder device name

• Branch recorder: 2000 .getAddress() = Recording profile (DN 2000)
• Phone A (SEPDB17) has line A1 3602
configured as:

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

• GW preferred .getMediaForkingDeviceName() = SIP trunk device name – SIP GW

• auto recording enabled .getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1• recording profile:rec_profile1: 2000

Step 8- Retrieve first call. Check A1 get CiscoTermConnRecordingEndEv (for
A1->C1)1. Open provider Prov1, Prov2, Prov3

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv (for A1->B1)

2. Observe A1 in Prov3, B1, C1 in Prov2

3. A1 call B1 (3602 call 1721714006)
Check A1 TermConnection.getCiscoRecorderInfo():

4. B1 answer the call
.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

5. A1 put call on hold .getTerminalName() = central recorder device name
6. A1 call C1 (3602 call 1721714008) .getAddress() = Recording profile (DN 2000)
7. C1 answer .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW8. A1 retrieve first call
.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

9. A1 retrieve second call
.getProtocolReferenceGUID() =

10. A1 drop second call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1402

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

A1 drop first call .getMediaForkingClusterID() = name of cluster111.

Step 9- Retrieve second call. Check A1 get CiscoTermConnRecordingEndEv (for
A1->B1)

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv (for A1->C1)

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name – SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

CTI Remote Devices Use Cases

Scenario 9

CTI Remote Devices (Basic): Multi-Clusters Gateway preferred with automatic recording- IP phone (cluster3) call remote device
(cluster1)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1403

Message Sequence Charts
CTI Remote Devices Use Cases

Step 4- Check auto recording started on A1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 5- Check A1 get CiscoTermConnRecordingEndEv

Note: Auto recording start on B1 (new changes)

Step 4-

Check B1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check B1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 5- Check B1 get CiscoTermConnRecordingEndEv

Cluster 1:

• “Allow trunk use GW recording” is enabled
• Central recorder: 2000
• Mobile through PSTN GW in Cluster 1
• devB (CTIRD3) has line B1:9008 (active remote
destination: 1711681 on cluster2) configured as:

• auto recording enabled
• GW preferred

Cluster 2:

• Phone C has line C1 (1681)

Cluster 3:

• Branch recorder: 2000
• Phone A (SEP3B5F) has line A1 (3601)
configured as:

• GW preferred
• auto recording enabled
• recording profile:rec_profile2: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe A1 in Prov3, B1 in Prov2
3. A1 (cluster 3) call B1 (cluster1) (3601 call

1729008)
4. Remote destination on cluster 2 answer the call
5. A1 drop

Scenario 10

CTI Remote Devices (Basic): Multi-Clusters Gateway preferred with silent recording- IP phone (cluster3) call remote device (cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1404

Message Sequence Charts
Message Sequence Charts

Step 5- Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check A1 get CiscoTermConnRecordingEndEv

Note: Auto recording start on B1 (new changes)

Step 6-

Check B1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check B1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check B1 get CiscoTermConnRecordingEndEv

Cluster 1:

• “Allow trunk use GW recording” is enabled
• Central recorder: 2000
• Mobile through PSTN GW in Cluster 1

Cluster 2:

• devB (CTI_RD3) has line B1:1625 (remote
destination: 1722602 on cluster 1) configured as:

• selective recording enabled
• GW preferred

Cluster 3:

• Branch recorder: 2000
• Phone A (SEP3B5F) has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe A1 in Prov3, B1 in Prov2
3. A1 call B1 (3601 calls 1721711620)
4. Remote destination on cluster 1 answer the call
5. Start silent recording on A1
6. Start silent recording on B1
7. Stop recording on A1
8. A1 drop

Scenario 11

CTI Remote Devices (Basic): Multi-Clusters Gateway preferred with automatic recording- Remote device (cluster3) call Remote
device (cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1405

Message Sequence Charts
Message Sequence Charts

Step 7- Check auto recording started on A1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Cluster 1:

• “Allow trunk use GW recording” is enabled
• Central recorder: 2000
• Mobile through PSTN GW in Cluster 1

Cluster 2:

• devB (remote device CTI_RD2) has line B1:1624 (remote
destination: 2303 on cluster 1) configured as:

• selective recording enabled
• GW preferred

Cluster 3:

• Branch recorder: 2000
• devA (remote device CTI_RD3) has line A1 1622 (remote
destination: 9000 on cluster 1) configured as:

• GW preferred
• auto recording enabled
• recording profile:rec_profile2: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe A1 in Prov3, B1 in Prov2
3. A1 (cluster 3) call B1 (cluster2)
4. Call is offered to devA’s remote destination
5. Remote destination of devA answer
6. Call is offered to B1
7. DevB’s remote destination answer the call
8. Remote destination of devB drop (or devB drop)

Scenario 12

CTI Remote Devices (Basic): Multi-Clusters Hold and resume with automatic recording-IP phone call (cluster3) remote device
(cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1406

Message Sequence Charts
Message Sequence Charts

Step 4- Check auto recording started on A1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 5- Check A1 get CiscoTermConnRecordingEndEv

Step 6- Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check A1 get CiscoTermConnRecordingEndEv

Cluster 1:

• “Allow trunk use GW recording” is enabled
• Central recorder: 2000
• Mobile through PSTN GW in Cluster 1

Cluster 2:

• devB (CTI_RD3) has line B1:1620 (remote
destination: 1722602 on cluster 1) configured
as:

• auto recording enabled
• GW preferred

Cluster 3:

• Branch recorder: 2000
• devA (IP phone) has line 3602 configured as:

• GW preferred
• auto recording enabled
• recording profile:rec_profile2: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe A1 in Prov3, B1 in Prov2
3. A1 (cluster 3) call B1 (cluster2)
4. Remote destination of devB answer the call
5. A1 put call on hold
6. A1 resume the call
7. A1 drop

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1407

Message Sequence Charts
Message Sequence Charts

Feature Interaction: Recording Use Cases

Scenario 13

FI: Redirect - IP phone (cluster3) call auto recording remote device (cluster1), redirect to IP phone (cluster3)

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 5- Check RD1 get CiscoTermConnRecordingEndEv

Step 5- Check auto recording restarted on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1:

• “Allow trunk use GW recording” is enabled
• Central recorder: 2000
• Mobile through PSTN GW in Cluster 1
• devRD (CTIRD3) has line RD1:9008 (active remote
destination: 1711681 on cluster2) configured as:

• GW preferred
• automatic recording enabled

Cluster 2:

• Phone D (RDD) has line D1 (1681)

Cluster 3:

• Branch recorder: 2000
• Phone A (SEP3B5F) has line A1 (3601) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• Phone B (SEPDB17) has line B1 (2303) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe A1, B1 in Prov3, D1 in Prov2, RD1 in Prov1
3. A1 (cluster3) call RD1 (cluster1) (3601 call 1729008)
4. Remote destination on cluster 2 answer the call
5. A1 redirect to B1
6. B1 disconnect the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1408

Message Sequence Charts
Feature Interaction: Recording Use Cases

Scenario 14

FI: Redirect -devRD (cluster1/SME), RDD (cluster2), A(cluster3/leaf) and B (cluster3/leaf) - RD auto recording and RD redirect

Events and Call InfoSetup and Action

Cluster 1:

• Central recorder: 2000
• devRD (CTIRD3) has line RD1 (9008) (active
remote destination: 1711681 on cluster2)
configured as:

• automatic recording enabled
• GW preferred

Cluster 2:

• RDD has line RDD1 (1681)

Cluster 3:

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devA (SEPDB17) has line A1 (2008)
configured as:

• Phone preferred
• auto recording enabled
• recording profile:rec_profile1: 2000

• devB (SEP3B5F) has line B1 (3601)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1 in Prov1, RDD1 in Prov2, A1,

B1 in Prov3
3. A1 (cluster3) call RD1 (cluster1)
4. Remote destination on cluster 2 answer the call
5. RD1 redirect to B1 (cluster3)
6. B1 answer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1409

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 4- Check auto recording started on A1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = branch recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = device name of A

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster3

Step 5: Check Recording retriggered on A1

Check A1 get CiscoTermConnRecordingEndedEv.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = branch recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_PHONE

.getMediaForkingDeviceName() = device name of A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1410

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster3

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1411

Message Sequence Charts
Message Sequence Charts

Scenario 15

FI: Redirect- devRD (leaf), RDD (SME), A (SME) and B (cluster2) - RD auto recording and A redirect

Events and Call InfoSetup and Action

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1
(1622) (active remote destination: 1729000 on
cluster1) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 1.

• devA (SEP334F) on cluster 1 has line A1 (2205)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEP723F) on cluster 2 has line B1 (4008)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1 in Prov1, RDD1 in Prov2, A1, B1

in Prov3
3. A1 call RD1
4. Remote destination answer the call
5. A1 redirect to B1
6. B1 answer
7. Close RD1 and reopen RD1 (unobserved and

reobserve RD1)
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1412

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7-

Check RD1 CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1413

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

.getMediaForkingClusterID() = name of cluster1

Step 8- Check RD1 get CiscoTermConnRecordingEndedEv

Scenario 16

FI: Redirect- devRD (SME), RDD (leaf), A (leaf) and B (cluster2) - RD silent recording and A redirect

Events and Call InfoSetup and Action

Step 5- Start recording should fail on RD1 (error =
CTIERR_RESOURCE_NOT_AVAILABLE??)

Step 8- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name -
SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD4) on cluster 1 has line RD1 (9008) (active
remote destination: 1802303 on cluster3) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 3.

• devA (SEP3B5F) on cluster 3 has line A1 (3601) configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEP723F) on cluster 2 has line B1 (4008) configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. App start silent recording on RD1
6. A1 redirect to B1 thru GW (i.e. A1 redirect to 171XXXX)
7. B1 answer
8. Start app recording on RD1
9. App stop recording on RD1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1414

Message Sequence Charts
Message Sequence Charts

Scenario 17

FI: Transfer- devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD auto recording and A transfer

Events and Call InfoSetup and Action

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Complete Transfer. Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEPDB17) on cluster 3 has line B1 (2303)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. A1 setup transfer to B1
6. B1 answer
7. A1 complete transfer
8. B1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1415

Message Sequence Charts
Message Sequence Charts

Scenario 18

FI: Direct Transfer- devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD auto recording and A direct transfer

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- B1 and RD1 are connected. Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEPDB17) on cluster 3 has line B1 (2303)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. A1 call B1
6. B1 answer
7. App send direct transfer request on A1 with primary

call = A1-RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1416

Message Sequence Charts
Message Sequence Charts

Scenario 19

FI: Conference- devRD (leaf), RDD (cluster2), A (SME) and B (SME) - RD silent recording and A conference

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- A1 complete conference. A1, B1 and RD1 are in conference.
Recording *not* retriggered on RD1.

Step 9- Check RD1 get ExistingCallEvent and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 10- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1621)
(active remote destination: 1721711681 on cluster2)
configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (IP10) on cluster 1 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEP334F) on cluster 1 has line B1 (2205)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answer the call
5. Start silent recording on RD1
6. A1 setup conference to B1
7. B1 answer
8. A1 complete conference
9. Close line RD1 and reopen line RD1
10. App stop recording on RD1
11. RD disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1417

Message Sequence Charts
Message Sequence Charts

Scenario 20

FI: Join calls - devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD auto recording and A join calls

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name -
SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- A1, B1 and RD1 are in conference. Recording *not*
retriggered on RD1.

Step 8- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEPDB17) on cluster 3 has line B1 (2303) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. B1 call A1
6. A1 answer
7. A1 join two calls wit primary call = A1 –RD1 call
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1418

Message Sequence Charts
Message Sequence Charts

Scenario 21

FI: JAL- devRD (SME), RDD (cluster2), A1, A2 and B (leaf) - RD silent recording and A1 does JAL

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name -
SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- A2 and B1 are connected.

Step 8- JAL. A1, B1 and RD1 in conference. Recording *not*
retriggered on RD1.

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2303) and A2 (1623)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEP3B5F) on cluster 3 has line B1 (3601) configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. Start silent recording on RD1
6. A2 call B1
7. B1 answer
8. A1 join two calls with primary call = A1 RD1
9. Stop recording on RD1
10. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1419

Message Sequence Charts
Message Sequence Charts

Scenario 22

FI: Drop any party- devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD auto recording and A drop B from conference

Events and Call InfoSetup and Action

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1
(9008) (active remote destination: 1711681 on
cluster2) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (SEPDB17) on cluster 3 has line B1 (2303)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answer the call
5. A1 set up conference to B1
6. B1 answer
7. A1 complete conference
8. Reopen RD1
9. A drop B from conference
10. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1420

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- A1 complete conference. A1, B1 and RD1 are in conference. Recording
not retriggered on RD1.

Step 8- Check RD1 get ExistingCallEvent and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- A drop B. A1 and RD1 are connected as two parties call. Recording
retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1421

Message Sequence Charts
Message Sequence Charts

Events and Call InfoSetup and Action

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 10- Check RD1 get CiscoTermConnRecordingEndedEv

Scenario 23

FI: EM- devRD (leaf), RDD (cluster2), A (SME) - RD auto recording and A EM Login

Events and Call InfoSetup and Action

Step 5- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- EM logout succeed.

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1622) (active
remote destination: 1721711681 on cluster2) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPAB21) on cluster 1 has line A1 (9000) configured
as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• EM profile with line E1 (7788)

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. EM login to devA with line E1
4. E1 call RD1
5. Remote destination answer the call
6. E1 disconnect call
7. EM logout

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1422

Message Sequence Charts
Message Sequence Charts

Scenario 24

Hunt list - devRD (leaf), RDD (cluster2), A (SME), B (SME) and HP(SME) - RD selective recording

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name
- SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1621) (active remote
destination: 1721711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (IP9) on cluster 1 has line A1 (2302) configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• devB (RP) on cluster 1 has line B1 (1500) configured as:

• no recording

• Cluster 1 (SME):

• Line Group: LG2: A1 and B1, top down
• Hunt list: HL2:LG2
• Hunt pilot: 3636 - HL2

1. Open provider Prov1, Prov2, Prov3
2. ObserveRD1, RDD1,A1, andB1 in Prov1/Prov2/Prov3 accordingly
3. RD1 call HP 3636 (1723636)
4. After remote destination answer, call is offered to A1
5. A1 answer
6. App start recording on RD1
7. App stop recording on RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1423

Message Sequence Charts
Message Sequence Charts

Scenario 25

FI: Call Park- devRD (SME), RDD (cluster2), A (leaf) - RD selective recording and A park and park reversion

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Recording *not* retriggered on RD1.

Step 7- Park Reversion happens. Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- A1 answers. Recording remains.

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2303)
configured as:

• GW preferred
• selective recording enabled
• recording profile:rec_profile1: 2000

• Call park number P1 on same cluster of A with park
reversion number set to A1

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answer the call
5. App start recording on RD1
6. A1 park call to park number P1
7. Wait for park reversion happen
8. A1 answer the call
9. App stop recording on RD1
10. A1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1424

Message Sequence Charts
Message Sequence Charts

Scenario 26

FI: Barge- devRD (SME), RDD (cluster2), A (leaf), A' (leaf) - RD selective recording and A' does Barge

Events and Call InfoSetup and Action

Step 5- A1' barge in succeeds. Check barge events.

Step 6- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2010) configured
as:

• GW preferred
• selective recording enabled

• devA' (SEP1396) on cluster 3 has line A1' (2010) configured
as:

• GW preferred
• selective recording enabled

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. A1’ does barge
6. App start recording on RD1
7. App stop recording on RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1425

Message Sequence Charts
Message Sequence Charts

Scenario 27

FI: Dpark- devRD (leaf), RDD (cluster2), A (SME), B (SME) - RD selective recording and A dpark and B retrive

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Recording *not* retriggered on RD1.

Step 7- B1 and RD1 are connected. Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1621)
(active remote destination: 1721711681 on cluster2)
configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (IP10) on cluster 1 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (SEP334F) on cluster 1 has line B1 (2205)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• dpark DN: D1 (7001) is in same cluster of A, a prefix
of 666 is to retrieve.

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1,A1, andB1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. App start recording on RD1
6. A1 transfer call to dPark number D1
7. B1 calls dpark D1
8. Stop recording on RD1
9. B1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1426

Message Sequence Charts
Message Sequence Charts

Scenario 28

FI: Monitoring- devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD selective recording and B start monitoring

Events and Call InfoSetup and Action

Step 5- Check A1 get CiscoTermConnMonitoringStartEv.

A1: CiscoTermConnMonitorTargetInfoEv

B1: CiscoTermConnMonitorTargetInfoEv

Step 6- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Check A1 get CiscoTermConnMonitoringEndEv.

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (SEP3B5F) on cluster 3 has line B1 (3601) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB is the Supervisor

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. B1 start monitoring on A1
6. App start recording on RD1
7. App stop recording on RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1427

Message Sequence Charts
Message Sequence Charts

Scenario 29

FI: Whisper coaching- devRD (leaf), RDD (cluster2), A (SME) and B (SME) - RD selective recording and B start whisper coaching

Events and Call InfoSetup and Action

Step 5- Check A1 get MonitoringStartEvent.

A1:CallAttributeInfoEvent with type = coaching

B1:CallAttributeInfoEvent with type = coaching

Step 6- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1622) (active
remote destination: 1721711681 on cluster2) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SIP2) on cluster 1 has line A1 (9001) configured as:

• no recording

• devB (SIP3) on cluster 1 has line B1 (9002) configured as:

• no recording

• devB is the Supervisor

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. B1 start whisper coaching on A1
6. App start recording on RD1
7. App stop recording on RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1428

Message Sequence Charts
Message Sequence Charts

Scenario 30

FI: Agent Greeting- devRD (SME), RDD (cluster2), A (leaf) and B (leaf) - RD selective recording and B start agent greeting

Events and Call InfoSetup and Action

Step 5- Check A1 get CiscoMediaStreamStartedEv (CTI:
sendMediaToBIBStartEvent).

Step 6- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (CTI1) on cluster 3 has line B1 (1600) configured as:

• no recording

• devB is the IVR

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. A1 call RD1
4. Remote destination answer the call
5. Start agent greeting on A1 with B1 as IVR DN
6. App start recording on RD1
7. App stop recording on RD1
8. A1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1429

Message Sequence Charts
Message Sequence Charts

Scenario 31

FI: Persistent connection- devRD (SME), RDD (cluster2), A (leaf) - RD auto recording

Events and Call InfoSetup and Action

Step 3- Persistent connection is created on RD1.

Step 5- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP
GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. App makes CreatePersistentConnection() request on RD1
4. A1 call RD1
5. Remote device answer
6. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1430

Message Sequence Charts
Message Sequence Charts

Scenario 32

FI: Call pick up- devRD (SME), RDD (cluster2), A (leaf), B (leaf)- RD selective recording

Events and Call InfoSetup and Action

Step 5- After pickup, A1 and RD1 are connected.

Step 6- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =
CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_
DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name -
SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008) (active
remote destination: 1711681 on cluster2) configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (CTI1) on cluster 3 has line A1 (1600) configured as:

• no recording

• devB (SIP1) on cluster 3 has line B1 (9000) configured as:

• no recording

• A1 and B1 are in pick up group: PG_1
• Service parameter: auto pick up enabled

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in Prov1/Prov2/Prov3

accordingly
3. RD1 call B1
4. After remote destination answer, call is offered to B1 and A1
5. A1 pick up the call
6. App start recording on RD1
7. App stop recording on RD1
8. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1431

Message Sequence Charts
Message Sequence Charts

Scenario 33

FI: CTI Failover- devRD (SME), RDD (cluster2), A (leaf) - RD selective recording

Events and Call InfoSetup and Action

Step 4- A1 and RD1 are connected.

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Stop CTI Manager service on Pub1 successfully.

Step 7- Open provider on Sub1 successfully.

Step 8- Check RD1 get ExistingCallEvent and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD1) on cluster 1 has line RD1 (2303)
(active remote destination: 1711623 on cluster2)
configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD (CTI Port) on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devRD in device pool DPPS1 (ccm1 (cluster1 PUB),
ccm2 (cluster1 SUB))

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. RD1 call A1
4. Remote destination answers, and then A1 answer
5. App start recording on RD1
6. Stop CTI Manager service on Pub1
7. Open provider on Sub1 (SME/Cluster1)
8. Reopen RD1
9. App start recording on RD1
10. RD1 disconnects the call
11. Start CTI Manager service on Pub1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1432

Message Sequence Charts
Message Sequence Charts

Scenario 34

FI: CPN- devRD (SME), RDD (cluster2), A (leaf) - RD selective recording

Events and Call InfoSetup and Action

Step 4- A1 and RD1 are connected.

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 6- Stop CTI Manager service on Pub1 successfully.

Step 7- Open provider on Sub1 successfully.

Step 8- Check RD1 get ExistingCallEvent and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() =CALL_RECORDING_TYPE_APPLICATION
_INITIATED_SILENT

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD1) on cluster 1 has line RD1 (2303)
(active remote destination: 1711623 on cluster2)
configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD (CTI Port) on cluster 2.

• devA (SEPDB17) on cluster 3 has line A1 (2010)
configured as:

• Phone preferred
• selective recording enabled
• rec_profile1: 2000

• devRD in device pool DPPS1 (ccm1 (cluster1 PUB),
ccm2 (cluster1 SUB))

• SIP trunk configured for CPN on SME/cluster1 and
leaf, RD set up CPN also.

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. RD1 call A1
4. Remote destination answers, and then A1 answer
5. App start recording on RD1
6. Stop CTI Manager service on Pub1
7. Open provider on Sub1
8. Reopen RD1
9. App start recording on RD1
10. RD1 disconnects the call
11. Start CTI Manager service on Pub1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1433

Message Sequence Charts
Message Sequence Charts

Scenario 35

FI: Redirect- local- devRD (leaf), RDD (cluster2), A (leaf) and B (leaf) - RD auto recording and A redirect

Events and Call InfoSetup and Action

Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 5- A1 redirects.

Step 6- B1 answers. B1 and RD1 are connected. Recording retriggered
on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 7- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTI_RD3) on cluster 3 has line RD1 (1622)
(active remote destination: 1721711681 on cluster2)
configured as:

• auto recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (SEP3B5F) on cluster 3 has line A1 (3601)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (SEPDB17) on cluster 3 has line B1 (2303)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answers, and then A1 answer
5. A1 redirect to B1
6. B1 answer
7. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1434

Message Sequence Charts
Message Sequence Charts

Scenario 36

FI: Transfer- local-devRD (SME), RDD (cluster2), A (SME) and B (SME) - RD selective recording and A transfer

Events and Call InfoSetup and Action

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- A1 complete transfer. B1 and RD1 are connected. Recording
retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (IP10) on cluster 1 has line A1 (2303) configured
as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (SEP334F) on cluster 1 has line B1 (2205)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answers, and then A1 answer
5. App start user recording on RD1
6. A1 setup transfer to B1
7. B1 answer
8. A1 complete transfer
9. Stop recording on RD1
10. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1435

Message Sequence Charts
Message Sequence Charts

Scenario 37

FI: Conference- local-devRD (SME), RDD (cluster2), A (SME) and B (SME) - RD selective recording and A conference

Events and Call InfoSetup and Action

Step 5- Check recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 8- A1 complete conference. A1, B1 and RD1 are in conference.
Recording retriggered on RD1.

Check RD1 get CiscoTermConnRecordingEndedEv ,
CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_USER
_INITIATED_FROM_APPLICATION

.getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_ DEVICE_TYPE_GW

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =

.getMediaForkingClusterID() = name of cluster1

Step 9- Check RD1 get CiscoTermConnRecordingEndedEv

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled
• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled
• Branch recorder: 2000
• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as:

• selective recording enabled
• GW preferred

Remote Destination RDD on cluster 2.

• devA (IP10) on cluster 1 has line A1 (2303)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

• devB (SEP334F) on cluster 1 has line B1 (2205)
configured as:

• GW preferred
• selective recording enabled
• rec_profile1: 2000

1. Open provider Prov1, Prov2, Prov3
2. Observe RD1, RDD1, A1, and B1 in

Prov1/Prov2/Prov3 accordingly
3. A1 call RD1
4. Remote destination answers, and then A1 answer
5. App start user recording on RD1
6. A1 setup transfer to B1
7. B1 answer
8. A1 complete transfer
9. App stop recording on RD1
10. RD1 disconnects the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1436

Message Sequence Charts
Message Sequence Charts

Recording Fail Event

Scenario 38

Failure Event: Hold Resume- auto recording on IP phone - devRD, A, C, D (SME) and RDD (cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1437

Message Sequence Charts
Recording Fail Event

Cluster 1 (SME): Step 4- Check auto recording started on A1.

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

• "Allow trunk use GW recording" is enabled

• Central recorder: 2000
Check A1 TermConnection.getCiscoRecorderInfo():

Cluster 2: .getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
Cluster 3 (leaf): .getTerminalName() = central recorder device name

• "Allow trunk use GW recording" is enabled .getAddress() = Recording profile (DN 2000)
• Branch recorder: 2000 .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW• devRD (CTIRD1) on cluster 1 has line RD1
(2303) (active remote destination: 1711623 on
cluster2) configured as:

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =
• selective recording enabled

.getMediaForkingClusterID() = name of cluster1
• GW preferred Step 5- A1 put call on hold. CheckA1 get CiscoTermConnRecordingEndedEv

Step 6- Check auto recording started on C1.Remote Destination RDD on cluster 2.
Check C1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.• devA (SEP334F) on cluster 1 has line A1 (2206)

configured as:
Check C1 TermConnection.getCiscoRecorderInfo():• GW preferred
.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC

• auto recording enabled
.getTerminalName() = central recorder device name

• rec_profile1: 2000
.getAddress() = Recording profile (DN 2000)

• devC (IP10) on cluster 1 has line C1 (3300)
configured as:

.getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE

• GW preferred .getMediaForkingDeviceName() = Device name of C

.getProtocolReferenceGUID() =• auto recording enabled

.getMediaForkingClusterID() = name of cluster1• rec_profile1: 2000

Step 7- A1 resume. No CiscoTermConnRecordingFailedEv.
• devD (SEP3925) on cluster 1 has line D1 (9002)

Step 8- C1 drop. Check C1 get CiscoTermConnRecordingEndedEv
1. Open provider Prov1, Prov2, Prov3 Step 10- Check auto recording started on A1.

2. Observe RD1, RDD1, A1, C1, and D1 in
Prov1/Prov2/Prov3 accordingly

Check A1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

Check A1 TermConnection.getCiscoRecorderInfo():3. A1 call RD1

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC4. Remote destination answers, and then A1
answer .getTerminalName() = central recorder device name

5. A1 put call on hold .getAddress() = Recording profile (DN 2000)

6. C1 call D1, D1 answer .getMediaForkingDeviceType() =
CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW

7. A1 resume

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1438

Message Sequence Charts
Message Sequence Charts

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW8. C1 drop

.getProtocolReferenceGUID() =9. A1 put on hold

.getMediaForkingClusterID() = name of cluster110. A1 resume
Step 11- Check A1 get CiscoTermConnRecordingEndedEv11. A1 disconnect the call

Scenario 39

Failure Event: Redirect- auto recording on CTI remote device - devRD, A, C, D, B, E (SME) and RDD (cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1439

Message Sequence Charts
Message Sequence Charts

Cluster 1 (SME): Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

• "Allow trunk use GW recording" is enabled

• Central recorder: 2000
Check RD1 TermConnection.getCiscoRecorderInfo():

Cluster 2: .getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
Cluster 3 (leaf): .getTerminalName() = central recorder device name

• "Allow trunk use GW recording" is enabled .getAddress() = Recording profile (DN 2000)
• Branch recorder: 2000 .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW• devRD (CTIRD3) on cluster 1 has line RD1
(9008) (active remote destination: 1711681 on
cluster2) configured as:

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =
• auto recording enabled

.getMediaForkingClusterID() = name of cluster1
• GW preferred Step 5- Drop call from recorder. Check RD1 get

CiscoTermConnRecordingEndedEv
Remote Destination RDD on cluster 2. Step 6- Check auto recording started on C1.

• devA (SEP334F) on cluster 1 has line A1 (2205)
configured as: Check C1 get CiscoTermConnRecordingStartedEv and

CiscoTermConnRecordingTargetInfoEv.
• GW preferred Check C1 TermConnection.getCiscoRecorderInfo():
• selective recording enabled .getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
• rec_profile1: 2000 .getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)• devC (IP10) on cluster 1 has line C1 (3300)
configured as: .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE• GW preferred
.getMediaForkingDeviceName() = Device name of C• auto recording enabled
.getProtocolReferenceGUID() =

• rec_profile1: 2000
.getMediaForkingClusterID() = name of cluster1

• devD (SEP3925) on cluster 1 has line D1 (9002) Step 7-. A1 redirect and B1 answer. No CiscoTermConnRecordingFailedEv.

• devB (SEPAB21) on cluster 1 has line B1 (9000) Step 9- C1 drop. Check C1 get CiscoTermConnRecordingEndedEv

Step 10- Check auto recording started on RD1.• devE (IP9) on cluster 1 has line E1 (2302)

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.1. Open provider Prov1, Prov2, Prov3

2. Observe RD1, RDD1, A1, B1, C1, D1, and E1
in Prov1/Prov2/Prov3 accordingly

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
3. A1 call RD1

.getTerminalName() = central recorder device name
4. Remote destination answers

.getAddress() = Recording profile (DN 2000)
5. Drop call from recorder .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW6. C1 call D1, D1 answer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1440

Message Sequence Charts
Message Sequence Charts

A1 redirect to B1 .getMediaForkingDeviceName() = SIP trunk device name - SIP GW7.

.getProtocolReferenceGUID() =8. B1 answer

.getMediaForkingClusterID() = name of cluster19. C1 drop
Step 11- Check RD1 get CiscoTermConnRecordingEndedEv10. B1 redirect to E1

11. E1 disconnect the call

Scenario 40

Failure Event: Transfer- auto recording on CTI remote device - devRD, A, C, D, B, E (SME) and RDD (cluster2)

Events and Call InfoSetup and Action

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1441

Message Sequence Charts
Message Sequence Charts

Cluster 1 (SME): Step 4- Check auto recording started on RD1.

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.

• "Allow trunk use GW recording" is enabled

• Central recorder: 2000
Check RD1 TermConnection.getCiscoRecorderInfo():

Cluster 2: .getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
Cluster 3 (leaf): .getTerminalName() = central recorder device name

• "Allow trunk use GW recording" is enabled .getAddress() = Recording profile (DN 2000)
• Branch recorder: 2000 .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW• devRD (CTIRD3) on cluster 1 has line RD1 (9008)
(active remote destination: 1711681 on cluster2)
configured as:

.getMediaForkingDeviceName() = SIP trunk device name - SIP GW

.getProtocolReferenceGUID() =
• auto recording enabled

.getMediaForkingClusterID() = name of cluster1
• GW preferred Step 5- Drop call from recorder. Check RD1 get

CiscoTermConnRecordingEndedEv
Remote Destination RDD on cluster 2. Step 6- Check auto recording started on C1.

• devA (SEP334F) on cluster 1 has line A1 (2205)
configured as: Check C1 get CiscoTermConnRecordingStartedEv and

CiscoTermConnRecordingTargetInfoEv.
• GW preferred Check C1 TermConnection.getCiscoRecorderInfo():
• selective recording enabled .getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
• rec_profile1: 2000 .getTerminalName() = central recorder device name

.getAddress() = Recording profile (DN 2000)• devC (IP10) on cluster 1 has line C1 (3300)
configured as: .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_PHONE• GW preferred
.getMediaForkingDeviceName() = Device name of C• auto recording enabled
.getProtocolReferenceGUID() =

• rec_profile1: 2000
.getMediaForkingClusterID() = name of cluster1

• devD (SEP3925) on cluster 1 has line D1 (9002) Step 9-. A1 complete transfer. No CiscoTermConnRecordingFailedEv.

• devB (SEPAB21) on cluster 1 has line B1 (9000) Step 10- C1 drop. Check C1 get CiscoTermConnRecordingEndedEv

Step 13- Check auto recording started on RD1.• devE (IP9) on cluster 1 has line E1 (2302)

Check RD1 get CiscoTermConnRecordingStartedEv and
CiscoTermConnRecordingTargetInfoEv.1. Open provider Prov1, Prov2, Prov3

2. Observe RD1, RDD1, A1, B1, C1, D1, and E1 in
Prov1/Prov2/Prov3 accordingly

Check RD1 TermConnection.getCiscoRecorderInfo():

.getRecordingType() = CALL_RECORDING_TYPE_AUTOMATIC
3. A1 call RD1

.getTerminalName() = central recorder device name
4. Remote destination answers

.getAddress() = Recording profile (DN 2000)
5. Drop call from recorder .getMediaForkingDeviceType() =

CALL_RECORDING_MEDIA_FORKING_DEVICE_TYPE_GW6. C1 call D1, D1 answer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1442

Message Sequence Charts
Message Sequence Charts

A1 setup transfer to B1 .getMediaForkingDeviceName() = SIP trunk device name - SIP GW7.

.getProtocolReferenceGUID() =8. B1 answer

.getMediaForkingClusterID() = name of cluster19. A1 complete transfer
Step 14- Check RD1 get CiscoTermConnRecordingEndedEv10. C1 drop

11. B1 transfer to E1

12. E1 answer

13. B1 complete transfer

14. E1 disconnect the call

Scenario 41

Cluster ID in Open Provider: Open providers after changing cluster ID

Events and Call InfoSetup and Action

Step 4- After provider is reopened, check to see new cluster ID
via VerifyProviderInfo on getClusterID.

Step 4- After provider is reopened, check to see original cluster
ID via VerifyProviderInfo on getClusterID.

Cluster 1 (SME):

• "Allow trunk use GW recording" is enabled

• Central recorder: 2000

Cluster 2:

Cluster 3 (leaf):

• "Allow trunk use GW recording" is enabled

• Branch recorder: 2000

Remote Destination RDD on cluster 2.

1. Open provider on cluster 3 Leaf

2. Change cluster ID on cluster 3 (e.g. “ClusterArcadia2013”)

3. Restart CTI and CCM services

4. Provider is reopened on cluster 3 Leaf

5. Change cluster ID on cluster 3 back to original (e.g.
“ClusterID3”)

6. Restart CTI and CCM services

7. Provider is reopened on cluster 3 Leaf

8. Close provider

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1443

Message Sequence Charts
Message Sequence Charts

Secured Recording

Secured Recording Use Cases

InfoExpected ResultScenario

CallCtlTermConnTalkingEv TermA

Request succeeds

CiscoTermConnRecordingStartEv TermA

CiscoTermConnRecordingTargetInfoEv

Scenario 1

1 .Agent and recorder are encrypted

2. Customer is in a secured/non-secured
call with the agent.

3. The agent initiates a request to record
the call

CallCtlTermConnTalkingEv TermA

Request succeeds

CiscoTermConnRecordingStartEv TermA

CiscoTermConnRecordingTargetInfoEv

Scenario 2

1. Agent is non-secured and recorder is
encrypted

2. Customer is in a non-secured call with
agent

3. Agent issues a request to record the
call

Cause = CAUSE_BCNAUTHORISEDCallCtlTermConnTalkingEv TermA

CiscoTermConnRecordingStartEv

CiscoTermConnRecordingEndEv

Scenario3

1. Agent is encrypted and recorder is
non-secured

2. Customer is in a secured/non-secured
call with the agent

3. The agent issues a request to record
the call

CallCtlTermConnTalkingEv TermA

Request succeeds

CiscoTermConnRecordingStartEv termA

CiscoTermConnRecordingTargetInfoEv

Scenario 4

1. Agent and Recorder are non-secured

2. Customer and Agent are in a
non-secured call

3. Agent issues a request to record the
call

CallCtlTermConnTalkingEv TermA

Request fails with exception

Scenario 5

1. Agent and recorder are authenticated

2. Agent and customer are in a call

3. Agent issues a request to record the
call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1444

Message Sequence Charts
Secured Recording

Monitoring and Recording Use Cases

Expected ResultScenario

GC1: CallCtlTermConnTalkingEv TermA

GC2: CallActiveEv

GC2: ConnCreatedEv S

….

….

GC2: CallCtlConnEstablishedEv TermS

GC1: CiscoTermConnMonitorStartEv TermA

GC1: CiscoTermConnMonitorInitiatorInfoEv TermA

GC2: ConnCreatedEv A

….

….

GC2: CallCtlConnEstablishedEv TermA

GC2: CiscoTermConnMonitorTargetInfoEv TermS

Scenario 1

1. Agent is non-secured, Supervisor and recorder are encrypted

2. Agent is in a non-secured call with customer

3. Supervisor monitors the call in non-secured mode

CiscoTermConnRecordingStartEv

CallCtlTermConnTalkingEv TermS

The recording is done in a secured mode as Both the supervisor
and recorder are secured, but the overall call security is
non-secured.

4. Application requests for recording the call at Supervisor

Redirect Set OriginalCalledID
The following scenario illustrates the message flows for Redirect Set OriginalCalledID.

Scenario One

• A, B, and C appear in an applications controlled list.

• D is does not appear in the control list.

• A calls B.

• B redirects call to D with C as preferredOriginalCalledParty.

Application will see following events for parties A and B:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1445

Message Sequence Charts
Redirect Set OriginalCalledID

FieldsEventCallMeta Event Cause

CallingParty = A
CalledParty = B
LastRedirectedParty = C
CurrentCalledParty = D

ConnCreatedEv for D
ConnConnectedEv for DCallCtl
ConnEstablishedEv for D

Call 1META_CALL_ADDING_PARTY

CallingParty = A
CalledParty = B
LastRedirectedParty = C
CurrentCalledParty = D

ConnDisconnectedEv for B
CallCtlConnDisconnectedEv for B
TermConnDroppedEv for B
CallCtlTermConnDroppedEv for B
CallObservationEndedEv for B

Call 1META_CALL_REMOVE_PARTY

The specified event group may not be in the same order and might change depending on where parties are
present in the cluster, on the load, and other conditions.

Note

Scenario Two

• A, B, and C do not appear in the Control list, and

• D is in the application control list.

• A calls B.

• B redirects the call to D with C as preferredOriginalCalledParty.

The application will see following events for party D:

.

FieldsEventCallMeta Event Cause

CallingParty = A
CalledParty = D
LastRedirectedParty = C
CurrentCalledParty = D

CallActiveEv
ConnCreatedEv for D
ConnInProgressEv for D
CallCtlConnOfferedEv for D
ConnCreatedEv for A
CallCtlConnInitiatedEv for A

Call1META_CALL_STARTING

CallingParty = A
CalledParty = D
LastRedirectedParty = C
CurrentCalledParty = D

ConnAlertingEv for D
CallCtlConnAlertingEv for D
TermConnCreatedEv for D
CallCtlTermConnRingingEv for D
ConnConnectedEv for A
CallCtlConnEstablishedEv for A

Call1META_CALL_PROGRESS

CallingParty = A
CalledParty = D
LastRedirectedParty = C
CurrentCalledParty = D

ConnConnectedEv for D
CallCtlConnEstablishedEv for D
TermConnActiveEv for D
CallCtlTermConnTalkingEv for D

CallMETA_CALL_PROGRESS

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1446

Message Sequence Charts
Message Sequence Charts

Redirect to a Device
The following tables display message sequence charts for the Redirect enhancement that allows you to redirect
calls to a specific device, even if that device is sharing a line with another device.

CallRedirect to Shared Line with Device Name

In this use case devices A, B, C, and C' are IP phones where C and C' share a line. RP is the route point.

CallInfoEventsAction

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAltertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEv TermB

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

A calls B and B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1447

Message Sequence Charts
Redirect to a Device

CallInfoEventsAction

CurrentCallingParty = A

CurrentCalledParty = C

Reason =
CiscoFeatureReason.REASON_REDIRECT

GC1 ConnCreatedEv C

GC1 ConnInProgressEv C

GC1 CallCtlConnOfferedEv C

GC1 ConnAlertingEv C

GC1 CallCtlConnAlertingEv C

GC1 TermConnCreatedEv TermC

GC1 TermConnRingingEv TermC

GC1 CallCtlTermConnRingingEvImpl TermC

GC1 TermConnCreatedEv TermC'

GC1 TermConnPassiveEv TermC'

GC1 CallCtlTermConnInUseEv TermC'

GC1 TerConnDroppedEv TermB

GC1 CallCtlTermConnDroppedEv TermB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectedEv B

Application redirects the call
from B to C using
CiscoConnection.redirect()
method with devcieName as C

CallRedirect to Shared Line with Invalid Device Name

In this use case devices A, B, C, and C' are IP phones where C and C' share a line. RP is the route point.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1448

Message Sequence Charts
Message Sequence Charts

CallInfoEventsAction

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEV TermA

GC1 CallCtlTermConnTalkingEv
TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAltertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEv
TermB

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

A calls B and B answers

InvalidPartyException caught:
geterrorcode() = CiscoJtapiException.

REDIRECT_CALL_INVALID
_DEVICE_NAME

Application redirects the
call from B to C using
CiscoConnection.redirect()
method with deviceName
as D

CallRedirect to Shared Line using selectRoute

In this use case devices A, B, C, and C' are IP phones where C and C' share a line. RP is the route point.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1449

Message Sequence Charts
Message Sequence Charts

CallInfoEventsAction

GC1 CallActiveEv A

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEV TermA

GC1 CallCtlTermConnTalkingEv
TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv RP

GC1 ConnInProgressEv RP

GC1 CallCtlConnOfferedEv RP

A calls route point RP.

RP redirects the call to the
destination C using
selectRoute() method

CurrentCallingParty = A

CurrentCalledParty = C

Reason =
CiscoFeatureReason.REASON_REDIRECT

GC1 ConnCreatedEv C

GC1 ConnInProgressEv C

GC1 ConnAltertingEv C

GC1 CallCtlConnAlertingEv C

GC1 TermConnCreatedEv TermC

GC1 TermConnRingingEv TermC

GC1 CallCtlTermConnRingingEv
TermC

GC1 ConnCreatedEv C'

GC1 TermConnPassiveEv TermC'

GC1CallCtlTermConnInUseEvTermC'

RP redirects the call to the
destination C using
selectRoute() method

Verify Remote Destination Support
Table 346: Verify Remote Destination in Add Where Route Pattern Configured Is 7.XXXX and Destination Reachable. User1 Has cti Remote Device in Its Control List

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1450

Message Sequence Charts
Verify Remote Destination Support

Call InfoEventsAction

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() which returns an array of
all remote destinations configured for that remote
terminal, CiscoRemoteDestinationInfo[0]
(assuming only one configured)

CiscoRemoteDestination
Info[0].getRemoteDestinationName() = "testRDD"

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() = "77000"

CiscoRemoteDestination Info[0].getIsActiveRD()
= true

CiscoProvTerminalRemoteDestinationChangedEvUser1 invokes
CiscoRemoteTerminal.
addRemoteDestination ("testRDD",
"77000", true)

Table 347: Verify Remote Destination in Update Where Route Pattern Configured Is 7.XXXX and Destination Reachable. User1 Has cti Remote Device in Its Control
List and Existing Remote Destination of 77000 Configured. User Invokes CiscoRemoteTerminal.updateRemoteDestination()

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

CiscoProvTerminalRemoteDestinationChangedEv.
getRemoteDestinations() which returns an array
of all remote destinations configured for that
remote terminal, CiscoRemoteDestinationInfo[0]
(assuming only one configured)

CiscoRemoteDestination
Info[0].getRemoteDestinationName() = "testRDD"

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() = "79000"

CiscoRemoteDestination Info[0].getIsActiveRD()
= true

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination ("77000",
"testRDD", "79000", true)

Table 348: Verify Remote Destination in Update Where Route Pattern Configured Is 7.XXXX and Destination Reachable. User1 Has cti Remote Device in Its Control
List and Existing Remote Destination of 77000 Configured. User Invokes CiscoRemoteTerminal.updateRemoteDestination()

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1451

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

CiscoProvTerminalRemote
DestinationChangedEv. getRemoteDestinations()
which returns an array of all remote destinations
configured for that remote terminal,
CiscoRemoteDestination Info[0] (assuming only
one configured)

CiscoRemoteDestination
Info[0].getRemoteDestinationNumber() =

"79000"

CiscoProvTerminalRemote
DestinationChangedEv

User1 invokes
CiscoRemoteTerminal.
updateRemoteDestination
Number("77000", "79000")

Table 349: Verify Remote Destination in Add Where Route Pattern Configured Is 7.XXXX and Destination Is Not Reachable. User1 Has cti Remote Device in Its Control
List

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex). getErrorCode()
= CiscoJtapiException.

CTIERR_EXTEND_AND_
CONNECT_DESTINATION
_NOT_REACHABLE.

Caught exception
com.cisco.jtapi.PlatformExceptionImpl: Extend
and Connect destination is not reachable

User1 invokes CiscoRemoteTerminal.
addRemoteDestination ("testRDD",
"99000", true)

Table 350: Verify Remote Destination in Update Where Route Pattern Configured Is 7.XXXX and Destination Is Not Reachable. User1 Has cti Remote Device in Its
Control List and Existing Remote Destination of 77000 Configured. User Invokes CiscoRemoteTerminal.updateRemoteDestination()

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex). getErrorCode()
= CiscoJtapiException.

CTIERR_EXTEND_AND_CONNECT
_DESTINATION_NOT_REACHABLE.

Caught exception com.cisco.jtapi.
PlatformExceptionImpl: Extend and Connect
destination is not reachable

User1 invokes CiscoRemoteTerminal.
updateRemoteDestination ("77000",
"testRDD", "99000", true)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1452

Message Sequence Charts
Message Sequence Charts

Table 351: Verify Remote Destination in Update Where Route Pattern Configured Is 7.XXXX and Destination Is Not Reachable. User1 Has cti Remote Device in Its
Control List and Existing Remote Destination of 77000 Configured. User Invokes CiscoRemoteTerminal.updateRemoteDestinationNumber()

Call InfoEventsAction

ProvInServiceEvUser1 opens Provider and adds a
provider observer.

Let "ex" be an instance of
PlatformException:

((CiscoJtapiException) ex). getErrorCode()
= CiscoJtapiException.

CTIERR_EXTEND_AND_CONNECT
_DESTINATION_NOT_REACHABLE.

Caught exception com.cisco.jtapi.
PlatformExceptionImpl: Extend and Connect
destination is not reachable

User1 invokes CiscoRemoteTerminal.
updateRemoteDestinationNumber
("77000", "99000")

Secure Conferencing
Call infoEventsAction

Calling: A

Called: B

CallSecurityStatus = 3

(ENCRYPTED) will get updated in the call
info.

CallSecurityStatus = 3

(ENCRYPTED).

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1

Returns the call security status of the call.

Scenario:1

Configuration: A (secure) and B (secure).

A calls B. B answers.

Application issues

getCallSecurtyStatus().

Participants: A, B, C

CallSecurityStatus = 1
(NOTAUTHENTICATED). Note: Though
CallSecurityStatus = NotAuthenticated, A
and B will continue to have secure media
between themselves and the conference
bridge, i.e. they will continue to receive
SRTP key info because they are encrypted
parties.

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1.

Configuration: A (secure), B (secure) and
C (non-secure).

Application sets ini parameter = true by
issuing enableSecurtyStatusChangedEv ()

A calls B. B answers.

B call C. C answers.

B completes conference.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1453

Message Sequence Charts
Secure Conferencing

Call infoEventsAction

Participants: A, B, C

CallSecurityStatus = 3

(ENCRYPTED) will get updated in the call
info.

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1.

Returns the call security status of the call
(Secure).

Scenario:3

Configuration: A (secure), B (secure) and
C (secure).

Application sets ini parameter = true by
issuing enableSecurtyStatusChangedEv ()

A calls B. B answers.

B call C. C answers.

B completes conference.

Application issues getCallSecurtyStatus().

Participants: A, B, C

CallSecurityStatus = 1

(NOTAUTHENTICATED)

will get updated in the call info.

CallSecurityStatusChangedEv for callID =
GC1 with Cause = CAUSE_SNAPSHOT

Returns the call security status of the call.

Scenario:4

Application does not add call observers on
A, B, C.

Configuration: A (secure), B (secure) and
C (non-secure).

A calls B. B answers.

B call C. C answers.

B completes conference.

Application later adds call observers on A,
B, C.

Application issues getCallSecurtyStatus().

CallSecurityStatus = 3

(ENCRYPTED) will get updated in the call
info.

CallSecurityStatus = 0

(UNKNOWN) will get updated in the call
info.

CallSecurityStatus =

(ENCRYPTED) will get updated in the call
info.

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1

CallSecurityStatusChangedEv for callID =
GC1

CallSecurityStatusChangedEv for callID =
GC1

Scenario:5

Configuration: A (secure), B (secure).

Application sets ini parameter = true by
issuing

enableSecurtyStatusChangedEv()

A calls B. B answers.

B puts call on hold.

B resumes call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1454

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallSecurityStatus = 3

(ENCRYPTED) will get updated in the call
info for GC1.

CallSecurityStatus = 1

(NOTAUTHENTICATED) will get
updated in the call info for GC2.

CallSecurityStatus = 1

(NOTAUTHENTICATED) will get
updated in the call info for GC1.

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1

CallActiveEv for callID = GC2 Cause:
CAUSE_NEW_CALL

GC2:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

GC2:ConnCreatedEv for C’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC2

CallCtlSecurityStatusChangedEv for callID
= GC1

Scenario:6

Configuration: A (secure), B (secure) and
C (non-secure).

Application sets ini parameter = true by
issuing

enableSecurtyStatusChangedEv()

A calls B. B answers.

B consults C. C answers.

B completes transfer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1455

Message Sequence Charts
Message Sequence Charts

Call infoEventsAction

CallSecurityStatus = 3

(ENCRYPTED) will get updated in the call
info for GC1.

CallSecurityStatus = 2

(AUTHENTICATED) will get updated in
the call info for GC2.

CallSecurityStatus = 1

(NOTAUTHENTICATED) will get
updated in the call info for GC1 and GC2.

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for C’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallActiveEv for callID = GC1 Cause:

CAUSE_NEW_CALL

GC2:ConnCreatedEv for C’ Cause:
CAUSE_NORMAL

GC2:ConnCreatedEv for D’ Cause:
CAUSE_NORMAL

GC2:ConnCreatedEv for E’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallCtlSecurityStatusChangedEv for callID
= GC1

Scenario:7

Configuration: A (secure), B (secure), C
(secure), D (secure), and E (Authenticated).

Application sets ini parameter = true by
issuing enableSecurtyStatusChangedEv()

A, B and C are part of a conference Call 1.

C, D and E are a part of another conference
Call 2.

C chains the 2 conferences.

CallSecurityStatus = 2

(AUTHENTICATED) will get updated in
the call info for GC1.

Applications who have added
call observers on B’ will also
get the event, i.e. the new
event will be delivered to RIU
Parties as well.

Note

CallActiveEv for callID = GC1 Cause:
CAUSE_NEW_CALL

GC1:ConnCreatedEv for A’ Cause:
CAUSE_NORMAL

GC1:ConnCreatedEv for B’ Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv

CallSecurityStatusChangedEv for callID =
GC1.

Scenario:8

Configuration: A (secure), B (secure), B
(authenticated)

Application sets ini parameter = true by
issuing enableSecurtyStatusChangedEv()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1456

Message Sequence Charts
Message Sequence Charts

Secure Connection Enhancements
Call informationEventsAction

Provider is initialized correctly through TLS
connection. Provider.getAddress() and
provider.getTerminals() return correct number of
addresses and terminals

ProvInService event is delivered to provider observer

The application wants to connect securely to Cisco
Unified Communications Manager and downloads
the certficate using the interfaces in
CiscoJtapiProperties. After down loading the
certificate, application initializes provider using a
providerString formatted with new parameters:

String providerString = serverName + ";login = " +
login + ";passwd = " + passwd + ";InstanceID = " +
instanceID + ";CAPF = " + CAPFserver +
";CAPFPort = " + capfport + ";TFTP = " +
TFTPServer + ";TFTPPort = " + tftpport +
";CertPath = " + certificatepath+
";CertStorePassphrase = " + cartificatepassphrase
+";"

JtapiPeer peer = JtapiPeerFactory.getJtapiPeer (null
);

MyProviderObserver providerObserver = new
MyProviderObserver ();

provider = peer.getProvider (providerString);

Provider is initialized correctly.
Provider.getAddress() and provider.getTerminals()
return correct number of addresses and terminals

ProvInService is delivered to provider observer

The application is not interested in secure connection
and open provider using userid and passwd in
provider String

String providerString = serverName + ";login = " +
login + ";passwd = " + ";"

Provider is initialized correctly through TLS
connection. Provider.getAddress() and
provider.getTerminals() return correct number of
addresses and terminals

The application uses jtprefs to download the
certificates and initializes provider specifying only
the userid, passwd, instanceid and certificate pass
phrase in provider string.

String providerString = serverName + ";login = " +
login + ";passwd = " + passwd + ";InstanceID = " +
instanceID +":CertStorePassphrase = " +
cartificatepassphrase +";"

Secure Icon Enhancements
Enable the callSecurityStatusChangedEv using JTAPI ini parameters or using the JTAPIProperties.

Cluster1 and Cluster2 are secured and User is also a secured user having a CAPF profile associated with it.
Enable "SRTP Allowed" in the SIP trunk Configurations.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1457

Message Sequence Charts
Secure Connection Enhancements

TermA is registered to Cluster1 with address A.

TermB is registered to Cluster2 with address B

TermC is registered to Cluster2 or Cluster1 as per Use case and has address C

SIP trunk is configured on Cluster1 to make calls to cluster2

A Route Pattern is configured on Cluster 1 to route the call to the SIP trunk

Use Case One

InformationExpected resultsAction

Set the value for
"Consider Traffic on this
Trunk Secure" to 'When
Using only sRTP' in the
SIP trunk config on
cluster1.

Security Mode of Both
term A and termB is
encrypted.

Security mode of the SIP
trunk is non secured.

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConenctedEvA

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 ConnEstablishedEv A

A calls B though the
route pattern.

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEvImpl termB

Call is offered on B and
B accepts.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1458

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

TermA CiscoRTPOutputStartedEv

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv TermB

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

GC1 CiscoCallSecurityStatusChangedEv

B answers the call

Use Case Two

InformationExpected resultsAction

Set the value for
"Consider Traffic on this
Trunk Secure" to 'When
Using only sRTP' in the
SIP trunk config on
cluster1.

Security Mode for term
A and termB and term C
is encrypted.

Security mode of the SIP
trunk is non secured.

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConenctedEvA

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 ConnEstablishedEv A

A calls B though the
route pattern.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1459

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEvImpl termB

Call is offered to B and
B accepts.

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

TermA CiscoRTPOutputStartedEv

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv TermB

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

GC1 CiscoCallSecurityStatusChangedEv

B answers the call.

call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

TermA CiscoRTPOutputStoppedEv

TermB CiscoRTPOutputStoppedEv

TermA CiscoRTPInputStoppedEv

TermB CiscoRTPInputStoppedEv

GC1 ConnCreatedEv C

GC1 ConnInProgressEv C

GC1 CallCtlConnOfferedEv C

GC1 ConnAlertingEv C

GC1 CallCtlConnAlertingEv C

GC1 TermConnCreatedEv TermC

GC1 TermConnRingingEv TermC

GC1 CallCtlTermConnRingingEvImpl termC

GC1 TermConnDroppedEv TermB

GC1 CallCtlTermConnDroppedEv TernB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectedEv B

B Redirects the call to C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1460

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv TermB

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

TermA CiscoRTPOutputStartedEv

GC1 CiscoCallSecurityStatusChangedEv

C answers the call

Use Case Three

InformationExpected resultsAction

Set the value for
"Consider Traffic on this
Trunk Secure" to 'When
Using only sRTP' in the
SIP trunk config on
cluster1

Security Mode of Both
term A and termB and
term C is encrypted

Security mode of the SIP
trunk is non secured

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConenctedEvA

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 ConnEstablishedEv A

A calls B though the
route pattern

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1461

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEvImpl termB

Call is offered on B and
B accepts

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

TermA CiscoRTPOutputStartedEv

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv TermB

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

GC1 CiscoCallSecurityStatusChangedEv

B answers the call

Ev.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 CallCtlTermConnHeldEv TermB

GC1 CiscoCallSecurityStatusChangedEv

GC2 CallActiveEv

GC2 ConnCreatedEv B

GC2 ConnConenctedEvB

GC2 CallCtlConnInitiatedEv B

GC2 TermConnCreatedEv TermB

GC2 TermConnActiveEv TermB

GC2 CallCtlTermConnTalkingEv TermB

GC2 CallCtlConnDialingEv B

GC2 ConnEstablishedEv B

B calls C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1462

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC2 ConnCreatedEv C

GC2 ConnInProgressEv C

GC2 CallCtlConnOfferedEv C

GC2 ConnAlertingEv C

GC2 CallCtlConnAlertingEv C

GC2 TermConnCreatedEv TermC

GC2 TermConnRingingEv TermC

GC2 CallCtlTermConnRingingEvImpl termC

Call is offered on C and
C accepts

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

TermB CiscoRTPOutputStartedEv

GC2 ConnConnectedEv C

GC2 CallCtlConnEstablishedEv C

GC2 TermConnActiveEv C

GC2 CallCtlTermConnTalkingEv TermC

TermB CiscoRTPInputStartedEv

TermC CiscoRTPOutputStartedEv

TermC CiscoRTPInputStartedEv

GC2 CiscoCallSecurityStatusChangedEv

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1463

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Ev.getCallSecurityStatus() =
CALLSECURITY_ENCRYPTED

GC1 CiscoTermConnSelectChangedEv termB

GC2 CiscoTermConnSelectChangedEv TermB

TermC CiscoRTPOutputStoppedEv

TermB CiscoRTPOutputStoppedEv

TermC CiscoRTPInputStoppedEv

TermB CiscoRTPInputStoppedEv

GC1 CiscoTransferStartEv

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv C

GC1 ConnConnectedEv C

GC1 CallCtlConnEstablishedEv C

GC1 TermConnCreatedEv TermC

Gc1 TermConnActiveEv TermC

Gc1 CallCtlTermConnTalkingEv TermC

GC2 TermConnDroppedEv TermC

GC2 CallCtlTermConnDroppedEv TermC

GC2 ConnDisconnectedEv C

GC2 CallCtlConnDisconnectedEv C

GC2 TermConnDroppedEv termB

GC2 CallCtlTermConnDroppedEv TermB

GC2 ConnDisconnectedEv B

GC2 CallCtlConnDisconnectedEv B

GC2 CallInvalidEv

GC1 TermConnDroppedEv termB

GC1 CallCtlTermConnDroppedEv TermB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectedEv B

GC1 CiscoTransferEndEv

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

TermA CiscoRTPOutputStartedEv

GC1 CiscoCallSecurityStatusChangedEv

B does a Direct Transfer

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1464

Message Sequence Charts
Message Sequence Charts

Use Case Four

InformationExpected resultsAction

Set the value for
"Consider Traffic on this
Trunk Secure" to 'When
using both sRTP and
TLS' in the SIP trunk
config on cluster1

Security Mode of Both
term A and termB and
term C is encrypted

Security mode of the SIP
trunk is non secured

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConenctedEvA

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEv TermA

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 ConnEstablishedEv A

A calls B though the
route pattern

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TermB

GC1 TermConnRingingEv TermB

GC1 CallCtlTermConnRingingEvImpl termB

Call is offered on B and
B accepts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1465

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

TermA CiscoRTPOutputStartedEv

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv TermB

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

B answers the call

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 CallCtlTermConnHeldEv TermB

GC2 CallActiveEv

GC2 ConnCreatedEv B

GC2 ConnConenctedEvB

GC2 CallCtlConnInitiatedEv B

GC2 TermConnCreatedEv TermB

GC2 TermConnActiveEv TermB

GC2 CallCtlTermConnTalkingEv TermB

GC2 CallCtlConnDialingEv B

GC2 ConnEstablishedEv B

B calls C

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC2 ConnCreatedEv C

GC2 ConnInProgressEv C

GC2 CallCtlConnOfferedEv C

GC2 ConnAlertingEv C

GC2 CallCtlConnAlertingEv C

GC2 TermConnCreatedEv TermC

GC2 TermConnRingingEv TermC

GC2 CallCtlTermConnRingingEvImpl termC

Calls is offered on C and
C accepts

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1466

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

TermB CiscoRTPOutputStartedEv

GC2 ConnConnectedEv C

GC2 CallCtlConnEstablishedEv C

GC2 TermConnActiveEv C

GC2 CallCtlTermConnTalkingEv TermC

TermB CiscoRTPInputStartedEv

TermC CiscoRTPOutputStartedEv

TermC CiscoRTPInputStartedEv

C answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1467

Message Sequence Charts
Message Sequence Charts

InformationExpected resultsAction

Call.getCallSecurityStatus() =
CALLSECURITY_NOTAUTHENTICATED

GC1 CiscoTermConnSelectChangedEv termB

GC2 CiscoTermConnSelectChangedEv TermB

TermC CiscoRTPOutputStoppedEv

TermB CiscoRTPOutputStoppedEv

TermC CiscoRTPInputStoppedEv

TermB CiscoRTPInputStoppedEv

GC1 CiscoTransferStartEv

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv C

GC1 ConnConnectedEv C

GC1 CallCtlConnEstablishedEv C

GC1 TermConnCreatedEv TermC

Gc1 TermConnActiveEv TermC

Gc1 CallCtlTermConnTalkingEv TermC

GC2 TermConnDroppedEv TermC

GC2 CallCtlTermConnDroppedEv TermC

GC2 ConnDisconnectedEv C

GC2 CallCtlConnDisconnectedEv C

GC2 TermConnDroppedEv termB

GC2 CallCtlTermConnDroppedEv TermB

GC2 ConnDisconnectedEv B

GC2 CallCtlConnDisconnectedEv B

GC2 CallInvalidEv

GC1 TermConnDroppedEv termB

GC1 CallCtlTermConnDroppedEv TermB

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectedEv B

GC1 CiscoTransferEndEv

TermA CiscoRTPInputStartedEv

TermB CiscoRTPOutputStartedEv

TermB CiscoRTPInputStartedEv

TermA CiscoRTPOutputStartedEv

B does a Direct Transfer

GC1.transfer(GC2)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1468

Message Sequence Charts
Message Sequence Charts

Shared Line Support
The following diagrams illustrate the message flows for Shared Line support.

AddressInService/AddressOutofService Events

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1469

Message Sequence Charts
Shared Line Support

Incoming Call to Shared Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1470

Message Sequence Charts
Incoming Call to Shared Address

Outgoing Call From Shared Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1471

Message Sequence Charts
Outgoing Call From Shared Address

Shared Address Calling Itself

Single Sign-On
Here are the list of use cases for this feature.

ResultScenarioSl. No

Returns provider to the application and all the addresses configured in
the control list.

Start the application (cucimoc) and
getProvider(str) API is called by application
specifying the singlesignon ticket.

Application calls getAddresses() API.

1.

Throws a platform exception to getProvider() API.Application specifies an invalid ticket but correct
userid and password in API.

2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1472

Message Sequence Charts
Shared Address Calling Itself

ResultScenarioSl. No

Returns provider to the application.

Delivers ProvOutOfServiceEv to provider observer.

JTAPI connects and tries to authenticate the user which fails.

Delivers ProvShutdownEv to provider observer.

Returns provider object to the application.

Start the application and it calls the getProvider()
API with singlesignon ticket.

The network connectivity is lost.

Application gets a new singlesignon token and
calls getProvider().

3.

Throws PlatformException and getErrorCode() returns
CiscoJTAPIException - CTIERR_SSO_DISABLED.

Start the application and getProvider() API is
called by application with the singlesignon ticket.
But the feature is not enabled on Cisco Unified
Communications Manager.

4.

Throws PlatformException and getErrorCode() returns
CiscoJTAPIException - CTIERR_DIRECTORY_LOGIN_FAILED.

Start the application and getProvider() API is
called by application with invalid singlesignon
ticket.

5.

Both getProvider() call is successful with the first provider.

Throws exception to the second getProvider().

Multiple providers:

Start the application and getProvider() on two
nodes in the cluster with the same token.

6.

Single Step Transfer
Addresses A, B, and C appear in the control list, and the call between A and B is then gets transferred to C
with B as the transfer controller. Applications will see the following events:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1473

Message Sequence Charts
Single Step Transfer

Address C (5003)

Terminal CTIP3

Address B (5002)

Terminal CTIP2

Address A (5001)

Terminal CTIP1

Action

CallActiveEv Cause:
CAUSE_NEW_CALL

ConnCreatedEv 5003 Cause:
CAUSE_NORMAL

ConnInProgressEv 5003 Cause:
CAUSE_NORMAL

CallCtlConnOfferedEv 5003 Cause:
CAUSE_NORMAL
CallControlCause:
CAUSE_TRANSFER

ConnCreatedEv 5001Cause:
CAUSE_NORMAL

ConnConnectedEv 5001 Cause:
CAUSE_NORMAL

CallCtlConnEstablishedEv
5001Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

NEWMETA
EVENT__META_CALL_
REMOVING_PARTY

TermConnDroppedEvCTIP2Cause:
CAUSE_NORMAL

CallCtlTermConnDroppedEvCTIP2
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_TRANSFER

ConnDisconnectedEv 5002 Cause:
CAUSE_NORMAL

CallCtlConnDisconnectedEv 5002
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_TRANSFER

ConnCreatedEv 5003 Cause:
CAUSE_NORMAL

ConnInProgressEv 5003 Cause:
CAUSE_NORMAL

CallCtlConnOfferedEv 5003 Cause:
CAUSE_NORMAL

CallControlCause:
CAUSE_TRANSFER

ConnAlertingEv 5003 Cause:
CAUSE_NORMAL

CallCtlConnAlertingEv 5003 Cause:
CAUSE_NORMAL
CallControlCause:
CAUSE_TRANSFER

Call.transfer(string)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1474

Message Sequence Charts
Message Sequence Charts

Address C (5003)

Terminal CTIP3

Address B (5002)

Terminal CTIP2

Address A (5001)

Terminal CTIP1

Action

ConnAlertingEv 5003 Cause:
CAUSE_NORMALCallCtl
ConnAlertingEv 5003 Cause:
CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

TermConnCreatedEv CTIP3

TermConnRingingEv CTIP3Cause:
CAUSE_NORMAL

CallCtlTermConnRingingEvImpl
CTIP3 Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

CiscoRTPInputStartedEv Cause:
CAUSE_NORMAL

CiscoRTPOutputStartedEv Cause:
CAUSE_NORMAL

ConnConnectedEv 2004 Cause:
CAUSE_NORMAL

CallCtlConnEstablishedEv
5003Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

NEWMETA
EVENT_________META_UNKNOWN

CallObservationEndedEv Cause:
CAUSE_NORMAL

CiscoRTPInputStartedEv Cause:
CAUSE_NORMAL

CiscoRTPOutputStartedEv Cause:
CAUSE_NORMAL

ConnConnectedEv 5003
CAUSE_NORMAL

CallCtlConnEstablishedEv 5003
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

Call.transfer(string)

(continued)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1475

Message Sequence Charts
Message Sequence Charts

Address C (5003)

Terminal CTIP3

Address B (5002)

Terminal CTIP2

Address A (5001)

Terminal CTIP1

Action

TermConnActiveEv CTIP3 Cause:
CAUSE_NORMAL

CallCtlTermConnTalkingEv CTIP3
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

CiscoRTPInputStoppedEv Cause:
CAUSE_NORMAL

CiscoRTPOutputStoppedEv Cause:
CAUSE_NORMAL

ConnDisconnectedEv 5001 Cause:
CAUSE_NORMAL

CallCtlConnDisconnectedEv 5001
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

TermConnDroppedEvCTIP3Cause:
CAUSE_NORMAL

CallCtlTermConnDroppedEvCTIP3
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

ConnDisconnectedEv 5003 Cause:
CAUSE_NORMAL

CallCtlConnDisconnectedEv 5003
Cause: CAUSE_NORMAL
CallControlCause:
CAUSE_NORMAL

META_UNKNOWN

CallInvalidEv [#32] Cause:
CAUSE_NORMAL

Call.transfer(string)

(continued)

SIP REPLACE
For the JTAPI events in the scenario described below, we have not shown Terminal events. It will be sent for
all the observed Terminals as usual. Also events are shownwith the assumption that only A, B, or C is observed;
events would vary if combination of A, B, or C is observed.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1476

Message Sequence Charts
SIP REPLACE

Events at CEvents at BEvents at AScenarioSN

NewCall/CSCE -Dialing/
CSCE -Connected with Cgpn
= C, Cdpn = A, Ocdpn = B,
Lrp = B

JTAPI Events:

CallActiveEv –GC2
ConnCreatedEv –C –GC2
ConnConnectedEv -C -–GC2
CallCtlConnEstablishedEv
-C–GC2

ConnCreatedEv –A–GC2
ConnConnectedEv A -–GC2
CallCtlConnEstablishedEv -A
-–GC2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = A,
CurrentCalling = C,
CurrentCalled = A,
LastRedirecting = B

CSCE IDLE with reason
REPLACES

JTAPI Events:

ConnDisconnectedEv –A
–GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnDisconnectedEv –B
-GC1
CallCtlConnDisconnectedEv
-B -GC1

CallInvalidEv -GC1

CAUSE_NORMAL

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

GCID and CPIC with reason
REPLACES, Cgpn =C, Cdpn
= A, Ocdpn = A, Lrp = B

JTAPI Events:

CiscoCallChangedEv - (GC1
-GC2) ConnDisconnectedEv
–B -GC1
CallCtlConnDisconnectedEv
-B–GC1
ConnDisconnectedEv –A
-GC1
CallCtlConnDisconnectedEv
-A–GC1 CallInvalid -GC1

CallActive -CG2
ConnCreatedEv –C -GC2
ConnConnectedEv –C -GC2
CallCtlConnEstablishedEv -C
-CG2

ConnCreatedEv –A –GC2
ConnConnectedEv –A -GC2
CallCtlConnEstablishedEv -A
-CG2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = A,
CurrentCalling = C,
CurrentCalled = A,
LastRedirecting = B

REPLACE with INVITE a
confirmed Dialog:

A (Dialog1) is in Call with B
(Dialog2) (GC1). C sends
INVITE with REPLACE
Dialog2 (GC2). After replace
is completed, A (Dialog1) and
C (Dialog3) are in the Call

1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1477

Message Sequence Charts
Message Sequence Charts

Events at CEvents at BEvents at AScenarioSN

NewCall/CSCE
-Dialing/CSCE -Connected,
with Cgpn = C, Ccdpn = A,
Ocdpn = A, Lrp = B

JTAPI Events:

CallActiveEv –GC2
ConnCreatedEv –C –GC2
ConnConnectedEv -C -–GC2
CallCtlConnEstablishedEv
-C–GC2

ConnCreatedEv –A–GC2
ConnConnectedEv A -–GC2
CallCtlConnEstablishedEv -A
-–GC2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = A,
CurrentCalling = C,
CurrentCalled = A,
LastRedirecting = B

CSCE -Idle with reason
REPLACES

JTAPI Events:

ConnDisconnectedEv –A
–GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnDisconnectedEv –B
-GC1
CallCtlConnDisconnectedEv
-B -GC1

CallInvalidEv -GC1

CAUSE_NORMAL

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

GCID and CPIC with reason
REPLACES, Cgpn =C, Cdpn
= A, Ocdpn = A, Lrp = B

JTAPI Events
CiscoCallChangedEv - (GC1
-GC2) ConnDisconnectedEv
–B -GC1
CallCtlConnDisconnectedEv
-B–GC1
ConnDisconnectedEv –A
-GC1
CallCtlConnDisconnectedEv
-A–GC1 CallInvalid -GC1

CallActive -CG2
ConnCreatedEv –C -GC2
ConnConnectedEv –C -GC2
CallCtlConnEstablishedEv -C
-CG2

ConnCreatedEv –A –GC2
ConnConnectedEv –A -GC2
CallCtlConnEstablishedEv -A
-CG2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = A,
CurrentCalling = C,
CurrentCalled = A,
LastRedirecting = B

REPLACE with INVITE an
early Dialog:

A (Dailog1) is in Call with B
(Dialog2) (GC1), B is ringing.
C sends INVITE with
REPLACE Dialog2 (GC2).
After replace completed, A
(Dialog1) and C (Dialog3) in
the Call

2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1478

Message Sequence Charts
Message Sequence Charts

Events at CEvents at BEvents at AScenarioSN

NewCall/CSCE_Dialing/
reason REPLACES CSCE
-Disconnected with reason
REPLACES

JTAPI Events:

CallActiveEv –GC2
ConnCreatedEv –C–GC2
ConnConnectedEv –C–GC2
CallCtlConnEstablishedEv -C
-–GC2

ConnFailedEv –C -–GC2
ConnConnectedEv –C -–GC2
CallCtlConnEstablishedEv -A
-–GC2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = ,
CurrentCalling = C,
CurrentCalled = ,
LastRedirecting =

REPLACE with INVITE an
early Dialog:

A (Dialog1) is in Call with B
(Dialog2) (GC1), B is ringing.
C sends invite with replace
Dialog -X (GC2)

3.

TransferStartEv

GCID with reason
TRANSFER and Cgpn = B,
Cdpn = C, Lrp = A OCdpn =
C

TransferEndEv

JTAPI Event:

Regular TransferEvents

TransterStartEv

CPIC with reason
TRANSFER and Cgpn = B,
Cdpn = C, Lrp = A OCdpn =
C

TransferEndEv

JTAPI Event:

Regular TransferEvents

TransferStartEv

CSCE -Idle at Dialog1 with
reason TRANSFER and at
Dialog3 with reason
TRANSFER

TransferEndEv

JTAPI Event:

Regular TransferEvent

REFER request with
REPLACE Dialog:

When REPLACEDialog is in
a Cisco Unified
Communications Manager
Cluster.

A is in call with B
(REFEREE) Dialog1, and
Dialog2

A is in Call with C (REFER
TO TARGET) Dialog3 and
Dialog4

SIP -UAA send REFER B on
Dialog1 to C with
REPLACES Dialog3

4.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1479

Message Sequence Charts
Message Sequence Charts

Events at CEvents at BEvents at AScenarioSN

No EventsCPICwith reason REFER and
Cgpn = B, Cdpn = C, Lrp = A
OCdpn = B

JTAPI Events:

ConnDisconnectedEv –A
-GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnCreatedEv – C –GC1
ConnConnectedEv –C -GC1
CallCtlConnEstablishedEv–C
-GC1

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REFER

JTAPI CallInfo:

Calling = A, Called = B,
CurrentCalling = B,
CurrentCalled = C,
LastRedirecting = A

No EventsREFER request with
REPLACE Dialog:

When REPLACE Dialog is
outside Cisco Unified
Communications Manager
Cluster

SIP -UA A is in call with B,
Dialog1 and Dialog2 (GC1)

SIP -UA A is in call with SIP
-UA C Dialog3

SIP -UA A sends REFER B
onDialog1 to SIP -UACwith
REPLACES Dialog3

5.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1480

Message Sequence Charts
Message Sequence Charts

Events at CEvents at BEvents at AScenarioSN

GCID with reason
REPLACES and Cgpn = B,
Cdpn = C, Lrp = A OCdpn =
C

JTAPI Events:

CiscoCallChangedEv (GC2
-GC1) ConnDisconnectedEv
–A -GC2
CallCtlConnDisconnectedEv
-A -GC2

ConnDisconnectedEv –C
-GC2
CallCtlConnDisconnectedEv
-C -GC2 CallInvalid -GC2

CallActive -CG1
ConnCreatedEv –B –GC1
ConnConnectedEv –B -GC1
CallCtlConnEstablishedEv -B
-CG1

ConnCreatedEv –C -GC1
ConnConnectedEv –C -GC1
CallCtlConnEstablishedEv -C
-CG1

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = A, Called = B,
CurrentCalling = B,
CurrentCalled = C,
LastRedirecting = A

CPIC with reason
REPLACES and Cgpn = B,
Cdpn = C, Lrp = A, OCdpn =
C

JTAPI Events:

ConnDisconnectedEv –A
-GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnCreatedEv – C - GC1
ConnConnectedEv –C –GC1
CallCtlConnEstablishedEv–C
-GC1

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = A, Called = B,
CurrentCalling = B,
CurrentCalled = C,
LastRedirecting = A

No EventsREFER request with
REPLACE Dialog:

When A is outside a Cisco
Unified Communications
Manager Cluster

SIP -UA A is in call with B,
Dialog1 and Dialog2

SIP -UA A is in call with C
Dialog3 and Dialog4

SIP -UA A sends REFER B
on Dialog1 to C with
REPLACES Dialog3

6.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1481

Message Sequence Charts
Message Sequence Charts

Events at CEvents at BEvents at AScenarioSN

GCID with reason
REPLACES and Cgpn = B,
Cdpn = C, Lrp = D, OCdpn =
C

JTAPI Events:

CiscoCallChangedEv (GC2
-GC1) ConnDisconnectedEv
-D
CallCtlConnDisconnectedEv
-D

ConnDisconnectedEv -C
CallCtlConnDisconnectedEv
-C CallInvalid -GC2

CallActive -CG1
ConnCreatedEv –C -GC1
ConnConnectedEv –C -GC1
CallCtlConnEstablishedEv -C
-CG1

ConnCreatedEv –B –GC1
ConnConnectedEv –B -GC1
CallCtlConnEstablishedEv -B
-CG2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = C, Called = C,
CurrentCalling = B,
CurrentCalled = C,
LastRedirecting = D

CPIC with reason
REPLACES and Cgpn = B,
Cdpn = C, Lrp = D OCdpn =
C

JTAPI Events:

ConnDisconnectedEv –A
-GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnCreatedEv –C -GC1
ConnConnectedEv –C –GC1
CallCtlConnEstablishedEv -C
-GC1

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

JTAPI CallInfo:

Calling = A, Called = B,
CurrentCalling = B,
CurrentCalled = C,
LastRedirecting = D

CSCE -Idle at Dialog1 with
reason REFER and at Dialog3
with reason REPLACES

JTAPI Events:

ConnDisconnectedEv –A
–GC1
CallCtlConnDisconnectedEv
-A -GC1

ConnDisconnectedEv –B
-GC1
CallCtlConnDisconnectedEv
-B -GC1 CallInvalidEv -GC1

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REFER

Event at D:

ConnDisconnectedEv –D
–GC2
CallCtlConnDisconnectedEv
-D -GC2

ConnDisconnectedEv –C
-GC2
CallCtlConnDisconnectedEv
-C -GC2 CallInvalidEv -GC2

Cause = CAUSE_NORMAL
CiscoFeatureReason =
REASON_REPLACES

REFER request with
REPLACE Dialog:

When REPLACEDialog is in
a Cisco Unified
Communications Manager
Cluster.

A is in call with B
(REFEREE) Dailog1, and
Dialog2 (GC1)

D is in Call with C (REFER
TO TARGET) Dialog3 and
Dialog4 (GC2)

A sends REFERB onDialog1
to C with REPLACES
Dialog3

B and C in final call.

7.

SIP REFER
The following section describes the scenarios that might be encountered during a SIP REFER. There are two
categories of REFER scenarios: IN-Dialog and OutOfDialog.

IN-Dialog REFER Scenario
There are 11 scenarios (A through K) described in the sections that follow for IN-Dialog REFERs.

Scenario One

A (SIP UA in cluster/in control) is in a call with B.

A (referrer) REFERs B (Referee) to C (Refer to target), C is Ringing.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1482

Message Sequence Charts
SIP REFER

JTAPI moves A’s Connect/CallControlConnection/TerminalConnection/

CallControlTerminalConnection into the “UNKNOWN” state.

CAUSE_CODE provided will be CAUSE_NORMAL, new API provides REASON_REFER.

For C a new Connect/CallControlConnection/TerminalConnection/CallControlTerminalConnection would
be created.

CallInfo at B and C would be as follows:

At B: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C
At C: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

JTAPI Application observing B will see:

getCallingParty() = A
getCalledParty() = B
getCurrentCallingParty() = B
getCurrentCalledParty() = C
getLastRedirecting() = A

JTAPI Application observing C will see:

getCallingParty() = B
getCalledParty() = C
getCurrentCallingParty() = B
getCurrentCalledParty() = C
getLastRedirecting() = A

Scenario Two

A(SIP UA in cluster/in control) is in a call with B.

A(referrer) REFERs B(Referee) to C(Refer to target), C Answers the Call.

JTAPI will Disconnect/Drop A’s Connect/CallControlConnection/TerminalConnection/

CallControlTerminalConnection. CAUSE_CODE provided will be CAUSE_NORMAL and the new API
would provide REASON_REFER.

For C Connect/CallControlConnection/TerminalConnection/CallControlTerminalConnection will move to
the Connected/Established/Active/Talking state.

CallInfo at B and C will be as follows

At B: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C
At C: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1483

Message Sequence Charts
Message Sequence Charts

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

Scenario Three

A(SIP UA inside cluster) is in a call with B.

A(referrer) REFERs B(Referee) to C(Refer to target), C is ringing but C did not answer the call and has no
forward configured. Refer fails, the original call between A and B is restored.

JTAPI will Disconnect/Drop the Connection/CallControlConnection/TerminalConnection/

CallControlTerminalConnection for C. CAUSE_CODE provided will be CAUSE_NORMAL and the new
API will provide REASON_REFER and move A’s Connection/CallControlConnection/

TerminalConnection/CallControlTerminalConnection from the “Unknown” state to the Connected/

Established/Active/Talking state.

CallInfo at A and B will be as follows

At A: Cgpn = A, Cdpn = B, Lrp = OCdpn = B

At B: Cgpn = A, Cdpn = B, Lrp = OCdpn = B

JTAPI Application observing A will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = A

getCurrentCalledParty() = B

getLastRedirecting() = NULL

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = A

getCurrentCalledParty() = B

getLastRedirecting() = NULL

Scenario Four

A(SIP UA outside cluster) is in call with B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1484

Message Sequence Charts
Message Sequence Charts

A(referrer) REFERs B(Referee) to C(Refer to target), C is ringing.

JTAPI will create Connection/CallControlConnection/TerminalConnection/

CallControlTerminalConnection for C and will drop A's Connection/CallControlConnection on getting CPIC
at B, CAUSE_CODE provided will be CAUSE_NORMAL and the newAPI will provide REASON_REFER.

CallInfo at B and C will be as follows:

At B: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

At C: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

Scenario Five

A(SIP UA outside cluster) is in a call with B.

A(referrer) refers B(Referee) to C(Refer to target), C is ringing but C did not answer the call and has no
forward configured. Refer fails, the original Call between A and B is restored.

JTAPI will create Connection/CallControlConnection for A again and drops Connection/

CallControlConnection/TerminalConnection/CallControlTerminalConnection for C.

CAUSE_CODE provided will be CAUSE_NORMAL and new API will provide REASON_REFER.

CallInfo at A and B will be as follows

At A: Cgpn = A, Cdpn = B, Lrp = OCdpn = B

At B: Cgpn = A, Cdpn = B, Lrp = OCdpn = B

JTAPI Application observing A will see:

getCallingParty() = A

getCalledParty() = B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1485

Message Sequence Charts
Message Sequence Charts

getCurrentCallingParty() = A

getCurrentCalledParty() = B

getLastRedirecting() = NULL

JTAPI Application observing C will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = A

getCurrentCalledParty() = B

getLastRedirecting() = NULL

Scenario Six

A(SIP UA in cluster/in control) is in a call with B.

A(referrer) REFERs B(Referee) to C(Refer to target), C answers the call.

JTAPI moves Connection/CallControlConnection/TerminalConnection/CallControlTerminalConnection for
C to the Connected/Established/Active/Talking state. CAUSE_CODE provided is CAUSE_NORMAL and
the new API will provide REASON_REFER.

CallInfo at B and C will be as follows

At B: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

At C: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

Scenario Seven

A(SIP UA in cluster/in control) is in a call with B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1486

Message Sequence Charts
Message Sequence Charts

A(referrer) REFERs B(Referee) to C(Refer to target), C forwardAll to D, D is ringing.

JTAPI creates Connection/CallControlConnection/TerminalConnection/CallControlTerminalConnection for
D. CAUSE_CODE provided will be CAUSE_REDIRECT and the reason received from CTI would be
ForwardAll.

CallInfo at B and D will be as follows

At B: Cgpn = B, Cdpn = D, Lrp = C OCdpn = C

At D: Cgpn = B, Cdpn = D, Lrp = C OCdpn = C

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = D

getLastRedirecting() = C

JTAPI Application observing D will see:

getCallingParty() = B

getCalledParty() = D

getCurrentCallingParty() = B

getCurrentCalledParty() = D

getLastRedirecting() = C

Scenario Eight

A (SIP UA in cluster/in control) is in a call with B.

A(referrer) REFERs B(Referee) to C(Refer to target), C Redirect to D, D is ringing.

JTAPI creates Connection/CallControlConnection/TerminalConnection/CallControlTerminalConnection for
D. CAUSE_CODE provided will be CAUSE_REDIRECT and the reason received fromCTI in NewCallEvent
at D will be Redirect.

Callinfo when Call is offered at C:

At B: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

At C: Cgpn = B, Cdpn = C, Lrp = A OCdpn = C

CallInfo in final Call:

At B: Cgpn = B, Cdpn = D, Lrp = C OCdpn = C

At D: Cgpn = B, Cdpn = D, Lrp = C OCdpn = C

JTAPI Application observing B will see in final Call:

getCallingParty() = A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1487

Message Sequence Charts
Message Sequence Charts

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = D

getLastRedirecting() = C

JTAPI Application observing D will see:

getCallingParty() = B

getCalledParty() = D

getCurrentCallingParty() = B

getCurrentCalledParty() = D

getLastRedirecting() = C

Scenario Nine

A(SIP UA in cluster/in control) is in a call with B.

B consult transfer to D, A(Referrer) REFERs B(Referee) to C(Refer to target), C is ringing,

Bcompletes the transfer. Attempt to transfer will fail while C is ringing.

Scenario Ten

A(SIP UA in cluster/in control) is in a call with B.

B consult transfer to D, A(Referrer) REFERs B(Referee) to C(Refer to target), C answers the call.

Refer will be successful. B completes the transfer, transfer will be successful, C and D will be in call.

JTAPI Disconnect/Drops A’s Connect/CallControlConnection/TerminalConnection/

CallControlTerminalConnection. CAUSE_CODE provided will be CAUSE_NORMAL and the newAPI will
provide REASON_REFER.

For C, Connect/CallControlConnection/TerminalConnection/CallControlTerminalConnection will move to
Connected/Established/Active/Talking state.

CallInfo at D and C would be as follows

At D: Cgpn = C, Cdpn = D, Lrp = B OCdpn = D

At C: Cgpn = C, Cdpn = D, Lrp = B OCdpn = D

JTAPI Application observing D will see:

getCallingParty() = B

getCalledParty() = D

getCurrentCallingParty() = C

getCurrentCalledParty() = D

getLastRedirecting() = B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1488

Message Sequence Charts
Message Sequence Charts

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = C

getCurrentCalledParty() = D

getLastRedirecting() = B

Scenario Eleven

B is in a call with D, B consults to A(SIP UA in cluster/in control).

A(Referrer) REFERs B(Referee) to C(Refer to target), C is ringing, B completes the transfer.

REFER would fail. Call at A will be dropped, transfer is successful, D is getting RingBack, C is ringing.

JTAPI Disconnect/Drops A’s Connect/CallControlConnection/TerminalConnection/

CallControlTerminalConnection. CAUSE_CODE provided will be CAUSE_NORMAL and the new API
would provide REASON_REFER, Application will not know if REFER failed.

For C, Connect/CallControlConnection/TerminalConnection/CallControlTerminalConnection will move to
Alerting/Alerting/Ringing/Ringing state.

CallInfo at D and C would be as follows:

At D: Cgpn = D, Cdpn = C, Lrp = B OCdpn = C

At C: Cgpn = D, Cdpn = C, Lrp = B OCdpn = C

JTAPI Application observing D will see:

getCallingParty() = B

getCalledParty() = D

getCurrentCallingParty() = D

getCurrentCalledParty() = C

getLastRedirecting() = B

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = D

getCurrentCalledParty() = C

getLastRedirecting() = B

OutOfDialog Refer
SIP-UA A REFERs B(Referee) to C (Refer To Target)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1489

Message Sequence Charts
OutOfDialog Refer

B gets newcall with Cgpn = A, Cdpn = B, Lrp = , OCdpn = B.

JTAPI Application will get CallActive, Connection, CallCtlConnection, TerminalConnecton and
CallCtlTerminalConnection created for B with CAUSE_NORMAL, and the new API will return
REASON_REFER.

B’s Connection/CallCtlConnection, TerminalConnection/CallCtlTerminalConnection will go into the
Connected/Established/Active/Talking state. JTAPI creates Connection and CallCtlConnection for A in
“UNKNOWN” state based on FarEndPointType_ServerCall provided by CTI/CP.

B answers the call and is connected to A (at this point no RTPEvent will be sent).

B get CallPartyInfoChangedEv with Cgpn = B, Cdpn = C, Lrp = A, OCdpn = C, Reason = REFER.

C get NewCall offering with Cgpn = B, Cdpn = C, Lrp = A, OCdpn = C, Reason = REFER.

JTAPI Application will get Connection, CallControlConnection, TerminalConnecton and
CallCtlTerminalConnection created for B with CAUSE_NORMAL, and the new API will return
REASON_REFER.

C Accepts/Answers the call, B is connected to C (now Application receives RTP events).

C’s Connection/CallCtlConnection, TerminalConnection/CallCtlTerminalConnection will go into the
Connected/Established/Active/Talking state.

JTAPI Application observing B will see:

getCallingParty() = A

getCalledParty() = B

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

JTAPI Application observing C will see:

getCallingParty() = B

getCalledParty() = C

getCurrentCallingParty() = B

getCurrentCalledParty() = C

getLastRedirecting() = A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1490

Message Sequence Charts
Message Sequence Charts

SIP 3XX Redirection

3XX Redirection – 302 Moved Temporarily

JTAPI application monitors 1000@ccm.cisco.com

Cisco Unified Communications Manager user1000 initiates a call to 333555@aaa.com

CTI reports NewCallNotify and CtiCallStateNotify (Dialtone/Dialing) based on INVITE.

JTAPI reports CallActiveEv and Connection and CallCtlConnection events for 1000

JTAPI reports CallCtlConnEstablishedEv

SIP proxy reports a 302 for 333555@aaa.com. Based on the 302, the Cisco Unified CommunicationsManager
initiates a call to the first contact in the Target list based on the q value to 333777@bbb.com.

CallPartyInfoChange event is reported to application based on the SIPAlertInd from a Cisco Unified
Communications Manager, if the called party information is changed.

JTAPI reports connection created events for 333777@bbb.com

CTI reports CtiCallStateNotify (Ringback) and CtiCallStateNotify (Connected).

JTAPI reports ConnAlertingEv and ConnEstablishedEv for far end.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1491

Message Sequence Charts
SIP 3XX Redirection

3XX Redirection – Contact Busy

JTAPI CTI application monitors 1000@ccm.cisco.com

Cisco Unified Communications Manager user1000 initiates a call to 333555@aaa.com

CTI reports NewCallNotify and CtiCallStateNotify (Dialtone/Dialing) based on INVITE.

JTAPI reports CallActiveEv and Connection and CallCtlConnection events for 1000

CTI reports CtiCallStateNotify (Proceeding)

JTAPI reports CallCtlConnEstablishedEv

SIP proxy reports a 302 for 333555@aaa.com. Based on the 302 the Cisco Unified CommunicationsManager
initiates a call to the first contact in the Target list based on the q value to 333777@bbb.com.

A 486 user busy response is reported by 333777@bbb.com. Based on this response the Cisco Unified
Communications Manager initiates a call to 555888@cisco.com.

CallPartyInfoChange event is reported to application based on the SIPAlertInd from the Cisco Unified
Communications Manager if the called party information is changed.

JTAPI reports connection created event for 555888@cisco.com.

CTI also reports CtiCallStateNotify (Ringback) and CtiCallStateNotify (Connected).

JTAPI reports CallCtlConnAlertingEv and CallCtlConnEstablishedEv for the new party

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1492

Message Sequence Charts
Message Sequence Charts

3XX Redirection – Contact Does Not Answer

JTAPI application monitors 1000@ccm.cisco.com

Cisco Unified Communications Manager user1000 initiates a call to 333555@aaa.com

CTI reports NewCallNotify and CtiCallStateNotify (Dialtone/Dialing) based on INVITE.

JTAPI reports CallActiveEv and connection and terminalConnection events for 1000

CTI reports CtiCallStateNotify (Proceeding)

JTAPI reports CallCtlConnEstablishedEv for 1000

SIP proxy reports a 302 for 333555@aaa.com. Based on the 302 the Cisco Unified CommunicationsManager
initiates a call to the first contact in the Target list based on the q value to 333777@bbb.com. The Cisco
Unified Communications Manager starts the RNAR timer.

CallPartyInfoChange event is reported to application based on the SIPAlertInd from the Cisco Unified
Communications Manager if the called party information is changed.

JTAPI reports connection created events for 333777

RNAR timer expires and based on this expiration the Cisco Unified Communications Manager initiates a call
to 555888@cisco.com.

CallPartyInfoChange event is reported to application based on the SIPAlertInd/CcNotifyReq from the Cisco
Unified Communications Manager if the called party information is changed.

JTAPI removes connection for 333777 and creates connection for 555888

CTI also reports CtiCallStateNotify (Connected).

JTAPI reports CallCtlConnEstablishedEv for 555888

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1493

Message Sequence Charts
Message Sequence Charts

3XX Redirection – Contact Within Cisco Unified Communications Manager Cluster Configured with Call
Forward

JTAPI application monitors 1000@ccm.cisco.com

Cisco Unified Communications Manager user1000 initiates a call to 333555@aaa.com

CTI reports NewCallNotify and CtiCallStateNotify (Dialtone/Dialing) based on INVITE.

JTAPI reports CallActiveEv and connection and terminalConnection events for 1000

CTI reports CtiCallStateNotify (Proceeding)

JTAPI reports CallCtlConnEstablishedEv for 1000

SIP proxy reports a 302 for 333555@aaa.com. Based on the 302 the Cisco Unified CommunicationsManager
initiates a call to the first contact in the Target list based on the q value to 2000@ccm.cisco.com.

A 486 user busy response is reported by 2000@ccm.cisco.com. 2000 has Call Forward busy configured so
the Cisco Unified Communications Manager initiates a call to 3000@ccm.cisco.com. The Cisco Unified
Communications Manager also starts the RNAR timer.

CallPartyInfoChange event is reported to application based on the SIPAlertInd from the Cisco Unified
Communications Manager if the called party information is changed.

JTAPI reports connection created event for 3000

3000 does not answer and RNAR timer expires and based on this expiration the Cisco Unified Communications
Manager initiates a call to 555888@cisco.com.

CallPartyInfoChange event is reported to application based on the SIPAlertInd/CcNotifyReq from the Cisco
Unified Communications Manager if the called party information is changed.

JTAPI destroys connection for 3000 and creates connection for 555888

CTI also reports CtiCallStateNotify (Connected).

JTAPI reports CallCtlConnEstablishedEv for 555888

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1494

Message Sequence Charts
Message Sequence Charts

3XX Redirection – Non-Available Target Member

JTAPI application monitors 1000@ccm.cisco.com

Cisco Unified Communications Manager user1000 initiates a call to 333555@aaa.com

CTI reports NewCallNotify and CtiCallStateNotify (Dialtone/Dialing) based on INVITE.

JTAPI reports CallActiveEv and connection and terminalConnection events for 1000

CTI reports CtiCallStateNotify (Proceeding)

JTAPI reports CallCtlConnEstablishedEv for 1000

SIP proxy reports a 302 for 333555@aaa.com. 302 contains target list of 1212@ccm.cisco.com and
2000@ccm.cisco.com. 1212@ccm.cisco.com is an invalid DN. The Cisco Unified CommunicationsManager
tries to contact 1212@ccm.cisco.com first, but gets an invalid DN and so attempts to place the call to
2000@ccm.cisco.com.

CallPartyInfoChange event is reported to application based on the SIPAlertInd from the Cisco Unified
Communications Manager if the called party information is changed.

JTAPI reports connection created event for 2000

CTI also reports CtiCallStateNotify (Ringback/Connected).

JTAPI reports CallCtlConnAlertingEv and CallCtlConnEstablishedEv for 2000.

SIP Support
EventsScenarioS.No

Event delivered to call observer on A

CallActiveEv

ConnCreatedEv A

Conn CreatedEv unknown

getCurrentCallingPartyInfo().geUrlInfo().getUser() returns
external.

getCurrentCallingPartyInfo().geUrlInfo().getHost() returns
someserver.com

getCurrentCallingPartyInfo().geUrlInfo().getUrlType() returns
SIP_URL_TYPE

External SIP phone(external@someserver.com) calls A, A is
monitored by application.

Assuming external sip phone uses uri and not DN.

1

GCID3 CallActiveEv

GCID3 ConnCreatedEv A

GCID3 ConnFailedEv A

GCID3 callInvalidEv

7970 runs SIP protocol with 2 max calls set. 3rd call comes
in with GCID = GCID3

2

Exception is thrown to addobserver exception.
TerminalRestrictedEv will be delivered if the status changed.

7960 running SIP is included in the control list. Applications
add callobserver on the terminal

3

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1495

Message Sequence Charts
SIP Support

SIP Trunk Early Offer
Scenario One

Early offer call on a IPV4 mode. CTIPort or RP supports this feature.Application opens provider and adds
address, terminal and call observers. (Device = TermA address = A)

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
CiscoBaseMediaTerminal .register() API
and passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT for registration
type and CiscoTerminal.IP
_ADDRESSING_MODE_IPv4 for
activeAddressingMode.

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 CiscoMediaOpenIPPortEv TermA

Application invokes connect() API to
connect to the other address B on terminal
termB.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1496

Message Sequence Charts
SIP Trunk Early Offer

Call informationResultAction

ev.isRTPRequired() = falseGC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B

GC1 CiscoMediaOpenLogicalChannelEv
TermA

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv

CiscoRTPOutputStarted

Application sets the RTP parameters(IPv4
address and port)

Application answers the call on B.

Scenario Two

Early offer call on a IPv4 mode. CTIPort or RP supports this feature. Application does not set RTP parameters
in time(Fail Call Over SIP Trunk if MTP Allocation Fails = true).

Application opens provider and adds Address, terminal and call observers.(Device = TermA address = A)

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
CiscoBaseMediaTermina.register() API and
passes
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type and CiscoTerminal.IP
_ADDRESSING_MODE_IPv4 for
activeAddressingMode

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1497

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 CiscoMediaOpenIPPortEv TermA

Application invokes connect() API to
connect to another address B on terminal
termB

ev.getCause() =
CAUSE_RESOURCES_NOT_AVAILABLE

GC1 TermConnDroppedEv TermA

GC1 CallCtlTermConnDroppedEv TermA

Gc1 ConnFailedEv A

Gc1 CallCtlConnFailedEv A

Gc1 CallInvalidEv

PlatformException: Could not meet post
condition of connect()

Application does not sets the RTP
parameters (IPv4 address and port).

Scenario Three

Early offer call on a IPv4 mode. CTIPort or RP supports this feature. Application does not setPort in time.
(Fail Call Over SIP Trunk if MTP Allocation Fails = false)

Application opens provider and adds address, terminal and call observers. (Device = TermA address = A)

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
CiscoBaseMediaTermina.register() API and
passes
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type and CiscoTerminal.IP
_ADDRESSING_MODE_IPv4 for
activeAddressingMode

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1498

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 CiscoMediaOpenIPPortEv TermA

Application invokes connect() API to
connect to another address B on terminal
termB.

isRTPRequired() = true.GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B

GC1 CiscoMediaOpenLogicalChannelEv
TermA

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv

Application does not sets the RTP
parameters. (IPv4 address and port)

B answers the call.

Application sets the RTP parameters.

Scenario Four

Early offer call on a dynamically registered IPv6 only CtiPort/RP with
DYNAMIC_MEDIA_REGISTRATION_FOR GET_PORT_SUPPORT for registration type.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1499

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
CiscoBaseMediaTerminal .register() API
and passes
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type and CiscoTerminal.IP
_ADDRESSING_MODE_IPv6 for
activeAddressingMode

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B

Application invokes connect() API to
connect to another address B on terminal
termB

ev.isRTPRequired() = falseGC1 CiscoMediaOpenLogicalChannelEv
TermA

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv

CiscoRTPInputStartedEv

CiscoRTPOutputStarted

App answers the call on B

Application sets RTP parameters.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1500

Message Sequence Charts
Message Sequence Charts

Scenario Five

Early Offer call on a dynamically registered CtiPort or RP with DYNAMIC_MEDIA_REGISTRATION for
registration type.

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
BaseMediaTerminal.register() API and
DYNAMIC_MEDIA_REGISTRATION
for registration type.

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B.

Application invokes connect() API to
connect to another address B on terminal
termB

ev.isRTPRequired() = trueGC1 CiscoMediaOpenLogicalChannelEv
TermA

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv

CiscoRTPInputStartedEv

CiscoRTPOutputStarted

App answers the call on B

Application sets RTP parameters

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1501

Message Sequence Charts
Message Sequence Charts

Scenario Six

Two applications registering same CTIPort or RP with different values for registrationType.(dynamic).

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application1 registers the terminal TermA
dynamically using the new
CiscoBaseMediaTerminal .register() API
and
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type.

CTIERR_MEDIA_ALREADY_
TERMINATED_DYNAMIC_

GETPORT_SUPPORT

PlatformException:Application2 registers the terminal TermA
dynamically usig the new
CiscoBaseMediaTerminal .register() API
and passes something other than
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type.

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application3 registers the terminal TermA
dynamically usig the new
CiscoBaseMediaTerminal .register() API
and passes
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type.

Scenario Seven

Application sets RTP parameters again for an early offer call with dynamically registered terminal having
DYNAMIC_MEDIA_REGISTRATION_FOR _GET_PORT_SUPPORT for registration type.

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application registers the terminal
dynamically using the new
CiscoBaseMediaTerminal .register() API
DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration
type

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1502

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 CiscoMediaOpenIPPortEv TermA

Application invokes connect() API to
connect to another address B on terminal
termB.

ev.isRTPRequired() = false.

CTIERR_OPERATION_NOT_
AVAILABLE_IN_CURRENT_STATE.

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B

GC1 CiscoMediaOpenLogicalChannelEv
TermA

InvalidStateException

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv

CiscoRTPOutputStarted

Application sets the RTP parameters (IPv4
address and port).

Application answers the call on B.

Application sets the RTP parameters again.

Scenario Eight

Transfer involving a early offer call

Application registers two terminals TermA and TermB dynamically with
DYNAMIC_MEDIA_REGISTRATION_FOR _GET_PORT_SUPPORT for registration type and for both.
A call is established between TermA and TermB.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1503

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

GC1 CallCtlTermConnHeldEv TermAA puts the call on hold

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
DYNAMIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC2 CallActiveEv

GC2 ConnCreatedEv A

GC2 ConnConnectedEv A

GC2 CallCtlConnInitiatedEv A

GC2 TermConnCreatedEv TermA

GC2 TermConnActiveEvTerm A

GC2 CallCtlTermConnTalkingEv TermA

GC2 CallCtlConnDialingEv A

GC2 CallCtlConnEstablishedEv A

GC2 CiscoMediaOpenIPPortEv TermA

A initiates a call to C

Ev.isRTPRequired() = falseGC2 TermConnRingingEv C

GC2 CallCtlTermConnRingingEvImpl C

GC2 CiscoMediaOpenLogicalChannelEv
TermA

GC2 ConnConnectedEv C

GC2 CallCtlConnEstablishedEv C

GC2 TermConnActiveEv C

GC2 CallCtlTermConnTalkingEv C

CiscoRTPInputStartedEvs

CiscoRTPOutputStartedEvs

GC2 ConnCreatedEv C

GC2 ConnInProgressEv C

GC2 CallCtlConnOfferedEv C

GC2 ConnAletingEv C

GC2 CallCtlConnAlertingEv C

GC2 TermConnCreatedEv

Application sets the RTP parameters for
TermA and opens the port(IPv4 address
and port)

App answers the call on C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1504

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

Ev.isRTPRequired() = trueGC2 ConnDisconnectedEv C

Gc2 CallCtlConnDisconnectedEv C

GC2 ConnDisconnectedEv A

GC2 CallCtlConDisconnectedEv A

GC2 CallInvalidEv

GC1 ConnCreatedEv C

GC1 CiscoMediaOpenLogicalChannelEv
TermB

A tansfers the two calls GC1.transfer(GC2)

GC1 ConnEstablishedEv C

CiscoRTPInputStartedEv

CiscoRTPOutputStartedEvs

Application sets the RTP parameters for
TermB

Scenario Nine

Hold Resume Scenario

The application registers terminal TermA with DYNAMIC_MEDIA_REGISTRATION_FOR
_GET_PORT_SUPPORT for registration type.

A call is established between TermA and TermB.

Call informationResultAction

Gc1 CallCtlTermConnHeldEv
CiscoRTPInputStopped
EvCiscoRTPOutoutStoppedEv

TermA puts the call on hold.

Ev.isRTPRequired() = trueGC1 CiscoMediaOpenLogicalChannelEv
TermA

TermA resumes the call.

CiscoRTPInputstartedEv
CiscoRTPOutputStarted
EvCallCtlTermConnTalkingEv

Application sets the RTP parameters for
TermA.

Scenario Ten

Call from a terminal registered with registration type as CiscoBaseMediaTerminal
.STATIC_MEDIA_REGISTRATION_FOR_GET_PORT_SUPPORT.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1505

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

CiscoTermInServiceEvterm
ACiscoAddrInServiceEv A

Application registers the terminal statically
using the new CiscoBaseMediaTerminal
.register() API and passes
STATIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT for registration
type and CiscoTerminal.IP
_ADDRESSING_MODE_IPv4 for
activeAddressingMode

getMediaIPAddressingMode() = IPv4

(((CiscoBaseMediaTerminal)
(ev.getTerminal())).

getRegistrationType =
CiscoBaseMediaTerminal . passes
STATIC_MEDIA_REGISTRATION_FOR
GET_PORT_SUPPORT

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TermA

GC1 TermConnActiveEvTerm A

GC1 CallCtlTermConnTalkingEv TermA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 CiscoMediaOpenIPPortEv TermA

Application invokes connect() API to
connect to another address B on terminal
termB.

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1 CallCtlTermConnRingingEvImpl B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv

CiscoRTPOutputStarted

Application sets the RTP parameters.(IPv4
address and port).

Application answers the call on B.

Scenario Eleven

Two Applications registering same CTIPort or RP with different values for registrationType (static).

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1506

Message Sequence Charts
Message Sequence Charts

Call informationResultAction

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application1 registers the terminal TermA
statically using the new register() API and
STATIC_MEDIA_REGISTRATION
_FOR_GET_PORT_SUPPORT for
registration type

CTIERR_MEDIA_ALREADY_
TERMINATED_STATIC_

GETPORT_SUPPORT

PlatformExceptionApplication2 registers the terminal TermA
statically usig the new register() API and
passes something other than
STATIC_MEDIA_REGISTRATION
_FOR_GET_PORT_SUPPORT for
registration type

CiscoTermInServiceEv
termACiscoAddrInServiceEv A

Application3 registers the terminal TermA
statically usig the new register() API and
passes
STATIC_MEDIA_REGISTRATION
_FOR_GET_PORT_SUPPORT for
registration type

SRTP Key Material
If this feature is enabled, it is expected to degrade the performance of Cisco Unified JTAPI. Performance
degradation is because of encrypted signaling between CTI and JTAPI and also because of encrypted media
between end points.

Scenario One

EventAction

CiscoRTPInputKeyEv
CiscoRTPInputStartedEv
CiscoRTPOutputKeyEv
CiscoRTPOutputStartedEv

App adds CallObserver on an Address 1 and initiates a call to address2 and involves in
secure media conversation. If user is authorized, then CiscoRTPInputKeyEv and
CiscoRTPOutputKeyEv contain key material.

Scenario Two

EventAction

CiscoTermSnapshotEv using which
applications can query
getCiscoMediaCallSecurity () to find out
if a call is secured or not.

Application adds TerminalObserver by enabling snapshotEnabled filter. Device is
already in a secure call and queries invokes CiscoTerminal.createSnapshot ()

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1507

Message Sequence Charts
SRTP Key Material

Scenario Three

ResponseAction

PrivilegeViolationException is thrown to
the application

Application does not have a TLS link and tries to register with secure
media.CiscoMediaTerminal.register (ipAddr, portNum, mediaCaps, algorithm)

Request is successfulApplication has a secure media and registers CiscoMediaTerminal.register (ipAddr,
portNum, mediaCaps, algorithm)

Super Provider Message Flow
The application tries to create Terminal for CTIPort1 that has Addresses 2000 and 2001. The following events
get sent to the application.

EventActionNo.

JTAPI would return CiscoTerminal object and the following
events get sent:

CiscoTermCreatedEv CTIPort1<---------------
CiscoAddrCreated 2000<------------------------
CiscoAddrCreated 2001<-------------------------

Application invokes CiscoProvider.
CreateTerminal(CTIPort1) whereCiscoProviderCapabilities.
canObserveAnyTerminal() returns TRUE.

1

JTAPI would return CiscoTerminal object and the following
events get sent

CiscoTermCreatedEv CTIPort1<----------------
CiscoAddrCreated 2000<------------------------
CiscoAddrAddedToTerminalEv 2001<--------

If the application already has a terminal where the 2001
address already exists, that is, 2001 is a SharedLine Address.

Now, the application invokes
CiscoProvider.CreateTerminal(CTIPort1)

2

JTAPIwould throw an exception: InvalidArgumentExceptionApplication invokes

CiscoProvider.CreateTerminal(CTIPortX)where CTIPortX
does not exist in Cisco Unified Communications Manager
cluster.

3

JTAPI would throw an exception:
PrivilegeViolationException

Application invokes

CiscoProvider.CreateTerminal(CTIPort1)
whereCiscoProviderCapabilities. canObserveAnyTerminal()
returns FALSE.

4

SuperProvider and Change Notification Enhancements Use Cases
New events have been added to JTAPI, which will be sent to applications in order to handle new failover
scenario and change notification. This enhances JTAPI to handle failover scenarios and the time required to
shift between Superprovider and normal user modes.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1508

Message Sequence Charts
Super Provider Message Flow

Scenario One

Superprovider user opens provider and opens a few devices in Superprovider mode which are not in control
list. From admin pages, Superprovider privilege is removed.

Application receives CiscoProviderCapabilityChangedEvent event. JTAPI sends CiscoTermRemovedEv all
the devices which are opened / acquired and are not in the control list. JTAPI will send provider OOS to
application, CiscoTermRemovedEv to devices not in control list and will reopen connection to CTI. When
connect succeeds, JTAPI will send provider in service event to the application. Else, it will close the provider.

Scenario Two

Normal user opens provider and opens a few devices in control list. From admin pages, Superprovider privilege
is added to the user.

Application receives CiscoProviderCapabilityChangedEvent event. User will now be able to acquire/open
devices not in its control list.

Scenario Three

Normal user opens provider and opens a few park DNs. From admin pages, park DN monitor privilege is
removed for the user.

Application receives CiscoProviderCapabilityChangedEvent event. JTAPI will cleanup all park DN addresses.

Scenario Four

Normal user opens provider. From admin pages, park DN monitor privilege is added for the user.

Application receives CiscoProviderCapabilityChangedEvent event. Application registers the park DN
monitoring feature and is able to monitor park DN.

Scenario Five

Normal user opens provider. From admin pages, “modify calling party” privilege is removed for the user.

Application receives CiscoProviderCapabilityChangedEvent event. Application is not able to change the
calling party number during redirect. JTAPI will throw error if application tries to do this.

Scenario Six

Normal user opens provider. From admin pages, “modify calling party” privilege is added for the user.

Application receives CiscoProviderCapabilityChangedEvent event. Application is able to change the calling
party number in a call during redirect.

Scenario Seven

Superprovider user opens provider and acquires a device not in control list. From admin pages, the device is
deleted.

Application receives CiscoTermRemovedEv event. Device is closed from JTAPI perspective.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1509

Message Sequence Charts
Message Sequence Charts

Support for Cisco Unified IP Phone 6901
Scenario 1

Phone A is a Cisco Unified IP Phone 6901 and phone B is a normal SCCP/SIP phone. Application is observing
the devices A and B. Phone A is off-hook and application initiates a call through createCall() API from phone
A to phone B.

Configuration:

• Phone A – Cisco Unified IP Phone 6901

• Phone B – SCCP/SIP Device

Call infoResultAction

Application observes A and B.CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

GC1:

TermConnDroppedEv [Term A]

CallCtlTermConnDroppedEv [Term A]

ConnDisconnectedEv A

CallCtlConnDisconnectedEv A

CallInvalidEv

A goes off-hook

Application calls
createCall() and call
connect() API to
Call B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1510

Message Sequence Charts
Support for Cisco Unified IP Phone 6901

Call infoResultAction

GC2:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

CallCtlConnDialingEv A

CallCtlConnEstablishedEv A

ConnCreatedEv – B

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv [Term B]

TermConnRingingEv [Term B]

CallCtlTermConnRingingEvImpl [Term B]

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC2:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

Scenario 2

Phone A is a normal SCCP/SIP phone and phone B is Cisco Unified IP Phone 6901. Application is observing
both the devices A & B. User initiates a call from phone A to phone B. Phone B goes off-hook and answers
the incoming call.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1511

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC2:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

Scenario 3

Phone A is Cisco Unified IP Phone 6901 and phone B is a normal SCCP/SIP phone. Application is observing
both the devices A and B. Phone A is on-hook and application initiates a call from phone A to phone B.

Configuration:

• Phone A – Cisco Unified IP Phone 6901

• Phone B – SCCP/SIP Device

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

Operation not available in current state.Jtapi throws Exception:

InvalidStateException

A is on-hook and
application call
createcall() and
connect API to call
B

Scenario 4

Application is observing both the devices A and B. Phone A is a normal SCCP/SIP phone and phone B is
Cisco Unified IP Phone 6901. Application initiates a call from phone A to phone B. B is on-hook and application
tries to answer the call on B.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1512

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

A intitiates a call to
B from application.

Operation not available in current state.Jtapi throws Exception:

InvalidStateException

B is on-hook and
tries to answer the
call from the
application.

Scenario 5

Application is observing both the devices A and B. Phone A is a normal SCCP/SIP phone and phone B is
Cisco Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and
answers the call. B parks the call from application.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1513

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call to
B from the
application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

currentCalling = A

currentCalled = Park DN

CAUSE = CAUSE_NORMAL

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnQueuedEv ParkDN

B parks the call from
the application.

Scenario 6

Call Park Reversion Timer is set to 30 seconds at service parameter page. Application is observing both the
devices A and B. Phone A is a normal SCCP/SIP phone and phone B is Cisco Unified IP Phone 6901.
Application initiates a call from phone A to phone B. B goes off-hook and answers the call. B parks the call.
B goes on-hook.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1514

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call to
B from the
application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

currentCalling = A

currentCalled = Park DN

CAUSE = CAUSE_NORMAL

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnQueuedEv ParkDN

B parks the call from
the application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1515

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

Operation not available in current state.GC1:

ConnCreatedEv B

ConnInProgressEv B

CallCtlConnOfferedEv B

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv [Term B]

TermConnRingingEv [Term B]

CallCtlTermConnRingingEvImpl [Term B]

Jtapi throwsEception:

InvalidStateException.

B goes on-hook.

Call Park reversion
Timer expires after
30 seconds and the
call comes back to
B.

B tries to answer the
call from the
application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B goes off-hook and
answers the call.

Scenario 7

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and answers
the call. B parks the call from application. C is off-hook and unparks the call from the application.

Configuration:

• Phone A – SCCP/SIP Device

• Phones B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1516

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

currentCalling = A

currentCalled = Park DN

CAUSE = CAUSE_NORMAL

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnQueuedEv ParkDN

B parks the call from
the application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1517

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC2:

CallActiveEv

ConnCreatedEv –C

ConnConnectedEv – C

CallCtlConnInitiatedEv - C

- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnOfferedEv ParkDN

C unparks the call
from the application.

GC1:

ConnDisconnectedEv ParkDN

CallCtlConnDisconnectedEv ParkDN

GC1:

ConnCreatedEv –C

ConnConnectedEv – C

CallCtlConnEstablishedEv – C

TermConnCreatedEv [Term C]

TermConnActiveEv [Term C]

CallCtlTermConnTalkingEv [Term C]

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnOfferedEv ParkDN

GC2:

ConnDisconnectedEv ParkDN

CallCtlConnDisconnectedEv ParkDN

TermConnDroppedEv [Term C]

CallCtlTermConnDroppedEv [Term C]

ConnDisconnectedEv C

GC2 CiscoCallChangedEv

CallCtlConnDisconnectedEv C

CallInvalidEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1518

Message Sequence Charts
Message Sequence Charts

Scenario 8

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and answers
the call. B parks the call from application. C is on-hook and unparks the call from the application.

Configuration:

• Phone A – SCCP/SIP Device

• Phones B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1519

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = Park DN

CAUSE = CAUSE_NORMAL

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv ParkDN

ConnInProgressEv ParkDN

CallCtlConnQueuedEv ParkDN

B parks the call from
the application.

Operation not available in current state.Jtapi throws Exception:

InvalidStateException

C unparks the call
from the application.

Scenario 9

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and answers
the call. B transfers the call to C from the application.

Configuration:

• Phone A – SCCP/SIP Device

• Phones B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1520

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A and B are
connected.

currentCalling = B

currentCalled = C

CAUSE = CAUSE_NORMAL

GC1:

CallCtlTermConnHeldEv B

GC2:

CallActiveEv

ConnCreatedEv –B

ConnConnectedEv – B

CallCtlConnInitiatedEv - BTermConnCreatedEv - [Term B]

TermConnActiveEv –[Term B]

CallCtlTermConnTalkingEv –[Term B]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

B makes consult call
to C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1521

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = B

currentCalled = C

CAUSE = CAUSE_NORMAL

GC2:

ConnConnectedEv C

CallCtlConnEstablishedEv C

TermConnActiveEv [Term C]

CallCtlTermConnTalkingEv [Term C]

C goes off-hook and
answers the call. B
and C are connected.

GC1:

CiscoTermConnSelectChangedEv [Term B]

GC2:

CiscoTermConnSelectChangedEv [Term B]

GC1 CiscoTransferStartEv

GC2 CiscoCallChangedEv

B completes transfer
by invoking
GC1.transfer(GC2)

GC1:

ConnCreatedEv - C

ConnConnectedEv – C

CallCtlConnEstablishedEv - C

TermConnCreatedEv - [Term C]

TermConnActiveEv –[Term C]

CallCtlTermConnTalkingEv –[Term C]

GC2:

TermConnDroppedEv [Term C]

CallCtlTermConnDroppedEv [Term C]

ConnDisconnectedEv C

CallCtlConnDisconnectedEv C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1522

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

GC2:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

CallInvalidEv

CiscoTransferEndEv

Scenario 10

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and answers
the call. B does a conference with C from the application.

Configuration:

• Phone A – SCCP/SIP Device

• Phones B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv – C

Application observes
A, B and C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1523

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A and B are
connected.

currentCalling = B

currentCalled = C

CAUSE = CAUSE_NORMAL

GC1:

CallCtlTermConnHeldEv B

GC2:

CallActiveEv

ConnCreatedEv –B

ConnConnectedEv – B

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

ConnConnectedEv C

CallCtlConnEstablishedEv C

TermConnActiveEv [Term C]

CallCtlTermConnTalkingEv [Term C]

Bmakes consult call
to C.

C goes off-hook and
answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1524

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC1:

CiscoTermConnSelectChangedEv [Term B]

GC2:

CiscoTermConnSelectChangedEv [Term B]

GC1 CiscoConferenceStartEv

GC2 CiscoCallChangedEv

B conferences two
calls by invoking
GC1.conference(GC2)

GC1:

ConnCreatedEv - C

ConnConnectedEv – C

CallCtlConnEstablishedEv - C

TermConnCreatedEv - [Term C]

TermConnActiveEv –[Term C]

CallCtlTermConnTalkingEv –[Term C]

GC2:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

CallInvalidEv

GC1 CiscoConferenceEndedEv

Scenario 11

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901 models. Application initiates a call from phone A to phone B. B goes off-hook and
answers the call. B redirects the call to C from the application.

Configuration:

• Phone A – SCCP/SIP Device

• Phones B and C – Aleta Device

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1525

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

GC1:

ConnCreatedEv C

ConnInProgressEv C

CallCtlConnOfferedEv C

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

B redirects the call
to C from the
application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1526

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = C

CAUSE = CAUSE_NORMAL

CallCtlConnDisconnectedEv B

ConnAlertingEv C

CallCtlConnAlertingEv C

TermConnCreatedEv [Term C]

TermConnRingingEv [Term C]

CallCtlTermConnRingingEvImpl [Term C]

ConnConnectedEv C

CallCtlConnEstablishedEv C

TermConnActiveEv [Term C]

CallCtlTermConnTalkingEv [Term C]

C is off-hook and
answers the call
from application.

Scenario 12

Application is observing both the devices A and B. Phone A is a normal SCCP/SIP phone and phone B is
Cisco Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and
answers the call. B puts the call on hold by pressing the corresponding button from the phone. B resumes the
call by pressing Line key from the phone.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Aleta Phone

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call
from the application.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1527

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call,
and A and B are
connected.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

CallCtlTermConnHeldEv B

B presses Hold
button from the
phone and puts the
call on hold.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

CallCtlTermConnTalkingEv B

B presses Line
button from the
phone and resumes
the call.

Scenario 13

Application is observing both the devices A and B. Phone A is a normal SCCP/SIP phone and phone B is
Cisco Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and
answers the call. B puts the call on hold by pressing the button and goes on-hook. Now B tries to resume the
call from application.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1528

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call to B
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

GC1:

CallCtlTermConnHeldEv B

B presses hold
hardkey from the
phone and puts the
call on hold.

Operation not available in current state.Exception: InvalidStateException.B goes on-hook.

B tries to resume the
call from the
application.

Scenario 14

Application is observing devices A and B. Phone A is a normal SCCP/SIP phone and phone B is Cisco Unified
IP Phone 6901. Application initiates a call from phone A to phone B. B goes off-hook and answers the call.
B puts the call on hold by pressing hard key and goes on-hook. Now B tries to resume the call by pressing
the line hard key from phone.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1529

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv - B

Application observes
A and B.

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call to
B from the
application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A & B are
connected.

GC1:

CallCtlTermConnHeldEv B

B presses hold
hardkey from the
phone and puts the
call on hold.

Operation not available in current state.GC1:

CallCtlConnTalkingEv [Term B]

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

TermConnDroppedEv [Term A]

CallCtlTermConnDroppedEv [Term A]

ConnDisconnectedEv A

CallCtlConnDisconnectedEv A

CallInvalidEv

B goes on-hook.

B tries to resume the
call by pressing the
line key from phone.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1530

Message Sequence Charts
Message Sequence Charts

Scenario 15

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B and C are Cisco
Unified IP Phone 6901. CFA is set to C at phone B. Application initiates a call from phone A to phone B.
Due to CFA set to C, call goes to C. C goes off-hook and answers the call.

Configuration:

• Phone A – SCCP/SIP Device

• Phone B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

CAUSE = CAUSE_NORMAL

REASON = FORWARDALL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A intitiates a call to
B from the
application. B has
CFA set to C. Call
goes to C.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv C

CallCtlConnEstablishedEv C

TermConnActiveEv [Term C]

CallCtlTermConnTalkingEv [Term C]

C goes off-hook and
answers the call. A
& C are connected.

Scenario 16

Application is observing the devices A and B. Phone C is not observed. Phone A is a normal SCCP/SIP phone,
B and C are Cisco Unified IP Phone 6901. Application initiates a call from phone A to phone B. B goes
off-hook and answers the call. B redirects the call to C. C goes off-hook and answers the call.

Configuration:

• Phone A – SCCP/SIP Device

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1531

Message Sequence Charts
Message Sequence Charts

• Phone B and C – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

Application observes
A and B. Phone C is
not observed.

currentCalling = A

currentCalled = null

CAUSE = CAUSE_NORMAL

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call to B
from the application.

currentCalling = A

currentCalled = B

CAUSE = CAUSE_NORMAL

GC1:

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B answers the call
and A and B are
connected.

GC1:

TermConnDroppedEv [Term B]

CallCtlTermConnDroppedEv [Term B]

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv C

ConnAlertingEv C

CallCtlConnAlertingEv C

ConnConnectedEv C

CallCtlConnEstablishedEv C

B redirect the call to
C. C goes off-hook
and answers the call.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1532

Message Sequence Charts
Message Sequence Charts

Scenario 17

Application is observing the devices A, B and C. Phone A is a normal SCCP/SIP phone, B is Cisco Unified
IP Phone 6901 and phone C is a normal SCCP/SIP phone. B and C have a shared line. Application initiates
a call from phone A to shared line on B and C. B goes off-hook and answers the call.

Configuration:

• Phone A and C – SCCP/SIP Device

• Phone B – Cisco Unified IP Phone 6901

Call infoResultAction

CiscoAddrInServiceEv – A

CiscoAddrInServiceEv – B

CiscoAddrInServiceEv - C

Application observes
A, B and C.

GC1:

CallActiveEv

ConnCreatedEv –A

ConnConnectedEv – A

CallCtlConnInitiatedEv - ATermConnCreatedEv - [Term A]

TermConnActiveEv –[Term A]

CallCtlTermConnTalkingEv –[Term A]

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - -

A initiates a call to
the shared line on B
and C

ConnConnectedEv B

CallCtlConnEstablishedEv B

TermConnCreatedEv [Term C]

TermConnPassiveEv [Term C]

CallCtlTermConnInUseEv [Term C]

TermConnActiveEv [Term B]

CallCtlTermConnTalkingEv [Term B]

B goes off-hook and
answers the call.

SHA Support for Digital Signatures
The following tables display the CallInfo messages for the following three use cases:

• SHA-1 is the configured encryption algorithm

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1533

Message Sequence Charts
SHA Support for Digital Signatures

• SHA-512 is the configured encryption algorithm (Cisco JTAPI is version 11.5)

• SHA-512 is the configured encryption algorithm (Cisco JTAPI is a pre-11.5 version)

Table 352: SHA-1 is Configured

CallInfoAction

JTAPIProperties.getSecurityPropertyForInstance().

certificateStatus=true

TFTP File Signature Algorithm enterprise
parameteris set to SHA1 (the default value).
JTAPIProperties.setSecurityPropertyForInstance() is
invoked with CAPF login and instance ID.

Table 353: SHA-512 is Configured (Cisco JTAPI is version 11.5)

CallInfoAction

JTAPIProperties.getSecurityPropertyForInstance().

certificateStatus=true

TFTP File Signature Algorithm enterprise parameter
is set to SHA 512.
JTAPIProperties.setSecurityPropertyForInstance() is
invoked with username and instance ID.

Table 354: SHA-512 is Configured (Cisco JTAPI is pre-11.5 version)

CallInfoAction

JTAPIProperties.getSecurityPropertyForInstance().

certificateStatus=false

TFTP File Signature Algorithm enterprise parameter
is set to SHA 512.
JTAPIProperties.setSecurityPropertyForInstance() is
invoked with username and instance ID.

TLS Security
Message flow for updating certificate and establishing TLS certificate is illustrated in the following two
figures.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1534

Message Sequence Charts
TLS Security

Figure 22: CTI/API Security Approach

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1535

Message Sequence Charts
Message Sequence Charts

Figure 23: CTI/API Security Approach (Continued)

Transfer and Direct Transfer
The following diagrams illustrate the message flows for Transfer and Direct Transfer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1536

Message Sequence Charts
Transfer and Direct Transfer

DirectTransfer/Arbitrary Transfer Scenario

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1537

Message Sequence Charts
DirectTransfer/Arbitrary Transfer Scenario

Direct Transfer/Arbitrary Transfer-Page 2

Consult Transfer
The message flow for Consult Transfer acts the same as the flow for Arbitrary Transfer.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1538

Message Sequence Charts
Direct Transfer/Arbitrary Transfer-Page 2

Unicode Support
Unicode Display Name Scenario

Events Delivered to JTAPI ApplicationsScenario

Call info should contain:

getCurrentCalledPartyDisplayName = asciiNameB
getCurrentCalledPartyUnicodeDisplayName = null
getCurrentCallingPartyDisplayName = null
getCurrentCallingPartyUnicodeDisplayName = japaneseNameA

A line is configured on IP phone A with no
ASCII name and a Unicode name in
Japanese. IP phone B is configured with
ASCII name and no Unicode name. A calls
B. Only B is observed.

DisplayName does not apply. Applications should consider “conference” as the called
party.

A, B and C are in conference.

Calling party Unicode display name can change between A and B.Shared lines – A and B are shared lines with
different locales. A calls C. C is
unobserved.

GetLocale and UniCodeCapabilities of Terminal

Events delivered to JTAPI applicationsScenario

CiscoTerminalInServiceEv contains

getLocale = JAPANESE
getSupportedEncoding = UCS2UNICODE_ENCODING

CiscoTerminal.getLocale = JAPANESE

CiscoTerminal. getSupportedEncoding = UCS2UNICODE_ENCODING

A line is configured on IP phone A with no
ASCII name and Unicode name in
Japanese.

Application adds TerminalObserver on the
Device.

Application queries the following using
CiscoTerminal.

Unrestricted Unified CM
Use Case One

The application tries to register with an insecure CTI Port to the unrestricted Cisco Unified Communications
Manager.

Call informationResultAction

[Term A] CiscoTermOutOfService[A]
CiscoAddrOutOfServiceEv[Term A]
CiscoTermInServiceEv[A] CiscoAddrInServiceEv

Application opens a provider with the unrestricted
Cisco Unified Communications Manager and tries
to register with an insecure phone CTI Port 'A'.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1539

Message Sequence Charts
Unicode Support

Variance

Application tries to register with an insecure route point to the unrestricted Cisco Unified Communications
Manager.

Use Case Two

Restricted Cisco Unified CommunicationsManager is upgraded to unrestricted Cisco Unified Communications
Manager. The application tries to register with a secure phone after the upgrade.

In some of the scenarios, where the application registers a device in a securemode, the registeration is successful
but eventually can be rejected with a new error code - CiscoTermRegisterationFailedEv.

Variance

Application tries to register a secure Route Point after an upgrade from a restricted Cisco Unified
Communications Manager to unrestricted Cisco Unified Communications Manager.

Video Capabilities and Multi-Media Information
The following sections describe use cases that are related to video capabilities and multi-media information
feature.

Scenario One
Phone A is video capable, telepresence capable, with 1 screen and a camera, and in registered state. User1
has phone A in the control list. User queries for multimedia capabilities before adding a terminal observer.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA. getCiscoMulti
MediaCapabilityInfo() .getVideoCa
pability() = CiscoMultiMedia
CapabilityInfo.ENABLED

User1 invokes CiscoTerminal.i
getCiscoMulti MediaCapabilityInfo()
.getVid eoCapability() on termA

termA. getCiscoMulti
MediaCapabilityInfo() .getTelepres
enceInfo () = CiscoMultiMedia
CapabilityInfo.TELEPRESENC
EINTEROP_ENABLED

User1 invokes CiscoTerminal.i
getCiscoMulti MediaCapabilityInfo()
.getTel epresenceInfo () on termA

termA. getCiscoMulti
MediaCapabilityInfo() .getScreenC ount ()
= 1

User1 invokes CiscoTerminal.i
getCiscoMulti MediaCapabilityInfo()
.getScr eenCount () on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1540

Message Sequence Charts
Video Capabilities and Multi-Media Information

Scenario Two
Phone A is a video disabled SIP Phone (In Cisco Unified CM Administration Phone page, Video Capabilities
field is “Disabled”). Phone A is in a registered state.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA.getCiscoMultiMediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.
DISABLED

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCa pability() =
CiscoMultiMediaCapabilityInfo.
ENABLED

CiscoProvTerminalMulti
MediaCapabilityChangedEv

In Device Configuration Cisco Unified CM
Administration pages- Video Capabilities
field is changed to “Enabled”

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCa pability() =
CiscoMultiMediaCapabilityInfo.
ENABLED

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCa pability() =
CiscoMultiMediaCapabilityInfo.
DISABLED

CiscoProvTerminalMulti
MediaCapabilityChangedEv

In Device Configuration Cisco Unified CM
Administration pages- Video Capabilities
field is changed to “Disabled”

Scenario Three
Phone A is a video disabled SCCP Phone (In Cisco Unified CMAdministration Phone page, Video Capabilities
field is “Disabled”). Phone A is in a registered state.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.
DISABLED

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1541

Message Sequence Charts
Scenario Two

Call InfoEventsAction

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.
ENABLED

CiscoProvTerminalMulti
MediaCapabilityChangedEv

In Device Configuration Cisco Unified CM
Administration pages- Video Capabilities
field is changed to “Enabled”

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.
ENABLED

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

termA.
getCiscoMultiMediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.
DISABLED

CiscoProvTerminalMulti
MediaCapabilityChangedEv will not be
delivered to applications, as the device will
unregister and register back. In this case
applications can query video capability after
the device is registered.

In Device Configuration Cisco Unified CM
Administration pages- Video Capabilities
field is changed to “Disabled”

Scenario Four
Phone A is video capable, telepresence capable, has 1 screen, has a camera, and is in an unregistered state.
User1 has phone A in the control list. User queries for multimedia capabilities before adding a terminal
observer.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

InvalidStateException: Terminal is not in
registered state.

User1 invokes CiscoTerminal.

getCiscoMultiMedia
CapabilityInfo().getVideoCapability() on
termA

InvalidStateException: Terminal is not in
registered state.

User1 invokes CiscoTerminal.

getCiscoMultiMedia
CapabilityInfo().getTelepresenceInfo() on
termA

InvalidStateException: Terminal is not in
registered state.

User1 invokes CiscoTerminal.

getCiscoMultiMedia
CapabilityInfo().getScreenCount() on
termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1542

Message Sequence Charts
Scenario Four

Scenario Five
Phone A is video capable, telepresence capable, with 1 screen and a camera. User1 has phone A in the control
list. Application queries for mutlimedia capabilities on CiscoTerminal.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

termA. getCiscoMulti
MediaCapabilityInfo().getVideoCapability()
= NONE

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA

termA. getCiscoMulti
MediaCapabilityInfo().
getVideoCapability() =
CiscoMultiMediaCapabilityInfo.ENABLED

User1 invokes CiscoTerminal.

getCiscoMulti MediaCapabilityInfo().
getVideoCapability() on termA

termA. getCiscoMulti
MediaCapabilityInfo().
getTelepresenceInfo() =
CiscoMultiMediaCapabilityInfo.TELEPRE
SENCEINTEROP_ENABLED

User1 invokes CiscoTerminal. i

getCiscoMulti MediaCapabilityInfo().
getTelepresenceInfo() on termA

termA. getCiscoMulti
MediaCapabilityInfo(). getScreenCount ()
= 1

User1 invokes CiscoTerminal. i

getCiscoMulti MediaCapabilityInfo().
getScreenCount() on termA

Scenario Six
Phone A is a CTI Port or RoutePoint. User1 has phone A in the control list. The user invokes
CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability().

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA and registers it

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal. i

getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo() on termA

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1543

Message Sequence Charts
Scenario Five

Call InfoEventsAction

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal. i

getCiscoMultiMediaCapabilityInfo().
getScreenCount() on termA

Scenario Seven
Phone A is a CTI Port or RoutePoint. User1 has phone A in the control list. The user invokes
CiscoTerminal.getCiscoMultiMediaCapabilityInfo().getVideoCapability().

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermOutOfServiceEv

CiscoTermInServiceEv

User1 opens termA and registers it

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal.

getCiscoMultiMediaCapabilityInfo().
getVideoCapability() on termA

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal. i

getCiscoMultiMediaCapabilityInfo().
getTelepresenceInfo() on termA

The API returns
MethodNotSupportedException - Not
supported onMedia Terminals and RPs and
Remote Terminals

User1 invokes CiscoTerminal. i

getCiscoMultiMediaCapabilityInfo().
getScreenCount() on termA

Scenario Eight
Basic Video call: Phone A is video enabled, Telepresence Enabled and has 1 screen. Phone B has video
disabled, Telepresence Disabled and has 0 screens. Both phones are in User1's control list.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscoTermInServiceEv TermA

CiscoTermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1544

Message Sequence Charts
Scenario Seven

Call InfoEventsAction

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds call observes on the address A
and B

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEvImpl B

User1 makes a call from A to B

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo()
.getVideoCapability() on GC1.

The API returns 1, indicating telepresence
capable device(CiscoMultiMedia
CapabilityInfo.
TELEPRESENCEINTEROP_ENABLED)
for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo()
.getTelepresenceInfo() on GC1.

The API returns 1, indicating device has 1
screen, for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo.getScreenCount()
on GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1545

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 0, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().getCallingTerminal
VideoCapability() on GC1.

The API returns 0, indicating telepresence
capable device (CiscoMultiMedia
CapabilityInfo.
TELEPRESENCEINTEROP_DISABLED)
for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().getTelepresenceInfo()
on GC1.

The API returns 0, indicating device has 01
screen, for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo()
.getVideoCapability() on GC1.

The API returns 1, indicating telepresence
capable device (CiscoMultiMedia
CapabilityInfo.
TELEPRESENCEINTEROP_ENABLED)
for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo()
.getTelepresenceInfo() on GC1.

The API returns 1, indicating device has 1
screen, for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo.getScreenCount()
on GC1.

The API returns 0, indicating not video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().getCallingTerminal
VideoCapability() on GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1546

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 0, indicating device is not
telepresence capable
(TELEPRESENCEINTEROP_DISABLED)
for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().getTelepresenceInfo()
on GC1.

The API returns 0, indicating device has 0
screens, for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

Scenario Nine
Shared Line: Phone A has video enabled, Phone B has video disabled and Phone B' has video enabled. B' is
in User1's control list.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermB'User1 adds terminal observers on Phone B'

CiscoAddrInServiceEv B'User1 adds call observes on the address B'

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1547

Message Sequence Charts
Scenario Nine

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
ENABLED) for TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().getVideoCapability()
on GC1.

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
DISABLED) for TermB

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1548

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
ENABLED) for TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().getVideoCapability()
on GC1.

Application will receive the following
incorrect data:

The API returns 1, indicating not video
capable
device(CiscoMultiMediaCapabilityInfo.
ENABLED) for Term B.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Scenario Ten
Shared Line: Phone A has video enabled, Phone B has video disabled and Phone B' has video enabled. B and
B' is in User1's control list.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermB

CiscotermInServiceEv TermB'

User1 adds terminal observers on Phone B
and Phone B'

CiscoAddrInServiceEv B

CiscoAddrInServiceEv B'

User1 adds call observes on the address B
and B'

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1549

Message Sequence Charts
Scenario Ten

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
ENABLED) for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo.
).getVideoCapability() on GC1.

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
DISABLED) for TermB'

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.
.getCallingTerminalVideoCapability() on
GC1.

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1550

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
ENABLED) for TermA

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo.
).getVideoCapability() on GC1.

Application will receive the following
incorrect data:

The API returns 1, indicating not video
capable
device(CiscoMultiMediaCapabilityInfo.
ENABLED) for Term B.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.
).getCallingTerminalVideoCapability() on
GC1.

Scenario Eleven
Basic Video call: Phone A is video enabled, Telepresence enabled and has 1 screen. Phone B has video
disabled, Telepresence disabled and has 0 screens. Phone A is in User1's control list, Phone A is observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds call observes on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1551

Message Sequence Charts
Scenario Eleven

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

The API returns -1, indicating video
capability is not known (UKNOWN) for
TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

The API returns -1, indicating telepresence
capability is not known (UKNOWN) for
TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

The API returns -1, indicating screen count
capability is not known TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

The API returns -1, indicating video
capability is not known (UKNOWN) for
TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1552

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns -1, indicating telepresence
capability is not known (UKNOWN) for
TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

The API returns -1, indicating screen count
capability is not known TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 1, indicating video capable
device (CiscoMultiMediaCapabilityInfo.
ENABLED) for TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

The API returns 1, indicating telepresenc
capable device (CiscoMultiMedia
CapabilityInfo.
TELEPRESENCEINTEROP_ENABLED)
for TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

The API returns 1, indicating device has 1
screen, for TermA

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

The API returns 0, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.DISABLED) for Term B.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1553

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 0, indicating device is not
telepresence capable
(TELEPRESENCEINTEROP_
DISABLED) for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

The API returns 0, indicating device has 0
screens, for TermB

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

Scenario Twelve
MultiMedia Streams: Phone A and B have video enabled, and both phones are in User1's control list.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds callObserves on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1554

Message Sequence Charts
Scenario Twelve

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns port number from which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getReceptionAddress() on Terminal A

The API returns port number from which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getReceptionPort() on Terminal A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1555

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns port number from which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getTransmissionAddress() on Terminal A

The API returns the payload format.CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getTransmissionPort() on Terminal A

The API returns the maximum bit rate.CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getPayloadType() on Terminal A

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getMaxBitRate() on Terminal A

The API returns 2(MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaConnectionMode() on
Terminal A

CiscoMultiMediaStreamsInfoEv.

getProperties(). getMultiMediaType() on
Terminal A

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties(). isKeyInfoPresent() on
Terminal A

The API returns NULL.CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaEncryptionKeyInfo() on
Terminal A

The API returns
3(MEDIA_ENCRYPTED_KEYS
_UNAVAILABLE)

CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaSecurityIndicator() on
Terminal A

The API returns IP address to which media
will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getReceptionAddress() on Terminal B

The API returns port number to which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getReceptionPort() on Terminal B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1556

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns IP address from which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getTransmissionAddress() on Terminal B

The API returns port number from which
media will be directed.

CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getTransmissionPort() on Terminal B

The API returns the payload format.CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getPayloadType() on Terminal B

The API returns the maximum bit rate.CiscoMultiMediaStreamsInfoEv.

getProperties(). getRTPProperties().
getMaxBitRate() on Terminal B

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaConnectionMode() on
Terminal B

The API returns 2(MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties(). getMultiMediaType() on
Terminal B

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties(). isKeyInfoPresent() on
Terminal B

The API returns NULL.CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaEncryptionKeyInfo() on
Terminal B

The API returns
3(MEDIA_ENCRYPTED_KEYS
_UNAVAILABLE)

CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaSecurityIndicator() on
Terminal B

B holds the call.

The API returns 3(INACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaConnectionMode() on
Terminal A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1557

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 3(INACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaConnectionMode() on
Terminal B

B unholds the call.

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getCallingTerminalVideoCapability() on
GC1.

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaConnectionMode() on
Terminal B

Scenario Thirteen
Redirect: Phone A, B, and C have video enabled, and A, B phones are in User1's control list, and Phone C is
in User2's control list.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

CiscotermInServiceEv TermC

User1 adds terminal observers on Phone A
and Phone B

User2 adds terminal observers on Phone C.

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

CiscoAddrInServiceEv C

User1 adds callObserves on the address A
and B

User2 adds callObserves on the address C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1558

Message Sequence Charts
Scenario Thirteen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties()
.getMultiMediaConnectionMode() on
Terminal A

The API returns 2(MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties().getMultiMediaType() on
Terminal A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1559

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties().isKeyInfoPresent() on
Terminal A

The API returns
0(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties()
.getMultiMediaConnectionMode() on
Terminal B

The API returns 2(MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties().getMultiMediaType() on
Terminal B

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties().isKeyInfoPresent() on
Terminal B

The API returns NULL.CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaEncryptionKeyInfo() on
Terminal B

The API returns 2(MAIN_VIDEO)
3(MEDIA_ENCRYPTED
_KEYS_UNAVAILABLE)

CiscoMultiMediaStreamsInfoEv.

getProperties().
getMultiMediaSecurityIndicator() on
Terminal B

B redirects the call to C. C answers

The API returns 3(INACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties()
.getMultiMediaConnectionMode() on
Terminal B

The API returns 0(ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties()
.getMultiMediaConnectionMode() on
Terminal C

The API returns 0(ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties()
.getMultiMediaConnectionMode() on
Terminal A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1560

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video
capability is enabled
(CiscoMultiMediaCapabilityInfo.ENABLED)
for TermA (far-end party).

App does CiscoCall.

getCallingTerminal VideoCapability() on
GC1.

The API returns 1, indicating video
capability is enabled (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC
(far-end party).

App does CiscoCall.

getCalledTerminalMult
iMediaCapabilityInfo() on GC2.

The API returns 1, indicating video
capability is enabled (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA
(far-end party).

App does CiscoCall.

getCallingTerminal VideoCapability() on
GC1.

The API returns 1, indicating video
capability is enabled (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC
(far-end party).

CiscoMultiMediaStreamsInfoEv.

getCalledTerminalMult
iMediaCapabilityInfo on GC2.

Scenario Fourteen
Transfer: Phone A, B and C have video enabled, and A, B phones are in User1's control list and C is in User2's
control list, A, B and C are in cluster1.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

CiscotermInServiceEv TermC

User1 adds terminal observers on Phone A
and Phone B

User2 adds terminal observers on Phone C.

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

CiscoAddrInServiceEv C

User1 adds callObserves on the address A
and B

User2 adds callObserves on the address C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1561

Message Sequence Charts
Scenario Fourteen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 0
(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal A

The API returns 2 (MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties ().getMultiMediaType () on
Terminal A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1562

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties ().isKeyInfoPresent () on
Terminal A

The API returns 0
(TRANSMIT_AND_RECEIVE)

CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal B

The API returns 2 (MAIN_VIDEO)CiscoMultiMediaStreamsInfoEv.

getProperties ().getMultiMediaType () on
Terminal B

The API returns FalseCiscoMultiMediaStreamsInfoEv.

getProperties ().isKeyInfoPresent () on
Terminal B

The API returns NULL.CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaEncryptionKeyInfo () on
Terminal B

The API returns 3
(MEDIA_ENCRYPTED_
KEYS_UNAVAILABLE)

CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaSecurityIndicator () on
Terminal B

B does a consult call to C. C answers

The API returns 0 (ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties ().getMultiMediaType () on
Terminal B

The API returns 0 (ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal C

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC (
far-end party).

App does CiscoCall.

getCalledTerminalMultiMediaCapabilityInfo
() on GC2.

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermB (
far-end party).

App does CiscoCall.

getCallingTerminalMultiMediaCapabilityInfo
on GC2.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1563

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

B does GC1.transfer (GC2). C answers

The API returns 3 (INACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal B

The API returns 0 (ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal C

The API returns 0 (ACTIVE)CiscoMultiMediaStreamsInfoEv.

getProperties
().getMultiMediaConnectionMode () on
Terminal A

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC (
far-end party).

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfoon GC2.

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA (
far-end party).

App does CiscoCall.

getCallingTerminalMultiMediaCapabilityInfo
() on GC2.

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC (
far-end party).

App does CiscoCall.

getCalledTerminalMultiMediaCapabilityInfo
().getCallingTerminalVideoCapability ()
onGC1.

The API returns 1, indicating video
capability is known (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA (
far-end party).

App does CiscoCall.

getCallingTerminalMultiMediaCapabilityInfo
() on GC1.

Scenario Fifteen
Negotiated video capability will be reported to the called party across a cluster call (over SIP – ICT trunk)
using early offer (Phone A is a video disabled SIP Phone in cluster 1 and Phone B is a video enabled SIP
Phone in cluster 2). User1 has Phone A in the control list, Phone A is observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1564

Message Sequence Charts
Scenario Fifteen

Call InfoEventsAction

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds callObserves on the address A
and B

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermA.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1565

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermB.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device(CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

Variation 1:

A and B are SIP Phone and have video
enabled.

User1 makes a call from A to B. B answers
the call.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1

Scenario Sixteen
Multiple redirects over SIP trunk (A, B, C and D are video enabled SIP Phones, A is in cluster 1 and B, C, D
are in cluster 2). Phone A, B, C and D are in User1’s control list, Phone A, B, C and D are observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

CiscotermInServiceEv TermC

CiscotermInServiceEv TermD

User1 adds terminal observers on Phone A
B, C, and D

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

CiscoAddrInServiceEv C

CiscoAddrInServiceEv D

User1 adds callObserves on the address A,
B, C, and D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1566

Message Sequence Charts
Scenario Sixteen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermB.

App does CiscoCall.

getCalledTermina
lMultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1567

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

B redirects the call to C.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTermina
lMultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC.

C redirects the call to D.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device(CiscoMultiMedia
CapabilityInfo.ENABLED) for TermD.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTermina
lMultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Scenario Seventeen
Redirect over SIP trunk (Phone A is video enabled SIP Phone, and Phone B and C have video disabled. Phone
A is in cluster 1 and Phone B and C are in cluster 2). Phone A and B are in User1’s control list and Phone C
is in User2’s control list, Phone A, B and C are observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds call Observes on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1568

Message Sequence Charts
Scenario Seventeen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermA.

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getVideoCapability() on GC1.

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo. DISABLED) for TermC.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1569

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia CapabilityInfo.
ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia CapabilityInfo.
ENABLED) for TermC.

Variation 1:

A and B have video enabled, C has video
disabled

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

Scenario Eighteen
Shared Line – Hold and Resume scenario over SIP trunk (Phone A and C are video enabled SIP Phones and
Phone B is video disabled, Phone A is in cluster 1 and Phone B and C are in cluster 2. Phone B and C are
shared lines). Phone A and B are in User1’s control list, Phone A and B are observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds call Observes on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1570

Message Sequence Charts
Scenario Eighteen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

B redirects the call to C. C answers

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo()
.getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo() .getCallingTerminal
VideoCapability() on GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1571

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermC.

Variation 1:

A and B have video enabled, C has video
disabled

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo()
.getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo() .getCallingTerminal
VideoCapability() on GC1.

Scenario Nineteen
Multiple redirects over H323 ICT trunk (A, B, C and D are video enabled SIP Phones, A is in cluster 1 and
B, C, D are in cluster 2). Phone A, B, C and D are in User1’s control list, Phone A, B, C and D are observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

CiscotermInServiceEv TermC

CiscotermInServiceEv TermD

User1 adds terminal observers on Phone A
B, C, and D

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

CiscoAddrInServiceEv C

CiscoAddrInServiceEv D

User1 adds call Observes on the address A
B, C, and D

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1572

Message Sequence Charts
Scenario Nineteen

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1573

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermB.

The API returns -1, indicating telepresence
is UNKNOWN for TermA.

The API returns -1, indicating telepresence
is UNKNOWN for TermB.

The API returns -1, indicating screen count
isUNKNOWN for TermA.

The API returns -1, indicating screen count
is UNKNOWN for TermB.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

B redirects the call to C. C answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1574

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC.

The API returns -1, indicating telepresence
is UNKNOWN for TermA.

The API returns -1, indicating telepresence
is UNKNOWN for TermC.

The API returns -1, indicating screen count
is UNKNOWN for TermA.

The API returns -1, indicating screen count
is UNKNOWN for TermC.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

C redirects the call to D.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1575

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermD.

The API returns -1, indicating telepresence
is UNKNOWN for TermA.

The API returns -1, indicating telepresence
is UNKNOWN for TermC.

The API returns -1, indicating screen count
is UNKNOWN for TermA.

The API returns -1, indicating screen count
is UNKNOWN for TermC.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCallingTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo.getScreenCount() on
GC1.

Scenario Twenty
Redirect over H323 trunk (Phone A is video enabled SIP Phone and Phone B and C have video disabled,
Phone A is in cluster 1 and Phone B and C are in cluster 2). Phone A and B are in User1’s control list and
Phone C is in user2’s control list, Phone A, B and C are observed.

Call InfoEventsAction

ProvInServiceEvUser1 Opens Provider and adds a provider
observer

CiscotermInServiceEv TermA

CiscotermInServiceEv TermB

User1 adds terminal observers on Phone A
and Phone B

CiscoAddrInServiceEv A

CiscoAddrInServiceEv B

User1 adds call Observes on the address A
and B

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1576

Message Sequence Charts
Scenario Twenty

Call InfoEventsAction

GC1: CallActiveEv

GC1: ConnCreatedEv A

GC1:ConnConnectedEv A

GC1:CallCtlConnInitiatedEv A

GC1:TermConnCreatedEv TermA

GC1:TermConnActiveEv TermA

GC1:CallCtlTermConnTalkingEv TermA

GC1:CallCtlConnDialingEv A

GC1CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 ConnInProgressEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAletingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv B

GC1 TermConnRingingEv B

GC1CallCtlTermConnRingingEv Impl B

User1 makes a call from A to B

GC1 ConnConnectedEv B

GC1 CallCtlConnEstablishedEv B

GC1 TermConnActiveEv B

GC1 CallCtlTermConnTalkingEv B

CiscoRTPInputStartedEv TermA

CiscoRTPInputStartedEv TermB

CiscoRTPOutputStartedEv TermA

CiscoRTPOutputStartedEv TermB

B answers the call

B redirects the call to C. C answers

The API returns 1, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getVideoCapability() on GC1.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1577

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 0, indicating not a video
capable device (CiscoMultiMedia
CapabilityInfo.DISABLED) for TermC.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermC.

Variation 1:

A and B have video enabled, C has video
disabled

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

C redirects the call to D.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1578

Message Sequence Charts
Message Sequence Charts

Call InfoEventsAction

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermA.

The API returns 1, indicating video capable
device (CiscoMultiMedia
CapabilityInfo.ENABLED) for TermD.

The API returns -1, indicating telepresence
is UNKNOWN for TermA.

The API returns -1, indicating telepresence
is UNKNOWN for TermC.

The API returns -1, indicating screen count
is UNKNOWN for TermA.

The API returns -1, indicating screen count
is UNKNOWN for TermC.

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getVideoCapability() on GC1.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getCallingTerminalVideoCapability() on
GC1.

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCalledTerminal
MultiMediaCapabilityInfo().
getTelepresenceInfo() on GC1.

App does CiscoCall.

getCallingTerminal
MultiMediaCapabilityInfo.getScreenCount()
on GC1.

App does CiscoCall.

getCalledTerminalMulti
MediaCapabilityInfo. getScreenCount() on
GC1.

Video On Hold
Pre-conditions to all video on hold use cases, unless specified otherwise:

• Provider is in IN_SERVICE state
• All addresses and terminals are already in service.
• Device A (IP Phone – Name: “SEP2401C7824EA3”, Line A1 (dn: 9000))
• Device B (IP Phone – Name: “SEP2401C7824EAE”, Line B1 (dn: 9001))
• The content id corresponding to VoH stream is contentID1.
• User1 has in its control list: Devices A and B. All devices and lines are observed.

Scenario One

Invoke hold() on basic call between two ip phones to stream video to the held party

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1579

Message Sequence Charts
Video On Hold

Call information / NotesEventsAction

ProvInServiceEvUser1 opens Provider
and adds a provider
observer.

GC1: CallActiveEv

GC1: ConnCreatedEv 9000

GC1: ConnConnectedEv 9000

GC1: CallCtlConnInitiatedEv 9000

GC1: TermConnCreatedEv SEP2401C7824EA3

GC1: TermConnActiveEv SEP2401C7824EA3

GC1: CallCtlTermConnTalkingEv SEP2401C7824EA3

GC1: CallCtlConnDialingEv 9000

GC1: CallCtlConnEstablishedEv 9000

GC1: ConnCreatedEv 9001

GC1: ConnInProgressEv 9001

GC1: CallCtlConnOfferedEv 9001

GC1: ConnAlertingEv 9001

GC1: CallCtlConnAlertingEv 9001

GC1: TermConnCreatedEv SEP2401C7824EAE

GC1: TermConnRingingEv SEP2401C7824EAE

GC1: CallCtlTermConnRingingEv

SEP2401C7824EAE

User1 invokes
Call.connect("SEP2401C7824EA3",
"9000", "9001").

GC1: ConnConnectedEv 9001

GC1: CallCtlConnEstablishedEv 9001

GC1: TermConnActiveEv SEP2401C7824EAE

GC1: CallCtlTermConnTalkingEv

SEP2401C7824EAE

Device B answers the
call.

GC1: CallCtlTermConnHeldEv SEP2401C7824EA3

You are able to see video streamed to the device
that is placed on hold.

Note

User1 invokes
hold("contentID1") on
terminal connection of
Device A.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1580

Message Sequence Charts
Message Sequence Charts

Call information / NotesEventsAction

GC1: TermConnDroppedEv SEP2401C7824EA3

GC1: CallCtlTermConnDroppedEv SEP2401C7824EA3

GC1: ConnDisconnectedEv 9000

GC1: CallCtlConnDisconnectedEv 9000

GC1: TermConnDroppedEv SEP2401C7824EAE

GC1: CallCtlTermConnDroppedEv SEP2401C7824EAE

GC1: ConnDisconnectedEv 9001

GC1: CallCtlConnDisconnectedEv 9001

GC1: CallInvalidEv

GC1: CallObservationEndedEv

A disconnects the call.

Verification Involving PSTN Reachability
Scenario 1

A calls B in other cluster (Normal Call); application is observing A

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv -A

ConnConnectedEv - A

CallCtlConnDialingEv - A

TermConnCreatedEv - TA

TermConnActiveEv -TA

CallCtlTermConnTalkingEv - TA

ConnCreatedEv B

ConnConnectedEv B

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

A dials B, B rings.

Scenario 2

A calls B in other cluster (VIPR Call - Call gets routed through IP trunk); application is observing A

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1581

Message Sequence Charts
Verification Involving PSTN Reachability

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv -A

ConnConnectedEv - A

CallCtlConnDialingEv - A

TermConnCreatedEv - TA

TermConnActiveEv -TA

CallCtlTermConnTalkingEv - TA

ConnCreatedEv B

ConnConnectedEv B

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

A dials B, B rings

Scenario 3

A calls B, within same cluster. B redirects the call to external party C, the redirected call goes through IP
Trunk due to VIPR feature; application is observing both A and B.

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv A

ConnConnectedEv A

CallCtlConnInitiatedEv A

TermConnCreatedEv TA

TermConnActiveEv TA

CallCtlTermConnTalkingEv TA

CallCtlConnEstablishedEv A

ConnCreatedEv B

CallCtlConnOfferedEv B

ConnAlertingEv B

CallCtlConnAlertingEv B

TermConnCreatedEv TB

TermConnRingingEv TB

CallCtlTermConnRingingEv TB

A calls B withis
same cluster

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1582

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

CiscoFeatureReason=CiscoFeatureReason.REASON_REDIRCT

CallCtlCause = CallCtlEv.CAUSE_REDIRECTED

CiscoFeatureReason.REASON_REDIRECT

GC1:

TermConnDroppedEv TB

CallCtlTermConnDroppedEv TB

ConnDisconnectedEv B

CallCtlConnDisconnectedEv B

ConnCreatedEv C

ConnConnectedEv C

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

B redirects the call
to external party C

Scenario 4

A calls external party B; call goes through IP trunk but later call quality degrades and VIPR PSTN Fallback
happens; application is observing A.

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv -A

ConnConnectedEv - A

CallCtlConnDialingEv - A

TermConnCreatedEv - TA

TermConnActiveEv -TA

CallCtlTermConnTalkingEv - TA

ConnCreatedEv B

ConnConnectedEv B

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

A dials B(VIPR
Call), B rings

TA:

CiscoRTPInputStartedEv

CiscoRTPOutputStartedEv

B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1583

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

TA:

CiscoRTPInputStoppedEv

CiscoRTPOutputStoppedEv

CiscoRTPInputStartedEv

CiscoRTPOutputStartedEv

Call Quality
Degrades and call
falls back to PSTN
network

Scenario 5

A calls B, B transfers the call to external Party C; Transferred call goes through IP trunk due to VIPR feature;
application is observing both A and B.

Call infoResultAction

GC1 CallActiveEv

GC1 ConnCreatedEv A

GC1 ConnConnectedEv A

GC1 CallCtlConnInitiatedEv A

GC1 TermConnCreatedEv TA

GC1 TermConnActiveEv TA

GC1 CallCtlTermConnTalkingEv TA

GC1 CallCtlConnDialingEv A

GC1 CallCtlConnEstablishedEv A

GC1 ConnCreatedEv B

GC1 CallCtlConnOfferedEv B

GC1 ConnAlertingEv B

GC1 CallCtlConnAlertingEv B

GC1 TermConnCreatedEv TB

GC1 TermConnRingingEv TB

GC1 CallCtlTermConnRingingEvImpl TB

GC1: CallCtlConnEstablishedEv for A

GC1: ConnConnectedEv for B

GC1: CallCtlConnEstablishedEv for B

A calls B; B answers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1584

Message Sequence Charts
Message Sequence Charts

Call infoResultAction

GC2: ConsultCallActiveEv

GC2: ConnCreatedEv B

GC2: ConnConnectedEv B

GC2: CallCtlConnInitiatedEv B

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB

GC2: CallCtlConnEstablishedEv B

GC2: ConnCreatedEv C

GC2: ConnConnectedEv for C

GC2: CallCtlConnNetworkReachedEv

GC2: CallCtlConnNetworkAlertingEv

B makes a consult call to
external party C.

CiscoFeatureReason = CiscoFeatureReason.

REASON_TRANSFEREDCALL

GC1 CiscoTermConnSelectChangedEv B

GC2 CiscoTermConnSelectChangedEv B

GC1 CiscoTransferStartedEv

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv C

GC1: ConnConnectedEv for C

GC2 ConnDisconnectedEv for C

GC2 CallCtlConnDisconnectedEv C

GC1 TermConnDroppedEv B

GC1 CallCtlTermConnDroppedEv B

GC1 ConnDisconnectedEv B

GC1 CallCtlConnDisconnectecEv B

GC2 TermConnDroppedEv B

GC2 CallCtlTermConnDroppedEv B

GC2 ConnDisconnectedEv B

GC2 CallCtlConnDisconnectecEv B

GC2 CallInvalidEv

GC1 CiscoTransferEndEv

B completes the transfer;
Two calls are transferred;
A and C get connected
over IP trunk due to
VIPR feature

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1585

Message Sequence Charts
Message Sequence Charts

Scenario 6

A calls B, within the same cluster. B has CFA set to Forward all the calls to external party C, the forwarded
call goes through IP Trunk due to VIPR feature. Application is observing A.

Call infoResultAction

GC1:

CallActiveEv

ConnCreatedEv A

ConnConnectedEv A

CallCtlConnInitiatedEv A

TermConnCreatedEv TA

TermConnActiveEv TA

CallCtlTermConnTalkingEv TA

CallCtlConnEstablishedEv A

A calls B within the
same cluster

CiscoFeatureReason =
CiscoFeatureReason.REASON_FORWARDALL

CallCtlCause = CallCtlEv.CAUSE_REDIRECTED

GC1:

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

ConnCreatedEv C

ConnConnectedEv C

CallCtlConnNetworkReachedEv

CallCtlConnNetworkAlertingEv

Call at B gets
forwarded to
external party C

Whisper Coaching
Use Case One - Monitoring with Mode as WHISPER

Start and Stop Whisper monitor: A is monitor target, B is monitor initiator. X calls A, A answers the call GC1
(CI1). B calls start monitor using GC2. The application has a call observer on both A and B. The monitoring
capability enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1586

Message Sequence Charts
Whisper Coaching

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X…

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

A answers GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1587

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnCreatedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlConnInitiatedEv

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB B Cause: CAUSE_NORMAL

GC2: CallCtlConnDialingEv for B

GC2: CallCtlConnEstablishedEv for B Cause: CAUSE_NORMAL

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnInProgressEv A

GC2: CallCtlConnOfferedEv A,

GC2: ConnAlertingEv A

GC2: CallCtlConnAlertingEv A

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoRTPInputStartedEv TB

GC2: CiscoRTPOutputStartedEv TB

getCiscoFeatureReason() = CiscoFeatureReason.REASON_CALL_MONITORING

GC2:CiscoTermConnMonitorTargetInfoEv TB

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC1: CiscoTermConnMonitoringStartEv TA

getMonitorType() = CiscoCall.WHISPER_MONITORGC1:
CiscoTermConnMonitorInitiatorInfoEv TA Cause: CAUSE_NORMAL address:B,
device name: TBCiscoMonitorInitiatorInfo.getMonitorType() =
CiscoCall.WHISPER_MONITOR

B calls start monitor
using GC2 giving
CI1, A and TermA
in GC1 and mode as
Whisper

GC1: CallCtlTermConnHeldEv TA

GC2:CiscoRTPInputStoppedEv TB

GC2: CiscoRTPOutputStoppedEv TB

GC1: CiscoRTPOutputStoppedEv TA

GC1: CiscoRTPInputStoppedEv TA

A puts the call with
X on hold

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1588

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC1: CallCtlTermConnTalking TA

GC1: CiscoRTPOutputStartedEv TA

GC1: CiscoRTPInputStartedEv TA

GC2: CiscoRTPOutputStartedEv TB

GC2:CiscoRTPInputStartedEv TB

A resumes the call

GC2: CallCtlTermConnDroppedEv TB

GC2: TermConnDroppedEv TB

GC2: ConnDisconnectedEvB

GC2: CallCtlConnDisconnectedEv B

GC2: ConnDisconnectedEv A

GC2: CallCtlConnDisconnectedEv A

GC2: CallInvalidEv

GC1: CiscoTermConnMonitorEndEv TA

B calls drop() on
GC2 to stop
monitoring

Use Case Two - Snapshot Use Case for Whisper Monitoring

• A is monitor target. B is monitor initiator. X calls A, A answers the call GC1 (ci1). B calls start monitor
using GC2. Another application adds call observer on A after monitoring session is established.

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

CallActiveEv for callID = GC1 Cause: CAUSE_SNAPSHOT

GC1:ConnCreatedEv for A Cause: CAUSE_SNAPSHOT

GC1:ConnConnectedEv for A Cause: CAUSE_SNAPSHOT

GC1: ConnConnectedEv X

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_SNAPSHOT

GC1: CiscoTermConnMonitoringStartEv TA Cause: CAUSE_SNAPSHOT

getMonitorType() = CiscoCall.WHISPER_MONITOR

GC1: CiscoTermConnMonitorInitiatorInfoEv TA Cause: CAUSE_SNAPSHOT
address:B, device name: TB

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

• A is monitor target and B is monitor initiator. Caller X calls A, A answers the call GC1 (ci1). B calls
start monitor using GC2. Another application adds call observer on B after monitoring sessions are
established.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1589

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC1:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

GC2:CallActive Cause: CAUSE_SNAPSHOT

GC2: ConnCreatedEv for B Cause: : CAUSE_SNAPSHOT

GC2: ConnConnectedEv B

GC2: CallCtlConnEstablishedEv for B Cause: : CAUSE_SNAPSHOT

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB B Cause: : CAUSE_SNAPSHOT

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2:CiscoTermConnMonitorTargetInfoEv TB

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorInitatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

Use Case Three

Start Silent Monitoring then update the monitorType to Whisper mode followed by redirect and the
updateMonitorType back to Silent monitor.

Whisper monitor: A is monitor target, B is monitor initiator. X calls A, A answers the call GC1 (ci1). B calls
start monitor using GC2(mode = silent). Application has call observer on both A and B. Application has
monitoring capability enabled. App updates the monitor mode to Whisper. B redirects the monitoring call to
observed party C. App updates the monitor mode to silent and later drops monitoring call to stop monitoring.

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

A answers GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1590

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnCreatedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlConnInitiatedEv

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB B Cause: CAUSE_NORMAL

GC2: CallCtlConnDialingEv for B

GC2: CallCtlConnEstablishedEv for B Cause: CAUSE_NORMAL

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnInProgressEv A

GC2: CallCtlConnOfferedEv A,

GC2: ConnAlertingEv A

GC2: CallCtlConnAlertingEv A

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoRTPInputStartedEv TB

getCiscoFeatureReason() = CiscoFeatureReason.REASON_CALL_MONITORING

GC2:CiscoTermConnMonitorTargetInfoEv TB

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.SILENT_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC1: CiscoTermConnMonitoringStartEv TA

getMonitorType() = CiscoCall.SILENT_MONITOR

GC1: CiscoTermConnMonitorInitiatorInfoEv TA

Cause: CAUSE_NORMAL address:B, device name: TB

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.SILENT_MONITOR

B calls start monitor
using GC2 giving
CI1, A and TermA
from GC1 and mode
as Silent

GC2: CiscoTermConnMonitorUpdatedEv TA

GC2: CiscoTermConnMonitorUpdatedEv TB

getMonitorType() = CiscoCall.WHISPER_MONITOR

getTransactionID() = X

GC2: CiscoRTPOutputStartedEv TB

The application calls
updateMonitorType()
API on TermConn of
B with mode as
Whisper.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1591

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2: ConnCreatedEv C

GC2: ConnConnectedEv C

GC2: CallCtlConnOfferedEv C

GC2: TermConnCreatedEv TC

GC2: TermConnActiveEv TC

GC2: CallCtlTermConnTalkingEv for TC

GC2: TermConnDroppedEv TB

GC2: CallCtlTermConnDroppedEv TB

GC2: ConnDisconnectedEv TB

GC2: CallCtlConnDisconnectedEv TB

GC2: CiscoTermConnMonitorTargetInfoEv TC

CAUSE_NORMAL address:A, here A.getType() =MONITORING_TARGET, terminal
name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

GC2; CiscoTermConnMonitorInitatorInfoEv TA

Cause: CAUSE_NORMAL address:C, device name: TC

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

B redirects the call
to C and C answers.

GC2: CiscoTermConnMonitorUpdatedEv TA

GC2: CiscoTermConnMonitorUpdatedEv TC

getMonitorType() = CiscoCall.SILENT_MONITOR

getTransactionID() = X

GC2: CiscoRTPOutputStoppedEv TC

The application calls
updateMonitorType()
API on TermConn of
C with mode as
Silent

GC2: CallCtlTermConnDroppedEv TC

GC2: TermConnDroppedEv TC

GC2: ConnDisconnectedEv C

GC2: CallCtlConnDisconnectedEv C

GC2: ConnDisconnectedEv A

GC2: CallCtlConnDisconnectedEv A

GC2: CallInvalidEv

GC1: CiscoTermConnMonitorEndEv TA

C calls drop on GC2
to stop monitoring

Use Case Four

Secured Whisper Monitoring followed by redirect to non-secured supervisor

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1592

Message Sequence Charts
Message Sequence Charts

Whisper monitor: A is monitor target, B is monitor initiator. Both A and B are Encrypted devices. X calls A,
A answers the call GC1 (ci1). B calls start monitor using GC2(mode = whisper). Application has call observer
on both A and B. Application has monitoring capability enabled. B redirects to observed party C which is
non-secured.

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

A answers GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1593

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnCreatedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlConnInitiatedEv

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB B Cause: CAUSE_NORMAL

GC2: CallCtlConnDialingEv for B

GC2: CallCtlConnEstablishedEv for B Cause: CAUSE_NORMAL

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnInProgressEv A

GC2: CallCtlConnOfferedEv A,

GC2: ConnAlertingEv A

GC2: CallCtlConnAlertingEv A

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoRTPInputStartedEv TB

GC2: CiscoRTPOutputStartedEv TB

getCiscoFeatureReason() = CiscoFeatureReason.REASON_CALL_MONITORING

GC2:CiscoTermConnMonitorTargetInfoEv TB

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC1: CiscoTermConnMonitoringStartEv TA

getMonitorType() = CiscoCall.WHISPER_MONITOR

GC1: CiscoTermConnMonitorInitiatorInfoEv TA

Cause: CAUSE_NORMAL address:B, device name: TB

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

B calls start monitor
using GC2 giving
CI1, A and TermA
from GC1 and mode
as whisper

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1594

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2: ConnCreatedEv C

GC2: ConnConnectedEv C

GC2: CallCtlConnOfferedEv C

GC2: TermConnCreatedEv TC

GC2: TermConnActiveEv TC

GC2: CallCtlTermConnTalkingEv for TC

GC2: TermConnDroppedEv TB

GC2: CallCtlTermConnDroppedEv TB

GC2: ConnDisconnectedEv TB

GC2: CallCtlConnDisconnectedEv TB

GC2: CiscoTermConnMonitorTargetInfoEv TC

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC2: CiscoTermConnMonitorInitiatorInfoEv TA

Cause: CAUSE_NORMAL address:C, device name: TC

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

GC2: ConnFailedEv C

GC2: CallCtlConnFailedEv C

cause : CAUSE_BCNAUTHORISED

GC2: CallInvalidEv

GC2: CiscoAddrMonitorTerminatedEv B

cause : CAUSE_BCNAUTHORISED

B redirects the call
to C and C answers

Use Case Five

Agent greeting is played and the application initiates the monitoring request (Silent/Whisper).

JTAPI throws InvalidStateException with error "CTIERR_RESOURCE_NOT_AVAILABLE" when the
application sends a monitor request and when an agent greeting is played at that time.

Use Case Six - Tone Direction Interaction Use Cases

1. Service Parameter = PLAYTONE_NOLOCAL_OR_REMOTE; API Request
(startMonitor/updateMonitorType) = PLAYTONE_NOLOCAL_OR_REMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_NOLOCAL_OR_REMOTE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1595

Message Sequence Charts
Message Sequence Charts

• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_NOLOCAL_OR_REMOTE

2. Service Parameter = PLAYTONE_NOLOCAL_OR_REMOTE; API Request
(startMonitor/updateMonitorType) = PLAYTONE_LOCALONLY

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_LOCALONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_NOLOCAL_OR_REMOTE

3. Service Parameter = PLAYTONE_NOLOCAL_OR_REMOTE; API Request
(startMonitor/updateMonitorType) = PLAYTONE_REMOTEONLY

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_REMOTEONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

4. Service Parameter = PLAYTONE_NOLOCAL_OR_REMOTE; API Request
(startMonitor/updateMonitorType) = PLAYTONE_BOTHLOCALANDREMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

5. Service Parameter = PLAYTONE_LOCALONLY; API Request (startMonitor/updateMonitorType) =
PLAYTONE_NOLOCAL_OR_REMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_LOCALONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_NOLOCAL_OR_REMOTE

6. Service Parameter = PLAYTONE_LOCALONLY; API Request (startMonitor/updateMonitorType) =
PLAYTONE_LOCALONLY

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_LOCALONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_NOLOCAL_OR_REMOTE

7. Service Parameter = PLAYTONE_LOCALONLY; API Request (startMonitor/updateMonitorType) =
PLAYTONE_REMOTEONLY

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

8. Service Parameter = PLAYTONE_LOCALONLY; API Request (startMonitor/updateMonitorType) =
PLAYTONE_BOTHLOCALANDREMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

9. Service Parameter = PLAYTONE_REMOTEONLY; API Request (startMonitor/updateMonitorType)
= PLAYTONE_NOLOCAL_OR_REMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_REMOTEONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

10. Service Parameter = PLAYTONE_REMOTEONLY; API Request (startMonitor/updateMonitorType)
= PLAYTONE_LOCALONLY

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

11. Service Parameter = PLAYTONE_REMOTEONLY; API Request (startMonitor/updateMonitorType)
= PLAYTONE_REMOTEONLY

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1596

Message Sequence Charts
Message Sequence Charts

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_REMOTEONLY
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

12. Service Parameter = PLAYTONE_REMOTEONLY; API Request (startMonitor/updateMonitorType)
= PLAYTONE_BOTHLOCALANDREMOTE

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

13. Service Parameter = PLAYTONE_BOTHLOCALANDREMOTE; API Request
(startMonitor/updateMonitorType) = Any tone

• If Mode is Silent, then Effective Tone Direction = PLAYTONE_BOTHLOCALANDREMOTE
• If Mode is Whisper, then Effective Tone Direction = PLAYTONE_REMOTEONLY

Use Case Seven

Supervisor B is a shared line and supervisor updates monitorType from silent to whisper. Address B is a
shared line configured on terminal T1(initiator) and T2.

Whisper monitor: A is monitor target, B(T1) is monitor initiator. X calls A, A answers the call GC1 (ci1).
B(T1) calls start monitor using GC2(mode = silent). Application has call observer on all A, B(T1) and B(T2_.
Application has monitoring capability enabled. App updates the monitor type to Whisper and later drops
monitoring call to stop monitoring.

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv

CiscoRTPInputStartedEv

A answers GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1597

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnCreatedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlConnInitiatedEv

GC2: TermConnCreatedEv B(T1)

GC2: TermConnActiveEv B(T1)

GC2: TermConnCreatedEv for B(T2)

GC2: TermConnPassiveEv for B(T2)

GC2: CallCtlTermConnTalkingEv B(T1) B Cause: CAUSE_NORMAL

GC2: CallCtlConnDialingEv for B

GC2: CallCtlConnEstablishedEv for B Cause: CAUSE_NORMAL

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnInProgressEv A

GC2: CallCtlConnOfferedEv A,

GC2: ConnAlertingEv A

GC2: CallCtlConnAlertingEv A

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoRTPInputStartedEv B(T1)

getCiscoFeatureReason() = CiscoFeatureReason.REASON_CALL_MONITORING

GC2:CiscoTermConnMonitorTargetInfoEv B(T1)

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.SILENT_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC1: CiscoTermConnMonitoringStartEv TAgetMonitorType() =
CiscoCall.SILENT_MONITOR

GC1: CiscoTermConnMonitorInitiatorInfoEv TA

Cause: CAUSE_NORMAL address:B, device name: B(T1)

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.SILENT_MONITOR

B calls start monitor
using GC2 giving
CI1, A and TermA
from GC1 and mode
as Silent

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1598

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC2: CiscoTermConnMonitorUpdatedEv TA

GC2: CiscoTermConnMonitorUpdatedEv B(T1)

getMonitorType() = CiscoCall.WHISPER_MONITOR

getTransactionID() = X

GC2: CiscoRTPOutputStartedEv B(T1)

The application calls
updateMonitorType()
API on TermConn of
B with mode as
Whisper

GC2: CallCtlTermConnDroppedEv BT(1)

GC2: TermConnDroppedEv B(T1)

GC2: CallCtlTermConnDroppedEv BT(2)

GC2: TermConnDroppedEv B(T2)

GC2: ConnDisconnectedEv B

GC2: CallCtlConnDisconnectedEv B

GC2: ConnDisconnectedEv A

GC2: CallCtlConnDisconnectedEv A

GC2: CallInvalidEv

GC1: CiscoTermConnMonitorEndEv TA

B calls drop on GC2
to stop monitoring

Use Case Eight

Agent is shared line. After monitoring Agent holds and its shared line resumes.

A(T1) is monitor target and shares a line with Terminal T2 , B is monitor initiator. X calls A, A answers the
call GC1 (ci1). B calls start monitor using GC2. Application has call observer on all A(T1), A(T2) and B.
Application has monitoring capability enabled.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1599

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC1:

Calling: X

Called: A

LRP: null

Current calling: X

Current called:A

GC2:

Calling: B

Called: A

LRP: null

Current calling: B

Current called:A

A(T1) answers
GC1B calls start
monitor using GC2
giving CI1, A and
TermA(T1) in GC1
and mode as
Whisper

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1600

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

CallActiveEv for callID = GC1 Cause: CAUSE_NEW_CALL

GC1:ConnCreatedEv for A Cause: CAUSE_NORMAL

GC1:ConnConnectedEv for A Cause: CAUSE_NORMAL

GC1: ConnConnectedEv X

GC1:CallCrlTermConnRingingEv TA Cause: CAUSE_NORMAL

GC1:CallCrlTermConnTalkingEv TA Cause: CAUSE_NORMAL

CiscoRTPOutputStartedEv T1

CiscoRTPInputStartedEv T1

GC2:CallActive Cause: CAUSE_NORMAL

GC2: ConnCreatedEv for B Cause: CAUSE_NORMAL

GC2: CallCtlConnInitiatedEv

GC2: TermConnCreatedEv TB

GC2: TermConnActiveEv TB

GC2: CallCtlTermConnTalkingEv TB B Cause: CAUSE_NORMAL

GC2: CallCtlConnDialingEv for B

GC2: CallCtlConnEstablishedEv for B Cause: CAUSE_NORMAL

GC2: ConnCreatedEv A , here A.getType() = MONITORING_TARGET

GC2: ConnInProgressEv A

GC2: CallCtlConnOfferedEv A,

GC2: ConnAlertingEv A

GC2: CallCtlConnAlertingEv A

GC2: ConnConnectedEv A

GC2: CallCtlConnEstablishedEv A

GC2: CiscoRTPInputStartedEv TB

GC2: CiscoRTPOutputStartedEv TB

getCiscoFeatureReason() = CiscoFeatureReason.REASON_CALL_MONITORING

GC2:CiscoTermConnMonitorTargetInfoEv TB

Cause: CAUSE_NORMAL address:A, here A.getType() = MONITORING_TARGET,
terminal name: TA, rtphandle = CI1

CiscoMonitorTagetInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

[Note: Above connection is not created on Observered address A, rather an another
Address object of type MONITORING_TARGET.]

GC1: CiscoTermConnMonitoringStartEv T1(A)

getMonitorType() = CiscoCall.WHISPER_MONITOR

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1601

Message Sequence Charts
Message Sequence Charts

Call informationEventsAction

GC1: CiscoTermConnMonitorInitiatorInfoEv T1(A)

Cause: CAUSE_NORMAL address:B, device name: TB

CiscoMonitorInitiatorInfo.getMonitorType() = CiscoCall.WHISPER_MONITOR

GC1: CallCtlTermConnHeldEv A(T1)

GC1: CallCtlTermConnActiveEv A(T2)

GC1: CallCtlTermConnHeldEv A(T2)

GC2:CiscoRTPInputStoppedEv TB

GC2: CiscoRTPOutputStoppedEv TB

GC1: CiscoRTPOutputStoppedEv A(T1)

GC1: CiscoRTPInputStoppedEv A(T1)

A(T1) puts the call
on hold

GC1: CallCtlTermConnTalkingEv A(T2)

GC1: CallCtlTermConnPassiveEv A(T1)

GC1: CiscoRTPOutputStartedEv A(T2)

GC1: CiscoRTPInputStartedEv A(T2)

GC2: CallCtlTermConnDroppedEv TB

GC2: TermConnDroppedEv TB

GC2: ConnDisconnectedEvB

GC2: CallCtlConnDisconnectedEv B

GC2: ConnDisconnectedEv A

GC2: CallCtlConnDisconnectedEv A

GC2: CallInvalidEv

GC1: CiscoTermConnMonitorEndEv TA

A(T2) resumes the
call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1602

Message Sequence Charts
Message Sequence Charts

A P P E N D I X B
Cisco Unified JTAPI Classes and Interfaces

This appendix contains a listing of all classes and interfaces that are available in the Cisco Unified JTAPI
implementation:

• Cisco Unified JTAPI Version 1.2 Classes and Interfaces, on page 1603, which lists all the JTAPI v 1.2
classes and methods. The supported classes and methods have a check mark in the Cisco Unified JTAPI
Support column.

• Cisco Unified JTAPI Extension Classes and Interfaces, on page 1621, which lists the Cisco Unified JTAPI
extension classes and methods.

• Cisco Trace Logging Classes and Interfaces, on page 1626, which lists the error tracing classes andmethods.

• Cisco Unified JTAPI Version 1.2 Classes and Interfaces, on page 1603
• Cisco Unified JTAPI Extension Classes and Interfaces, on page 1621
• Cisco Trace Logging Classes and Interfaces, on page 1626

Cisco Unified JTAPI Version 1.2 Classes and Interfaces
This section includes the following:

• Core Package, on page 1604

• Call Center Package, on page 1607

• Call Center Capabilities Package, on page 1609

• Call Center Events Package, on page 1610

• Call Control Package, on page 1612

• Call Control Capabilities Package, on page 1614

• Call Control Events Package, on page 1616

• Capabilities Package, on page 1617

• Events Package, on page 1618

• Media Package, on page 1619

• Media Capabilities Package, on page 1620

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1603

• Media Events Package, on page 1620

• Unsupported Packages, on page 1620

Core Package
The following table lists each JTAPI interface in the JTAPI Core Package followed by the associated method
(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnified JTAPI
support

Method namesClass names

YesaddCallObserverAddress

YesaddressObserver

YesgetAddressCapabilities

YesgetCallObservers

YesgetCapabilities

YesgetConnections

YesgetName

YesgetObservers

YesgetProvider

YesgetTerminals

YesremoveCallObserver

YesremoveObserver

YesaddressChangedEventAddressObserver

YesaddObserverCall

A CallObserver must
exist for the Terminal or
Address originating the
call.

The FeaturePriority
parameter is not
supported.

Yesconnect

YesgetCallCapabilities

YesgetCapabilities

YesgetConnections

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1604

Cisco Unified JTAPI Classes and Interfaces
Core Package

CommentsCiscoUnified JTAPI
support

Method namesClass names

YesgetObservers

YesgetProvider

YesgetState

YesremoveObserver

YescallChangedEventCallObserver

YesdisconnectConnection

YesgetAddress

YesgetCall

YesgetCapabilities

YesgetConnectionCapabilities

YesgetState

YesgetTerminalConnections

YesgetNameJtapiPeer

YesgetProvider

YesgetServices

YesgetJtapiPeerJtapiPeerFactory

YesaddObserverProvider

YescreateCall

YesgetAddress

YesgetAddressCapabilities ()

YesgetAddressCapabilities (Terminal)

YesgetAddresses

YesgetCallCapabilities ()

YesgetCallCapabilities (Terminal, Address)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1605

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CommentsCiscoUnified JTAPI
support

Method namesClass names

This method returns calls
only when there are
CallObservers attached
to Addresses or
Terminals, when a
RouteAddress is
registered for routing, or
when a
CiscoMediaTerminal is
registered.

YesgetCalls

YesgetCapabilities

YesgetConnectionCapabilities ()

YesgetConnectionCapabilities (Terminal, Address)

YesgetName

YesgetObservers

YesgetProviderCapabilities ()

YesgetProviderCapabilities (Terminal)

YesgetState

YesgetTerminal

YesgetTerminalCapabilities ()

YesgetTerminalCapabilities (Terminal)

YesgetTerminalConnectionCapabilities ()

YesgetTerminalConnectionCapab ilities (Terminal)

YesgetTerminals

YesremoveObserver

Yesshutdown

YesproviderChangedEventProviderObserver

YesaddCallObserverTerminal

YesaddObserver

YesgetAddresses

YesgetCallObservers

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1606

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CommentsCiscoUnified JTAPI
support

Method namesClass names

YesgetCapabilities

YesgetName

YesgetObservers

YesgetProvider

YesgetTerminalCapabilities

YesgetTerminalConnections

YesremoveCallObserver

YesremoveObserver

YesanswerTerminalConnection

YesgetCapabilities

YesgetConnection

YesgetState

YesgetTerminal

YesgetTerminalConnectionCapabilities

YesterminalChangedEventTerminalObserver

Call Center Package
The following table lists each JTAPI interface in the JTAPI Call Center Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CiscoUnifiedJTAPI supportMethod namesClass names

getACDManagerAddressACDAddress

getLoggedOnAgents

getNumberQueued

getOldestCallQueued

getQueueWaitTime

getRelativeQueueLoad

ACDAddressObserver

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1607

Cisco Unified JTAPI Classes and Interfaces
Call Center Package

CiscoUnifiedJTAPI supportMethod namesClass names

getACDManagerConnectionACDConnection

getACDAddressesACDManagerAddress

getACDConnectionsACDManagerConnection

getACDAddressAgent

getAgentAddress

getAgentID

getAgentTerminal

getState

setState

addAgentAgentTerminal

getAgents

removeAgents

setAgents

AgentTerminalObserver

addCallObserverCallCenterAddress

connectPredictiveCallCenterCall

getApplicationData

getTrunks

setApplicationData

CallCenterCallObserver

getACDAddressesCallCenterProvider

getACDManagerAddresses

getRouteableAddresses

getCallCallCenterTrunk

getName

getState

getType

YescancelRouteCallbackRouteAddress

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1608

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CiscoUnifiedJTAPI supportMethod namesClass names

YesgetActiveRouteSessions

YesgetRouteCallback

YesregisterRouteCallback

YesreRouteEventRouteCallback

YesrouteCallbackEndedEvent

YesrouteEndEvent

YesrouteEvent

YesrouteUsedEvent

YesendRouteRouteSession

YesgetCause

YesgetRouteAddress

YesgetState

YesselectRoute

Call Center Capabilities Package
The following table lists each JTAPI interface in the JTAPI Call Center Capabilities Package followed by the
associated method(s), and whether the classes are supported by the Cisco Unified JTAPI implementation.

CiscoUnifiedJTAPI supportMethod namesClass names

canGetACDManagerAddressACDAddressCapabilities

canGetLoggedOnAgents

canGetNumberQueued

canGetOldestCallQueued

canGetQueueWaitTime

canGetRelativeQueueLoad

canGetACDManagerConnectionACDConnectionCapabilities

canGetACDAddressesACDManagerAddressCapabilities

canGetACDConnectionsACDManagerConnectionCapabilities

canHandleAgentsAgentTerminalCapabilities

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1609

Cisco Unified JTAPI Classes and Interfaces
Call Center Capabilities Package

CiscoUnifiedJTAPI supportMethod namesClass names

canAddCallObserverCallCenterAddressCapabilities

canConnectPredictiveCallCenterCallCapabilities

canGetTrunks

canHandleApplicationData

YescanGetACDAddressesCallCenterProviderCapabilities

YescanGetACDManagerAddresses

YescanGetRouteableAddresses

YescanRouteCallsRouteAddressCapabilities

Call Center Events Package
The following table lists each JTAPI interface in the JTAPI Call Center Events Package followed by the
associated method(s), and whether the classes are supported by the Cisco Unified JTAPI implementation.

CiscoUnifiedJTAPI supportMethod namesClass names

ACDAddrBusyEv

getAgentACDAddrEv

getAgentAddress

getAgentTerminal

getState

getTrunks

ACDAddrLoggedOffEv

ACDAddrLoggedOnEv

ACDAddrNotReadyEv

ACDAddrReadyEv

ACDAddrUnknownEv

ACDAddrWorkNotReadyEv

ACDAddrWorkReadyEv

AgentTermBusyEv

getACDAddressAgentTermEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1610

Cisco Unified JTAPI Classes and Interfaces
Call Center Events Package

CiscoUnifiedJTAPI supportMethod namesClass names

getAgent

getAgentAddress

getAgentID

getState

AgentTermLoggedOffEv

AgentTermLoggedOnEv

AgentTermNotReadyEv

AgentTermReadyEv

AgentTermUnknownEv

AgentTermWorkNotReadyEv

AgentTermWorkReadyEv

getApplicationDataCallCentCallAppDataEv

getCalledAddressCallCentCallEv

getCallingAddress

getCallingTerminal

getLastRedirectedAddress

getTrunks

CallCentConnEv

CallCentConnInProgressEv

getCallCenterCauseCallCentEv

getTrunkCallCentTrunkEv

CallCentTrunkInvalidEv

CallCentTrunkValidEv

YesReRouteEvent

YesgetRouteAddressRouteCallbackEndedEvent

YesRouteEndEvent

YesgetCallingAddressRouteEvent

YesgetCallingTerminal

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1611

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CiscoUnifiedJTAPI supportMethod namesClass names

YesgetCurrentRouteAddress

YesgetRouteSelectAlgorithm

YesgetSetupInformation

YesgetRouteSessionRouteSessionEvent

YesgetCallingAddressRouteUsedEvent

YesgetCallingTerminal

YesgetDomain

YesgetRouteUsed

Call Control Package
The following table lists each JTAPI interface in the JTAPI Call Control Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI Implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

Only for Call Forward AllYescancelForwardingCallControlAddress

getDoNotDisturb

Only for Call Forward AllYesgetForwarding

getMessageWaiting

setDoNotDisturb

Only for Call Forward AllYessetForwarding

setMessageWaiting

addPartyCallControlCall

In a consult conference scenario,
only OriginalCall.conference
(ConsultCall) is supported.
ConsultCall.conference
(OriginalCall) is not supported.

Yesconference

Yesconsult(TerminalConnection)

Yesconsult(TerminalConnection,
String)

Yesdrop

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1612

Cisco Unified JTAPI Classes and Interfaces
Call Control Package

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YesgetCalledAddress

YesgetCallingAddress

YesgetCallingTerminal

YesgetConferenceController

YesgetConferenceEnable

YesgetLastRedirectedAddress

YesgetTransferController

YesgetTransferEnable

YesoffHook

YessetConferenceController

YessetConferenceEnable

YessetTransferController

YessetTransferEnable

In a consult transfer scenario,
only OriginalCall.transfer
(ConsultCall) is supported.
ConsultCall.transfer
(OriginalCall) is not supported.

Yestransfer(Call)

Yestransfer(String)

YesCallControlCallObserver

YesacceptCallControlConnection

YesaddToAddress

YesgetCallControlState

Yespark

Redirect allows a connection in
the CallControlConnection.
ESTABLISHED state to be
redirected.

Yesredirect

Yesreject

getDestinationAddressCallControlForwarding

getFilter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1613

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

getSpecificCaller

getType

getDoNotDisturbCallControlTerminal

pickup (Address, Address)

pickup (Connection, Address)

pickup (TerminalConnection,
Address)

pickupFromGroup(Address)

pickupFromGroup(String,
Address)

setDoNotDisturb

YesgetCallControlStateCallControlTerminalConnection

Yeshold

Only implemented for
CiscoIntercomAddresses

Yesjoin

leave

Yesunhold

CallControlTerminalObserver

Call Control Capabilities Package
The following table lists each JTAPI interface in the JTAPI Call Control Capabilities Package followed by
the associated method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CiscoUnifiedJTAPI supportMethod namesClass names

YescanCancelForwardingCallControlAddressCapabilities

YescanGetDoNotDisturb

YescanGetForwarding

YescanGetMessageWaiting

YescanSetDoNotDisturb

YescanSetForwarding

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1614

Cisco Unified JTAPI Classes and Interfaces
Call Control Capabilities Package

CiscoUnifiedJTAPI supportMethod namesClass names

YescanSetMessageWaiting

YescanAddPartyCallControlCallCapabilities

YescanConference

YescanConsult

YescanConsult(TerminalConnection)

YescanConsult(TerminalConnection, String)

YescanDrop

YescanOffHook

YescanSetConferenceController

YescanSetConferenceEnable

YescanSetTransferController

YescanSetTransferEnable

YescanTransfer

YescanTransfer(Call)

YescanTransfer(String)

YescanAcceptCallControlConnectionCapabilities

YescanAddToAddress

YescanPark

YescanRedirect

YescanReject

YescanGetDoNotDisturbCallControlTerminalCapabilities

YescanPickup

YescanPickup(Address, Address)

YescanPickup(Connection, Address)

YescanPickup(TerminalConnection, Address)

YescanPickupFromGroup

YescanPickupFromGroup(Address)

YescanPickupFromGroup(String, Address)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1615

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

CiscoUnifiedJTAPI supportMethod namesClass names

YescanSetDoNotDisturb

YescanHoldCallControlTerminalConnectionCapabilities

YescanJoin

YescanLeave

YescanUnhold

Call Control Events Package
The following table lists each JTAPI interface in the JTAPI Call Control Events Package followed by the
associated method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

getDoNotDisturbStateCallCtlAddrDoNotDisturbEv

CallCtlAddrEv

YesgetForwardingCallCtlAddrForwardEv

getMessageWaitingStateCallCtlAddrMessageWaitingEv

YesgetCalledStateCallCtlCallEv

YesgetCallingAddress

YesgetCallingTerminal

YesgetLastRedirectedAddress

YesCallCtlConnAlertingEv

YesgetDigitsCallCtlConnDialingEv

YesCallCtlConnDisconnectedEv

YesCallCtlConnEstablishedEv

YesCallCtlConnEv

YesCallCtlConnFailedEv

YesCallCtlConnInitiatedEv

YesCallCtlConnNetworkAlertingEv

YesCallCtlConnNetworkReachedEv

YesCallCtlConnOfferedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1616

Cisco Unified JTAPI Classes and Interfaces
Call Control Events Package

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YesgetNumberInQueueCallCtlConnQueuedEv

YesCallCtlConnUnknownEv

YesgetCallControlCauseCallCtlEv

CallCtlTermConnBridgedEv

YesCallCtlTermConnDroppedEv

YesCallCtlTermConnEv

YesCallCtlTermConnHeldEv

CallCtlTermConnInUseEv

YesCallCtlTermConnRingingEv

YesCallCtlTermConnTalkingEv

YesCallCtlTermConnUnknownEv

CallCtlTermDoNotDisturbEv

CallCtlTermEv

Capabilities Package
The following table lists each JTAPI interface in the JTAPI Capabilities Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YesisObservableAddressCapabilities

YescanConnectCallCapabilities

YesisObservable

YescanDisconnectConnectionCapabilities

YesisObservableProviderCapabilities

YesisObservableTerminalCapabilities

YescanAnswerTerminalConnectionCapabilities

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1617

Cisco Unified JTAPI Classes and Interfaces
Capabilities Package

Events Package
The following table lists each JTAPI interface in the JTAPI Events Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI Implementation.

CiscoUnifiedJTAPI supportMethod namesClass names

YesgetAddressAddrEv

YesAddrObservationEndedEv

YesCallActiveEv

YesgetCallCallEv

YesCallInvalidEv

YesgetEndedObjectCallObservationEndedEv

YesConnAlertingEv

YesConnConnectedEv

YesConnCreatedEv

YesConnDisconnectedEv

YesgetConnectionConnEv

YesConnFailedEv

YesConnInProgressEv

YesConnUnknownEv

YesgetCauseEv

YesgetID

YesgetMetaCode

YesgetObserved

YesisNewMetaEvent

YesgetProviderProvEv

YesProvInServiceEv

YesProvObservationEndedEv

YesProvOutOfServiceEv

YesProvShutdownEv

YesTermConnActiveEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1618

Cisco Unified JTAPI Classes and Interfaces
Events Package

CiscoUnifiedJTAPI supportMethod namesClass names

YesTermConnCreatedEv

YesTermConnDroppedEv

YesTermConnEvgetTerminalConnection

TermConnPassiveEv

YesTermConnRingingEv

YesTermConnUnknownEv

YesgetTerminalTermEv

YesTermObservationEndedEv

Media Package
The following table lists each JTAPI interface from the JTAPI Media Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YesMediaCallObserver

YesgenerateDtmfMediaTerminalConnection

getMediaAvailability

getMediaState

YessetDtmfDetection

startPlaying

startRecording

stopPlaying

stopRecording

useDefaultMicrophone

useDefaultSpeaker

usePlayURL

useRecordURL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1619

Cisco Unified JTAPI Classes and Interfaces
Media Package

Media Capabilities Package
The following table lists each JTAPI interface in the JTAPI Media Capabilities Package followed by the
associated method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YescanDetectDtmfMediaTerminalConnection
Capabilities

YescanGenerateDtmf

YescanStartPlaying

YescanStartRecording

YescanStopPlaying

YescanStopRecording

YescanUseDefaultMicrophone

YescanUseDefaultSpeaker

YescanUsePlayURL

YescanUseRecordURL

Media Events Package
The following table lists each JTAPI interface in the JTAPI Media Events Package followed by the associated
method(s) and whether the classes are supported by the Cisco Unified JTAPI implementation.

CommentsCiscoUnifiedJTAPI supportMethod namesClass names

YesgetMediaCauseMediaEv

MediaTermConnAvailableEv

YesgetDtmfDigitMediaTermConnDtmfEv

YesMediaTermConnEv

getMediaStateMediaTermConnStateEv

MediaTermConnUnavailableEv

Unsupported Packages
The following table shows the JTAPI packages that are not supported by the Cisco Unified JTAPI
implementation.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1620

Cisco Unified JTAPI Classes and Interfaces
Media Capabilities Package

Unsupported JTAPI packages

JTAPI Phone Package

JTAPI Phone Capabilities Package

JTAPI Phone Events Package

JTAPI Private Data Package

JTAPI Private Data Capabilities Package

JTAPI Private Data Events Package

Cisco Unified JTAPI Extension Classes and Interfaces

Cisco Unified JTAPI Extension Classes
Table 355: Cisco Unified JTAPI Extension Classes

Method namesCisco extension classes

getMaxFramesPerPacket()

getPayloadType()

toString()

CiscoMediaCapability

CiscoG711MediaCapability

getBitRate()

toString()

CiscoG723MediaCapability

CiscoGSMMediaCapability

RegistrationException

UnregistrationException

Cisco Unified JTAPI Extension Interfaces
Table 356: Cisco Unified JTAPI Extension Interfaces and Their Methods

Method namesCisco extension interfaces

getAddress()CiscoAddrCreatedEv

getType()CiscoAddress

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1621

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Extension Classes and Interfaces

Method namesCisco extension interfaces

CiscoAddressObserver

CiscoAddrEv

CiscoAddrInService

CiscoAddrOutOfService

getCallID()CiscoCall

CiscoCallEv

getCall()

intValue()

CiscoCallID

getConferenceCall()

getFinalCall()

getHeldConferenceController()

getTalkingConferenceController()

CiscoConferenceEndEv

getConferenceCall()

getFinalCall()

getHeldConferenceController()

getTalkingConferenceController()

CiscoConferenceStartEv

getConnectionID()

getReason()

redirect(String destinationAddress, int mode, int
callingSearchSpace, int calledAddressOption,

String preferredOriginalCalledParty, String facCode, String
cmcCode, int featurePriority, byte[] applicationXMLData)

CiscoConnection

getConnection()

intValue()

CiscoConnectionID

getConsultingTerminalConnection()CiscoConsultCall

getHeldTerminalConnection()CiscoConsultCallActiveEv

CiscoEv

CiscoJtapiPeer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1622

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

Method namesCisco extension interfaces

getRTPInputProperties()

getRTPOutputProperties()

register(InetAddress, int)

unregister()

CiscoMediaTerminal

CiscoProvEv

getCallbackGuardEnabled()

getMediaTerminal()

getMediaTerminals()

setCallbackGuardEnabled()

getRemoteTerminals()

getRemoteTerminal(String name)

CiscoProvider

CiscoProvConnToLeastPriorCtiServerEv

CiscoProvFallbackToPrimNwCompltdEv

getReachableCtiServers()CiscoProvPrimNwReachableEv

CiscoProviderObserver

getTerminal()

getRemoteDestinations()

isMyAppLastToSetActiveRD()

getIPAddressingMode()

getIPV4Address()

getIPV6Address()

CiscoProvTerminalRemoteDestinationChangedEv

getRecordingType()CiscoRecorderInfo

getRemoteDestinationName()

getRemoteDestinationNumber()

getIsActiveRD()

CiscoRemoteDestinationInfo

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1623

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

Method namesCisco extension interfaces

getAllRemoteDestinations()

getActiveRemoteDestinations()

setActiveRemoteDestination(String remoteDestinationNumber,
boolean isActiveRD)

addRemoteDestination(String remoteDestinationName, String
remoteDestinationNumber, boolean isActiveRD)

removeRemoteDestination(String remoteDestinationNumber)

removeAllRemoteDestinations()

updateRemoteDestinationName(String remoteDestinationNumber,
String remoteDestinationName)

updateRemoteDestinationNumber(String
remoteDestinationNumber, StringnewRemoteDestinationNumber)

updateRemoteDestination(String remoteDestinationNumber,
String remoteDestinationName, String
newRemoteDestinationNumber, boolean isActiveRD)

isRegisteredByThisApp() Cisco Extend &Connect (CTI Remote
Device)

getRegistrationType()

isMyAppLastToSetActiveRD()

CiscoRemoteTerminal

getCall()

selectRoute(String[] routeSelected, int callingSearchSpace,
String[] modifyingCallingNumber,

String[] preferedOriginalCalledNumber, int[]
preferedOriginalCalledOption, String[] facCode,

String[] cmcCode, int featurePriority, byte[][]
applicationXMLData)

CiscoRouteSession

getBitRate()

getEchoCancellation()

getLocalAddress()

getLocalPort()

getPacketSize()

getPayloadType()

CiscoRTPInputProperties

getRTPInputProperties()CiscoRTPInputStartedEv

CiscoRTPInputStoppedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1624

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

Method namesCisco extension interfaces

getBitRate()

getMaxFramesPerPacket()

getPacketSize()

getPayloadType()

getPrecedenceValue()

getRemoteAddress()

getRemotePort()

CiscoRTPOutputProperties

getRTPOutputProperties()CiscoRTPOutputStartedEv

CiscoRTPOutputStoppedEv

CiscoSynronousObserver

getTerminal()CiscoTermCreatedEv

CiscoTermEv

getRegistrationState()

register()

unregister()

getType()

getTypeName()

CiscoTerminal

startRecording(int playToneDirection, int invocationType)

stopRecording(int invocationType)

CiscoTerminalConnection

CiscoTerminalObserver

CiscoTermInServiceEv

CiscoTermOutOfServiceEv

getFinalCall()

getTransferController()

getTransferredCall()

CiscoTransferEndEv

getFinalCall()

getTransferController()

getTransferredCall()

CiscoTransferStartEv

getObject()

setObject()

ObjectContainer

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1625

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

Method namesCisco extension interfaces

RTPBitRate

RTPPayload

Cisco Trace Logging Classes and Interfaces

Cisco Trace Logging Classes
Table 357: Cisco Trace Logging Classes

Method namesCisco Trace Logging class

close()

flush()

getCurrentFile()

getFileExtension()

getFileNameBase()

getMaxFiles()

getMaxFileSize()

write(byte[], int, int)

write(int)

LogFileOutputStream

close()

flush()

getEnabled()

print(String)

println(String)

NullTraceWriter

close()

flush()

getEnabled()

print(String)

println(String)

setOutputStream(OUputStream

OutputStreamTraceWriter

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1626

Cisco Unified JTAPI Classes and Interfaces
Cisco Trace Logging Classes and Interfaces

Method namesCisco Trace Logging class

getModules()

registerModule(String)

registerModule(TraceModule)

registerModule(TraceModule, OutputStream)

TraceManagerFactory

Cisco Trace Logging Interfaces
Table 358: Cisco Trace Logging Interfaces

Method namesCisco Trace Logging interfaces

disable()

enable()

ConditionalTrace

append(Object)

append(String)

getName()

isEnabled()

print(Object)

print(String)

print(String, Object)

print(String, String)

println(Object)

println(String)

println(String, Object)

println(String, String)

setDefaultMnemonic(String)

Trace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1627

Cisco Unified JTAPI Classes and Interfaces
Cisco Trace Logging Interfaces

Method namesCisco Trace Logging interfaces

disableAll()

disableTimeStamp()

enableAll()

enableTimeStamp()

getConditionalTrace(String)

getConditionalTrace(String, String)

getName()

getOutputStream()

getSubFacilities()

getTraces()

getTraceWriter()

getUnconditionalTrace(String)

getUnconditionalTrace(String, String)

removeTrace(String)

removeTrace(Trace)

setOutputStream(OutputStream)

setSubFacilities()

setTraceWriter()

TraceManager

getTraceManager()

getTraceModuleName()

TraceModule

TRACETYPE

close()

flush()

getEnabled()

print(String)

println(String)

TraceWriter

UnconditionalTrace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1628

Cisco Unified JTAPI Classes and Interfaces
Cisco Unified JTAPI Classes and Interfaces

A P P E N D I X C
Troubleshooting Cisco Unified JTAPI

This appendix contains CTI Error Codes, CiscoEvent IDs, and other information to assist with troubleshooting
efforts.

• CTI Error Codes, on page 1629
• CiscoEventIDs, on page 1639
• Reason Codes, on page 1643
• Cause Codes, on page 1644
• Additional Troubleshooting Information, on page 1649

CTI Error Codes
DescriptionError code

This error indicates that the request is issued on a line, which is
not open

ASSOCIATED_LINE_NOT_OPEN

This error indicates that another call already exists on the lineCALL_ALREADY_EXISTS

The call dropped after the feature request (hold, unhold, transfer,
or conference) but before the request was completed.

CALL_DROPPED

This error indicates that an attempt is made to answer a call that
either does not exist or is not in the correct state

CALLHANDLE_NOTINCOMINGCALL

This error indicates that attempt to redirect call that was unknown
to line control

CALLHANDLE_UNKNOWN_TO_LINECONTROL

This error indicates that device open failed because the associated
device is unregistering

CANNOT_OPEN_DEVICE

This error indicates that media cannot be terminated by an
application when the device is a physical phone (the phone always
terminates the media)

CANNOT_TERMINATE_MEDIA_ON_PHONE

This error indicates that attempt to set CFWALLwhile it is already
set

CFWDALL_ALREADY_SET

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1629

DescriptionError code

This error indicates that attempt to CFWALL to an invalid
destination

CFWDALL_DESTN_INVALID

This error indicates that link to one of the cisco unified
communications managers failed in the cluster (network error)

CLUSTER_LINK_FAILURE

This error indicates that device does not support the command.COMMAND_NOT_IMPLEMENTED_ON_DEVICE

This error indicates that attempt to conference a party that is
already in conference

CONFERENCE_ALREADY_PRESENT

This error indicates that conference completionwas not successful.CONFERENCE_FAILED

This error indicates that all conference bridges are busy.CONFERENCE_FULL

This error indicates that attempt to complete conference while
consult conference is not active

CONFERENCE_INACTIVE

This error indicates that an attempt to conference to self or an
invalid participant

CONFERENCE_INVALID_PARTICIPANT

This error indicates that the access to device is denied.CTIERR_ACCESS_TO_DEVICE_DENIED

This error indicates that the application softkeys are already
controlled by another application

CTIERR_APP_SOFTKEYS_ALREADY_CONTROLLED

This error indicates that application data size has exceeded limitCTIERR_APPLICATION_DATA_SIZE_EXCEEDED

This error indicates built in bridge is not configuredCTIERR_BIB_NOT_CONFIGURED

This error indicates that built in bridge resource not availableCTIERR_BIB_RESOURCE_NOT_AVAILABLE

This error indicates that CommunicationsManager is not available
currently

CTIERR_CALL_MANAGER_NOT_AVAILABLE

This error indicates that call does not existCTIERR_CALL_NOT_EXISTED

This error indicates no call park DNCTIERR_CALL_PARK_NO_DN

This error indicates call request already outstandingCTIERR_CALL_REQUEST_ALREADY_OUTSTANDING

This error indicates that call unpark did not succeedCTIERR_CALL_UNPARK_FAILED

This error indicates that capabilities do not matchCTIERR_CAPABILITIES_DO_NOT_MATCH

This error indicates that the close delay is not supported with this
registration type

CTIERR_CLOSE_DELAY_NOT_SUPPORTED_WITH_REG_TYPE

This error indicates that conference already existsCTIERR_CONFERENCE_ALREADY_EXISTED

This error indicates that conference does not existCTIERR_CONFERENCE_NOT_EXISTED

This error indicates application is trying to connect to invalid portCTIERR_CONNECTION_ON_INVALID_PORT

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1630

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates consult call failureCTIERR_CONSULT_CALL_FAILURE

This error indicates that consult call already outstandingCTIERR_CONSULTCALL_ALREADY_OUTSTANDING

This error indicates that there is an issue with creating a persistent
call.

CTIERR_CREATE_PERSISTENT_CALL_FAILED

This error indicates that device registration failed as device crypto
algorithms does not match with current device registration

CTIERR_CRYPTO_CAPABILITY_MISMATCH

This error indicates that CTIHandler process creation failedCTIERR_CTIHANDLER_PROCESS_CREATION_FAILED

This error indicates DB initialization errorCTIERR_DB_INITIALIZATION_ERROR

This error indicates that device is already openedCTIERR_DEVICE_ALREADY_OPENED

Device registration failed as device is already registered in
Non-Extend mode.

CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTEND

This error indicates that device is not yet openedCTIERR_DEVICE_NOT_OPENED_YET

This error indicates that there is a device registration failureCTIERR_DEVICE_OWNER_ALIVE_TIMER_STARTED

This error indicates an invalid media type, CTIPort need to be
registered with Dynamic media port registation if it has an
intercom line

CTIERR_DEVICE_REGISTRATION_FAILED_
NOT_SUPPORTED_MEDIATYPE

This error indicates that the device is restrictedCTIERR_DEVICE_RESTRICTED

This error indicates that device is shutting downCTIERR_DEVICE_SHUTTING_DOWN

This error indicates that there is a directory login time outCTIERR_DIRECTORY_LOGIN_TIMEOUT

This error indicates that the request to disconnect the persistent
call failed because there is an active customer call. Only when
there are no active calls present, can the persistent call be
disconnected.

CTIERR_DISCONNECT_PERSISTENT_CALL_FAILED_
CALL_ACTIVE

This error indicates duplicate call referenceCTIERR_DUPLICATE_CALL_REFERENCE

Duplicated Remote Destination Number with an existing Remote
Destination Number.

CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBER

This indicates registration failure when Cisco Media/Route
Tterminal is already registered with different Addressing mode

CTIERR_DYNREG_IPADDRMODE_MISMATCH

Enduser is not associated with the device.CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICE

Client Matter Code (CMC) entered is invalidCTIERR_FAC_CMC_REASON_CMC_INVALID

CMC is required to offer the callCTIERR_FAC_CMC_REASON_CMC_NEEDED

Forced Authorization Code (FAC) and CMC are required to offer
call

CTIERR_FAC_CMC_REASON_FAC_CMC_NEEDED

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1631

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

FAC entered is invalidCTIERR_FAC_CMC_REASON_FAC_INVALID

FAC is required to offer the callCTIERR_FAC_CMC_REASON_FAC_NEEDED

This error indicates feature already registeredCTIERR_FEATURE_ALREADY_REGISTERED

This error indicates feature data rejectCTIERR_FEATURE_DATA_REJECT

This error indicates that feature select failedCTIERR_FEATURE_SELECT_FAILED

This error indicates that the device type is illegalCTIERR_ILLEGAL_DEVICE_TYPE

This error indicates that auto install protocol version is
incompatible

CTIERR_INCOMPATIBLE_AUTOINSTALL_PROTOCOL_
VERSION

This error indicates that device registration failed due to incorrect
media capability

CTIERR_INCORRECT_MEDIA_CAPABILITY

This error indicates that information is not availableCTIERR_INFORMATION_NOT_AVAILABLE

This error indicates that intercom target value is already
configured, application is trying to make call with Intercom target
DN

CTIERR_INTERCOM_SPEEDDIAL_ALREADY_CONFIGURED

This error indicates that intercom request failed as intercom target
value is already set, application is trying to set again

CTIERR_INTERCOM_SPEEDDIAL_ALREADY_SET

This error indicates that intercomm request failed as intercom
target value in not in the intercom group

CTIERR_INTERCOM_SPEEDDIAL_DESTN_INVALID

This error indicates that intercom talk back request is already
pending

CTIERR_INTERCOM_TALKBACK_ALREADY_PENDING

This error indicates that talkback request failed for some reasonCTIERR_INTERCOM_TALKBACK_FAILURE

This error indicates there is a CTI internal failureCTIERR_INTERNAL_FAILURE

This error indicates the call ID is invalidCTIERR_INVALID_CALLID

This error indicates that the device name is not validCTIERR_INVALID_DEVICE_NAME

Play DTMF request failed because it is an invalid DTMF digitCTIERR_INVALID_DTMFDIGITS

This error indicates that filter size is invalidCTIERR_INVALID_FILTER_SIZE

This error indicates that the media device is not validCTIERR_INVALID_MEDIA_DEVICE

This error indicates media parameter is invalidCTIERR_INVALID_MEDIA_PARAMETER

This error indicates that there is an invalid media processCTIERR_INVALID_MEDIA_PROCESS

This error indicates media resource ID is not validCTIERR_INVALID_MEDIA_RESOURCE_ID

This error indicates that the header info is not validCTIERR_INVALID_MESSAGE_HEADER_INFO

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1632

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates that message length is invalidCTIERR_INVALID_MESSAGE_LENGTH

This error indicates monitoring request failed due to invalid
monitoring destination

CTIERR_INVALID_MONITOR_DESTN

This error indicates an invalid monitor DN typeCTIERR_INVALID_MONITOR_DN_TYPE

This error indicates monitor request failed due to an invalid
monitor mode

CTIERR_INVALID_MONITORMODE

This error indicates that the parameter is not validCTIERR_INVALID_PARAMETER

This error indicates that the DN is an invalid park DNCTIERR_INVALID_PARK_DN

This error indicates that the handle is an invalid park registration
handle

CTIERR_INVALID_PARK_REGISTRATION_HANDLE

This error indicates that a persistent call already exists.CTIERR_PERSISTENT_CALL_EXISTS

This error indicates an Invalid Remote Destination Name.CTIERR_INVALID_REMOTE_DESTINATION_NAME

This error indicates an Invalid Remote Destination Number.CTIERR_INVALID_REMOTE_DESTINATION_NUMBER

This error indicates an invalid resource typeCTIERR_INVALID_RESOURCE_TYPE

This indicates the registration failure due to IP Addressing Mode
mismatch.

CTIERR_IPADDRMODE_MISMATCH

This error indicates that line is out of service.CTIERR_LINE_OUT_OF_SERVICE

This er ror indicates that the line is restrictedCTIERR_LINE_RESTRICTED

This error indicates that maximum call limit has reachedCTIERR_MAXCALL_LIMIT_REACHED

This error indicates that device registration failed as device is
registered with Dynamic media termination

CTIERR_MEDIA_ALREADY_TERMINATED_DYNAMIC

Device registration failed as device is already registered in Extend
mode.

CTIERR_MEDIA_ALREADY_TERMINATED_EXTEND

This error indicates that device registration failed as device is
already registered with media termination none

CTIERR_MEDIA_ALREADY_TERMINATED_NONE

This error indicates that device registration failed as device is
registered with Static media termination

CTIERR_MEDIA_ALREADY_TERMINATED_STATIC

This error indicates that device registration failed as media
capability of device does not matchwith current device registration

CTIERR_MEDIA_CAPABILITY_MISMATCH

This error indicates that media resource name size has exceeded
limit

CTIERR_MEDIA_RESOURCE_NAME_SIZE_EXCEEDED

This error indicates that media registration types do not matchCTIERR_MEDIAREGISTRATIONTYPE_DO_NOT_MATCH

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1633

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates that message is too bigCTIERR_MESSAGE_TOO_BIG

This error indicates that there are more active calls than reservedCTIERR_MORE_ACTIVE_CALLS_THAN_RESERVED

This error indicates there are no existing callsCTIERR_NO_EXISTING_CALLS

This error indicates that there is no existing conferenceCTIERR_NO_EXISTING_CONFERENCE

This error indicates recording request failed as there is no
recording session

CTIERR_NO_RECORDING_SESSION

This error indicates no response from media resourceCTIERR_NO_RESPONSE_FROM_MP

This error indicates that the call is not preservedCTIERR_NOT_PRESERVED_CALL

This error indicates that feature unavailable for this call due to
temporary failure

CTIERR_OPERATION_FAILED_QUIETCLEAR

This error indicates that this operation is not allowedCTIERR_OPERATION_NOT_ALLOWED

This indicates that the specified operation is not allowed on a
persistent call.

CTIERR_OPERATION_NOT_ALLOWED_ON_
PERSISTENT_CALL

This error indicates out of bandwidth errorCTIERR_OUT_OF_BANDWIDTH

This error indicates a failure during registering the deviceCTIERR_OWNER_NOT_ALIVE

This error indicates that there is a pending accept or answer requestCTIERR_PENDING_ACCEPT_OR_ANSWER_REQUEST

This error indicates there is a pending start monitoring requestCTIERR_PENDING_START_MONITORING_REQUEST

This error indicates there is a pending start recording requestCTIERR_PENDING_START_RECORDING_REQUEST

This error indicates there is a pending stop recording requestCTIERR_PENDING_STOP_RECORDING_REQUEST

This error indicates that the request failed because a persistent
call is already being set up.

CTIERR_PERSISTENT_CALL_BEING_SETUP

This error indicates that primary call in monitoring request in
invalid or gone idle

CTIERR_PRIMARY_CALL_INVALID

This error indicates that primary call in monitoring request is in
invalid state

CTIERR_PRIMARY_CALL_STATE_INVALID

This error indicates recording request failed that recording is
already in progress

CTIERR_RECORDING_ALREADY_INPROGRESS

This error indicates recording configuration does not matchCTIERR_RECORDING_CONFIG_NOT_MATCHING

Stop recording failed because the recording invocation type did
not match.

CTIERR_RECORDING_INVOCATION_TYPE_NOT_MATCHING

This error indicates recording request failed because recording
session is inactive

CTIERR_RECORDING_SESSION_INACTIVE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1634

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates a redirect unauthorized command usageCTIERR_REDIRECT_UNAUTHORIZED_COMMAND_USAGE

This error indicates that register feature activation failedCTIERR_REGISTER_FEATURE_ACTIVATION_FAILED

Register feature application was already registeredCTIERR_REGISTER_FEATURE_APP_ALREADY_REGISTERED

Register feature provider was not registered.CTIERR_REGISTER_FEATURE_PROVIDER_NOT_REGISTERED

The active remote destination is not set.CTIERR_REMOTE_DEVICE_REQUEST_FAILED_
ACTIVE_RD_NOT_SET

The number of RemoteDestinations has exceeded themax number
limit.

CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDED

This error indicates that resource is not available to fulfill the
request

CTIERR_RESOURCE_NOT_AVAILABLE

This error indicates that start monitoring request failedCTIERR_START_MONITORING_FAILED

This error indicates that start recording request failedCTIERR_START_RECORDING_FAILED

This error indicates that there is a station shutdownCTIERR_STATION_SHUT_DOWN

This error indicates CTI system errorCTIERR_SYSTEM_ERROR

This error indicates UDP data passthrough not supportedCTIERR_UDP_PASS_THROUGH_NOT_SUPPORTED

This error indicates an unknown exception occuredCTIERR_UNKNOWN_EXCEPTION

This error indicates that call park type is not supportedCTIERR_UNSUPPORTED_CALL_PARK_TYPE

This error indicates that the call forward type is unsupportedCTIERR_UNSUPPORTED_CFWD_TYPE

This error indicates user is not authorized for secure connectionCTIERR_USER_NOT_AUTH_FOR_SECURITY

This error indicates that there is an internal call processing error:
DaRes invalid request type

DARES_INVALID_REQ_TYPE

This error indicates that XML data object size is bigger than
allowed.

DATA_SIZE_LIMIT_EXCEEDED

This error indicates that the device query contained an illegal
device type

DB_ERROR

This error indicates illegal device type in DBDB_ILLEGAL_DEVICE_TYPE

This error is no longer used.DB_NO_MORE_DEVICES

This error indicates that destination is busyDESTINATION_BUSY

This error indicates that destination is not foundDESTINATION_UNKNOWN

This error indicates that device registration attempt failed, because
the device is already registered

DEVICE_ALREADY_REGISTERED

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1635

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates that an attempt to open a line failed, as the
device is not opened or the device is not registered.

DEVICE_NOT_OPEN

This error indicates that device is out of service.DEVICE_OUT_OF_SERVICE

This error indicates that digit generation is already in progress.DIGIT_GENERATION_ALREADY_IN_PROGRESS

This error indicates that call state is invalid to continue.DIGIT_GENERATION_CALLSTATE_CHANGED

This error indicates that call handle is invalid and call may be
gone.

DIGIT_GENERATION_WRONG_CALL_HANDLE

This error indicates that call state is not valid to generate digits.DIGIT_GENERATION_WRONG_CALL_STATE

This error indicates that directory login failed: directory not
initialized

DIRECTORY_LOGIN_FAILED

This error indicates that directory login failedDIRECTORY_LOGIN_NOT_ALLOWED

This error indicates that directory is temporarily unavailable.DIRECTORY_TEMPORARY_UNAVAILABLE

This error indicates that there is already a device controlling
media.

EXISTING_FIRSTPARTY

This error indicates that the hold was rejected by line control or
call control layers

HOLDFAILED

This error indicates that an attempt was made to originate call
using a calling party that is not on the device

ILLEGAL_CALLINGPARTY

This error indicates line is not in a legal state to invoke the requestILLEGAL_CALLSTATE

This error indicates the handle is not validILLEGAL_HANDLE

This error indicates that there is a QBE protocol errorILLEGAL_MESSAGE_FORMAT

This error indicates that JTAPI and CTI versions are not
compatible : CTI Error Protocol version not supported

INCOMPATIBLE_PROTOCOL_VERSION

This error indicates that attempt to perform a line operation on
an invalid line handle.

INVALID_LINE_HANDLE

This error indicates that the ring option is invalidINVALID_RING_OPTION

This error indicates that line is greater than themaximum available
lines on this device

LINE_GREATER_THAN_MAX_LINE

This error indicates that line information does not exist in the
database.

LINE_INFO_DOES_NOT_EXIST

This error indicates that internal error returned from call control.LINE_NOT_PRIMARY

This error indicates line control refuses to allow a new call to be
initiated because of its current state.

LINECONTROL_FAILURE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1636

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

The maximum number of CTI connections was reached.MAX_NUMBER_OF_CTI_CONNECTIONS_REACHED

This error indicates that attempt to set message waiting lamp for
an invalid DN; Message Waiting Destination not found.

MSGWAITING_DESTN_INVALID

This error indicates there is no active device for thirdpartyNO_ACTIVE_DEVICE_FOR_THIRDPARTY

This error indicates that no conference bridge availableNO_CONFERENCE_BRIDGE

This error indicates that attempt is made to open a provider before
CTI initialization completes

NOT_INITIALIZED

Internal error returned from call controlPROTOCOL_TIMEOUT

This error indicates that an attempt is made to reopen providerPROVIDER_ALREADY_OPEN

This error indicates an attempt to close provider while it is already
closed

PROVIDER_CLOSED

This error indicates that device list incomplete or device list query
timeout or query aborted

PROVIDER_NOT_OPEN

This error indicates that internal error is returned from call controlREDIRECT_CALL_CALL_TABLE_FULL

This error indicates that the redirect destination is busyREDIRECT_CALL_DESTINATION_BUSY

This error indicates that redirect destination is out of orderREDIRECT_CALL_DESTINATION_OUT_OF_ORDER

This error indicates a digit analyss time out, this is an internal
error returned from call control

REDIRECT_CALL_DIGIT_ANALYSIS_TIMEOUT

This error indicates that an attempt is made to redirect a call that
does not exist or is not longer active

REDIRECT_CALL_DOES_NOT_EXIST

This error indicates that internal error is returned from call controlREDIRECT_CALL_INCOMPATIBLE_STATE

This error indicates media connection failure, this is an internal
error returned from call control

REDIRECT_CALL_MEDIA_CONNECTION_FAILED

This error indicates that redirect failed because of normal call
clearing

REDIRECT_CALL_NORMAL_CLEARING

This error indicates that far end hung up on the call being
redirected

REDIRECT_CALL_ORIGINATOR_ABANDONED

This error indicates that internal error is returned from call controlREDIRECT_CALL_PARTY_TABLE_FULL

This error indicates that internal error is returned from call controlREDIRECT_CALL_PENDING_REDIRECT_TRANSACTION

This error indicates a protocol error, this is an internal error
returned from call control

REDIRECT_CALL_PROTOCOL_ERROR

This error indicates that an attempt is made to redirect to an
unknown destination

REDIRECT_CALL_UNKNOWN_DESTINATION

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1637

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

DescriptionError code

This error indicates that internal error is returned from call controlREDIRECT_CALL_UNKNOWN_ERROR

This error indicates an unknown party is detected, this is an
internal error returned from call control

REDIRECT_CALL_UNKNOWN_PARTY

This error indicates that internal error is returned from call controlREDIRECT_CALL_UNRECOGNIZED_MANAGER

This error indicates that internal error is returned from call controlREDIRECT_CALLINFO_ERR

This error indicates that internal error is returned from call controlREDIRECT_ERR

This error indicates that retrieval of call was rejected by line
control or call control

RETRIEVEFAILED

This error indicates that error occurred in retrieving held call;
because there is already another active call on the line

RETRIEVEFAILED_ACTIVE_CALL_ON_LINE

This error indicates that the redirect command was issued when
the internal supporting interface was not initialized; either CTI
has not yet finished its initialization or an internal error occurred

SSAPI_NOT_REGISTERED

This error indicates that the request has timed out.TIMEOUT

This error indicates that attempt to complete transfer, while consult
tranfer is not there

TRANSFER_INACTIVE

This error indicates that the transfer failed probably because one
of the call legs was hung up or disconnected from the far end

TRANSFERFAILED

This error indicates that expected response from call control not
received during a transfer

TRANSFERFAILED_CALLCONTROL_TIMEOUT

This error indicates that an attempt is made to transfer call to a
busy destination

TRANSFERFAILED_DESTINATION_BUSY

This error indicates an attempt is made to to transfer call to a
directory number that is not registered

TRANSFERFAILED_DESTINATION_UNALLOCATED

This error indicates that existing transfer is still in progressTRANSFERFAILED_OUTSTANDING_TRANSFER

This error indicates that the line that was specified, is not found
on the device

UNDEFINED_LINE

This error indicates that the global call handle is unknownUNKNOWN_GLOBAL_CALL_HANDLE

This error indicates that there is a QBE protocol errorUNRECOGNIZABLE_PDU

This error indicates that an unspecified error has occurred.UNSPECIFIED

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1638

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

CiscoEventIDs
This section includes the following events:

• Provider Events, on page 1639

• Terminal Events, on page 1640

• Address Events, on page 1640

• Call Events, on page 1641

• RTP Events, on page 1642

• TermConn Events, on page 1642

Provider Events
Event numberEvent name

0x40000008CiscoProvFeatureUnRegisteredEv

0x40000009CiscoRestrictedEv

0x40000010CiscoAddrRestrictedEv

0x40000011CiscoTermRestrictedEv

0x40000012CiscoAddrActivatedEv

0x40000013CiscoTermActivatedEv

0x40000014CiscoAddrActivatedOnTerminalEv

0x40000015CiscoAddrRestrictedOnTerminalEv

0x40000016CiscoProviderCapabilityChangedEv

0x40000017CiscoProvTerminalCapabilityChangedEv

0x40000018CiscoProvTerminalRegisteredEv

0x40000019CiscoProvTerminalUnRegisteredEv

0x40000020CiscoProvTerminalRemoteDestinationChangedEv

0x40000021CiscoProvTerminalIPAddressChangedEv

0x40000022CiscoProvTerminalMultiMediaCapabilityChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1639

Troubleshooting Cisco Unified JTAPI
CiscoEventIDs

Terminal Events
Event numberEvent name

0x40001001CiscoTermCreatedEv

0x40001002CiscoTermDataEv

0x40001003CiscoTermInServiceEv

0x40001004CiscoTermOutOfServiceEv

0x40001005CiscoTermRemovedEv

0x40001006CiscoTermDeviceActiveStatusEv

0x40001007CiscoTermDeviceAlertingStatusEv

0x40001008CiscoTermDeviceHoldStatusEv

0x40001009CiscoTermDeviceIdleStatusEv

0x40001010CiscoTermButtonPressedEv

0x40001011CiscoTermRegistraionFailedEv

0x40001014CiscoTermDNDStatusChangedEv

0x40001015CiscoTermDeviceStateWhisperEv

0x40001016CiscoTermDNDOptionChangedEv

0x40001017CiscoMultiMediaStreamsInfoEv

Address Events
Event numberEvent name

0x40002001CiscoAddrCreatedEv

0x40002002CiscoAddrInServiceEv

0x40002003CiscoAddrOutOfServiceEv

0x40002004CiscoAddrRemovedEv

0x40002005CiscoOutOfServiceEv

0x40002006CiscoAddrAddedToTerminalEv

0x40002007CiscoAddrRemovedFromTerminalEv

0x40002008CiscoAddrAutoAcceptStatusChangedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1640

Troubleshooting Cisco Unified JTAPI
Terminal Events

Event numberEvent name

0x40002009CiscoAddrIntercomInfoChangedEv

0x40002010CiscoAddrIntercomInfoRestorationFailedEv

0x40002011CiscoAddrRecordingConfigChangedEv

0x40002012CiscoAddrParkStatusEv

0x40002013CiscoAddrVoiceMailPilotChangedEv

0x40002014CiscoAddrPickupGroupChangedEv

0x4000200ACiscoAddrMonitoringTerminatedEv

Call Events
Event numberEvent name

0x40003001CiscoProvCallParkEv

0x40003002CiscoConferenceEndEv

0x40003003CiscoConferenceStartEv

0x40003004CiscoConsultCallActiveEv

0x40003005CiscoTransferEndEv

0x40003006CiscoTransferStartEv

0x40003007CiscoToneChangedEv

0x40003008CiscoCallChangedEv

0x40003009CiscoConferenceChainAddedEv

0x40003010CiscoConferenceChainRemovedEv

0x40003011CiscoCallSecurityStatusChangedEv

0x40003012CiscoCallFeatureCancelledEv

0x40003013CiscoProvPickupCallAlertEv

0x40003014CiscoProvPickupNotificationRegistrationClosedEv

0x40003015CiscoCallInfoChangedEv

0x40003016CiscoProvAuthenticationInfoEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1641

Troubleshooting Cisco Unified JTAPI
Call Events

RTP Events
Event numberEvent name

0x40004001CiscoRTPInputStartedEv

0x40004002CiscoRTPInputStoppedEv

0x40004003CiscoRTPOutputStartedEv

0x40004004CiscoRTPOutputStoppedEv

0x40004005CiscoMediaOpenLogicalChannelEv

0x40004006CiscoRTPInputKeyEv

0x40004007CiscoRTPOutputKeyEv

0x40004008CiscoMediaOpenIPPortEv

TermConn Events
Event numberEvent name

0x40005001CiscoTermConnPrivacyChangedEv

0x40005002CiscoCallCtlTermConnHeldReversionEv

0x40005003CiscoTermConnSelectChangedEv

0x40005004CiscoTermConnRecordingStartEv

0x40005005CiscoTermConnRecordingEndEv

0x4000500ECiscoTermConnRecordingFailedEv

0x40005006CiscoTermConnMonitoringStartEv

0x40005007CiscoTermConnMonitoringEndEv

0x40005008CiscoTermConnRecordingTargetInfoEv

0x40005009CiscoTermConnMonitorInitiatorInfoEv

0x4000500ACiscoTermConnMonitorTargetInfoEv

0x4000500BCiscoTermConnMonitorUpdatedEv

0x4000500CCiscoMediaStreamStartedEv

0x4000500DCiscoMediaStreamEndedEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1642

Troubleshooting Cisco Unified JTAPI
RTP Events

Conn Events
Event numberEvent name

0x40006001CiscoConnectionUniqueIDChangedEv

0x40006002CiscoHuntConnCreatedEv

Reason Codes
The following codes are defined in CiscoFeatureReason interface.

Reason codeReason code name

2REASON_TRANSFER

3REASON_FORWARDNOANWSER

4REASON_FORWARDBUSY

5REASON_FORWARDALL

6REASON_REDIRECT

7REASON_BLINDTRANSFER

9REASON_CONFERENCE

10REASON_PARK

11REASON_CALLPICKUP

12REASON_NORMAL

15REASON_PARKREMINDER

16REASON_UNPARK

20REASON_BARGE

21REASON_IMMDIVERT

22REASON_FAC_CMC

23REASON_QSIG_PR

24REASON_REFER

25REASON_REPLACE

26REASON_CCM_REDIRECTION

27REASON_DPARK_CALLPARK

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1643

Troubleshooting Cisco Unified JTAPI
Conn Events

Reason codeReason code name

28REASON_DPARK_REVERSION

29REASON_DPARK_UNPARK

31REASON_SILENTMONITORING

33REASON_MOBILITY

34REASON_MOBILITY_IVR

35REASON_MOBILITY_CELLPICKUP

36REASON_MOBILITY_HANDIN

37REASON_MOBILITY_HANDOUT

38REASON_MOBILITY_FOLLOWME

39REASON_CLICK_TO_CONFERENCE

40REASON_FORWARD_NO_RETRIEVE

42REASON_EXTERNALCALLCONTROL

43REASON_SAF_CCD_PSTN_FAILOVER

44REASON_MEDIA_STREAMING

Cause Codes
Cause codeCause code name

0X00 (0)CAUSE_NOERROR

0X01 (1)CAUSE_UNALLOCATEDNUMBER

0X02 (2)CAUSE_NOROUTETOTRANSITNET

0X03 (3)CAUSE_NOROUTETODDESTINATION

0X06 (6)CAUSE_CHANUNACCEPTABLE

0X07 (7)CAUSE_CALLBEINGDELIVERED

0X08 (8)CAUSE_CTIPREEMPTNOREUSE

0X09 (9)CAUSE_CTIPREEMPTFORREUSE

0X10 (16)CAUSE_NORMALCALLCLEARING

0X11 (17)CAUSE_USERBUSY

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1644

Troubleshooting Cisco Unified JTAPI
Cause Codes

Cause codeCause code name

0X12 (18)CAUSE_NOUSERRESPONDING

0X13 (19)CAUSE_NOANSWERFROMUSER

0X14 (20)CAUSE_SUBSCRIBERABSENT

0X15 (21)CAUSE_CALLREJECTED

0X16 (22)CAUSE_NUMBERCHANGED

0X19 (25)CAUSE_EXCHANGEROUTINGERROR

0X1A (26)CAUSE_NONSELECTEDUSERCLEARING

0X1B (27)CAUSE_DDESTINATIONOUTOFORDER

0X1C (28)CAUSE_INVALIDNUMBERFORMAT

0X1D (29)CAUSE_FACILITYREJECTED

0X1E (30)CAUSE_RESPONSETOSTATUSENQUIRY

0X1F (31)CAUSE_NORMALUNSPECIFIED

0X22 (34)CAUSE_NOCIRCAVAIL

0X26 (38)CAUSE_NETOUTOFORDER

0X29 (41)CAUSE_TEMPORARYFAILURE

0X2A (42)CAUSE_SWITCHINGEQUIPMENTCONGESTION

0X2B (43)CAUSE_ACCESSINFORMATIONDISCARDED

0X2C (44)CAUSE_REQCIRCNAVIL

0X2E (46)CAUSE_CTIPRECEDENCECALLBLOCKED

0X2F (47)CAUSE_RESOURCESNAVAIL

0X31 (49)CAUSE_QUALOFSERVNAVAIL

0X32 (50)CAUSE_REQFACILITYNOTSUBSCRIBED

0X35 (53)CAUSE_SERVOPERATIONVIOLATED

0X36 (54)CAUSE_INCOMINGCALLBARRED

0X39 (57)CAUSE_BCNAUTHORIZED

0X3A (58)CAUSE_BCBPRESENTLYAVAIL

0X3F (63)CAUSE_SERVNOTAVAILUNSPECIFIED

0X41 (65)CAUSE_BEARERCAPNIMPL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1645

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

Cause codeCause code name

0X42 (66)CAUSE_CHANTYPENIMPL

0X45 (69)CAUSE_REQFACILITYNIMPL

0X46 (70)CAUSE_ONLYRDIVEARERCAPAVAIL

0X4F (79)CAUSE_SERVOROPTNAVAILORIMPL

0X51 (81)CAUSE_INVALIDCALLREFVALUE

0X52 (82)CAUSE_IDENTIFIEDCHANDOESNOTEXIST

0X53 (83)CAUSE_SUSPCALLBUTNOTTHISONE

0X54 (84)CAUSE_CALLIDINUSE

0X55 (85)CAUSE_NOCALLSUSPENDED

0X56 (86)CAUSE_REQCALLIDHASBEENCLEARED

0X58 (88)CAUSE_INCOMPATABLEDDESTINATION

0X5A (90)CAUSE_DESTNUMMISSANDDCNOTSUB

0X5B (91)CAUSE_INVALIDTRANSITNETSEL

0X5F (95)CAUSE_INVALIDMESSAGEUNSPECIFIED

0X60 (96)CAUSE_MANDATORYIEMISSING

0X61 (97)CAUSE_MSGTYPENIMPL

0X62 (98)CAUSE_MSGTYPENCOMPATWCS

0X63 (99)CAUSE_IENIMPL

0X64 (100)CAUSE_INVALIDIECONTENTS

0X65 (101)CAUSE_MSGNCOMPATABLEWCS

0X66 (102)CAUSE_RECOVERYONTIMEREXPIRY

0X6F (111)CAUSE_PROTOCOLERRORUNSPECIFIED

0X7A (122)CAUSE_CTIPRECEDENCELEVELEXCEEDED

0X7B (123)CAUSE_CTIDEVICENOTPREEMPTABLE

0X7D (125)CAUSE_OUTOFBANDWIDTH

0X7F (127)CAUSE_INTERWORKINGUNSPECIFIED

0X81 (129)CAUSE_CTIPRECEDENCEOUTOFBANDWIDTH

0XC9 (200)CAUSE_REDIRECTED

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1646

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

Cause codeCause code name

0X1F4 (500)CAUSE_INTERNALCAUSE

0X1F5 (501)CAUSE_OUTBOUND_TRANSFER

0X1F6 (502)CAUSE_OUTBOUND_CONFERENCE

0X1F7 (503)CAUSE_INBOUND_TRANSFER

0X1F8 (504)CAUSE_INBOUND_CONFERENCE

0X1F9 (505)CAUSE_INBOUND_BLINDTRANSFER

0x1FB (507)CAUSE_CTIMANAGER_FAILURE

0x1FC (508)CAUSE_CALLMANAGER_FAILURE

0x1FD(509)CAUSE_BARGE

0x1FE (510)CAUSE_FAC_CMC

0x1FF (511)CAUSE_QSIG_PR

0x200 (512)CAUSE_DPARK

0x201 (513)CAUSE_DPARK_UNPARK

0x202 (514)CAUSE_DPARK_REMINDER

0x203 (515)CAUSE_QUIET_CLEAR

0X40000 + CAUSE_NOERRORCAUSE_CTICONFERENCEFULL

0X60000 + CAUSE_NOERRORCAUSE_CALLSPLIT

0X70000 + CAUSE_NOERRORCAUSE_CTIDROPCONFEREE

0X1000000 + CAUSE_TEMPORARYFAILURECAUSE_CTICCMSIP400BADREQUEST

0X2000000 + CAUSE_CALLREJECTEDCAUSE_CTICCMSIP401UNAUTHORIZED

0X3000000 + CAUSE_CALLREJECTEDCAUSE_CTICCMSIP402PAYMENTREQUIRED

0X4000000 + CAUSE_CALLREJECTEDCAUSE_CTICCMSIP403FORBIDDEN

0X5000000 + CAUSE_UNALLOCATEDNUMBERCAUSE_CTICCMSIP404NOTFOUND

0X6000000 + CAUSE_SERVNOTAVAILUNSPECIFIEDCAUSE_CTICCMSIP405METHODNOTALLOWED

0X7000000 + CAUSE_SERVOROPTNAVAILORIMPLCAUSE_CTICCMSIP406NOTACCEPTABLE

0X8000000 + CAUSE_CALLREJECTEDCAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIRED

0X9000000 + CAUSE_RECOVERYONTIMEREXPIRYCAUSE_CTICCMSIP408REQUESTTIMEOUT

0XB000000 + CAUSE_NUMBERCHANGEDCAUSE_CTICCMSIP410GONE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1647

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

Cause codeCause code name

0XC000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP411LENGTHREQUIRED

0XE000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP413REQUESTENTITYTOOLONG

0XF000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP414REQUESTURITOOLONG

0X10000000 + CAUSE_SERVOROPTNAVAILORIMPLCAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPE

0X11000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP416UNSUPPORTEDURISCHEME

0X15000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP420BADEXTENSION

0X16000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP421EXTENSTIONREQUIRED

0X18000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP423INTERVALTOOBRIEF

0X40000000 + CAUSE_NOUSERRESPONDINGCAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLE

0X41000000 + CAUSE_TEMPORARYFAILURECAUSE_CTICCMSIP481CALLLEGDOESNOTEXIST

0X42000000 + CAUSE_EXCHANGEROUTINGERRORCAUSE_CTICCMSIP482LOOPDETECTED

0X43000000 + CAUSE_EXCHANGEROUTINGERRORCAUSE_CTICCMSIP483TOOMANYHOOPS

0X44000000 + CAUSE_INVALIDNUMBERFORMATCAUSE_CTICCMSIP484ADDRESSINCOMPLETE

0X45000000 + CAUSE_UNALLOCATEDNUMBERCAUSE_CTICCMSIP485AMBIGUOUS

0X46000000 + CAUSE_USERBUSYCAUSE_CTICCMSIP486BUSYHERE

0X47000000 + CAUSE_NORMALUNSPECIFIEDCAUSE_CTICCMSIP487REQUESTTERMINATED

0X48000000 + CAUSE_NORMALUNSPECIFIEDCAUSE_CTICCMSIP488NOTACCEPTABLEHERE

0X4B000000 + CAUSE_USERBUSYCAUSE_CTICCMSIP491REQUESTPENDING

0X4D000000 + CAUSE_USERBUSYCAUSE_CTICCMSIP493UNDECIPHERABLE

0X54000000 + CAUSE_TEMPORARYFAILURECAUSE_CTICCMSIP500SERVERINTERNALERROR

0X55000000 + CAUSE_SERVOROPTNAVAILORIMPLCAUSE_CTICCMSIP501NOTIMPLEMENTED

0X56000000 + CAUSE_NETOUTOFORDERCAUSE_CTICCMSIP502BADGATEWAY

0X57000000 + CAUSE_TEMPORARYFAILURECAUSE_CTICCMSIP503SERVICEUNAVAILABLE

0X58000000 + CAUSE_RECOVERYONTIMEREXPIRYCAUSE_CTICCMSIP504SERVERTIMEOUT

0X59000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTED

0X5A000000 + CAUSE_INTERWORKINGUNSPECIFIEDCAUSE_CTICCMSIP513MESSAGETOOLARGE

0XA1000000 + CAUSE_USERBUSYCAUSE_CTICCMSIP600BUSYEVERYWHERE

0XA2000000 + CAUSE_CALLREJECTEDCAUSE_CTICCMSIP603DECLINE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1648

Troubleshooting Cisco Unified JTAPI
Troubleshooting Cisco Unified JTAPI

Cause codeCause code name

0XA3000000 + CAUSE_UNALLOCATEDNUMBERCAUSE_CTICCMSIP604DOESNOTEXISTANYWHERE

0XA4000000 + CAUSE_NORMALUNSPECIFIEDCAUSE_CTICCMSIP606NOTACCEPTABLE

0xA5000000 + NORMALUNSPECIFIEDCAUSE_CTICCMSIP200CALLCOMPLETEDELSEWHERE

0xA7000000 + SERVNOTAVAILUNSPECIFIEDCAUSE_CTICCMSIP503SERVICENOTAVAILABLE

Additional Troubleshooting Information

Viewing JTAPI Debug Output
To view JTAPI debug output, use the JTPREFS application to change the trace settings. The JTPREFS
application allows you to enable or disable various kinds of tracing.

JTPREFS is installed in the %SystemRoot%\java\lib directory along with the JTAPI classes. Cisco JTAPI
Preferences is installed by default in Program Files\JTAPITools.

To open the Cisco JTAPI Preferences utility, choose Start > Programs > Cisco JTAPI > JTAPI Preferences.

The following trace levels are defined:

• WARNING - warning events

• INFORMATIONAL - status events

• DEBUG - debugging events

If DEBUG is enabled, JTPREFS allows you to enable or disable various debugging levels.

The following debugging levels are defined:

• TAPI_DEBUGGING - to trace JTAPI methods and events

• TAPI_IMPLDEBUGGING - internal JTAPI implementation trace

• CTI_DEBUGGING - to trace Cisco Unified Communications Manager events that are sent to the JTAPI
implementation

• CTIIMPL_DEBUGGING - internal CTICLIENT implementation trace

• PROTOCOL_DEBUGGING - full CTI protocol decoding

• MISC_DEBUGGING - miscellaneous low-level debug trace

Traces can be directed to a specific path and folder rather than to the application directory by default. The
same trace folder could be used for successive or more than one simultaneous launch of JTAPI. Different
launches of JTAPI would also send the traces to different folders. This allows simultaneous JTAPI instances
to maintain independent trace destinations

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1649

Troubleshooting Cisco Unified JTAPI
Additional Troubleshooting Information

Traces can be directed to a specific path and folder rather than to the application directory by default. The
same trace folder could be used for successive or more than one simultaneous launch of JTAPI. Different
launches of JTAPI would also send traces to different folders. This allows simultaneous JTAPI instances to
maintain independent trace destinations. The application directory in this case is not that of the JTAPI client
itself, but of the application that is integrating/using the JTAPI client.

Note

Log Files for JTAPI Client Installer
In order to detect the error which might occur during the installation and uninstallation process, two log files
will be generated. These files will be in the same location from which the installer is executed.

• ismpInstall.log – to track events during installation.

• ismpUninstall.log – to track events during uninstallation.

The error messages will contain the information about the wizard beans that were executed as a part of the
install procedure and if there were any exceptions.

Troubleshooting Tips for ISMP Installer
SolutionCauseProblem DescriptionSN

The uninstaller needs to be invoked
from at least one level above the
install directory.

Directory from which uninstaller is
invoked.

ISMP Uninstall does not remove the
target directories installed.

1

Please report this problem
immediately to the support personnel
to suggest the change or error in
message.

Locale Files not proper.Proper language details are not
displayed during installation

2

The installer comes with a built in
JVM which also gets installed if the
target machine does not have a JVM.
In case you face this error - manual
removal of the files needs to be done.

The JVM has been either removed
or replaced with an incompatible
version

Uninstaller/Installer throws error.3

Ensure that proper write permissions
are there for the destination folder.
This problem can occur on UNIX
platforms.

PermissionsInstaller goes through fine, but the
files have not been copied.

4

Refer to the log files generated to get
an idea of which step caused the
error.

version name problem / folder name
problem.

Installer/Uninstaller throws exception
or crashes during the installation
process.

5

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1650

Troubleshooting Cisco Unified JTAPI
Log Files for JTAPI Client Installer

SolutionCauseProblem DescriptionSN

This file is where the current jtapi
install details are located. If this is
accidently removed then,
upgrade/reinstall will have display
issues. In the case of an
upgrade/reinstall or downgrade
failure, the user will have to
manually remove the files from the
.jtapi/bin and .jtapi/lib folders and
then try the installer in order to
ensure proper installation during the
next time.

.jtapiver.ini missing.Upgrade does not show “upgrade”
message during installation of an
upgrade version.

6

Unable to Create Provider Directory Login Timeout
This error occurs when there is no authentication response from CTI for the ProviderOpenRequest. It could
fail because of:

• LDAP connectivity problems

• Database delays

• The CTIManager being busy for some other reason and therefore unable to honor the request

The solution is that the application must try again. If the ProviderOpenRequest fails on repeated attempts,
modify the ProviderOpenRequest.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1651

Troubleshooting Cisco Unified JTAPI
Unable to Create Provider Directory Login Timeout

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1652

Troubleshooting Cisco Unified JTAPI
Unable to Create Provider Directory Login Timeout

A P P E N D I X D
Cisco Unified JTAPI Operations by Release

This section lists supported, unsupported, changed, and “under consideration or review” features for Cisco
Unified JTAPI by Cisco Unified Communications Manager release. The details can be found in the Cisco
Unified Communications Manager JTAPI Developers Guide at
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html.

• JTAPI Operations-by-Release, on page 1653

JTAPI Operations-by-Release
Table legend:

s: supported, N: not supported, M: Modified, UCR: Under Consideration or Review.

Table 359: JTAPI Features by Cisco Unified Communications Manager Release

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

sssssssssssssssssssCTI Manager and
Support for fault
tolerance

sssssssssssssssssssSupport for Cisco
CallManager
Extension Mobility

sssssssssssssssMsssBlind Transfer (using
Redirect)

sssssssssssssssssssSupport Forward

sssssssssssssssssssReset the Original
Called Party with
Redirect

ssssssssssssssssssMCiscoAddr
InServiceEv or
CiscoAddr
OutOFServiceEv

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1653

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

sssssssssssssssMssNLocalization /
Internationalization

ssssssssssssssssMNNUser Deletion from
Directory

sssssssssssssssssNNPark and Unpark

sssssssssssssssssNNMonitoring Call Park
Numbers

ssssssssssssssssMNNCall Reason
Enhancements

sssssssssssssssssNNDevice Data
Passthrough

ssssssssssssssssNNNCiscoJTAPI Auto
Install

ssssssssssssssssNNNMultiple Calls per
DN

ssssssssssssssssNNNShared Line Support

sssssssssssssssMsssTransfer

ssssssssssssssssNNNDirect Transfer

sssssssssssssssMsssConference

ssssssssssssssssNNNJoin

ssssssssssssssssNNNPrivacy Release

ssssssssssssssssNNNBarge and cBarge

ssssssssssssssssNNNDynamic Port
Registration

ssssssssssssssssNNNMedia Termination at
Route Points

ssssssssssssssssNNNTransfer to VoiceMail

ssssssssssssssssNNNModifying Calling
Number

ssssssssssMsssssNNNSupport for
Presentation
Indication

sssssssssssssssNNNNQSIG-PR

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1654

Cisco Unified JTAPI Operations by Release
Cisco Unified JTAPI Operations by Release

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

sssssssssssssssNNNNFAC/CMC Support

sssssssssssssssNNNNDevice State Server

sssssssssssssssNNNNSuperProvider
Functionality

sssssssssssssssNNNNWindows 2003
Support

ssssssssssssssNNNNNDirected PARK

ssssssssssssssNNNNNForward on
NoBandWidth and
Unregister

ssssssssssssssNNNNNVoiceMailBox
Support

ssssssssssssssNNNNNPrivacy on Hold

ssssssssssssssNNNNNHold Reversion
(4.2.1.SR1)

sssssssssssssMsssssSupport for MLPP
(4.2.2)

ssssssssssNNssNNNNNConference
Enhancement-Add
Participants to Conf
by Non-controller
(4.2.2)

ssssssssssNNssNNNNNConference Chaining
(4.2.2)

ssssssssssNNssNNNNNCiscoRTPHandle
Interface (4.2.2)

sssssssssssMsMssNNNCiscoTermRegistration
FailedEv- New Error
Code (4.2.3)

sssssssssssMsssssssNetwork events

ssssssssssssNNNNNNNBWC Enhancement

ssssssssssssNNNNNNNHairpin Support

ssssssssssssNNNNNNNUnicode Support

ssssssssssssNNNNNNNSRTP support

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1655

Cisco Unified JTAPI Operations by Release
Cisco Unified JTAPI Operations by Release

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

ssssssssssssNNNNNNNPartition Support

ssssssssssssNNNNNNNSecurity (TLS)
support

ssssssssssssNNNNNNNAlternate Script
Support

ssssssssssssNNNNNNNSIP Features
Refer/Replaces

ssssssssssssNNNNNNNSIP End Point
Support

ssssssssssssNNNNNNNChange Notification
of SuperProvider and
CallParkDN
Monitoring capability

ssssssssssssNNNNNNN3XX

ssssssssssssNNNNNNNCall Select Status

ssssssssssssNNNNNNNQoS support

ssssssssssssNNNNNNNLinux and Solaris
Installer

ssssssssssNNNNNNNNNIntercom Support

ssssssssssNNNNNNNNNSecure Conferencing
Support

ssssssssssNNNNNNNNNMonitoring &
Recording

ssssssssssNNNNNNNNNArabic and Hebrew
Language Support

ssssssssssNNNNNNNNNDo-Not_Disturb
Support

sssssssssNssNNNNNNNJoin AcrossLine
(SCCP)

sssssssssNNNNNNNNNNCertificate Download
API Enhancement

sssssssssNNNNNNNNNNIntercom Support for
Extension Mobility

ssssssssNNNNNNNNNNNJoin Across Line (SIP
phone support)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1656

Cisco Unified JTAPI Operations by Release
Cisco Unified JTAPI Operations by Release

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

ssssssssNNNNNNNNNNNLocale Infrastructure
Enhancement

ssssssssNNNNNNNNNNNDND-CallReject
(DND-R)

ssssssssNNNNNNNNNNNCall Party
Normalization (CPN)

ssssssssNNNNNNNNNNNClick-To-Conference

ssssssssNNNNNNNNNNNIPv6 Support

ssssssssssssssNNNNNWindows Vista
Support

ssssssssNNNNNNNNNNNEMLogin UserName
API

ssssssssNNNNNNNNNNNSetJtapiProperties
API on
CiscoJTAPIPeer

sssssssNNNNNNNNNNNNDropAnyParty from
Conference

sssssssNNNNNNNNNNNNSwap/Cancel -
Transfer/Conference
Behavior Change

sssssssNNNNNNNNNNNNDirect Transfer
Across Lines

sssssssNNNNNNNNNNNNPark Monitoring
enhancements

sssssssNNNNNNNNNNNNAssisted DPark

sssssssNNNNNNNNNNNNEnhanced MWI

sssssssNNNNNNNNNNNNLogical Partitioning

sssssssNNNNNNNNNNNNRollover Support
(6921 and 7931)

ssssssNNNNNNNNNNNNNAddress and Terminal
Settings

(max calls, voice
mail, busy trigger
etc.)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1657

Cisco Unified JTAPI Operations by Release
Cisco Unified JTAPI Operations by Release

10.09.08.68.58.07.1.37.17.06.16.05.15.04.34.24.14.03.33.23.1JTAPI features

sssssNNNNNNNNNNNNNNEnd to End Call
Tracing

sssssNNNNNNNNNNNNNNExtension Mobility
Cross Cluster

sssssNNNNNNNNNNNNNNHunt List Support

sssssNNNNNNNNNNNNNNCall Pickup
Invocation

sssssNNNNNNNNNNNNNNExternal Call Control

sssssNNNNNNNNNNNNNNCallFwdAll Key
Press Notification

ssssNNNNNNNNNNNNNNNAgent Greeting

ssssNNNNNNNNNNNNNNNWhisper Coaching

ssssNNNNNNNNNNNNNNNAgent Zip Tone

ssssNNNNNNNNNNNNNNNEarly Offer (Session
Manager)

ssssNNNNNNNNNNNNNNNSingle SignOn (SSO)

ssssNNNNNNNNNNNNNNNEnergywise (Deep
Sleep)

sssNNNNNNNNNNNNNNNNUCR 2008 / FIPS
Compliance

ssssNNNNNNNNNNNNNNNWindows 7 Support

sssNNNNNNNNNNNNNNNN64-Bit Support

ssNNNNNNNNNNNNNNNNNCisco Extend &
Connect (CTIRemote
Device)

ssNNNNNNNNNNNNNNNNNRecording Key
Enhancement

ssNNNNNNNNNNNNNNNNNNative Queuing

ssNNNNNNNNNNNNNNNNNE911 Teleworker

ssNNNNNNNNNNNNNNNNNCius Persistency

sNNNNNNNNNNNNNNNNNNCTI Video Support

sNNNNNNNNNNNNNNNNNNGateway Recording

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1658

Cisco Unified JTAPI Operations by Release
Cisco Unified JTAPI Operations by Release

A P P E N D I X E
CTI Supported Devices

The following table provides information about CTI supported devices.

You can see the latest list of Cisco CTI Supported Devices at http://developer.cisco.com/web/jtapi/wikidocs

• CTI Supported Devices Table, on page 1659

CTI Supported Devices Table
Table legend:

: supported, : not supported, NA: Not Applicable.

Table 360: CTI Supported Device Matrix

CommentsSIPSCCPDevice/Phone model

You can find information on the
limitations of this device in
Cisco JTAPI Developer Guide
for Cisco Unified CallManager
4.1(3) .

Analog Phone

End of Software Maintenance
Release 2001

Cisco 30 SP+

SIP devices require firmware
update 9.1(1) available on
Cisco.com

Cisco 6901

SIP devices require firmware
update 9.1(1) available on
Cisco.com

Cisco 6911

PhoneSetDisplay() interface is
not supported. SIP devices
require firmware update 9.1(1)
available on Cisco.com.

Cisco 6921

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1659

http://developer.cisco.com/web/jtapi/wikidocs

CommentsSIPSCCPDevice/Phone model

PhoneSetDisplay() interface is
not supported. SIP devices
require firmware update 9.1(1)
available on Cisco.com.

Cisco 6941

PhoneSetDisplay() interface is
not supported. SIP devices
require firmware update 9.1(1)
available on Cisco.com.

Cisco 6945

PhoneSetDisplay() interface is
not supported. SIP devices
require firmware update 9.1(1)
available on Cisco.com.

Cisco 6961

Cisco 7906

Cisco 7911

End of Software Maintenance
Release 2010

Cisco 7914 Sidecar

Cisco 7915 Sidecar

Cisco 7916 Sidecar

Cisco CKEM Sidecar

Cisco 7921

Cisco 7925 & 7925-EX

CTI supported only if rollover
is disabled. Starting withrelease
7.1 this device is supported
when corresponding role is
added to user.

Cisco 7931

End of Software Maintenance
Release 2011

Cisco 7936

Cisco 7937

End of Software Maintenance
Release 2011

Cisco 7940

Cisco 7941

End of Software Maintenance
Release 2009

Cisco 7941G-GE

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1660

CTI Supported Devices
CTI Supported Devices

CommentsSIPSCCPDevice/Phone model

Cisco 7942

Cisco 7945

End of Software Maintenance
Release 2011

Cisco 7960

Cisco 7961

End of Software Maintenance
Release 2009

Cisco 7961G-GE

Cisco 7962

Cisco 7965

End of Software Maintenance
Release 2009

Cisco 7970

End of Software Maintenance
Release 2009

Cisco 7971

Cisco 7975

End of Software Maintenance
Release 2011

Cisco 7985

8811 phones are CTI controlledCisco 8811

Cisco 8941

Cisco 8945

phoneSetDisplay() interface is
not supported

Cisco 8961

phoneSetDisplay() interface is
not supported

Cisco 9951

phoneSetDisplay() interface is
not supported

Cisco 9971

You can find information on the
limitations of this device in
Cisco JTAPI Developer Guide
for Cisco Unified CallManager
4.1(3) .

Cisco ATA 186

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1661

CTI Supported Devices
CTI Supported Devices

CommentsSIPSCCPDevice/Phone model

CTI support added in release
8.5(1)

phoneSetDisplay() interface is
not supported

XSI interface is not supported.

Silent Monitoring/Recording is
not supported

Cisco Cius

CTI support added in release
7.1(2)

Cisco IP Communicator

Requires Jabber 9.0Cisco Jabber for Windows
(Softphone Mode)

SupportsCTI. Requires CUCM
9.1(1a) and Jabber 9.1(2)

Cisco Jabber for Windows
(Extend/Connect Mode)

Refer to the device model under
remote control to determine CTI
support.

Click-to-Answer requires device
speakerphone support.

——Cisco Jabber for Windows
(Remote Desktop Control
Mode)

Requires CUCM 8.6(1)Cisco Jabber for Mac
(Softphone Mode)

Support for CTI event
monitoring added in CUCM
12.5 su1 for WiFi mode only.
Does not support invoking call
control/feature requests. See
Release Notes for details

Cisco Jabber for iPhone & iPad

Support for CTI event
monitoring added in CUCM
12.5 su1 for WiFi mode only.
Does not support invoking call
control/feature requests. See
Release Notes for details

Cisco Jabber for Android

CTI support added in release
8.5(1)

Cisco Unified Personal
Communicator - Softphone
Mode

Refer to the device model under
remote control to determine CTI
support.

Click-to-Answer requires device
speakerphone support.

——Cisco Unified Personal
Communicator - Remote
Desktop Control Mode

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1662

CTI Supported Devices
CTI Supported Devices

https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/rel_notes/12_5_1/SU1/cucm_b_release-notes-for-cucm-imp-1251su1/cucm_b_release-notes-for-cucm-imp-1251su1_chapter_01.html#concept_D2D38E2C3277792F1C47D1FCC8557B43
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/rel_notes/12_5_1/SU1/cucm_b_release-notes-for-cucm-imp-1251su1/cucm_b_release-notes-for-cucm-imp-1251su1_chapter_01.html#concept_D2D38E2C3277792F1C47D1FCC8557B43

CommentsSIPSCCPDevice/Phone model

CTI support added in release
8.5(2)

Cisco Unified Communicator
Integration for Microsoft Office
Communicator/Lync -
Softphone Mode

Refer to the device model under
remote control to determine CTI
support.

Click-to-Answer requires device
speakerphone support.

——Cisco Unified Communicator
Integration for Microsoft Office
Communicator/Lync - Remote
Desktop Control Mode

Not a CTI supported device.——Cisco Web Communicator for
Quad - Softphone Mode

Refer to the device model under
remote control to determine CTI
support.

Click-to-Answer requires device
speakerphone support.

——Cisco Web Communicator for
Quad - RemoteDesktop Control
Mode

Not a CTI supported device.——CiscoUnified Communications
Integration for Webex Connect
- Softphone Mode

Refer to the device model under
remote control to determine CTI
support.

Click-to-Answer requires device
speakerphone support.

——CiscoUnified Communications
Integration for Webex Connect
- Remote Desktop Control
Mode

Cisco VGC Phone

Not a CTI supported device.——VG224

You can find information on the
limitations of this device in
Cisco JTAPI Developer Guide
for Cisco Unified CallManager
4.1(3) .

VG248

CTI supported device that does
not use SCCP or SIP.

——CTI Port

CTI supported device that does
not use SCCP or SIP.

——CTI Remote Device

CTI supported device that does
not use SCCP or SIP.

——CTI Route Point

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1663

CTI Supported Devices
CTI Supported Devices

CommentsSIPSCCPDevice/Phone model

CTI supported device that does
not use SCCP or SIP.

——CTI Route Point (Pilot Point)

Not a CTI supported device.——ISDN BRI Phone

Not supported by CTI——Cisco Spark remote device

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1664

CTI Supported Devices
CTI Supported Devices

A P P E N D I X F
Constant Field Values

This appendix lists the static final fields and their values.

• com.cisco.*, on page 1665

com.cisco.*

CiscoAddrActivatedEv
com.cisco.jtapi.extensions.CiscoAddrActivatedEv

1073741842IDpublic static final int

CiscoAddrActivatedOnTerminalEv
com.cisco.jtapi.extensions.CiscoAddrActivatedOnTerminalEv

1073741844IDpublic static final int

CiscoAddrAddedToTerminalEv
com.cisco.jtapi.extensions.CiscoAddrAddedToTerminalEv

1073750022IDpublic static final int

CiscoAddrAutoAcceptStatusChangedEv
com.cisco.jtapi.extensions.CiscoAddrAutoAcceptStatusChangedEv

1073750024IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1665

CiscoAddrCreatedEv
com.cisco.jtapi.extensions.CiscoAddrCreatedEv

1073750017IDpublic static final int

CiscoAddress
com.cisco.jtapi.extensions.CiscoAddress

1AUTO_RECORDINGpublic static final int

0AUTOACCEPT_OFFpublic static final int

1AUTOACCEPT_ONpublic static final int

0AUTOANSWER_OFFpublic static final int

3AUTOANSWER_UNKNOWNpublic static final int

1AUTOANSWER_WITHHEADSETpublic static final int

2AUTOANSWER_WITHSPEAKERSETpublic static final int

2EXTERNALpublic static final int

3EXTERNAL_UNKNOWNpublic static final int

1IN_SERVICEpublic static final int

1INTERNALpublic static final int

5MONITORING_TARGETpublic static final int

0NO_RECORDINGpublic static final int

0OUT_OF_SERVICEpublic static final int

0RINGER_DEFAULTpublic static final int

1RINGER_DISABLEpublic static final int

2RINGER_ENABLEpublic static final int

2SELECTIVE_RECORDINGpublic static final int

4UNKNOWNpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1666

Constant Field Values
CiscoAddrCreatedEv

CiscoAddrInServiceEv
com.cisco.jtapi.extensions.CiscoAddrInServiceEv

1073750018IDpublic static final int

CiscoAddrIntercomInfoChangedEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoChangedEv

1073750025IDpublic static final int

CiscoAddrIntercomInfoRestorationFailedEv
com.cisco.jtapi.extensions.CiscoAddrIntercomInfoRestorationFailedEv

1073750032IDpublic static final int

CiscoAddrOutOfServiceEv
com.cisco.jtapi.extensions.CiscoAddrOutOfServiceEv

1073750019IDpublic static final int

CiscoAddrRecordingConfigChangedEv
com.cisco.jtapi.extensions.CiscoAddrRecordingConfigChangedEv

1073750033IDpublic static final int

CiscoAddrRemovedEv
com.cisco.jtapi.extensions.CiscoAddrRemovedEv

1073750020IDpublic static final int

CiscoAddrRemovedFromTerminalEv
com.cisco.jtapi.extensions.CiscoAddrRemovedFromTerminalEv

1073750023IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1667

Constant Field Values
CiscoAddrInServiceEv

CiscoAddrRestrictedEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedEv

1073741840IDpublic static final int

CiscoAddrRestrictedOnTerminalEv
com.cisco.jtapi.extensions.CiscoAddrRestrictedOnTerminalEv

1073741845IDpublic static final int

CiscoCall
com.cisco.jtapi.extensions.CiscoCall

2CALL_RECORDING_TYPE_APPLICATION_INITIATED_SILENTpublic static final int

1CALL_RECORDING_TYPE_AUTOMATICpublic static final int

0CALL_RECORDING_TYPE_NONEpublic static final int

4CALL_RECORDING_TYPE_USER_INITIATED_FROM_APPLICATIONpublic static final int

3CALL_RECORDING_TYPE_USER_INITIATED_FROM_DEVICEpublic static final int

2CALLSECURITY_AUTHENTICATEDpublic static final int

3CALLSECURITY_ENCRYPTEDpublic static final int

1CALLSECURITY_NOTAUTHENTICATEDpublic static final int

0CALLSECURITY_UNKNOWNpublic static final int

128CFWD_ALL_CLEARpublic static final int

0CFWD_ALL_NONEpublic static final int

64CFWD_ALL_SETpublic static final int

3FEATUREPRIORITY_EMERGENCYpublic static final int

1FEATUREPRIORITY_NORMALpublic static final int

2FEATUREPRIORITY_URGENTpublic static final int

2PLAYTONE_BOTHLOCALANDREMOTEpublic static final int

0PLAYTONE_LOCALONLYpublic static final int

3PLAYTONE_NOLOCAL_OR_REMOTEpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1668

Constant Field Values
CiscoAddrRestrictedEv

com.cisco.jtapi.extensions.CiscoCall

1PLAYTONE_REMOTEONLYpublic static final int

1SILENT_MONITORpublic static final int

CiscoCallChangedEv
com.cisco.jtapi.extensions.CiscoCallChangedEv

1073754120IDpublic static final int

CiscoCallCtlTermConnHeldReversionEv
com.cisco.jtapi.extensions.CiscoCallCtlTermConnHeldReversionEv

1073762306IDpublic static final int

CiscoCallEv
com.cisco.jtapi.extensions.CiscoCallEv

43CAUSE_ACCESSINFORMATIONDISCARDEDpublic static final int

509CAUSE_BARGEpublic static final int

58CAUSE_BCBPRESENTLYAVAILpublic static final int

57CAUSE_BCNAUTHORIZEDpublic static final int

65CAUSE_BEARERCAPNIMPLpublic static final int

7CAUSE_CALLBEINGDELIVEREDpublic static final int

84CAUSE_CALLIDINUSEpublic static final int

508CAUSE_CALLMANAGER_FAILUREpublic static final int

21CAUSE_CALLREJECTEDpublic static final int

393216CAUSE_CALLSPLITpublic static final int

66CAUSE_CHANTYPENIMPLpublic static final int

6CAUSE_CHANUNACCEPTABLEpublic static final int

16777257CAUSE_CTICCMSIP400BADREQUESTpublic static final int

33554453CAUSE_CTICCMSIP401UNAUTHORIZEDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1669

Constant Field Values
CiscoCallChangedEv

com.cisco.jtapi.extensions.CiscoCallEv

50331669CAUSE_CTICCMSIP402PAYMENTREQUIREDpublic static final int

67108885CAUSE_CTICCMSIP403FORBIDDENpublic static final int

83886081CAUSE_CTICCMSIP404NOTFOUNDpublic static final int

100663359CAUSE_CTICCMSIP405METHODNOTALLOWEDpublic static final int

117440591CAUSE_CTICCMSIP406NOTACCEPTABLEpublic static final int

134217749CAUSE_CTICCMSIP407PROXYAUTHENTICATIONREQUIREDpublic static final int

150995046CAUSE_CTICCMSIP408REQUESTTIMEOUTpublic static final int

184549398CAUSE_CTICCMSIP410GONEpublic static final int

201326719CAUSE_CTICCMSIP411LENGTHREQUIREDpublic static final int

234881151CAUSE_CTICCMSIP413REQUESTENTITYTOOLONGpublic static final int

251658367CAUSE_CTICCMSIP414REQUESTURITOOLONGpublic static final int

268435535CAUSE_CTICCMSIP415UNSUPPORTEDMEDIATYPEpublic static final int

285212799CAUSE_CTICCMSIP416UNSUPPORTEDURISCHEMEpublic static final int

352321663CAUSE_CTICCMSIP420BADEXTENSIONpublic static final int

369098879CAUSE_CTICCMSIP421EXTENSTIONREQUIREDpublic static final int

402653311CAUSE_CTICCMSIP423INTERVALTOOBRIEFpublic static final int

1073741842CAUSE_CTICCMSIP480TEMPORARILYUNAVAILABLEpublic static final int

1090519081CAUSE_CTICCMSIP481CALLLEGDOESNOTEXISTpublic static final int

1107296281CAUSE_CTICCMSIP482LOOPDETECTEDpublic static final int

1124073497CAUSE_CTICCMSIP483TOOMANYHOOPSpublic static final int

1140850716CAUSE_CTICCMSIP484ADDRESSINCOMPLETEpublic static final int

1157627905CAUSE_CTICCMSIP485AMBIGUOUSpublic static final int

1174405137CAUSE_CTICCMSIP486BUSYHEREpublic static final int

1191182367CAUSE_CTICCMSIP487REQUESTTERMINATEDpublic static final int

1207959583CAUSE_CTICCMSIP488NOTACCEPTABLEHEREpublic static final int

1258291217CAUSE_CTICCMSIP491REQUESTPENDINGpublic static final int

1291845649CAUSE_CTICCMSIP493UNDECIPHERABLEpublic static final int

1409286185CAUSE_CTICCMSIP500SERVERINTERNALERRORpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1670

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoCallEv

1426063439CAUSE_CTICCMSIP501NOTIMPLEMENTEDpublic static final int

1442840614CAUSE_CTICCMSIP502BADGATEWAYpublic static final int

1459617833CAUSE_CTICCMSIP503SERVICEUNAVAILABLEpublic static final int

1476395110CAUSE_CTICCMSIP504SERVERTIMEOUTpublic static final int

1493172351CAUSE_CTICCMSIP505SIPVERSIONNOTSUPPORTEDpublic static final int

1509949567CAUSE_CTICCMSIP513MESSAGETOOLARGEpublic static final int

-1593835503CAUSE_CTICCMSIP600BUSYEVERYWHEREpublic static final int

-1577058283CAUSE_CTICCMSIP603DECLINEpublic static final int

-1560281087CAUSE_CTICCMSIP604DOESNOTEXISTANYWHEREpublic static final int

-1543503841CAUSE_CTICCMSIP606NOTACCEPTABLEpublic static final int

262144CAUSE_CTICONFERENCEFULLpublic static final int

123CAUSE_CTIDEVICENOTPREEMPTABLEpublic static final int

458752CAUSE_CTIDROPCONFEREEpublic static final int

507CAUSE_CTIMANAGER_FAILUREpublic static final int

46CAUSE_CTIPRECEDENCECALLBLOCKEDpublic static final int

122CAUSE_CTIPRECEDENCELEVELEXCEEDEDpublic static final int

129CAUSE_CTIPRECEDENCEOUTOFBANDWIDTHpublic static final int

9CAUSE_CTIPREEMPTFORREUSEpublic static final int

8CAUSE_CTIPREEMPTNOREUSEpublic static final int

27CAUSE_DESTINATIONOUTOFORDERpublic static final int

90CAUSE_DESTNUMMISSANDDCNOTSUBpublic static final int

512CAUSE_DPARKpublic static final int

514CAUSE_DPARK_REMINDERpublic static final int

513CAUSE_DPARK_UNPARKpublic static final int

25CAUSE_EXCHANGEROUTINGERRORpublic static final int

510CAUSE_FAC_CMCpublic static final int

29CAUSE_FACILITYREJECTEDpublic static final int

82CAUSE_IDENTIFIEDCHANDDOESNOTEXISTpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1671

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoCallEv

99CAUSE_IENIMPLpublic static final int

505CAUSE_INBOUNDBLINDTRANSFERpublic static final int

504CAUSE_INBOUNDCONFERENCEpublic static final int

503CAUSE_INBOUNDTRANSFERpublic static final int

54CAUSE_INCOMINGCALLBARREDpublic static final int

88CAUSE_INCOMPATABLEDESTINATIONpublic static final int

127CAUSE_INTERWORKINGUNSPECIFIEDpublic static final int

81CAUSE_INVALIDCALLREFVALUEpublic static final int

100CAUSE_INVALIDIECONTENTSpublic static final int

95CAUSE_INVALIDMESSAGEUNSPECIFIEDpublic static final int

28CAUSE_INVALIDNUMBERFORMATpublic static final int

91CAUSE_INVALIDTRANSITNETSELpublic static final int

96CAUSE_MANDATORYIEMISSINGpublic static final int

101CAUSE_MSGNCOMPATABLEWCSpublic static final int

98CAUSE_MSGTYPENCOMPATWCSpublic static final int

97CAUSE_MSGTYPENIMPLpublic static final int

38CAUSE_NETOUTOFORDERpublic static final int

19CAUSE_NOANSWERFROMUSERpublic static final int

85CAUSE_NOCALLSUSPENDEDpublic static final int

34CAUSE_NOCIRCAVAILpublic static final int

0CAUSE_NOERRORpublic static final int

26CAUSE_NONSELECTEDUSERCLEARINGpublic static final int

16CAUSE_NORMALCALLCLEARINGpublic static final int

31CAUSE_NORMALUNSPECIFIEDpublic static final int

3CAUSE_NOROUTETODDESTINATIONpublic static final int

2CAUSE_NOROUTETOTRANSITNETpublic static final int

18CAUSE_NOUSERRESPONDINGpublic static final int

22CAUSE_NUMBERCHANGEDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1672

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoCallEv

70CAUSE_ONLYRDIVEARERCAPAVAILpublic static final int

502CAUSE_OUTBOUNDCONFERENCEpublic static final int

501CAUSE_OUTBOUNDTRANSFERpublic static final int

125CAUSE_OUTOFBANDWIDTHpublic static final int

111CAUSE_PROTOCOLERRORUNSPECIFIEDpublic static final int

511CAUSE_QSIG_PRpublic static final int

49CAUSE_QUALOFSERVNAVAILpublic static final int

515CAUSE_QUIET_CLEARpublic static final int

102CAUSE_RECOVERYONTIMEREXPIRYpublic static final int

200CAUSE_REDIRECTEDpublic static final int

86CAUSE_REQCALLIDHASBEENCLEAREDpublic static final int

44CAUSE_REQCIRCNAVILpublic static final int

69CAUSE_REQFACILITYNIMPLpublic static final int

50CAUSE_REQFACILITYNOTSUBSCRIBEDpublic static final int

47CAUSE_RESOURCESNAVAILpublic static final int

30CAUSE_RESPONSETOSTATUSENQUIRYpublic static final int

63CAUSE_SERVNOTAVAILUNSPECIFIEDpublic static final int

53CAUSE_SERVOPERATIONVIOLATEDpublic static final int

79CAUSE_SERVOROPTNAVAILORIMPLpublic static final int

20CAUSE_SUBSCRIBERABSENTpublic static final int

83CAUSE_SUSPCALLBUTNOTTHISONEpublic static final int

42CAUSE_SWITCHINGEQUIPMENTCONGESTIONpublic static final int

41CAUSE_TEMPORARYFAILUREpublic static final int

1CAUSE_UNALLOCATEDNUMBERpublic static final int

17CAUSE_USERBUSYpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1673

Constant Field Values
Constant Field Values

CiscoCallSecurityStatusChangedEv
com.cisco.jtapi.extensions.CiscoCallSecurityStatusChangedEv

1073754129IDpublic static final int

CiscoConferenceChainAddedEv
com.cisco.jtapi.extensions.CiscoConferenceChainAddedEv

1073754121IDpublic static final int

CiscoConferenceChainRemovedEv
com.cisco.jtapi.extensions.CiscoConferenceChainRemovedEv

1073754128IDpublic static final int

CiscoConferenceEndEv
com.cisco.jtapi.extensions.CiscoConferenceEndEv

1073754114IDpublic static final int

CiscoConferenceStartEv
com.cisco.jtapi.extensions.CiscoConferenceStartEv

1073754115IDpublic static final int

CiscoConnection
com.cisco.jtapi.extensions.CiscoConnection

2ADDRESS_SEARCH_SPACEpublic static final int

0CALLED_ADDRESS_DEFAULTpublic static final int

2CALLED_ADDRESS_SET_TO_PREFERREDCALLEDPARTYpublic static final int

1CALLED_ADDRESS_SET_TO_REDIRECT_DESTINATIONpublic static final int

0CALLED_ADDRESS_UNCHANGEDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1674

Constant Field Values
CiscoCallSecurityStatusChangedEv

com.cisco.jtapi.extensions.CiscoConnection

1CALLINGADDRESS_SEARCH_SPACEpublic static final int

0DEFAULT_SEARCH_SPACEpublic static final int

1REASON_DIRECTCALLpublic static final int

5REASON_FORWARDALLpublic static final int

4REASON_FORWARDBUSYpublic static final int

3REASON_FORWARDNOANSWERpublic static final int

99REASON_OUTBOUNDpublic static final int

6REASON_REDIRECTpublic static final int

2REASON_TRANSFERREDCALLpublic static final int

1REDIRECT_DROP_ON_FAILUREpublic static final int

2REDIRECT_NORMALpublic static final int

CiscoConnectionUniqueIDChangedEv
com.cisco.jtapi.extensions.CiscoConsultCallActiveEv

1073754116IDpublic static final int

CiscoConsultCallActiveEv
com.cisco.jtapi.extensions.CiscoConsultCallActiveEv

1073754116IDpublic static final int

CiscoFeatureReason
com.cisco.jtapi.extensions.CiscoFeatureReason

20REASON_BARGEpublic static final int

7REASON_BLINDTRANSFERpublic static final int

11REASON_CALLPICKUPpublic static final int

26REASON_CCM_REDIRECTIONpublic static final int

39REASON_CLICK_TO_CONFERENCEpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1675

Constant Field Values
CiscoConnectionUniqueIDChangedEv

com.cisco.jtapi.extensions.CiscoFeatureReason

9REASON_CONFERENCEpublic static final int

27REASON_DPARK_CALLPARKpublic static final int

28REASON_DPARK_REVERSIONpublic static final int

29REASON_DPARK_UNPARKpublic static final int

22REASON_FAC_CMCpublic static final int

5REASON_FORWARDALLpublic static final int

4REASON_FORWARDBUSYpublic static final int

3REASON_FORWARDNOANSWERpublic static final int

21REASON_IMMDIVERTpublic static final int

33REASON_MOBILITYpublic static final int

35REASON_MOBILITY_CELLPICKUPpublic static final int

38REASON_MOBILITY_FOLLOWMEpublic static final int

36REASON_MOBILITY_HANDINpublic static final int

37REASON_MOBILITY_HANDOUTpublic static final int

34REASON_MOBILITY_IVRpublic static final int

12REASON_NORMALpublic static final int

10REASON_PARKpublic static final int

15REASON_PARKREMAINDERpublic static final int

15REASON_PARKREMINDERpublic static final int

23REASON_QSIG_PRpublic static final int

6REASON_REDIRECTpublic static final int

24REASON_REFERpublic static final int

25REASON_REPLACEpublic static final int

31REASON_SILENTMONITORINGpublic static final int

2REASON_TRANSFERpublic static final int

16REASON_UNPARKpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1676

Constant Field Values
Constant Field Values

CiscoG711MediaCapability
com.cisco.jtapi.extensions.CiscoG711MediaCapability

60FRAMESIZE_SIXTY_MILLISECOND_PACKETpublic static final int

30FRAMESIZE_THIRTY_MILLISECOND_PACKETpublic static final int

20FRAMESIZE_TWENTY_MILLISECOND_PACKETpublic static final int

CiscoG723MediaCapability
com.cisco.jtapi.extensions.CiscoG723MediaCapability

60FRAMESIZE_SIXTY_MILLISECOND_PACKETpublic static final int

30FRAMESIZE_THIRTY_MILLISECOND_PACKETpublic static final int

20FRAMESIZE_TWENTY_MILLISECOND_PACKETpublic static final int

CiscoG729MediaCapability
com.cisco.jtapi.extensions.CiscoG729MediaCapability

60FRAMESIZE_SIXTY_MILLISECOND_PACKETpublic static final int

30FRAMESIZE_THIRTY_MILLISECOND_PACKETpublic static final int

20FRAMESIZE_TWENTY_MILLISECOND_PACKETpublic static final int

CiscoGSMMediaCapability
com.cisco.jtapi.extensions.CiscoGSMMediaCapability

80FRAMESIZE_EIGHTY_MILLISECOND_PACKETpublic static final int

CiscoJtapiException
com.cisco.jtapi.extensions.CiscoJtapiException

-1932787685ASSOCIATED_LINE_NOT_OPENpublic static final int

-1932787705CALL_ALREADY_EXISTSpublic static final int

-1932787564CALL_DROPPEDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1677

Constant Field Values
CiscoG711MediaCapability

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787702CALLHANDLE_NOTINCOMINGCALLpublic static final int

-1932787644CALLHANDLE_UNKNOWN_TO_LINECONTROLpublic static final int

-1932787647CANNOT_OPEN_DEVICEpublic static final int

-1932787690CANNOT_TERMINATE_MEDIA_ON_PHONEpublic static final int

-1932787597CFWDALL_ALREADY_SETpublic static final int

-1932787596CFWDALL_DESTN_INVALIDpublic static final int

-1932787612CLUSTER_LINK_FAILUREpublic static final int

-1932787559COMMAND_NOT_IMPLEMENTED_ON_DEVICEpublic static final int

-1932787588CONFERENCE_ALREADY_PRESENTpublic static final int

-1932787590CONFERENCE_FAILEDpublic static final int

-1932787642CONFERENCE_FULLpublic static final int

-1932787587CONFERENCE_INACTIVEpublic static final int

-1932787589CONFERENCE_INVALID_PARTICIPANTpublic static final int

-1932787688CTIERR_ACCESS_TO_DEVICE_DENIEDpublic static final int

-1932787679CTIERR_APP_SOFTKEYS_ALREADY_CONTROLLEDpublic static final int

-1932787675CTIERR_APPLICATION_DATA_SIZE_EXCEEDEDpublic static final int

-1932787476CTIERR_BIB_NOT_CONFIGUREDpublic static final int

-1932787489CTIERR_BIB_RESOURCE_NOT_AVAILABLEpublic static final int

-1932787689CTIERR_CALL_MANAGER_NOT_AVAILABLEpublic static final int

-1932787533CTIERR_CALL_NOT_EXISTEDpublic static final int

-1932787579CTIERR_CALL_PARK_NO_DNpublic static final int

-1932787577CTIERR_CALL_REQUEST_ALREADY_OUTSTANDINGpublic static final int

-1932787583CTIERR_CALL_UNPARK_FAILEDpublic static final int

-1932787518CTIERR_CAPABILITIES_DO_NOT_MATCHpublic static final int

-1932787673CTIERR_CLOSE_DELAY_NOT_SUPPORTED_WITH_REG_TYPEpublic static final int

-1932787535CTIERR_CONFERENCE_ALREADY_EXISTEDpublic static final int

-1932787534CTIERR_CONFERENCE_NOT_EXISTEDpublic static final int

-1932787503CTIERR_CONNECTION_ON_INVALID_PORTpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1678

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787576CTIERR_CONSULT_CALL_FAILUREpublic static final int

-1932787640CTIERR_CONSULTCALL_ALREADY_OUTSTANDINGpublic static final int

-1932787500CTIERR_CRYPTO_CAPABILITY_MISMATCHpublic static final int

-1932787515CTIERR_CTIHANDLER_PROCESS_CREATION_FAILEDpublic static final int

-1932787494CTIERR_DB_INITIALIZATION_ERRORpublic static final int

-1932787552CTIERR_DEVICE_ALREADY_OPENEDpublic static final int

0X8CCC0127CTIERR_DEVICE_ALREADY_REGISTERED_NONEXTENDpublic static final int

-1932787551CTIERR_DEVICE_NOT_OPENED_YETpublic static final int

-1932787517CTIERR_DEVICE_OWNER_ALIVE_TIMER_STARTEDpublic static final int

-1932787490CTIERR_DEVICE_REGISTRATION_FAILED_NOT_SUPPORTED_MEDIATYPEpublic static final int

-1932787502CTIERR_DEVICE_RESTRICTEDpublic static final int

-1932787558CTIERR_DEVICE_SHUTTING_DOWNpublic static final int

-1932787595CTIERR_DIRECTORY_LOGIN_TIMEOUTpublic static final int

-1932787529CTIERR_DUPLICATE_CALL_REFERENCEpublic static final int

0X8CCC0122CTIERR_DUPLICATE_REMOTE_DESTINATION_NUMBERpublic static final int

-1932787468CTIERR_DYNREG_IPADDRMODE_MISMATCHpublic static final int

0X8CCC0126CTIERR_ENDUSER_NOT_ASSOCIATED_WITH_DEVICEpublic static final int

-1932787506CTIERR_FAC_CMC_REASON_CMC_INVALIDpublic static final int

-1932787509CTIERR_FAC_CMC_REASON_CMC_NEEDEDpublic static final int

-1932787508CTIERR_FAC_CMC_REASON_FAC_CMC_NEEDEDpublic static final int

-1932787507CTIERR_FAC_CMC_REASON_FAC_INVALIDpublic static final int

-1932787510CTIERR_FAC_CMC_REASON_FAC_NEEDEDpublic static final int

-1932787575CTIERR_FEATURE_ALREADY_REGISTEREDpublic static final int

-1932787565CTIERR_FEATURE_DATA_REJECTpublic static final int

-1932787514CTIERR_FEATURE_SELECT_FAILEDpublic static final int

-1932787578CTIERR_ILLEGAL_DEVICE_TYPEpublic static final int

-1932787629CTIERR_INCOMPATIBLE_AUTOINSTALL_PROTOCOL_VERSIONpublic static final int

-1932787560CTIERR_INCORRECT_MEDIA_CAPABILITYpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1679

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787677CTIERR_INFORMATION_NOT_AVAILABLEpublic static final int

-1932787475CTIERR_INTERCOM_SPEEDDIAL_ALREADY_CONFIGUREDpublic static final int

-1932787493CTIERR_INTERCOM_SPEEDDIAL_ALREADY_SETpublic static final int

-1932787492CTIERR_INTERCOM_SPEEDDIAL_DESTN_INVALIDpublic static final int

-1932787474CTIERR_INTERCOM_TALKBACK_ALREADY_PENDINGpublic static final int

-1932787491CTIERR_INTERCOM_TALKBACK_FAILUREpublic static final int

-1932787568CTIERR_INTERNAL_FAILUREpublic static final int

-1932787487CTIERR_INVALID_CALLIDpublic static final int

-1932787678CTIERR_INVALID_DEVICE_NAMEpublic static final int

-1932787561CTIERR_INVALID_DTMFDIGITSpublic static final int

-1932787625CTIERR_INVALID_FILTER_SIZEpublic static final int

-1932787674CTIERR_INVALID_MEDIA_DEVICEpublic static final int

-1932787554CTIERR_INVALID_MEDIA_PARAMETERpublic static final int

-1932787519CTIERR_INVALID_MEDIA_PROCESSpublic static final int

-1932787557CTIERR_INVALID_MEDIA_RESOURCE_IDpublic static final int

-1932787627CTIERR_INVALID_MESSAGE_HEADER_INFOpublic static final int

-1932787628CTIERR_INVALID_MESSAGE_LENGTHpublic static final int

-1932787486CTIERR_INVALID_MONITOR_DESTNpublic static final int

-1932787580CTIERR_INVALID_MONITOR_DN_TYPEpublic static final int

-1932787473CTIERR_INVALID_MONITORMODEpublic static final int

-1932787532CTIERR_INVALID_PARAMETERpublic static final int

-1932787582CTIERR_INVALID_PARK_DNpublic static final int

-1932787581CTIERR_INVALID_PARK_REGISTRATION_HANDLEpublic static final int

0X8CCC0130CTIERR_INVALID_REMOTE_DESTINATION_NAMEpublic static final int

0X8CCC0121CTIERR_INVALID_REMOTE_DESTINATION_NUMBERpublic static final int

-1932787530CTIERR_INVALID_RESOURCE_TYPEpublic static final int

-1932787469CTIERR_IPADDRMODE_MISMATCHpublic static final int

-1932787594CTIERR_LINE_OUT_OF_SERVICEpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1680

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787501CTIERR_LINE_RESTRICTEDpublic static final int

-1932787516CTIERR_MAXCALL_LIMIT_REACHEDpublic static final int

-1932787548CTIERR_MEDIA_ALREADY_TERMINATED_DYNAMICpublic static final int

0X8CCC0128CTIERR_MEDIA_ALREADY_TERMINATED_EXTENDpublic static final int

-1932787550CTIERR_MEDIA_ALREADY_TERMINATED_NONEpublic static final int

-1932787549CTIERR_MEDIA_ALREADY_TERMINATED_STATICpublic static final int

-1932787553CTIERR_MEDIA_CAPABILITY_MISMATCHpublic static final int

-1932787676CTIERR_MEDIA_RESOURCE_NAME_SIZE_EXCEEDEDpublic static final int

-1932787567CTIERR_MEDIAREGISTRATIONTYPE_DO_NOT_MATCHpublic static final int

-1932787626CTIERR_MESSAGE_TOO_BIGpublic static final int

-1932787531CTIERR_MORE_ACTIVE_CALLS_THAN_RESERVEDpublic static final int

-1932787512CTIERR_NO_EXISTING_CALLSpublic static final int

-1932787527CTIERR_NO_EXISTING_CONFERENCEpublic static final int

-1932787479CTIERR_NO_RECORDING_SESSIONpublic static final int

-1932787526CTIERR_NO_RESPONSE_FROM_MPpublic static final int

-1932787528CTIERR_NOT_PRESERVED_CALLpublic static final int

-1932787566CTIERR_OPERATION_FAILED_QUIETCLEARpublic static final int

-1932787555CTIERR_OPERATION_NOT_ALLOWEDpublic static final int

-1932787498CTIERR_OUT_OF_BANDWIDTHpublic static final int

-1932787547CTIERR_OWNER_NOT_ALIVEpublic static final int

-1932787520CTIERR_PENDING_ACCEPT_OR_ANSWER_REQUESTpublic static final int

-1932787485CTIERR_PENDING_START_MONITORING_REQUESTpublic static final int

-1932787483CTIERR_PENDING_START_RECORDING_REQUESTpublic static final int

-1932787482CTIERR_PENDING_STOP_RECORDING_REQUESTpublic static final int

-1932787471CTIERR_PRIMARY_CALL_INVALIDpublic static final int

-1932787470CTIERR_PRIMARY_CALL_STATE_INVALIDpublic static final int

-1932787480CTIERR_RECORDING_ALREADY_INPROGRESSpublic static final int

-1932787477CTIERR_RECORDING_CONFIG_NOT_MATCHINGpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1681

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787478CTIERR_RECORDING_SESSION_INACTIVEpublic static final int

-1932787513CTIERR_REDIRECT_UNAUTHORIZED_COMMAND_USAGEpublic static final int

-1932787585CTIERR_REGISTER_FEATURE_ACTIVATION_FAILEDpublic static final int

-1932787523CTIERR_REGISTER_FEATURE_APP_ALREADY_REGISTEREDpublic static final int

-1932787524CTIERR_REGISTER_FEATURE_PROVIDER_NOT_REGISTEREDpublic static final int

0X8CCC0124CTIERR_REMOTE_DEVICE_REQUEST_FAILED_ACTIVE_RD_NOT_SETpublic static final int

0X8CCC0123CTIERR_REMOTEDESTINATION_LIMIT_EXCEEDEDpublic static final int

-1932787536CTIERR_RESOURCE_NOT_AVAILABLEpublic static final int

-1932787484CTIERR_START_MONITORING_FAILEDpublic static final int

-1932787481CTIERR_START_RECORDING_FAILEDpublic static final int

-1932787574CTIERR_STATION_SHUT_DOWNpublic static final int

-1932787525CTIERR_SYSTEM_ERRORpublic static final int

-1932787638CTIERR_UDP_PASS_THROUGH_NOT_SUPPORTEDpublic static final int

-1932787556CTIERR_UNKNOWN_EXCEPTIONpublic static final int

-1932787584CTIERR_UNSUPPORTED_CALL_PARK_TYPEpublic static final int

-1932787511CTIERR_UNSUPPORTED_CFWD_TYPEpublic static final int

-1932787504CTIERR_USER_NOT_AUTH_FOR_SECURITYpublic static final int

-1932787591DARES_INVALID_REQ_TYPEpublic static final int

-1932787681DATA_SIZE_LIMIT_EXCEEDEDpublic static final int

-1932787691DB_ERRORpublic static final int

-1932787692DB_ILLEGAL_DEVICE_TYPEpublic static final int

-1932787694DB_NO_MORE_DEVICESpublic static final int

-1897005054DESTINATION_BUSYpublic static final int

-1897005055DESTINATION_UNKNOWNpublic static final int

-1932787693DEVICE_ALREADY_REGISTEREDpublic static final int

-1932787686DEVICE_NOT_OPENpublic static final int

-1932787593DEVICE_OUT_OF_SERVICEpublic static final int

-1932787610DIGIT_GENERATION_ALREADY_IN_PROGRESSpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1682

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787607DIGIT_GENERATION_CALLSTATE_CHANGEDpublic static final int

-1932787609DIGIT_GENERATION_WRONG_CALL_HANDLEpublic static final int

-1932787608DIGIT_GENERATION_WRONG_CALL_STATEpublic static final int

-1932787616DIRECTORY_LOGIN_FAILEDpublic static final int

-1932787617DIRECTORY_LOGIN_NOT_ALLOWEDpublic static final int

-1932787618DIRECTORY_TEMPORARY_UNAVAILABLEpublic static final int

-1932787709EXISTING_FIRSTPARTYpublic static final int

-1932787697HOLDFAILEDpublic static final int

-1932787706ILLEGAL_CALLINGPARTYpublic static final int

-1932787703ILLEGAL_CALLSTATEpublic static final int

-1932787708ILLEGAL_HANDLEpublic static final int

-1932787630ILLEGAL_MESSAGE_FORMATpublic static final int

-1932787632INCOMPATIBLE_PROTOCOL_VERSIONpublic static final int

-1932787599INVALID_LINE_HANDLEpublic static final int

-1932787680INVALID_RING_OPTIONpublic static final int

-1932787606LINE_GREATER_THAN_MAX_LINEpublic static final int

-1932787611LINE_INFO_DOES_NOT_EXISTpublic static final int

-1932787598LINE_NOT_PRIMARYpublic static final int

-1932787704LINECONTROL_FAILUREpublic static final int

-1932787641MAX_NUMBER_OF_CTI_CONNECTIONS_REACHEDpublic static final int

-1932787592MSGWAITING_DESTN_INVALIDpublic static final int

-1932787710NO_ACTIVE_DEVICE_FOR_THIRDPARTYpublic static final int

-1932787639NO_CONFERENCE_BRIDGEpublic static final int

-1932787613NOT_INITIALIZEDpublic static final int

-1091584273PROTOCOL_TIMEOUTpublic static final int

-1932787614PROVIDER_ALREADY_OPENpublic static final int

-559038737PROVIDER_CLOSEDpublic static final int

-1932787615PROVIDER_NOT_OPENpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1683

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787662REDIRECT_CALL_CALL_TABLE_FULLpublic static final int

-1932787649REDIRECT_CALL_DESTINATION_BUSYpublic static final int

-1932787648REDIRECT_CALL_DESTINATION_OUT_OF_ORDERpublic static final int

-1932787659REDIRECT_CALL_DIGIT_ANALYSIS_TIMEOUTpublic static final int

-1932787683REDIRECT_CALL_DOES_NOT_EXISTpublic static final int

-1932787654REDIRECT_CALL_INCOMPATIBLE_STATEpublic static final int

-1932787658REDIRECT_CALL_MEDIA_CONNECTION_FAILEDpublic static final int

-1932787651REDIRECT_CALL_NORMAL_CLEARINGpublic static final int

-1932787656REDIRECT_CALL_ORIGINATOR_ABANDONEDpublic static final int

-1932787657REDIRECT_CALL_PARTY_TABLE_FULLpublic static final int

-1932787653REDIRECT_CALL_PENDING_REDIRECT_TRANSACTIONpublic static final int

-1932787661REDIRECT_CALL_PROTOCOL_ERRORpublic static final int

-1932787660REDIRECT_CALL_UNKNOWN_DESTINATIONpublic static final int

-1932787652REDIRECT_CALL_UNKNOWN_ERRORpublic static final int

-1932787655REDIRECT_CALL_UNKNOWN_PARTYpublic static final int

-1932787650REDIRECT_CALL_UNRECOGNIZED_MANAGERpublic static final int

-1932787664REDIRECT_CALLINFO_ERRpublic static final int

-1932787663REDIRECT_ERRpublic static final int

-1932787695RETRIEVEFAILEDpublic static final int

-1932787600RETRIEVEFAILED_ACTIVE_CALL_ON_LINEpublic static final int

-1932787684SSAPI_NOT_REGISTEREDpublic static final int

-1932787711TIMEOUTpublic static final int

-1932787586TRANSFER_INACTIVEpublic static final int

-1932787698TRANSFERFAILEDpublic static final int

-1932787645TRANSFERFAILED_CALLCONTROL_TIMEOUTpublic static final int

-1932787699TRANSFERFAILED_DESTINATION_BUSYpublic static final int

-1932787701TRANSFERFAILED_DESTINATION_UNALLOCATEDpublic static final int

-1932787646TRANSFERFAILED_OUTSTANDING_TRANSFERpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1684

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoJtapiException

-1932787707UNDEFINED_LINEpublic static final int

-1932787687UNKNOWN_GLOBAL_CALL_HANDLEpublic static final int

-1932787631UNRECOGNIZABLE_PDUpublic static final int

0UNSPECIFIEDpublic static final int

CiscoLocales
com.cisco.jtapi.extensions.CiscoLocales

47LOCALE_ARABIC_ALGERIApublic static final int

48LOCALE_ARABIC_BAHRAINpublic static final int

49LOCALE_ARABIC_EGYPTpublic static final int

50LOCALE_ARABIC_IRAQpublic static final int

51LOCALE_ARABIC_JORDANpublic static final int

38LOCALE_ARABIC_KUWAITpublic static final int

52LOCALE_ARABIC_LEBANONpublic static final int

53LOCALE_ARABIC_MOROCCOpublic static final int

36LOCALE_ARABIC_OMANpublic static final int

54LOCALE_ARABIC_QATARpublic static final int

37LOCALE_ARABIC_SAUDI_ARABIApublic static final int

55LOCALE_ARABIC_TUNISIApublic static final int

35LOCALE_ARABIC_UNITED_ARAB_EMIRATESpublic static final int

56LOCALE_ARABIC_YEMENpublic static final int

27LOCALE_BULGARIAN_BULGARIApublic static final int

32LOCALE_CATALAN_SPAINpublic static final int

24LOCALE_CHINESE_HONG_KONGpublic static final int

28LOCALE_CROATIAN_CROATIApublic static final int

26LOCALE_CZECH_CZECH_REPUBLICpublic static final int

12LOCALE_DANISH_DENMARKpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1685

Constant Field Values
CiscoLocales

com.cisco.jtapi.extensions.CiscoLocales

8LOCALE_DUTCH_NETHERLANDpublic static final int

33LOCALE_ENGLISH_UNITED_KINGDOMpublic static final int

1LOCALE_ENGLISH_UNITED_STATESpublic static final int

22LOCALE_FINNISH_FINLANDpublic static final int

2LOCALE_FRENCH_FRANCEpublic static final int

3LOCALE_GERMAN_GERMANYpublic static final int

16LOCALE_GREEK_GREECEpublic static final int

39LOCALE_HEBREW_ISRAELpublic static final int

14LOCALE_HUNGARIAN_HUNGARYpublic static final int

7LOCALE_ITALIAN_ITALYpublic static final int

13LOCALE_JAPANESE_JAPANpublic static final int

21LOCALE_KOREAN_KOREApublic static final int

9LOCALE_NORWEGIAN_NORWAYpublic static final int

15LOCALE_POLISH_POLANDpublic static final int

23LOCALE_PORTUGUESE_BRAZILpublic static final int

10LOCALE_PORTUGUESE_PORTUGALpublic static final int

30LOCALE_ROMANIAN_ROMANIApublic static final int

5LOCALE_RUSSIAN_RUSSIApublic static final int

41LOCALE_SERBIAN_REPUBLIC_OF_MONTENEGROpublic static final int

40LOCALE_SERBIAN_REPUBLIC_OF_SERBIApublic static final int

20LOCALE_SIMPLIFIED_CHINESE_CHINApublic static final int

25LOCALE_SLOVAK_SLOVAKIApublic static final int

29LOCALE_SLOVENIAN_SLOVENIApublic static final int

6LOCALE_SPANISH_SPAINpublic static final int

11LOCALE_SWEDISH_SWEDENpublic static final int

42LOCALE_THAI_THAILANDpublic static final int

19LOCALE_TRADITIONAL_CHINESE_CHINApublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1686

Constant Field Values
Constant Field Values

CiscoMediaConnectionMode
com.cisco.jtapi.extensions.CiscoMediaConnectionMode

0NONEpublic static final int

1RECEIVE_ONLYpublic static final int

3TRANSMIT_AND_RECEIVEpublic static final int

2TRANSMIT_ONLYpublic static final int

CiscoMediaEncryptionAlgorithmType
com.cisco.jtapi.extensions.CiscoMediaEncryptionAlgorithmType

1AES_128_COUNTERpublic static final int

CiscoMediaOpenLogicalChannelEv
com.cisco.jtapi.extensions.CiscoMediaOpenLogicalChannelEv

1073758213IDpublic static final int

CiscoMediaSecurityIndicator
com.cisco.jtapi.extensions.CiscoMediaSecurityIndicator

0MEDIA_ENCRYPT_KEYS_AVAILABLEpublic static final int

2MEDIA_ENCRYPT_KEYS_UNAVAILABLEpublic static final int

1MEDIA_ENCRYPT_USER_NOT_AUTHORIZEDpublic static final int

3MEDIA_NOT_ENCRYPTEDpublic static final int

CiscoOutOfServiceEv
com.cisco.jtapi.extensions.CiscoOutOfServiceEv

1001CAUSE_CALLMANAGER_FAILUREpublic static final int

1007CAUSE_CTIMANAGER_FAILUREpublic static final int

1004CAUSE_DEVICE_FAILUREpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1687

Constant Field Values
CiscoMediaConnectionMode

com.cisco.jtapi.extensions.CiscoOutOfServiceEv

1008CAUSE_DEVICE_RESTRICTEDpublic static final int

1005CAUSE_DEVICE_UNREGISTEREDpublic static final int

1009CAUSE_LINE_RESTRICTEDpublic static final int

1003CAUSE_NOCALLMANAGER_AVAILABLEpublic static final int

1002CAUSE_REHOME_TO_HIGHER_PRIORITY_CMpublic static final int

1006CAUSE_REHOMING_FAILUREpublic static final int

1073750021IDpublic static final int

CiscoPartyInfo
com.cisco.jtapi.extensions.CiscoPartyInfo

6ABBREVIATED_NUMBERpublic static final int

1INTERNATIONAL_NUMBERpublic static final int

2NATIONAL_NUMBERpublic static final int

3NET_SPECIFIC_NUMBERpublic static final int

7RESERVED_FOR_EXTENSIONpublic static final int

4SUBSCRIBER_NUMBERpublic static final int

0UNKNOWN_NUMBERpublic static final int

CiscoProvCallParkEv
com.cisco.jtapi.extensions.CiscoProvCallParkEv

1073754113IDpublic static final int

2PARK_STATE_ACTIVEpublic static final int

1PARK_STATE_IDLEpublic static final int

1REASON_CALLPARKpublic static final int

3REASON_CALLPARKREMAINDERpublic static final int

3REASON_CALLPARKREMINDERpublic static final int

2REASON_CALLUNPARKpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1688

Constant Field Values
CiscoPartyInfo

CiscoProvFeatureID
com.cisco.jtapi.extensions.CiscoProvFeatureID

1234MONITOR_CALLPARK_DNpublic static final int

CiscoProviderCapabilityChangedEv
com.cisco.jtapi.extensions.CiscoProviderCapabilityChangedEv

1073741846IDpublic static final int

32MODIFY_CGPNpublic static final int

64MONITOR_PARKDNpublic static final int

16SUPERPROVIDERpublic static final int

CiscoProvTerminalCapabilityChangedEv
com.cisco.jtapi.extensions.CiscoProvTerminalCapabilityChangedEv

1073741847IDpublic static final int

CiscoRemoteTerminal
com.cisco.jtapi.extensions.CiscoRemoteTerminal

8EXTEND_MEDIA_REGISTRATIONpublic static final int

0NO_EXTEND_MEDIA_REGISTRATIONpublic static final int

CiscoRestrictedEv
com.cisco.jtapi.extensions.CiscoRestrictedEv

0CAUSE_UNKNOWNpublic static final int

3CAUSE_UNSUPPORTED_DEVICE_CONFIGURATIONpublic static final int

2CAUSE_UNSUPPORTED_PROTOCOLpublic static final int

1CAUSE_USER_RESTRICTEDpublic static final int

1073741833IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1689

Constant Field Values
CiscoProvFeatureID

CiscoRouteSession
com.cisco.jtapi.extensions.CiscoRouteSession

public static final int

1CALLINGADDRESS_SEARCH_SPACEpublic static final int

-1932787506CAUSE_CTIERR_FAC_CMC_REASON_CMC_INVALIDpublic static final int

-1932787509CAUSE_CTIERR_FAC_CMC_REASON_CMC_NEEDEDpublic static final int

-1932787508CAUSE_CTIERR_FAC_CMC_REASON_FAC_CMC_NEEDEDpublic static final int

-1932787507CAUSE_CTIERR_FAC_CMC_REASON_FAC_INVALIDpublic static final int

-1932787510CAUSE_CTIERR_FAC_CMC_REASON_FAC_NEEDEDpublic static final int

0DEFAULT_SEARCH_SPACEpublic static final int

0DONOT_RESET_ORIGINALCALLEDpublic static final int

7ERROR_INVALID_STATEpublic static final int

6ERROR_NO_CALLBACKpublic static final int

4ERROR_NONEpublic static final int

5ERROR_ROUTESELECT_TIMEOUTpublic static final int

1RESET_ORIGINALCALLEDpublic static final int

2ROUTEADDRESS_SEARCH_SPACEpublic static final int

CiscoRouteTerminal
com.cisco.jtapi.extensions.CiscoRouteTerminal

2DYNAMIC_MEDIA_REGISTRATIONpublic static final int

0NO_MEDIA_REGISTRATIONpublic static final int

CiscoRTPBitRate
com.cisco.jtapi.extensions.CiscoRTPBitRate

1R5_3public static final int

2R6_4public static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1690

Constant Field Values
CiscoRouteSession

CiscoRTPInputKeyEv
com.cisco.jtapi.extensions.CiscoRTPInputKeyEv

1073758214IDpublic static final int

CiscoRTPInputStartedEv
com.cisco.jtapi.extensions.CiscoRTPInputStartedEv

1073758209IDpublic static final int

CiscoRTPInputStoppedEv
com.cisco.jtapi.extensions.CiscoRTPInputStoppedEv

1073758210IDpublic static final int

CiscoRTPOutputKeyEv
com.cisco.jtapi.extensions.CiscoRTPOutputKeyEv

1073758215IDpublic static final int

CiscoRTPOutputStartedEv
com.cisco.jtapi.extensions.CiscoRTPOutputStartedEv

1073758211IDpublic static final int

CiscoRTPOutputStoppedEv
com.cisco.jtapi.extensions.CiscoRTPOutputStartedEv

1073758212IDpublic static final int

CiscoRTPPayload
com.cisco.jtapi.extensions.CiscoRTPPayload

81ACTIVEVOICEpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1691

Constant Field Values
CiscoRTPInputKeyEv

com.cisco.jtapi.extensions.CiscoRTPPayload

15ACY_G729AASSNpublic static final int

33DATA56public static final int

32DATA64public static final int

3G711ALAW56Kpublic static final int

2G711ALAW64Kpublic static final int

5G711ULAW56Kpublic static final int

4G711ULAW64Kpublic static final int

8G722_48Kpublic static final int

7G722_56Kpublic static final int

6G722_64Kpublic static final int

9G7231public static final int

10G728public static final int

11G729public static final int

12G729ANNEXApublic static final int

80GSMpublic static final int

13IS11172AUDIOCAPpublic static final int

14IS13818AUDIOCAPpublic static final int

1NONSTANDARDpublic static final int

25WIDEBAND_256Kpublic static final int

CiscoTermActivatedEv
com.cisco.jtapi.extensions.CiscoTermActivatedEv

1073741843IDpublic static final int

CiscoTermButtonPressedEv
com.cisco.jtapi.extensions.CiscoTermButtonPressedEv

10CHARApublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1692

Constant Field Values
CiscoTermActivatedEv

com.cisco.jtapi.extensions.CiscoTermButtonPressedEv

11CHARBpublic static final int

12CHARCpublic static final int

13CHARDpublic static final int

8EIGHTpublic static final int

5FIVEpublic static final int

4FOURpublic static final int

1073745936IDpublic static final int

9NINEpublic static final int

1ONEpublic static final int

15POUNDpublic static final int

7SEVENpublic static final int

6SIXpublic static final int

14STARpublic static final int

3THREEpublic static final int

2TWOpublic static final int

0ZEROpublic static final int

CiscoTermConnMonitoringEndEv
com.cisco.jtapi.extensions.CiscoTermConnMonitoringEndEv

1073762311IDpublic static final int

CiscoTermConnMonitoringStartEv
com.cisco.jtapi.extensions.CiscoTermConnMonitoringStartEv

1073762310IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1693

Constant Field Values
CiscoTermConnMonitoringEndEv

CiscoTermConnMonitorInitiatorInfoEv
com.cisco.jtapi.extensions.CiscoTermConnMonitorInitiatorInfoEv

1073762313IDpublic static final int

CiscoTermConnMonitorTargetInfoEv
com.cisco.jtapi.extensions.CiscoTermConnMonitorTargetInfoEv

1073762314IDpublic static final int

CiscoTermConnPrivacyChangedEv
com.cisco.jtapi.extensions.CiscoTermConnPrivacyChangedEv

1073762305IDpublic static final int

CiscoTermConnRecordingEndEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingEndEv

1073762309IDpublic static final int

CiscoTermConnRecordingStartEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingStartEv

1073762308IDpublic static final int

CiscoTermConnRecordingTargetInfoEv
com.cisco.jtapi.extensions.CiscoTermConnRecordingTargetInfoEv

1073762312IDpublic static final int

CiscoTermConnSelectChangedEv
com.cisco.jtapi.extensions.CiscoTermConnSelectChangedEv

1073762307IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1694

Constant Field Values
CiscoTermConnMonitorInitiatorInfoEv

CiscoTermCreatedEv
com.cisco.jtapi.extensions.CiscoTermCreatedEv

1073745921IDpublic static final int

CiscoTermDataEv
com.cisco.jtapi.extensions.CiscoTermDataEv

1073745922IDpublic static final int

CiscoTermDeviceStateActiveEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateActiveEv

1073745926IDpublic static final int

CiscoTermDeviceStateAlertingEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateAlertingEv

1073745927IDpublic static final int

CiscoTermDeviceStateHeldEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateHeldEv

1073745928IDpublic static final int

CiscoTermDeviceStateIdleEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateIdleEv

1073745929IDpublic static final int

CiscoTermDeviceStateWhisperEv
com.cisco.jtapi.extensions.CiscoTermDeviceStateWhisperEv

1073745941IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1695

Constant Field Values
CiscoTermCreatedEv

CiscoTermDNDOptionChangedEv
com.cisco.jtapi.extensions.CiscoTermDNDOptionChangedEv

1073745942IDpublic static final int

CiscoTermDNDStatusChangedEv
com.cisco.jtapi.extensions.CiscoTermDNDStatusChangedEv

1073745940IDpublic static final int

CiscoTerminal
com.cisco.jtapi.extensions.CiscoTerminal

2ASCII_ENCODINGpublic static final int

1DEVICESTATE_ACTIVEpublic static final int

2DEVICESTATE_ALERTINGpublic static final int

3DEVICESTATE_HELDpublic static final int

0DEVICESTATE_IDLEpublic static final int

4DEVICESTATE_UNKNOWNpublic static final int

5DEVICESTATE_WHISPERpublic static final int

0CiscoTerminal.DEVICETYPE_UNKNOWNpublic static final int

30027CiscoTerminal.DEVICETYPE_ANALOG_PHONEpublic static final int

547CiscoTerminal.DEVICETYPE_CISCO_6901public static final int

548CiscoTerminal.DEVICETYPE_CISCO_6911public static final int

495CiscoTerminal.DEVICETYPE_CISCO_6921public static final int

496CiscoTerminal.DEVICETYPE_CISCO_6941public static final int

564CiscoTerminal.DEVICETYPE_CISCO_6945public static final int

497CiscoTerminal.DEVICETYPE_CISCO_6961public static final int

369CiscoTerminal.DEVICETYPE_CISCO_7906public static final int

6CiscoTerminal.DEVICETYPE_TELECASTER_BIDpublic static final int

307CiscoTerminal.DEVICETYPE_CISCO_7911public static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1696

Constant Field Values
CiscoTermDNDOptionChangedEv

com.cisco.jtapi.extensions.CiscoTerminal

124CiscoTerminal.DEVICETYPE_14_BUTTON_SIDECARpublic static final int

227CiscoTerminal.DEVICETYPE_7915_12_BUTTON_SIDECARpublic static final int

228CiscoTerminal.DEVICETYPE_7915_24_BUTTON_SIDECARpublic static final int

229CiscoTerminal.DEVICETYPE_7916_12_BUTTON_SIDECARpublic static final int

230CiscoTerminal.DEVICETYPE_7916_24_BUTTON_SIDECARpublic static final int

232CiscoTerminal.DEVICETYPE_CKEM_36_BUTTONpublic static final int

365CiscoTerminal.DEVICETYPE_CP7921public static final int

484CiscoTerminal.DEVICETYPE_CISCO_7925public static final int

577CiscoTerminal.DEVICETYPE_CISCO_7926public static final int

348CiscoTerminal.DEVICETYPE_7931public static final int

9CiscoTerminal.DEVICETYPE_IP_CONFERENCE_PHONEpublic static final int

30019CiscoTerminal.DEVICETYPE_CISCO_7936public static final int

431CiscoTerminal.DEVICETYPE_CISCO_7937public static final int

8CiscoTerminal.DEVICETYPE_TELECASTER_BUSINESSpublic static final int

115CiscoTerminal.DEVICETYPE_CISCO_7941public static final int

309CiscoTerminal.DEVICETYPE_CISCO_7941G_GEpublic static final int

434CiscoTerminal.DEVICETYPE_CISCO_7942public static final int

435CiscoTerminal.DEVICETYPE_CISCO_7945public static final int

7CiscoTerminal.DEVICETYPE_TELECASTER_MGRpublic static final int

30018CiscoTerminal.DEVICETYPE_CISCO_7961public static final int

308CiscoTerminal.DEVICETYPE_CISCO_7961G_GEpublic static final int

404CiscoTerminal.DEVICETYPE_CISCO_7962public static final int

436CiscoTerminal.DEVICETYPE_CISCO_7965public static final int

30006CiscoTerminal.DEVICETYPE_CISCO_7970public static final int

119CiscoTerminal.DEVICETYPE_CISCO_7971public static final int

437CiscoTerminal.DEVICETYPE_CISCO_7975public static final int

302CiscoTerminal.DEVICETYPE_CISCO_7989public static final int

586CiscoTerminal.DEVICETYPE_CISCO_8941public static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1697

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoTerminal

585CiscoTerminal.DEVICETYPE_CISCO_8945public static final int

540CiscoTerminal.DEVICETYPE_CISCO_8961public static final int

537CiscoTerminal.DEVICETYPE_9951public static final int

493CiscoTerminal.DEVICETYPE_CISCO_9971public static final int

12CiscoTerminal.DEVICETYPE_ATA_186public static final int

550CiscoTerminal.DEVICETYPE_CISCO_ATA_187public static final int

593CiscoTerminal.DEVICETYPE_CISCO_CIUSpublic static final int

632CiscoTerminal.DEVICETYPE_CISCO_CIUS_SPpublic static final int

30016CiscoTerminal.DEVICETYPE_CISCO_SOFTPHONE_SE_Mpublic static final int

358CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_COMMUNICATORpublic static final int

468CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_MOBILE_COMMUNICATORpublic static final int

648CiscoTerminal.DEVICETYPE_CISCO_UNIFIED_COMMUNICATIONS_FOR_RTXpublic static final int

503CiscoTerminal.DEVICETYPE_CLIENT_SERVICES_FRAMEWORKpublic static final int

10CiscoTerminal.DEVICETYPE_VGC_PHONEpublic static final int

72CiscoTerminal.DEVICETYPE_CTI_PORTpublic static final int

73CiscoTerminal.DEVICETYPE_CTI_ROUTE_POINTpublic static final int

71CiscoTerminal.DEVICETYPE_DEVICE_PILOTpublic static final int

30028CiscoTerminal.DEVICETYPE_ISDN_BRI_PHONEpublic static final int

635CiscoTerminal.DEVICETYPE_CTI_REMOTE_DEVICEpublic static final int

2DND_OPTION_CALL_REJECTpublic static final int

0DND_OPTION_NONEpublic static final int

1DND_OPTION_RINGER_OFFpublic static final int

1IN_SERVICEpublic static final int

0IP_ADDRESSING_MODE_IPV4public static final int

2IP_ADDRESSING_MODE_IPV4_V6public static final int

1IP_ADDRESSING_MODE_IPV6public static final int

3IP_ADDRESSING_MODE_UNKNOWNpublic static final int

4IP_ADDRESSING_MODE_UNKNOWN_ANATREDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1698

Constant Field Values
Constant Field Values

com.cisco.jtapi.extensions.CiscoTerminal

1NOT_APPLICABLEpublic static final int

0OUT_OF_SERVICEpublic static final int

3UCS2UNICODE_ENCODINGpublic static final int

0UNKNOWN_ENCODINGpublic static final int

CiscoTerminalConnection
com.cisco.jtapi.extensions.CiscoTerminalConnection

1CISCO_SELECTEDLOCALpublic static final int

0CISCO_SELECTEDNONEpublic static final int

2CISCO_SELECTEDREMOTEpublic static final int

3PROTOCOL_CTI_REMOTE_DEVICEpublic static final int

0RECORDING_INVOCATION_TYPE_SILENTpublic static final int

1RECORDING_INVOCATION_TYPE_USERpublic static final int

CiscoTerminalProtocol
com.cisco.jtapi.extensions.CiscoTerminalProtocol

0PROTOCOL_NONEpublic static final int

1PROTOCOL_SCCPpublic static final int

2PROTOCOL_SIPpublic static final int

CiscoTermInServiceEv
com.cisco.jtapi.extensions.CiscoTermInServiceEv

1073745923IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1699

Constant Field Values
CiscoTerminalConnection

CiscoTermOutOfServiceEv
com.cisco.jtapi.extensions.CiscoTermOutOfServiceEv

1073745924IDpublic static final int

CiscoTermRegistrationFailedEv
com.cisco.jtapi.extensions.CiscoTermRegistrationFailedEv

15DB_INITIALIZATION_ERRORpublic static final int

1073745937IDpublic static final int

19IP_ADDRESSING_MODE_MISMATCHpublic static final int

8MEDIA_ALREADY_TERMINATED_DYNAMICpublic static final int

6MEDIA_ALREADY_TERMINATED_NONEpublic static final int

7MEDIA_ALREADY_TERMINATED_STATICpublic static final int

10MEDIA_CAPABILITY_MISMATCHpublic static final int

11OWNER_NOT_ALIVEpublic static final int

0UNKNOWNpublic static final int

CiscoTermRemovedEv
com.cisco.jtapi.extensions.CiscoTermRemovedEv

1073745925IDpublic static final int

CiscoTermRestrictedEv
com.cisco.jtapi.extensions.CiscoTermRestrictedEv

1073741841IDpublic static final int

CiscoTermSnapshotCompletedEv
com.cisco.jtapi.extensions.CiscoTermSnapshotCompletedEv

1073745939IDpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1700

Constant Field Values
CiscoTermOutOfServiceEv

CiscoTermSnapshotEv
com.cisco.jtapi.extensions.CiscoTermSnapshotCompletedEv

1073745938IDpublic static final int

CiscoTone
com.cisco.jtapi.extensions.CiscoTone

49ZIPZIPpublic static final int

CiscoToneChangedEv
com.cisco.jtapi.extensions.CiscoToneChangedEv

1CMC_REQUIREDpublic static final int

2FAC_CMC_REQUIREDpublic static final int

0FAC_REQUIREDpublic static final int

1073754119IDpublic static final int

CiscoTransferEndEv
com.cisco.jtapi.extensions.CiscoTransferEndEv

1073754117IDpublic static final int

CiscoTransferStartEv
com.cisco.jtapi.extensions.CiscoTransferStartEv

1073754118IDpublic static final int

CiscoUrlInfo
com.cisco.jtapi.extensions.CiscoUrlInfo

1TRANSPORT_TYPE_TCPpublic static final int

2TRANSPORT_TYPE_UDPpublic static final int

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1701

Constant Field Values
CiscoTermSnapshotEv

com.cisco.jtapi.extensions.CiscoUrlInfo

1URL_TYPE_SIPpublic static final int

2URL_TYPE_TELpublic static final int

0URL_TYPE_UNKNOWNpublic static final int

CiscoWideBandMediaCapability
com.cisco.jtapi.extensions.CiscoWideBandMediaCapability

10FRAMESIZE_TEN_MILLISECOND_
PACKET

public static final int

Alarm
com.cisco.services.alarm.Alarm

1ALERTSpublic static final int

2CRITICALpublic static final int

7DEBUGGINGpublic static final int

0EMERGENCIESpublic static final int

3ERRORpublic static final int

7HIGHEST_LEVELpublic static final int

6INFORMATIONALpublic static final int

0LOWEST_LEVELpublic static final int

-1NO_SEVERITYpublic static final int

5NOTIFICATIONpublic static final int

“UNK”UNKNOWN_MNEMONICpublic static final java.lang.String

4WARNINGpublic static final int

LogFileTraceWriter
com.cisco.services.tracing.LogFileTraceWriter

“trace”DEFAULT_FILE_NAME_BASEpublic static final java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1702

Constant Field Values
CiscoWideBandMediaCapability

com.cisco.services.tracing.LogFileTraceWriter

“log”DEFAULT_FILE_NAME_EXTENSIONpublic static final java.lang.String

95DIR_BASE_NAME_NUM_SEPERATORpublic static final char

10240MIN_FILE_SIZEpublic static final int

2MIN_FILESpublic static final int

1024ROLLOVER_THRESHOLDpublic static final int

Trace
com.cisco.services.tracing.Trace

1ALERTSpublic static final int

“ALERTS”ALERTS_TRACE_NAMEpublic static final java.lang.String

2CRITICALpublic static final int

“CRITICAL”CRITICAL_TRACE_NAMEpublic static final java.lang.String

7DEBUGGINGpublic static final int

“DEBUGGING”DEBUGGING_TRACE_NAMEpublic static final java.lang.String

0EMERGENCIESpublic static final int

“EMERGENCIES”EMERGENCIES_TRACE_NAMEpublic static final java.lang.String

3ERRORpublic static final int

“ERROR”ERROR_TRACE_NAMEpublic static final java.lang.String

7HIGHEST_LEVELpublic static final int

6INFORMATIONALpublic static final int

“INFORMATIONAL”INFORMATIONAL_TRACE_NAMEpublic static final java.lang.String

0LOWEST_LEVELpublic static final int

5NOTIFICATIONpublic static final int

“NOTIFICATION”NOTIFICATION_TRACE_NAMEpublic static final java.lang.String

4WARNINGpublic static final int

“WARNING”WARNING_TRACE_NAMEpublic static final java.lang.String

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1703

Constant Field Values
Trace

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1704

Constant Field Values
Trace

A P P E N D I X G
Caveats

This appendix provides details of the JTAPI caveats that are common across releases and those that are
release-specific.

• Caveats for All Releases, on page 1705
• Caveats for Release 9.1(1), on page 1710
• Caveats for Release 8.6(1), on page 1712
• Caveats for Release 8.5(1), on page 1712
• Caveats for Release 8.0(1), on page 1714
• Caveats for Release 7.0.1, on page 1715
• Caveats for Release 6.0.1, on page 1717
• Caveats for Release 5.0, on page 1717
• Caveats for Release 4.1, on page 1721
• Caveats for 4.0, on page 1722

Caveats for All Releases
This section lists the caveats that are common for all JTAPI releases and contains these topics:

• Translation Pattern Support, on page 1707

• DT24+ Limitation with PRI NI2 Trunk, on page 1707

• Connection for Park Number Not Created, on page 1708

• Inconsistency Between SIP and SCCP Phone, on page 1708

• Failure to Route Calls Across Destinations, on page 1708

• Incorrect Return Value for getCallingAddress(), on page 1708

• Call Fails to Disconnect Held Shared Line, on page 1709

• Limitation with sendData() API on CiscoTerminal, on page 1709

• Limitation in Using ; (Semi-Colon) and = (Equal) in User ID and Password, on page 1709

• Connection to Unknown Address When Unparking a Conference Call, on page 1709

• CTI Redirect to Voice Mail Wont Work with QSIG, on page 1710

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1705

• Unsupported CTI Events for SIP Phones, on page 1710

Single Versus Multiple CallObserver Clarification
There are two primary ways to observe addresses with Cisco JTAPI's CallObservers: an application can
observe all of the addresses with a single CallObserver object or it can have a separate CallObserver object
for each of address. These two approaches cause slightly different events to be seen, mostly with regard to
reason codes.

When an application uses a single CallObserver to observe all the addresses, they are connected with one
object. When A calls B, both the events at A and at B are sent to the same CallObserver object. If B redirects
to C, and Cwas observed with the same object, all its events are delivered to the same observer. The application
observes the CallCtlConnOfferedEv to C with reason REDIRECT, because the observer at C knew all about
the previous events on the call.

Conversely, when an application uses an independent CallObserver for each Address, this information is not
so easily shared. When A calls B, call events of A go to the observer for A, and B's go to the observer for B.
They each know about the other end, for example A will know that B is ringing, but they are no longer the
same observer. When B redirects the call to C, the observer at C knows absolutely nothing about the call. The
observer at C was not involved in the original call at all, and does not know who is on it, what events had
happened previously. This information has to be made up by JTAPI to build an accurate call model at C. All
the call events for a basic call between A and B have to be simulated so that the call model, fromC's perspective
makes sense.

This is done by using a snapshot event. JTAPI looks at the call, in this case the one between A and B, and
figures out what events have to have happened for the call to exist the way it does. This makes up up the basic
call events required, and give them to the observer on C, so that it can build a proper call model.

Since this event set is made up by JTAPI, the reason codes are not available. For example, if A had originally
called D, and D redirected to B, the made up snapshot event set would not be concerned with the redirect at
all. JTAPI does not store this information anywhere, and when it generates a snapshot, it creates the simplest
event set possible to recreate the call model, and reports all the events with reason NORMAL.

So, when A calls B, and then B redirects to C, the observer on C gets a snapshot event that allows it to recreate
the call model for a basic call from A to B. Also in this snapshot event is the CallCtlConnOfferedEv for C.
As part of the snapshot, this event comes in with reason NORMAL, even though it is the result of a redirect.
CallObservers on A or B will see the CallCtlConnOfferedEv for C with reason REDIRECT, but there is no
way for the observer at C to know that.

This creates a noticeable difference in the reason codes available to applications depending on how they
implement their CallObservers. There have not been any issues regarding this from the customer side.

This is the way it has been since Cisco JTAPI's inception and this is a clarification of the existing behavior.

SIPandSCCPDialingDifferenceswithOverlappingDirectoryNumberPatterns
An overlapping Directory Number Pattern is when one Directory Number is a part of a longer Directory
Number. For example, a Directory Number 1000 overlaps a Directory Number 10001. Cisco Unified
Communications Manager (Cisco Unified CM) and JTAPI both support overlapping Directory Number
patterns, but there are some important things to note regarding this.

When you dial 1000 from a normal phone, there is a delay. The Cisco Unified CM does not know if you want
to dial 1000 or 10001, so it waits for you to make a choice. This Digit Analyzer waits for 15 seconds if you
press nothing else. During this time, nothing happens, no call is extended, and it just sounds like a dead call

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1706

Caveats
Single Versus Multiple CallObserver Clarification

for the calling party. This can be short circuited by hitting # to let Cisco Unified CM know that you actually
intend to call 1000. The 15 second wait is a configurable service parameter, known as T302 Timer, and can
be set as low as 3 seconds.

JTAPI using SCCP phones avoid the Digit Analyzer entirely by communicating directly with Cisco Unified
CM. JTAPI sends the intended Directory Number when it is making a call, and if it sends 1000, it means only
that, and Cisco Unified CM knows it will not be dialing any more digits.

JTAPI using SIP phones is quite different. JTAPI communicates with the phone, which then communicates
with the Cisco Unified CM. The phone takes care of the dialing, and JTAPI will pass it the digits 1000 to dial.
Due to this, JTAPI cannot avoid the Digit Analyzer, and is subject to the T302 wait outlined above. JTAPI
sits idly and waits while the Digit Analyzer figures out that the SIP phone actually wants to dial 1000.

Apart from this, by default the JTAPI CTI Postcondition value is also set to 15 seconds. This means that when
JTAPI sends a request to the CTI layer, it waits for 15 seconds before it assumes something has gone wrong,
and throws a timeout exception. This means that the delay for Digit Analysis for overlapping DN patterns is
very likely to cause JTAPI to time out.

The Digit Analysis delay cannot be completely removed for SIP phones, but this problem can be greatly
mitigated through the use of service or jtapi.ini parameters. As noted above, the T302 Timer for Digit Analysis
can be set as low as three seconds, which is much lower than the 15 it takes JTAPI to time out. You can also
increase the JTAPI CTI Postcondition timeout to 20 seconds in the jtapi.ini file. This issue can also be avoided
by not having overlapping DNs.

Translation Pattern Support
If the callingparty transformation mask is configured for a Translation Pattern that is applied to the controlled
addresses of JTAPI application, the application may observe some extra connections being created and
disconnected when the application observes both calling and called party. Otherwise, a connection is created
for the transformed callingparty and CiscoCall.getCurrentCallingParty() returns the transformed calling party
address when the application observes only the called party. In general, JTAPI has a problem in creating an
appropriate call connection andmay not be able to provide correct callinfo such as currentCalling, currentCalled,
calling, called, and lastRedirecting parties. For example, Translation Pattern X is configured with calling party
transformation mask Y and calledparty transformation mask B; A calls X, and call goes to B. In this scenario:

• If the application observes only B, JTAPI creates connection for Y and B, and
CiscoCall.getCurrentCallingParty() returns Address Y.

• If the application observes both A and B, connections for A and B are created, connection for Y is
temporarily created and dropped, and CiscoCall.getCurrentCallingParty() returns Address Y.

Other inconsistencies could occur in callinfo if more features are used for basic call. It is recommended that
you do not configure callingparty transformation mask for Translation Pattern which might get applied to
JTAPI Application controlled Addresses.

DT24+ Limitation with PRI NI2 Trunk
When a PRI NI2 trunk used by DT24+ gateway is involved in a call scenario between two clusters, for example,
A from cluster-1 calls B in cluster-2 via DT24+ PRI NI2 trunk, the LastRedirectAddress and CalledAddress
may not be accurate on B’s side. Besides, if there are any changes for A’s side of the call in cluster-1 due to
redirect, transfer, or forward, the changed information is not propagated to B’s side due to protocol limitation
of PRI NI2 truck.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1707

Caveats
Translation Pattern Support

Connection for Park Number Not Created
JTAPI does not create a Queued state connection for Park Number if the call is parked across the gateway.
There are two possibilities here:

1. If CLI is configured, application sees an Unknown connection

2. If CLI is not configured, the calling does not see any Unknown connection.

For Example, If A calls B across gateway (with CLI configured) and B parks the call then A sees an unknown
connection instead of a connection (with STATE = QUEUED) for Park Number.

But, if A calls B across gateway (with no CLI configured) and B parks the call then A does not see any new
connection.

Inconsistency Between SIP and SCCP Phone
sendData() API on CiscoTerminal is used to send data to the phone. In case of SIP phones, if invalid byte
data is sent by the application, the method throws PlatformException. However, in case of SCCP phones, the
byte data sent in the request is not validated, and would return successfully without throwing an exception.

Failure to Route Calls Across Destinations
When a call is redirected to a device outside the cluster over an H323 gateway that is out of service, before
call control can determine the Out-of-Service status of H323 gateway, the call is disconnected. This is because
the default value of the service parameter CTI NewCallAccept timer is four seconds where as call control
takes five seconds to determine that the gateway is out of service, so calls are disconnected due to expiration
of CTI NewCallAccept timeout.

Implications of the above behavior is seen in JTAPI selectRoute() API which internally uses CTI redirect API
to route the call. If applications specify multiple destinations with selectRoute() and the first destination is
across an out-of-service H323 gateway, the call fails before JTAPI can route the call to the second destination.
Hence JTAPI, cannot route the call to the second route specified in selectRoute() interface call.

To avoid this, the value of CTI New Call Accept Timer service parameter can be set as greater than H225
TCP Timer service parameter.

Incorrect Return Value for getCallingAddress()
In a transfer scenario, where caller and transferController are not observed, that is, where A calls B and
transfers the call to C and the application is observing only C then before the transfer, JTAPI will not have
any information about the first call (that is, call from A to B). So, when the transfer feature is invoked, the
calling and called address are B and C respectively. On completing the transfer, application updates callInfo
and JTAPI exposes the correct parties through getCurrentCallingAddress(), getCurrentCalledAddress(),
getModifiedCallingAddress(), and getModifiedCalledAddress(). However, getCallingAddress() API which
should return the original calling address still reports B, that is, the original calling party of B to C call.

To avoid this issue, application can observe the controller as well, so that JTAPI expose the correct party (that
is A, in this case) with getCallingAddress() API.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1708

Caveats
Connection for Park Number Not Created

Call Fails to Disconnect Held Shared Line
In a scenario where A calls B (B is a shared line present on terminals T1 and T2); privacy is set as ON for T1
and initially CUCM service parameter Enforce Privacy Settings on held calls is set to True. B(T1) answers
and goes to Talking state while B(T2) goes to Passive state (TermConn = Passive; CallCtlTermConn = InUse).
B(T1) puts the call on hold, since Enforce Privacy Setting on held calls is set to True, B(T2) remains in passive
state (TermConn = Passive; CallCtlTermConn = InUse). Now the service parameter Enforce Privacy Settings
on held calls is set to False. This does not trigger any change in the state of TerminalConnection, so B(T2)
still remains Passive-InUse (TermConn = Passive; CallCtlTermConn = InUse). At this point, if the application
sets the requestController as B(T1) and disconnects the call at B, the connection of B is not disconnected and
call does not go IDLE. Even on the phones, the call on A remains in Established state while the other party
in call is B(T2) which remains in Passive-InUse (TermConn = Passive; CallCtlTermConn = InUse) state. Call
is cleared when A disconnects the call.

Limitation with sendData() API on CiscoTerminal
If JTAPI applications make simultaneous back to back requests for sendData() API on the same CiscoTerminal,
without any delay between requests, then some of these requests may fail. Applications cannot determine
whether a request was successful or not, as Cisco JTAPI API returns successfully as soon as the phone receives
data and does not wait for a response from the phone. Also, the IP phone might display a blank screen on
sending simultaneous requests to send data.

To avoid these issues, JTAPI applications should ensure some time delay between two successive sendData()
requests while pushing XSI data to the IP phones via Cisco JTAPI.

Limitation in Using ; (Semi-Colon) and = (Equal) in User ID and Password
Sun JTAPI 1.2 specification does not support use of the semicolon ';' and equals ' = ' characters when populating
the Host Name, UserID, and Password fields in string used as parameter in getProvider() method. If ';' or ' =
' are used in these fields, items such as 'pass = word' or 'pass;word' are treated as 'pass' and your request could
fail and you must not use these characters in userid and password fields.

Connection to Unknown Address When Unparking a Conference Call
When a conference call is parked, JTAPI call will have connection to the remaining parties in the call. When
this call is unparked using the UnPark API or connect API, connections to unknown address will be temporarily
created. This connection to unknown address will be disconnected when un park is completed.

The following will be seen in JTAPI traces:

2002 : (P1-InProv) 103023/1 ConnCreatedEvUnknown:null:4 187 Cause:100 CallCtlCause:0 CiscoCause:31
FeatReason:10 CAUSE_NORMAL

....

2002 : (P1-InProv) 103023/1 ConnDisconnectedEv Unknown:null:4 187 Cause:100 CallCtlCause:0
CiscoCause:31 FeatReason:10 CAUSE_NORMAL

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1709

Caveats
Call Fails to Disconnect Held Shared Line

CTI Redirect to Voice Mail Wont Work with QSIG
When applications redirect a call to voice mail through a QSIG trunk, voice mail will not play the voice prompt
of the redirecting party. A generic prompt asking the user to enter the voice mail box is played. This is due
to the fact that CTI redirect doesn't pass correct original called party and redirecting party to the voice mail
system. Applications can work around this by using a SIP trunk.

Phone A calls Phone B (CUCILYNC in Deskphone mode). Toast popup of "envelope" appears for incoming
call.

User clicks on the envelope, redirecting the call across an H.323 trunk with QSIG tunneling. Unity/Unity
Connection won't recognize original called party, so call will not go to user's voice mailbox. This is because
Re-direct/Original Called Party information not carried across the trunk when CTI redirect is used.

CiscoAddress.getForwarding() Returns Correct Value Only for In-Service
Addresses

Although the Sun JTAPI 1.2 specification does not specify any preconditions for
CallControlAddress.getForwarding(), the implementation of this method in Cisco JTAPI will return a correct
value only if the address is in service. When invoked on an out of service address this method will just return
a NULL value.

Unsupported CTI Events for SIP Phones
The following CTI events are not generated for SIP phones. Third party applications that expect these call
events should use SCCP phones:

• CallOpenLogicalChannelEvent

• CallRingEvent

• DeviceLampModeChangedEvent

• DeviceModeChangedEvent

• DeviceDisplayChangedEvent

• DeviceFeatureButtonPressedEvent

• DeviceKeyPressedEvent

• DeviceLampModeChangedEvent

• DeviceRingModeChangedEvent

Caveats for Release 9.1(1)
This section lists the JTAPI caveats for Release 9.1(1).

• Connection for Park DN While UnPark, on page 1711

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1710

Caveats
CTI Redirect to Voice Mail Wont Work with QSIG

Connection for Park DN While UnPark
Cisco JTAPI will no longer create the temporary connections for the Park/DPark number in the final call when
a parked call is unparked.

This change in behavior will be seen in and above the following Cisco JTAPI versions - 8.5.1.10000-10,
8.6.1.10000-4, 8.6.2.10000-2 and 8.6.2.98000-2

Scenario:

GC1: A calls B, B parks a call is parked at 1000

GC2: B unparks

“Preserve globalCallId for Parked Calls” is set to false

Previous behavior on unpark:

GC2 CallActiveEvGC2 ConnCreatedEv B
GC2 ConnCreatedEv 1000
GC2 CallCtlConnEstablishedEv B
GC2 ConnCreatedEv A
GC2 ConnDisconnetedEv 1000
GC2 CallCtlConnEstablishedEv A
GC1 CallChangedEv
GC1 ConnDisconenctedEv 1000
GC1 ConnDisconenctedEv A
GC1 CallInvalidEv

Current behavior on unpark: Connection for 1000 will not be created in GC2

GC2 CallActiveEvGC2 ConnCreatedEv B
GC2 CallCtlConnEstablishedEv B
GC2 ConnCreatedEv A
GC2 CallCtlConnEstablishedEv A
GC1 CallChangedEv
GC1 ConnDisconenctedEv 1000
GC1 ConnDisconenctedEv A
GC1 CallInvalidEv

"Preserve globalCallId for Parked Calls" is set to true

Previous behavior on unpark:

GC2 CallActiveEvGC2 ConnCreatedEv B
GC2 ConnCreatedEv 1000
GC2 CallCtlConnEstablishedEv B
Gc2 CallChangedEv
GC2 ConnDisconnetedEv 1000
GC2 CallCtlConnDisconnectedEv 1000
GC2 ConnDisconnetedEv B
GC2 CallCtlConnDisconnectedEv B
GC2 CallInvalidEv
GC1 ConnCreatedEv 1000
GC1 ConnCreatedEv B
Gc2 ConnDisconnectedEv 1000
GC1 CallCtlConnEstablishedEv B

Current behavior on unpark: Connection for 1000 will not be created in GC1

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1711

Caveats
Connection for Park DN While UnPark

GC2 CallActiveEvGC2 ConnCreatedEv B
GC2 CallCtlConnEstablishedEv B
GC1 ConnDisconnectedEv 1000
GC1 CallCtlConnDisconnectedEv 1000
Gc2 CallChangedEv
GC1 ConnCreatedEv B
GC1 ConnConnectedEv B
GC1 CallCtlCallEstablishedEv B
GC2 ConnDisconnetedEv B
GC2 CallCtlConnDisconnectedEv B
GC2 CallInvalidEv

Caveats for Release 8.6(1)
This section lists the JTAPI caveats for Release 8.6(1).

• Limitation While Using a Cisco Telepresense MCU, on page 1712

Limitation While Using a Cisco Telepresense MCU
In scenarios, where a conference chaining is done across cluster, the number of connection seen by the
application might not be correct and application may not see the connection for the external conference bridge
getting created.

Example:

A, B and B' are in Cluster 1D is in cluster 2
Application is observing D
GC1: A calls D; Call offered on D and D answers
GC2: D consults B; B answers
B' CBarges into the call
D completes conference - GC1.conference(GC2)

After the conference is complete the application will see only the connection for A and D but not that of the
conference bridge.

Caveats for Release 8.5(1)
This section lists the JTAPI caveats for Release 8.5(1).

• Discouraged Use of JTAPIProperties.updateCertificate(), on page 1712

• Delete SecurityProperties Before Re-Use, on page 1713

• No ConnDisconnectedEv Event When Call Is Rejected, on page 1713

Discouraged Use of JTAPIProperties.updateCertificate()
Applications are encouraged to move away from using the JTAPIProperties.updateCertificate() method to
download certificates. The JTAPIProperties.setSecurityPropertyForInstance() method is superior for most
applications, as it will store the security information in the jtapi.ini file, giving all the information to JTAPI

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1712

Caveats
Caveats for Release 8.6(1)

whenever the application chooses to connect securely later. This information is critical for JTAPI to use the
correct settings to create a secure connection, and if an application chooses to use the
JTAPIProperties.updateCertificate() method, then the information will not be stored in the jtapi.ini file.

Applications that have no reason not to, should move to setSecurityPropertyForInstance().

If an application is intentionally using the updateCertificate() method to avoid the use of jtapi.ini configurations,
then the application must provide the information in the JTAPI Provider String, when it is first initializing
JTAPI.

The required fields are:

• InstanceID

• CertStorePassphrase

• CAPF

• CAPFPort

• TFTP

• TFTPPort

• CertPath

If an application chooses to use the updateCertificate() method and chooses not to provide the required security
information in the Provider String, the behavior of JTAPI is not guaranteed.

Delete SecurityProperties Before Re-Use
The JTAPIProperties.setSecurityPropertyForInstance() method downloads certificates to disk, and stores
security information related to them in the jtapi.ini file. If an application is interested in downloading new
certificates to disk, changing the security information for the certificates, or both, is it recommended that they
invoke JTAPIProperties.deleteSecurityPropertyForInstance() before doing so. This method will delete the
certificates from disk, and remove the related SecurityProperty from the jtapi.ini file.

This will ensure a fresh start for the new set of certificates, and help to eliminate any errors that could arise
from "stale" certificates lingering around on disk.

No ConnDisconnectedEv Event When Call Is Rejected
For CUCM version 8.5.1 and later versions, when a call is made from A (observed) to B (unobserved) from
application and if call is rejected for any reason, application will get the ConnFailedEv/CallCtlConnFailedEv
events for the calling party, but there might be just one connection created in JTAPI for the calling party and
there might not be any ConnDisconnectedEv/CallCtlConnDisconnectedEv events for called party. In addition,
the ConnDisconnectedEv/CallCtlConnDisconnectedEv events for the calling party would be generated only
after the calling party device/phone clears the call which itself can take 30 secs or more. Therefore, if application
does not want to wait for the Disconnect events, upon getting the Failed events, it can simply clear the call
directly after catching the failure from its call.connect() request as 'PlatformExceptionImpl caught: Could not
meet post conditions of connect()'.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1713

Caveats
Delete SecurityProperties Before Re-Use

Caveats for Release 8.0(1)
This section lists the JTAPI caveats for Release 8.0(1).

• Globalized Calling Party Number, on page 1714

• Conference Interaction with Chaperone Results in Unsupported Conference Chaining, on page 1714

• Wildcard Routepoint Interaction, on page 1715

• Inconsistent Address Type ofModifiedCalledAddressWhen a Call IsMade to a Hunt Pilot, on page 1715

Globalized Calling Party Number
This caveat is a further clarification for Globalized Calling Party Number.With 8.0(1), there have been changes
to the Call Processing and CTI layers that reflect the globalized calling party values that you see on the station
more accurately. There are still some serious limitations with globalized parties:

• The Globalized Calling Party Number is available on the called side.

• The Globalized Calling Party Number is determined only when the call is offered. This applies to basic
calls and for calls involving features.

• The Globalized Calling Party Number does not change, even if the calling party changes. This is a
clarification for the existing caveat Globalized Calling Party Number.

• Globalized Calling Party will be applicable if the call is redirected, whether performed prior to call being
connected or after call is connected.

• Globalized Calling Party will not be provided after the these features are completed: Transfer, Conference,
Unpark, Auto Call Pickup.

Conference Interaction with Chaperone Results in Unsupported Conference
Chaining

If both caller and Chaperone complete conference, where caller completes conference before chaperone then
the scenario results in Conference Chaining. As of release 8.0(1), such scenarios are not supported by JTAPI
and currently connections for all the parties along with ConferenceChain connection are shown in a single
call.

For example, A calls B; call is intercepted by Chaperone (C1) which further consults B for conference. Before
Chaperone completes conference, Caller(A) goes ahead and consults X for conference and completes the
conference. After this, Chaperone(C1) completes the conference. This scenario would result in unexpected
behavior from JTAPI Perspective. JTAPI could send CiscoConferenceStartedEv along with
CiscoChainAddedEv. Also, after the conference, JTAPI shows connections for two Conference chains,
A(caller), B, X, and C1(Chaperone) in the same call.

This will be fixed in future releases by having connections of caller and X in one call which is chained to a
different call with connections for C1 and B. The fix requires changes in multiple components which are
tracked with CDETS: CSCtc76213(CTI), CSCtc76222(TSP), CSCtc76223(Conference)

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1714

Caveats
Caveats for Release 8.0(1)

Wildcard Routepoint Interaction
Before 8.0(1), Wildcard Routepoint scenarios were not supported by JTAPI. This behavior is maintained in
this release, in the spirit of Backward Compatibility, but is still unsupported. A new Service Parameter has
been introduced in 8.0(1), WildCardDN as Called Party, which fixes several issues in the call model for
Wildcard Routepoint scenarios. When this service parameter is turned on, Wildcard Routepoints are fully
supported by JTAPI.

Inconsistent Address Type of ModifiedCalledAddress When a Call Is Made to
a Hunt Pilot

When a call is made to a Hunt Pilot, although the API call.getCurrentCallingAddress() will return an address
of type CiscoAddress.HUNT_PILOT, the address type of the address returned by the API
call.getModifiedCalledAddress() will not be CiscoAddress.HUNT_PILOT.

This is because the modified address, as the name suggests, might be modified by application and getType()
on modified address would return CiscoAddress.UNKNOWN or CiscoAddress.INTERNAL and JTAPI
currently has no way to determine if that corresponds to a Hunt Pilot or not.

Caveats for Release 7.0.1
This section lists the JTAPI caveats for Release 7.0.1.

• Inconsistency in getModifiedCallingAddress(), on page 1715

• Conference Behavior for Selected and Active Calls, on page 1715

• Change in GlobalizedCallingParty Behavior, on page 1716

Inconsistency in getModifiedCallingAddress()
When a call is made to a shared DN (Address shared) on two Terminals (A and B), configured with different
Calling Party Transformation CSS, and try to transform the Calling Party differently through two different
Calling Party Transformation Patterns, then JTAPI does not provide modifiedCallingParty consistently. In
such a scenario, both devices send localization signals to call control to transform the calling party number
and the one picked by call control first is used to transform the same and JTAPI returns that through
getModifiedCallingAddress().

For Example, +918055552222 (Globalized Calling Party) calls JTAPI observed shared Line 3100 on Terminals
A and B. Device A is configured to transform the calling party by removing International escape character
where as, B is configured to transform the calling party by removing International Escape Character and
country code 91. Then JTAPI cannot guarantee whether getModifiedCallingAddress(), that is, the Localized
Calling Party, will return 918055552222 or 8055552222.

Conference Behavior for Selected and Active Calls
Following is the behavior when application issues conference request but selected and active calls are not part
of the conference request:

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1715

Caveats
Wildcard Routepoint Interaction

Active Call on a Terminal is always added to the resulting conference when conference is invoked on a call
on any address on that terminal.

Consider B1 and B2 are addresses on same terminal

A --> B1- GC1

C --> B1- GC2

D --> B2- GC3 (active call)

The application invokes GC1.conference(GC2) and results in A-B1-C-D in conference with GC1, although
call with D was not part of the conference request.

Active conference call on a terminal is added to the resulting conference when conference is invoked on a
call on any line on that terminal. In this case, the active conference call becomes the surviving final call
(provided the application specified primary call is not a conference call). In this scenario, the application
specified primary call is cleared after the conference. It is possible that the application specified primary call
may not join the resulting conference and in that case the call is not cleared after conference is over.

Consider B1 and B2 are addresses on the same terminal and conf1 is a conference call with A-B1-C in
conference with B1 as the controller

B1 --> D - GC1 (on hold)

conf1 - GC2 (active call)

B2 --> E - GC3 (on hold)

The application invokes GC1.conference(GC2, GC3).

This results in A-B1-C-D-E in conference with GC2 as the surviving call. Although application had specified
GC1 to be the primary call, GC1 does not survive after the conference.

The same behavior applies for user selected calls that are not part of the conference request, but become part
of the resulting conference as mentioned above.

The same behavior would apply to a regular conference with common controller. Consider A, B, C, D as lines
on different terminals

A-->B - GC1

C-->B - GC2

D-->B - GC3 (active call)

The application requests GC1.conference(GC2). This results in A-B-C-D in conference with GC1. Although
direct call with D was not part of the conference request, D will join the conference

Change in GlobalizedCallingParty Behavior
getGlobalizedCallingParty() returns the correct globalized calling number only in case of a basic call. In a
scenario where A calls B, B answers. A and B are connected. In this case, if application requests for
getGlobalizedCallingParty(), the API returns the globalized number for A. In case of features such as transfer
or redirect where any of the party gets updated, getGlobalizedCallingParty() may not return the correct
globalized number.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1716

Caveats
Change in GlobalizedCallingParty Behavior

Caveats for Release 6.0.1
This section lists the JTAPI caveats for Release 6.0.1:

• Call History Might Get Lost When AAR Routes Over QSIG Trunk, on page 1717

• Different Event Order If Consult Call Initiated on SIP Device, on page 1717

Call History Might Get Lost When AAR Routes Over QSIG Trunk
When a call is forwarded due to insufficient bandwidth (Call Forward No Bandwidth - CFNB) to another
cluster over a trunk or gateway using QSIG, call history might get lost. If Phone A calls Phone B, which is
in a low bandwidth location, with CFNB set to forward calls to Phone C, which is in a different cluster, and
the QSIG protocol is used on the trunk/gateway, then the original called party and the last redirecting party
might not get passed to the destination party.

Different Event Order If Consult Call Initiated on SIP Device
Scenario: Terminal A initiates a call to the shared line B/B' and which Initiates a consult call to Terminal C.

• If the Shared Line is SIP device then the call events are :

• B (active) receives:CallCtlTermConnHeldEv >CiscoTermConnSelectChangedEv >CallActive

• B' (remote-in-use) receives: CiscoTermConnSelectChangedEv > CallActive >
CallCtlTermConnHeldEv

• If the Shared Line is SCCP device then the call events are:

• CiscoTermConnSelectChangedEv > CallCtlTermConnHeldEv > CallActive on both the
Terminals.

Caveats for Release 5.0
This section lists the JTAPI caveats for Release 5.0:

• SRTP Support, on page 1718

• Partition Support, on page 1718

• TLS Security, on page 1718

• CiscoFeatureReason, on page 1718

• Unicode Issue in Calls Involving SIP Trunks, on page 1718

• Join Across Lines: Conference Two or More Addresses on Same Terminal, on page 1719

• JTAPI Exposes Incorrect Information with getCallingAddress() and getCalledAddress(), on page 1720

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1717

Caveats
Caveats for Release 6.0.1

SRTP Support
The default sRTP policy used by IPPhones is different from the one published (standard) as part of libSRTP
code. libSRTP code is a free download, available at http://srtp.sourceforge.net/download.html. If the correct
srtp policy is not used, the end result is no audio at both ends.

The srtp_policy is used by media terminating endpoint to create a crypto context. It should match to encrypt
and decrypt packets sent/received by IPPhones/CTIPorts. Phone is using one hardcoded srtp_policy for all
phone types including sip phones.

policy->cipher_type = AES_128_ICM;policy->cipher_key_len = 30;
policy->auth_type = HMAC_SHA1;
policy->auth_key_len = 20;
policy->auth_tag_len = 4 ; // changed to 4 from 10;
policy->sec_serv = sec_serv_conf_and_auth;

JTAPI clients doing their own media termination with SRTP, must use the above policy to create a crypto
context. The default policy published as part of libSRTP (the standard policy documented as part of RFC) is
not same as used by Cisco Unified IP Phone. Phones use the modified one to optimize the bandwidth. The
sRTP policy must be part of negotiation between the endpoints but right now only one is supported and ccm
does not support the negotiation, hence applications need to use the above policy to terminate media.

Partition Support
When same Directory Number with different partitions exist in a CallManager, getAddress(String number)
API in JTAPI normally returns the first matching Address object which has the same Directory Number. This
is done to maintain BWC in case of no partitions configured in the system.

TLS Security
When client certificate is installed, server certificates are also downloaded from CallManager TFTP server.
However, server certificate is only verified for currect signature and server trust is not established. Hence it
is recomented that first time download of certificate is done in trusted network.

CiscoFeatureReason
When a call redirectred across a GW is offered at an address, getCiscoFeatureReason() returns
REASON_FORWARDNOANSWER.

Within the same cluster when a call is redirected, the redirect destination sees REASON_REDIRECT as the
CiscoFeatureReason. However, when a call is redirected across a cluster, through a Q.931 trunk, at the redirect
destination getCiscoFeatureReason() returns REASON_FORWARDNOANSWER(as per Q.931 standard).

Scenario: A, B and C are registered to 3 clusters. A calls B, B answers and redirects the call to C. When call
is offered at C, getCiscoFeatureReason() will return REASON_FORWARDNOANSWER.

Unicode Issue in Calls Involving SIP Trunks
In SIP call scenarios, where the call comes back to the call manager from the SIP proxy over a SIP trunk,
since the call manager is totally dependent on the SIP, messages to populate any names and since the SIP
protocol has no way of populating both ASCII and Unicode, the passed-in name is just ASCII and the same

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1718

Caveats
SRTP Support

http://srtp.sourceforge.net/download.html

gets sent to JTAPI. Hence, in such call scenarios, the user will not be able to see Unicode names since this is
not under the control of JTAPI.

As a result the following APIs on CiscoCall interface will return only ASCII values instead of Unicode in
such scenarios.

public String getCurrentCalledPartyUnicodeDisplayName();public String
getCurrentCallingPartyUnicodeDisplayName();

For SIP phone specific issues please refer to differences in SIP support section.

Join Across Lines: Conference Two or More Addresses on Same Terminal
For Unified Communications Manager releases 6.x and 5.x, if applications try to conference two or more
addresses on the same terminal, based on the order of participants in the request, application may receive
CiscoJtapiException.CONFERENCE_INVALID_PARTICIPANT for the conference request and later the
conference may be created successfully with some of the participants. In such a case, there is no guarantee
which one of them joins the conference. But the conference is created with only one of the address on a
terminal and others are ignored. This depends on how this feature request is processed in different CUCM
releases.

Below are the details of two scenarios affected:

This issue has been resolved in 7.x using CSCsj06488 and CSCsj06533.Note

1. Consider B1 and B2 are different address on the same terminal TB.

A ->B1 - GC1

A ->B2 - GC2

A ->C - GC3

Application issues a conference request GC1.conference(GC2, GC3)

In 5.x and 6.x, applicationwill receive CiscoJtapiException.CONFERENCE_INVALID_PARTICIPANT,
however A, B1, C come into conference, and the normal set of events delivered in a conference scenario
are seen like mentioned below:

GC1 CiscoConferenceStartEv

GC2 TermConnDroppedEv TB

GC2 CallCtlTermConnDroppedEv TB

GC2 ConnDisconnectedEv B1

GC2 CallCtlConnDisconnectedEv B1

GC1 CallCtlTermConnTalkingEv TB

GC2 CiscoCallChangedEv

GC1 ConnCreatedEv C

GC1 ConnConnectedEv C

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1719

Caveats
Join Across Lines: Conference Two or More Addresses on Same Terminal

GC1 CallCtlConnEstablishedEv C

GC1 TermConnCreatedEv TC

GC1 TermConnActiveEv TC

GC1 CallCtlTermConnTalkingEv TC

GC2 TermConnDroppedEv TC

GC2 CallCtlTermConnDroppedEv TC

GC2 ConnDisconnectedEv C

GC2 CallCtlConnDisconnectedEv C

GC2 CallInvalidEv

GC1 CiscoConferenceEndEv

2. Consider B1 and B2 are different address on the same terminal TB.

A ->B1 - GC1

A ->B2 - GC2

A ->C - GC3

Application issues a conference request GC3.conference(GC1, GC2)

In 5.x, Application will not receive any exception and the request would be procressed successfully. A,
C, B1 would be in conference along with the regular set of conference events.

In 6.x, Application will receive CiscoJtapiException.CONFERENCE_INVALID_PARTICIPANT,
however A, C, B1 come into conference, and the normal set of events delivered in a conference

JTAPI Exposes Incorrect Information with getCallingAddress() and
getCalledAddress()

In some scenarios where feature works on multiple calls (pickup, transfer, conference and so on) depending
on Event Order or the parties observed, JTAPI may end up reporting incorrect call information to the
applications. These scenarios are ones where surviving call is initially not there in JTAPI's provider domain
or in scenarios where SurvivingCall goes invalid and is recreated in the middle of the feature operation. For
such survivingCalls, JTAPI does not report correct information with getCallingAddress() and
getCalledAddress(). Some of these scenarios are:

1. Transfer - A calls B; B transfers the call to C and application is observing only C

2. HuntList Transfer - In 8.x release if transfer is done, then surviving call can go invalid and recreated if
caller is not observed.

3. PickUp scenario where survivingCall goes invalid and is recreated in middle of the feature

4. UnPark scenarios where caller is not observed and service parameter, Preserve globalCallId for Parked
Calls, is set to true.

In general, this issue can happen with scenario where survivingCall is not in provider's domain initially or if
is there and goes Invalid(CallInvalidEv is sent) and is recreated(CallActiveEv is sent) during the feature
operation.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1720

Caveats
JTAPI Exposes Incorrect Information with getCallingAddress() and getCalledAddress()

Caveats for Release 4.1
This section lists the JTAPI caveats for Release 4.1:

• FAC-CMC, on page 1721

• setConferenceController, on page 1721

• Interval During DTMF Digits, on page 1722

• Shared Lines Support, on page 1722

• CP Requires Previous Calls on the Device to Be in Connected Call State , on page 1722

• CallInfo for Calls on QSIG Trunk, on page 1722

FAC-CMC
1. Forwarding should not be configured to a DN that requires FAC-CMC code. Forwarding requests will

be successful, but calls will not be forwarded to these DNs and will be rejected.

2. Application should always terminate the code with #, otherwise system waits for T302 timer before
extending the call. For these cases, application could get postConditionTimeOut exception for call.connect()
or call.consult() but call may actually be offered. If apps need to avoid this, either all the digits with #
terminated string are entered with post condition timeout (which is by default 15 sec in JTAPI Prefs UI)
in the PlatformException or increase the postcondition timeout.

3. Two identical CiscoToneChangedEvents are sent to applications and second one needs to be ignored if
both the codes are entered with # separated upon receiving the first event.

setConferenceController
The party that starts a conference by adding a new party acts as the original conference controller. Only the
original conference controller can add new parties into the conference. If the original conference controller
drops out of the conference, no other party in that particular conference call can add a new party. Although
the conference controller cannot be changed while a conference call is going on, applications can determine
which TerminalConnection acts as the conference controller when initially setting up a conference call via
the CallControlCall.setConferenceController()method. The CallControlCall.getConferenceController()method
returns the current conference controller, or null if there is none. If no conference controller is set, the
implementation chooses a suitable TerminalConnection when the conferencing feature is invoked."

Consider the following scenario as an example:

A, B, C, and D belong to a conference call and all are in the TALKING state. A acts as the conference controller.
A attempts to use the SetConferenceController API to change the conference controller to B, gets no error,
and drops out of the conference. B then tries to add a new party, E, into the conference but cannot do so.

conference(Call[])

Applications can control which TerminalConnection acts as the conference controller when setting up a
conference call via the CallControlCall.setConferenceController() method. The
CallControlCall.getConferenceController() method returns the current conference controller, or null if there
is none. If no conference controller is set initially, the implementation chooses a suitable TerminalConnection

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1721

Caveats
Caveats for Release 4.1

when the conferencing feature is invoked. Only the original conference controller can add new parties to a
conference call. Attempting to change the conference controller while a conference is going on will not take
effect; however, no error gets thrown in the setConferenceController API

Interval During DTMF Digits
As per fix for CSCef05359, Change PlayDTMF to allow applications specify the time delay, now applications
can configure the time delay during DTMF digits through Admin page, Service pameter, generate DTMF
delay, for call Manager.

Shared Lines Support
Cisco JTAPI does not support configuration of same Directory Number from different partitions on the same
or any device but configuration of different Directory Number from different partitions on the same device
as well as different devices is supported.

CP Requires Previous Calls on the Device to Be in Connected Call State
CP requires previous calls on the device to be in connected call state before answering further calls on the
same device. If calls are answered without checking for the call state of previous calls on the same device,
then CTI might return a successful answer response but the call will not go to connected state and needs to
be answered again. See DDTS CSCee17001 for more details.

CallInfo for Calls on QSIG Trunk
Call info on a call across a QSIG gateway is not consistent. Due to the limitations in the protocol, application
would see inconsistent values for call.getLastRedirectingAddress() and call.getCalledAddress() for calls across
QSIG trunks.

Refer to CSCee74730, CSCee59084, CSCee70747 and CSCsk62441 for details.

Caveats for 4.0
This section lists the JTAPI caveats for Release 4.0:

• Extra Connection with Wild Card DN, on page 1723

• CallInfo in Barge Scenario, on page 1723

• CallInfo Issues When Caller Redirects Call, on page 1723

• Translation Pattern and Presentation Indication Interaction, on page 1723

• Extra TermConnHeld Events, on page 1723

• Transfer and Conference Interaction, on page 1723

• Dropping a Call on Shared Lines, on page 1724

• Barge Call, on page 1724

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1722

Caveats
Interval During DTMF Digits

• Null lastRedirectingAddress, on page 1724

• Devices Configured with Same CLI, on page 1724

• Current Called Address, on page 1725

Extra Connection with Wild Card DN
JTAPI may create extra connection when Call is made wild card DN. See the release note of DDTS
CSCeb57849 for scenarios.

CallInfo in Barge Scenario
CallInfo is not updated when Barge Initiator Drops the Call. See the release note of DDTS CSCec23359 for
scenarios.

CallInfo Issues When Caller Redirects Call
In this scenario A calls B, A redirects to C and application is monitoring only C, the calling and called address
would be B and C and the calling terminal would be terminal A.

Translation Pattern and Presentation Indication Interaction
JTAPI has getCalledAddressPI and getCurrentCalledAddressPi interfaces to receive the PIs of the originalCalled
and Called parties. While making a call through a Translation Pattern, if the pattern modifies the PIs of the
CalledParty, the getCalledAddressPI continues to reflect the earlier PI while the getCurrentCalledAddressPI
shows the PI as set at the pattern. Refer DDTS CSCec58085 for more details.

Extra TermConnHeld Events
Applications may some times see an extra TermConnHeld Event on Controller during Transfer and Conference
scenario. For transfer scenario this extra TermConnHeldEvent is sent on controller before TermConnDropped
is sent. For conference scenario, for primary controller which remains in the call, this event is sent before
TermConnTalking is sent, and for controller which is dropped from conference, it is sent before
TermConnDropped is sent. Refer DDTS CSCec55257 for more details.

Transfer and Conference Interaction
• 9.1.6.1—in JTAPI whenever transfer is done to connect a normal call to a ConferenceCall, the GlobalCallId
of Conference Call always survives irrespective of how the transfer is performed (whether on Call1 or
Call2).

• 9.1.6.2—during transferring of conference scenario, it is possible External Connection creation events
are delivered before CiscoTransferStartedEv, however, Call Merge events are still delivered within
CiscoTransferStart and CiscoTransferEnd boundry.

• 9.1.6.3—during transferring of conference scenario, if transfer-destination is not observed by the JTAPI
Application, the LastRedirectingParty is not updated. For example, if A, B, C are in conference, C
(Transfer controller) transfers call to D, and D (Transfer-destination) is not observed by JTAPI, then

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1723

Caveats
Extra Connection with Wild Card DN

LastRedirectingParty of the call remains unchanged after Transfer is completed. Ideally after Transfer
is completed, LastRedirectingParty is updated to Transfer controller.

Dropping a Call on Shared Lines
If there is heldCall on SharedAddress (SharedLine) and application is not observing all the terminals of
SharedLine, then Connection.disconnect() using SharedAddress's connection does not drop the call. The is
left with connections of OtherParty in the call. To drop the call, the application must use either Call.drop() or
manually disconnect call from non observered terminals. In other words, if there is HeldCall on SharedAddress,
then for the terminals that is not in Application's control, callmust be dropped manually. For detais, refer
DDTS CSCed06910.

Barge Call
In a Barge Call, when

1. Barge target holds

2. Barge target does a consult conference or arbitrary Conference

3. The OtherParty drops the call

4. Barge target initiate transfer, arbitrary transfer or BlindTransfer

5. Barge target parks the call

6. Barge target Idiverts the call

7. Barge target redirects call

Then, Initiators TerminalConnection/CallCtlTerminalConnection is dropped as result of above operations.
However, CallCtlCause for these TermConnDropp/CallCtlTermConnDrop would be Cause_Normal. JTAPI
is unable to provide specific cause such as Cause_Redirect for #7 above.

Initiator is the party that presses the Barge key to barge into a call. Target is where Initiator Barges, OtherParty
is address which not Initiator/Target. For details, refer DDTS CSCed07230.

Note

Null lastRedirectingAddress
Call.getLastRedirectingAdress() returns null when only the redirecting address is observed. The call goes to
INVALID state after redirect request and if application calls the above interface after redirecting the call it
would see null. For details, refer CSCee92111.

Devices Configured with Same CLI
In a conference scenario, where conference controller is observed by JTAPI and other two calls are from
devices configured with same the CLI (Directory Number), JTAPI creates one connection. So, when conference
is completed, it has only two connections in the call instead of three. If the conference is completed using
conference() API, a post condition timeout exception is thrown. For details, refer DDTS CSCeh05723.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1724

Caveats
Dropping a Call on Shared Lines

Current Called Address
CiscoCall.getCurrentCalledAddress() returns null before the call is offered to the called address. In earlier
releases, this used to return Unknown address. Applications must handle null or Unknown address returned
for CiscoCall.getCurrentCalledAddress().

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1725

Caveats
Current Called Address

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1726

Caveats
Current Called Address

A P P E N D I X H
Deprecated API

This appendix lists lists the APIs, fields, and methods that have been deprecated. A deprecated API is not
recommended for use, generally due to improvements, and a replacement API is usually given. Deprecated
APIs may be removed in future implementations.

• Deprecated Interfaces, on page 1727
• Deprecated Fields, on page 1727
• Deprecated Methods, on page 1728

Deprecated Interfaces
com.cisco.jtapi.extensions.CiscoRouteAddress

This interface has not been implemented.

Deprecated Fields
Deprecated fields

com.cisco.jtapi.extensions.CiscoAddress.APPLICATION_CONTROLLED_RECORDING

com.cisco.jtapi.extensions.CiscoAddress.DEVICE_CONTROLLED_RECORDING

These constants are deprecated. Applications that upgrade to Release 9.0 or later releases should use the new
SELECTIVE_RECORDING constant and not the deprecated APPLICATION_CONTROLLED_RECORDING and
DEVICE_CONTROLLED_RECORDING constants. In Release 9.0 or later releases Unified CM and JTAPI never return the
DEVICE_CONTROLLED_RECORDING constant.

com.cisco.jtapi.extensions.CiscoProviderCapabilityChangedEv.MODIFY_CGPN

This constant is not returned by any interface, should not be used by application.

com.cisco.jtapi.extensions.CiscoProviderCapabilityChangedEv.MONITOR_PARKDN

This constant is not returned by any interface, should not be used by application.

com.cisco.jtapi.extensions.CiscoProvCallParkEv.REASON_CALLPARKREMAINDER

This interface is deprecated due to a spelling error. Use the new interface REASON_CALLPARKREMINDER.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1727

Deprecated fields

com.cisco.jtapi.extensions.CiscoFeatureReason.REASON_PARKREMAINDER

Use REASON_PARKREMINDER.

com.cisco.jtapi.extensions.CiscoProviderCapabilityChangedEv.SUPERPROVIDER

This constant is not returned by any interface, should not be used by application.

Deprecated Methods
Deprecated methods

com.cisco.jtapi.extensions.CiscoTermDataEv.getData()

Use byte[] getTermData

com.cisco.jtapi.extensions.CiscoJtapiException.getErrorDescription(int)

Use String getErrorDescription (); instead.

com.cisco.jtapi.extensions.CiscoJtapiException.getErrorName(int)

Use String getErrorName (); instead.

com.cisco.jtapi.extensions.CiscoConsultCallActiveEv.getHeldTerminalConnection()

Replaced by CiscoConsultCall.getConsultingTerminalConnection()

com.cisco.jtapi.extensions.CiscoCall.getLastRedirectingPartyInfo()

- use getLastRedirectedPartyInfo();

com.cisco.jtapi.extensions.CiscoAddress.getRegistrationState()

This method has been replaced by the getState() method.

com.cisco.jtapi.extensions.CiscoTerminal.getRegistrationState()

This method has been replaced by the getState() method.

com.cisco.jtapi.extensions.CiscoMediaTerminal.register(InetAddress, int)

com.cisco.jtapi.extensions.CiscoTerminal.sendData(String)

com.cisco.jtapi.extensions.CiscoJtapiProperties.setSecurityPropertyForInstance(String, String, String, String, String, String, String,
String, boolean)

This method is replace by overloaded method setSecurityPropertyForInstance which takes an extra parameter certStorePassphrase,
a passphrase for java key store. This method might have some security vulnerability.

com.cisco.services.tracing.TraceManager.setSubFacilities(String[])

and replaced with TraceManager.addSubFacilities method

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1728

Deprecated API
Deprecated Methods

Deprecated methods

com.cisco.services.tracing.implementation.TraceManagerImpl.setSubFacilities(String[])

replaced by addSubFacilties(String[])

com.cisco.services.tracing.TraceManager.setSubFacility(String)

and replaced with TraceManager.addSubFacility method

com.cisco.services.tracing.implementation.TraceManagerImpl.setSubFacility(String)

replaced by addSubFacility(String)

com.cisco.jtapi.extensions.CiscoJtapiProperties.updateCertificate(String, String, String, String, String, String, String, String)

This method is replace by overloaded method updateCertifcate which takes an extra parameter certStorePassphrase, a passphrase
for java key store. This method might have some security vulnerability.

com.cisco.jtapi.extensions.CiscoJtapiProperties.updateServerCertificate(String, String, String, String, String)

This method is replace by overloaded method updateServerCertifcate which takes an extra parameter certStorePassphrase, a
passphrase for java key store. This method might have some security vulnerability.

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1729

Deprecated API
Deprecated API

Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
1730

Deprecated API
Deprecated API

	Cisco Unified JTAPI Developers Guide for Cisco Unified Communications Manager, Release 14 and SUs
	Contents
	Overview
	Cisco Unified Communications Manager Interfaces
	Provisioning Interfaces
	Administrative XML
	Cisco Extension Mobility

	Device Monitoring and Call Control Interfaces
	Cisco TAPI and Media Driver
	Cisco JTAPI
	Cisco Web Dialer

	Serviceability Interfaces
	Serviceability XML
	SNMP/MIBs

	Routing Rules Interface
	Cisco Connection Interface

	JTAPI Overview
	Cisco Unified JTAPI and Contact Centers
	Cisco Unified JTAPI and Enterprises
	Cisco Unified JTAPI Applications
	Jtprefs Application

	Cisco Unified JTAPI Concepts
	CiscoObjectContainer Interface
	JtapiPeer and Provider
	Initialization
	Shutdown
	Provider.getTerminals()
	Provider.getAddresses()
	Changes to the User Control List in the Directory

	Address and Terminal Relationships
	Unobserved Addresses and Terminals
	Connections
	Terminal Connections
	Terminal and Address Restrictions

	CiscoConnectionID

	Threaded Callbacks
	CiscoSynchronousObserver Interface
	Querying Dynamic Objects
	callChangeEvent()
	CiscoConsultCall
	CiscoTransferStartEv

	Alarm Services
	Software Requirements
	Development Guidelines

	New and Changed Information
	Cisco Unified Communications Manager Release 14SU3
	Cisco Unified Communications Manager Release 14SU2
	Cisco Unified Communications Manager Release 12.5(1)
	Cisco Unified Communications Manager, Release 11.5(1)
	Cisco Unified Communications Manager, Release 11.0(1)
	Cisco Unified Communications Manager Release 10.5(2)
	Cisco Unified Communications Manager Release 10.0(1)
	Cisco Unified Communications Manager Release 9.0(1)
	Cisco Unified Communications Manager Release 8.6(1)
	Cisco Unified Communications Manager Release 8.5(1)
	Cisco Unified Communications Manager Release 8.0(1)
	Cisco Unified Communications Manager Release 7.1(3)
	Cisco Unified Communications Manager Release 7.1(2)
	Cisco Unified Communications Manager Release 7.0(1)
	Cisco Unified Communications Manager Release 6.1
	Cisco Unified Communications Manager Release 6.0
	Cisco Unified Communications Manager Release 5.1
	Cisco Unified Communications Manager Release 5.0

	Features Supported by Cisco Unified JTAPI
	Account Lockout
	Agent Greeting
	AES 256 Algorithm IDs
	Alternate Script Support
	API for Exposing Built-In-Bridge Status
	Arabic and Hebrew Language Support
	Auto Updater for Linux
	AutoAccept Support for CTI Ports and Route Points
	Autoupdate of API
	Barge and Privacy Event Notification
	Call Control Discovery
	Call Forward
	Call Forward Override
	Call Park
	Call Pickup
	Call Recording for SIP or TLS Authenticated Calls
	Call Select Status
	Calling Party Display Name
	Calling Party IP Address
	Calling Party IP Address
	Calling Party Normalization
	CallFwdAll Key Press Notification
	CallSelect and UnSelect Event Notification
	Certificate Download API Enhancement
	Changes in DeviceType Name Handling
	Cisco MediaTerminal
	Provisioning
	Registration
	Adding Observers
	Accepting Calls

	Cisco Unified Communications Manager Media Endpoint Model
	Payload and Parameter Negotiation
	Initialization
	Payload Selection
	Receive Channel Allocation
	Starting Transmission and Reception
	Stopping Transmission and Reception

	Cisco Unified Communications Manager Server Failure
	Cisco Unified IP 7931G Phone Interaction
	Cisco Unified JTAPI Install Internationalization
	Cisco VG248 and ATA 186 Analog Phone Gateways
	CiscoJtapiExceptions
	Errors

	CiscoProvAuthenticationInfoEv
	CiscoRTPHandle Interface on Cisco RTP Events
	Cisco Terminal Filter and ButtonPressedEvents
	CiscoTermRegistrationfailed Event
	Errors

	Cius Persistency
	Clear Calls
	Click to Conference
	Cluster Abstraction
	Command Line Invocation
	Component Updater
	Conference
	Cisco Extensions
	Conference Scenarios
	Conference Events
	Transfer and Conference Enhancement

	Conference and Join
	Conference Chaining
	Consult Without Media
	CTI Ports
	CTI RoutePoints
	CTI Remote Device for JTAPI
	Play Announcement
	Verify Remote Destination Support
	NuRD (Number Matching for Remote Destination) Support
	Mobility Interaction Support

	CTI RD Call Forward
	CTI Video Support
	Default CTI IP Addressing for Devices
	DeleteCall
	Device Recovery
	Device Recovery for Phones
	Device State Server
	Direct Transfer Across Lines
	Usage Guidelines
	Event Flow Comparison and Sample Code

	Directed Call Park
	Directory Change Notification
	Do Not Disturb
	Do Not Disturb-Reject
	Drop Any Party
	Dynamic CTI Port Registration
	E911 Teleworker
	Enable or Disable Ringer
	Encryption Enhancement
	End to End Call Tracing
	EnergyWise Deep Sleep Mode
	Extension Mobility Cross Cluster
	Extension Mobility Username Login
	External Call Control
	End to End Session ID for Calls
	FIPS Compliance
	Forced Authorization and Client Matter Codes
	Supported Interfaces
	Call.Connect() and Call.Consult()
	Call.transfer(String) and Connection.redirect()
	RouteSession.selectRoute()

	Forwarding on No Bandwidth and Unregistered DN
	GetCallID in RTP Events
	GetCallInfo
	GetGlobalCallID
	Hairpin Support
	Half-Duplex Media Support
	Hold Reversion
	Hunt List
	Hunt List Connected Number
	Hunt Log Status
	Intercom
	Intercom Support for Extension Mobility
	IPv6 Support
	iSac Codec
	Java Socket Connect Timeout
	Join Across Lines
	Join Across Lines (Only SCCP)
	Join Across Lines or Connected Conference Across Lines
	Usage Guidelines
	Event Flow Comparison and Sample Code

	Join Across Lines with Conference Enhancements (SCCP and SIP)
	JRE 1.2 and JRE 1.3 Support Removal
	JTAPI Version Information
	Locale Infrastructure Development
	Logical Partitioning
	Media Termination at Route Point
	Media Termination Extensions
	Message Waiting Indicator Enhancement
	Modifying Calling Number
	Multi-fork Recording using CUBE Media Proxy Server
	Multilevel Precedence and Preemption Support
	Multiple Calls Per DN
	Native Queuing
	Network Alerting
	Network Events
	New Error Code in CiscoTermRegistrationFailedEv
	Noncontroller Adding of Parties to Conferences
	Park DN Monitor
	Park Monitoring and Assisted DPark Support
	Park Reminder
	Park Retrieval
	Partition Support
	Password Expiry
	Persistent Connection
	Play Zip Tone
	Presentation Indicator for Calls
	Privacy On Hold
	Progress State Converted to Disconnect State
	Q.Signaling (QSIG) Path Replacement
	QoS Support
	QoS Setup on Windows 2000
	QoS Setup on Windows XP Server 2003

	Quiet Clear
	Receiving and Responding to Media Flow Events
	Inbound Call Media Flow Event Diagram
	Cisco Unified Communications Solutions RTP Implementation

	Recording
	Redirect
	Redirect Set Original Called ID
	Redirect to Device
	Redundancy
	Redundancy in CTI Managers
	Invoking CTIManager Redundancy
	CTIManager Failure
	Heartbeats

	Ringback on SIP 183 for Transferred Calls
	Routing
	Cisco Route Session Implementation
	Select Route Timer
	Forwarding Timer
	Route Session Extension
	Caller Options Summary
	Fault Tolerance When Using Route Points

	Secure Conferencing
	Secure Real-Time Protocol Key Material
	Secured Monitoring and Recording
	SelectRoute Interface Enhancement
	selectRoute() with Calling Search Space and Feature Priority
	Set MessageWaiting
	Shared Line Support
	Silent Monitoring
	Single Sign-On
	Single Step Transfer
	SIP 3XX Redirection
	SIP Phone Support
	SIP REFER or REPLACE
	SIP Trunk Early Offer
	Star (*) 50 Update
	Super Provider (Disable Device Validation)
	Superprovider and Change Notification
	Support for Cisco Unified IP Phone 6901
	Support for Cisco Unified IP Phone 6900 Series
	Support for 100+ Directory Numbers
	Support for VMware
	Swap or Cancel and Transfer or Conference Behavior
	Terminal and Address Capability Settings
	Terminal and Address Restrictions
	SHA-512 Support for Digital Signatures
	Transfer
	CiscoTransferStartEv
	CiscoTransferEndEv
	Transfer Scenarios

	Transfer and Conference Extensions
	Transfer and DirectTransfer
	Translation Pattern Support
	Transport Layer Security (TLS)
	Unicode Support
	Unrestricted Unified CM
	URI Dialing
	Version Format Change
	Verification Involving PSTN Reachability
	Video Capabilities and Multi-Media Information
	Exposing Multimedia Capability on CiscoTerminal
	Exposing Changes in Multimedia Capability Via a New Provider Event
	Exposing Multimedia Capability on a CiscoCall
	Exposing Multimedia Streams Information on CiscoTerminal
	Supported Features (Within the Same Cluster)
	Supported Features (Across Clusters)
	Limitations

	Video On Hold Support
	Voice MailBox Support
	XSI Object Pass Through
	CiscoTerminal Method
	Authentication and Mechanism

	Cisco Unified JTAPI Installation
	Overview
	Required Software
	Supported Platforms
	Installing the Cisco Unified JTAPI Software
	Installation Procedures
	Linux Platforms
	Verifying Linux Installation
	Windows Platforms
	Verifying Windows Installation

	Linux and Windows Installation

	Using Cisco Unified CM JTAPI
	Program Group and Program Elements

	Cisco Unified JTAPI Configuration Settings
	JTAPI Tracing Tab
	Log Destination Tab
	Cisco Unified CM Tab
	Advanced Tab
	Security Tab
	Language Tab

	Managing the Cisco Unified CM JTAPI
	Reinstalling, Upgrading or Downgrading the Cisco JTAPI
	Uninstalling the Cisco JTAPI

	Administering User Information for JTAPI Applications
	Fields in the jtapi.ini File
	Sample jtapi.ini File with Default Values

	Cisco Unified JTAPI Extensions
	Class Hierarchy
	CiscoAddressCallInfo
	Declaration
	Constructors
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoG711MediaCapability
	Declaration
	Constructors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoG723MediaCapability
	Declaration
	Constructors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoG729MediaCapability
	Declaration
	Constructors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoGSMMediaCapability
	Declaration
	Constructors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoJtapiVersion
	Declaration
	Constructors
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoMediaCapability
	Declaration
	Subclasses
	Constructors
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoMultiMediaCapabilityInfo
	Declaration
	Fields
	Methods

	CiscoRegistrationException
	Declaration
	Implemented Interfaces
	Constructors
	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPParams
	Declaration
	Constructors
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoUnregistrationException
	Declaration
	Implemented Interfaces
	Constructors
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoWideBandMediaCapability
	Declaration
	Constructors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	Interface Hierarchy
	CiscoAddrActivatedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrActivatedOnTerminalEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrAddedToTerminalEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrAutoAcceptStatusChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrCreatedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods
	Related Documentation

	CiscoAddrMonitorTerminatedEv
	Declaration
	Methods
	Related Documentation

	CiscoAddress
	Superinterfaces
	Subinterfaces
	Fields
	Methods
	Inherited Methods

	Parameters
	Related Documentation

	CiscoAddressObserver
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrEvFilter
	Fields
	Methods
	Inherited Methods
	Parameters
	Value Range
	Related Documentation

	CiscoAddrInServiceEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrIntercomInfoChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrIntercomInfoRestorationFailedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrPickupGroupChangedEv
	Declaration
	Methods
	New Error Code

	CiscoAddrOutOfServiceEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrParkStatusEv
	Declaration
	Fields
	Inherited Fields

	Methods
	Value Ranges
	Related Documentation

	CiscoAddrRecordingConfigChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrRemovedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrRemovedFromTerminalEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrRestrictedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrRestrictedOnTerminalEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAddrVoiceMailPilotChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoAnnouncementStartedEv
	Declaration
	Methods

	CiscoAnnouncementEndedEv
	Declaration
	Methods

	CiscoAnnouncementErrorEv
	Declaration
	Methods

	CiscoBaseMediaTerminal
	Declaration
	Superinterfaces
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Parameters
	Data Types
	Range of Values

	CiscoCall
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Parameters
	Conference Controller
	Telephone Call Argument
	Other Shared Participants
	The Transfer Controller
	The New Connection

	Related Documentation

	CiscoCallChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoCallConsultCancelledEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoCallCtlConnOfferedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoCallCtlTermConnHeldReversionEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoCallEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Related Documentation

	CiscoCallFeatureCancelledEv
	Declaration
	Methods
	Related Documentation

	CiscoCallID
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoMediaCallSecurityIndicator
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoCallSecurityStatusChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConferenceChain
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoConferenceChainAddedEv
	All Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConferenceChainRemovedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConferenceEndEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConferenceStartEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConnection
	All Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Documentation

	CiscoConnectionID
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoConnectionUniqueIDChangedEv
	Declaration
	Methods
	Related Documentation

	CiscoConsultCall
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoConsultCallActiveEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoFeatureReason
	Declaration
	Fields
	Related Documentation

	CiscoHuntConnection
	Declaration
	Methods
	Related Documentation

	CiscoIntercomAddress
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoIsacMediaCapability
	Superinterfaces
	Declaration
	Constuctors
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	CiscoJtapiException
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoMediaStreamStartedEv
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	CiscoMediaStreamEndedEv
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	CiscoJtapiPeer
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoJtapiPeerImpl
	Declaration
	Fields
	Methods

	CiscoJtapiProperties
	Declaration
	Fields
	Methods
	User/InstanceID Hash Table

	Related Documentation

	CiscoLocales
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoMasterKeyIndicator
	Declaration
	Methods

	CiscoMediaConnectionMode
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoMediaEncryptionAlgorithmType
	Superinterfaces
	Fields
	Related Documentation

	CiscoMediaEncryptionKeyInfo
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoMediaOpenIPPortEv
	Declaration
	Superinterfaces
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	CiscoMediaOpenLogicalChannelEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoMediaSecurityIndicator
	Declaration
	Fields
	Related Documentation

	CiscoMediaTerminal
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoMonitorInitiatorInfo
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoMonitorTargetInfo
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoMultiForkingRecorderInfo
	Declaration
	Methods

	CiscoMultiMediaCapabilityInfo
	Declaration
	Fields
	Methods

	CiscoMultiMediaConnectionMode
	Declaration
	Methods

	CiscoMultiMediaEncryptionKeyInfo
	Declaration
	Methods

	CiscoMultiMediaProperties
	Declaration
	Methods

	CiscoMultiMediaStreamsInfoEv
	Declaration
	Methods

	CiscoMultiMediaType
	Declaration
	Methods

	CiscoObjectContainer
	Subinterfaces
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoOutOfServiceEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Related Documentation

	CiscoPartyInfo
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoPickupGroup
	Declaration
	Methods
	Related Documentation

	CiscoProvCallParkEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoProvEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	CiscoProvFeatureEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoProvFeatureID
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoProvPickupCallAlertEv
	Declaration
	Methods

	CiscoProvTerminalIPAddressChangedEv
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoProvTerminalMultiMediaCapabilityChangedEv
	Declaration
	Methods

	CiscoProvTerminalRegisteredEv
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoProvTerminalUnRegisteredEv
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoProvider
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	New Error Codes
	Methods
	Inherited Methods

	Related Documentation

	CiscoProviderCapabilities
	Superinterfaces
	Declaration
	Methods
	Inherited Methods

	Related Documentation

	CiscoProviderCapabilityChangedEv
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoProviderObserver
	Superinterfaces
	Declaration
	Methods
	Inherited Methods

	Related Documentation

	CiscoProvTerminalCapabilityChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoProvTerminalRemoteDestinationChangedEv
	Methods

	CiscoRecorderInfo
	Declaration
	Fields
	Methods
	Range of Values
	Related Documentation

	CiscoRemoteDestinationInfo
	Methods

	CiscoRemoteTerminal
	Declaration
	Methods
	Parameters
	Data Type
	New Error Codes
	Sample Code

	CiscoRestrictedEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRouteAddress
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRouteEvent
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRouteSession
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRouteTerminal
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRouteUsedEvent
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPBitRate
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPHandle
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPInputKeyEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPInputProperties
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPInputStartedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPInputStoppedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputKeyEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputProperties
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPOutputStartedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputStoppedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputKeyEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputProperties
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPOutputStartedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPOutputStoppedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoRTPPayload
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoRTPProperties
	Declaration
	Methods

	CiscoSynchronousObserver
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoTermActivatedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermButtonPressedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnMonitoringEndEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnMonitoringStartEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnMonitorInitiatorInfoEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnMonitorTargetInfoEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnPrivacyChangedEv
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoTermConnRecordingEndEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnRecordingStartEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnRecordingTargetInfoEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Related Documentation

	CiscoTermConnRecordingFailedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermConnSelectChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermCreatedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDataEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDeviceStateActiveEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDeviceStateAlertingEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDeviceStateHeldEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDeviceStateIdleEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDeviceStateWhisperEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermDNDOptionChangedEv
	Superinterfaces
	Fields
	Methods

	CiscoTermDNDStatusChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermEv
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Inherited Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoTermEvFilter
	Declaration
	Fields
	Methods
	Related Documentation

	CiscoTerminal
	Superinterfaces
	Subinterfaces
	Declaration
	Fields
	Methods
	Inherited Fields
	Data Type

	Related Documentation

	CiscoTerminalConnection
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Parameters
	New Error Codes
	Methods
	Inherited Methods

	Related Documentation

	CiscoTerminalObserver
	Superinterfaces
	Declaration
	Fields
	Methods
	Inherited Methods

	Related Documentation

	CiscoTerminalProtocol
	Superinterfaces
	Fields
	Related Documentation

	CiscoTermInServiceEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermOutOfServiceEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermRegistrationFailedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermRemovedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermRestrictedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermSnapshotCompletedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTermSnapshotEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTone
	Superinterfaces
	Fields

	CiscoToneChangedEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTransferEndEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoTransferStartEv
	Superinterfaces
	Declaration
	Fields
	Inherited Fields

	Methods
	Inherited Methods

	Related Documentation

	CiscoUrlInfo
	Declaration
	Fields
	Methods
	Related Documentation

	ComponentUpdater
	Declaration
	Methods
	Related Documentation

	ProviderPickupNotificationRegistrationClosedEv
	Declaration
	Methods
	New Reason Code
	Related Documentation

	CiscoTermHuntLogStatusChangedEv
	Declaration
	Methods

	CiscoProvConnToLeastPriorCtiServerEv
	CiscoProvFallbackToPrimNwCompltdEv
	CiscoProvPrimNwReachableEv

	Cisco Unified JTAPI Alarms and Services
	Alarm Class Hierarchy
	AlarmManager
	Declaration
	Constructors
	Methods

	AlarmWriter
	Declaration
	All Known Implementing Classes
	Member Summary
	Methods

	DefaultAlarm
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	DefaultAlarmWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	ParameterList
	Declaration
	Member Summary
	Constructors
	Methods

	Alarm Interface Hierarchy
	Alarm
	Declaration
	All Known Implementing Classes
	Member Summary
	Fields
	Methods

	AlarmWriter
	Declaration
	All Known Implementing Classes
	Member Summary
	Methods

	Services Tracing Class Hierarchy
	BaseTraceWriter
	Declaration
	All Implemented Interfaces
	Direct Known Subclasses
	Member Summary
	Constructors
	Methods

	ConsoleTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	LogFileTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Fields
	Constructors
	Methods

	OutputStreamTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary

	Constructors
	Methods

	SyslogTraceWriter
	Declaration
	All Implemented Interfaces
	Member Summary
	Constructors
	Methods

	TraceManagerFactory
	Declaration
	Member Summary
	Methods

	Services Tracing Interface Hierarchy
	Trace
	Declaration
	All Known Subinterfaces
	Member Summary
	Fields
	Methods

	ConditionalTrace
	Declaration
	All Superinterfaces
	Member Summary
	Methods

	UnconditionalTrace
	Declaration
	All Superinterfaces
	Member Summary

	TraceManager
	Declaration
	Member Summary
	Methods

	TraceModule
	Declaration
	All Known Subinterfaces
	Member Summary
	Methods

	TraceWriter
	Declaration
	All Known Subinterfaces
	All Known Implementing Classes
	Member Summary
	Methods

	TraceWriterManager
	Declaration
	All Superinterfaces
	Member Summary
	Methods

	Tracing Implementation Class Hierarchy
	TraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	ConditionalTraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	UnconditionalTraceImpl
	Declaration
	All Implemented Interfaces
	Methods
	Inherited Methods

	TraceManagerImpl
	Declaration
	All Implemented Interfaces
	Constructors
	Methods
	Deprecated
	Inherited Methods

	TraceWriterManagerImpl
	Declaration
	All Implemented Interfaces
	Constructors
	Methods

	Cisco Unified JTAPI Examples
	MakeCall.java
	Actor.java
	Originator.java
	Receiver.java
	StopSignal.java
	Trace.java
	TraceWindow.java
	Running makecall

	Message Sequence Charts
	Agent Greeting
	API for Exposing Built-in-Bridge Status
	Backward Compatibility Enhancements
	Barge and Privacy
	Barge
	CBarge
	Privacy

	Call Control Discovery
	CallFwdAll Keys Press Notification
	Call Recording for SIP or TLS Authenticated calls
	CallSelect and UnSelect
	Cius Persistency
	Conference and Join
	Join/Arbitrary Conference
	Consult Conference
	Join Across Lines with Enhancements

	CTI Manager Redundancy Handling with Least Priority CTIManager Configured
	CTI Manager Redundancy Handling with Least Priority CTI Server Set
	CTI Remote Device
	CTI Remote Device Use Cases Group 1
	CTI Remote Device Use Cases Group 2
	CTI Remote Device Use Cases Group 3
	CTI Remote Device Use Cases Group 4
	CTI Remote Device Use Cases Group 5
	CTI Remote Device Use Cases Group 6

	CTI RD Call Forward
	CTI Video Support
	Device and Line Restriction
	Device State Server
	Do Not Disturb
	DND-R

	Dynamic CTIPort Registration Per Call
	E911 Teleworker
	Encryption Enhancement
	End to End Call Tracing
	Hunt Log Status for Phone Devices
	Energywise Deep Sleep Mode
	External Call Control
	Use Cases for BasicCall
	Use Cases for Calls Going Through Translation Pattern with CEPN Info in Cc Signals
	WildCard Routepoint Interaction (Behavior Change)
	WildCard Routepoint Interaction (Original Behavior)
	External Call Control Use Cases
	Chaperone Use Cases

	Extension Mobility Cross Cluster
	End to End Session ID for Calls
	Forced Authorization and Customer Matter Codes
	Hairpin Support
	Half Duplex Media
	Hunt List
	Hunt List Connected Number
	Intercom
	iSac Codec
	JTAPI Cisco Unified IP 7931G Phone Interaction
	Locale Infrastructure Development Scenarios
	Calling Party Normalization
	Click to Conference

	Call Pickup
	selectRoute() with Calling Search Space and Feature Priority
	Extension Mobility Login Username
	Calling Party IP Address
	CiscoJtapiProperties
	IPv6 Support
	Provider Open Scenario
	Calling Party IP Address Scenarios
	RTP Addresses
	CTI Port/Route Point Registration Scenarios
	Advance Test Cases

	Direct Transfer Across Lines Use Cases
	Connected Conference or Join Across Lines Use Cases - New Phones Behavior
	Enhanced MWI Use Cases
	Join Across Lines Enhancements
	Swap or Cancel and Transfer or Conference Behavior Change
	Drop Any Party Use Cases
	Park Monitoring Support
	Use Case 1: Park Monitoring States
	Use Case 2: Shared Line Scenario - Cisco Unified IP Phone Does Park
	Use Case 3: Shared Line Scenario - Cisco Unified IP Phone 7900 Series with SIP Does Park
	Use Case 4: Use Case for Snap Shot Scenario
	Use Case 5: Park DN Is Monitored
	Use Case 6: Query Number of Parked Calls
	Use Case 7: Filter Enabling or Disabling
	Use Case 8: Filter Enabling or Disabling
	Use Case 9: Filter Enabling or Disabling
	Use Case 10: Filter Enabling or Disabling
	Additional Use Cases for Park Monitoring
	Use Cases Related to DPark

	Logical Partitioning Feature Use Cases
	Shared Lines
	Call Park Reversion with Shared Lines in Different Geographic Locations

	ComponentUpdater Enhancement Use Cases
	IPv6 Support
	Support for Cisco Unified IP Phone 6900 Series
	Terminal and Address Capability Settings Use Cases

	Media Termination at Route Point
	Mobility Interaction Support
	Modifying Calling Number
	AutoAccept for CTIPort and RoutePoint

	Silent Monitoring Use Cases
	Secured Monitoring Use Cases

	Native Queuing
	Queuing of Call
	Maximum In-Queue Timer Expires
	Maximum In-Queue Timer Expires with Destination as Another HP Whose Member E Is Free
	Maximum In-Queue Timer Expires with Destination as Another HP Whose Members Are Busy
	Queue Is Full
	When Disconnect Is Selected for Queue Full
	No Agents Are Logged In
	Caller Redirects While in Queue
	Caller (Observed) Conferences While in Queue

	Use Cases for NuRD (Number Matching for Remote Destination)
	Basic Calls Initiated From Remote Destination
	Basic Calls to Remote Destination
	CTIRD/RDP Interaction
	Multiple Calls

	Partition Support
	Using getPartition() API
	Using getAddress (String Number String Partition)
	Park DN
	Partition Change
	JTAPI Partition Support

	Persistent Connection Use Cases
	Play Announcement
	Basic Play Announcement Use Cases
	Play Announcement Feature Interaction Use Cases

	Play Zip Tone
	QoS Support
	JTAPI QoS

	QSIG Path Replacement
	Recording Use Cases
	Recording IP Phones
	CTI Remote Devices Use Cases
	Feature Interaction: Recording Use Cases
	Recording Fail Event
	Secured Recording

	Redirect Set OriginalCalledID
	Redirect to a Device
	Verify Remote Destination Support
	Secure Conferencing
	Secure Connection Enhancements
	Secure Icon Enhancements
	Shared Line Support
	AddressInService/AddressOutofService Events
	Incoming Call to Shared Address
	Outgoing Call From Shared Address
	Shared Address Calling Itself

	Single Sign-On
	Single Step Transfer
	SIP REPLACE
	SIP REFER
	IN-Dialog REFER Scenario
	OutOfDialog Refer

	SIP 3XX Redirection

	SIP Support
	SIP Trunk Early Offer
	SRTP Key Material
	Super Provider Message Flow
	SuperProvider and Change Notification Enhancements Use Cases

	Support for Cisco Unified IP Phone 6901
	SHA Support for Digital Signatures
	TLS Security
	Transfer and Direct Transfer
	DirectTransfer/Arbitrary Transfer Scenario
	Direct Transfer/Arbitrary Transfer-Page 2
	Consult Transfer

	Unicode Support
	Unrestricted Unified CM
	Video Capabilities and Multi-Media Information
	Scenario One
	Scenario Two
	Scenario Three
	Scenario Four
	Scenario Five
	Scenario Six
	Scenario Seven
	Scenario Eight
	Scenario Nine
	Scenario Ten
	Scenario Eleven
	Scenario Twelve
	Scenario Thirteen
	Scenario Fourteen
	Scenario Fifteen
	Scenario Sixteen
	Scenario Seventeen
	Scenario Eighteen
	Scenario Nineteen
	Scenario Twenty

	Video On Hold
	Verification Involving PSTN Reachability
	Whisper Coaching

	Cisco Unified JTAPI Classes and Interfaces
	Cisco Unified JTAPI Version 1.2 Classes and Interfaces
	Core Package
	Call Center Package
	Call Center Capabilities Package
	Call Center Events Package
	Call Control Package
	Call Control Capabilities Package
	Call Control Events Package
	Capabilities Package
	Events Package
	Media Package
	Media Capabilities Package
	Media Events Package
	Unsupported Packages

	Cisco Unified JTAPI Extension Classes and Interfaces
	Cisco Unified JTAPI Extension Classes
	Cisco Unified JTAPI Extension Interfaces

	Cisco Trace Logging Classes and Interfaces
	Cisco Trace Logging Classes
	Cisco Trace Logging Interfaces

	Troubleshooting Cisco Unified JTAPI
	CTI Error Codes
	CiscoEventIDs
	Provider Events
	Terminal Events
	Address Events
	Call Events
	RTP Events
	TermConn Events
	Conn Events

	Reason Codes
	Cause Codes
	Additional Troubleshooting Information
	Viewing JTAPI Debug Output
	Log Files for JTAPI Client Installer
	Troubleshooting Tips for ISMP Installer
	Unable to Create Provider Directory Login Timeout

	Cisco Unified JTAPI Operations by Release
	JTAPI Operations-by-Release

	CTI Supported Devices
	CTI Supported Devices Table

	Constant Field Values
	com.cisco.*
	CiscoAddrActivatedEv
	CiscoAddrActivatedOnTerminalEv
	CiscoAddrAddedToTerminalEv
	CiscoAddrAutoAcceptStatusChangedEv
	CiscoAddrCreatedEv
	CiscoAddress
	CiscoAddrInServiceEv
	CiscoAddrIntercomInfoChangedEv
	CiscoAddrIntercomInfoRestorationFailedEv
	CiscoAddrOutOfServiceEv
	CiscoAddrRecordingConfigChangedEv
	CiscoAddrRemovedEv
	CiscoAddrRemovedFromTerminalEv
	CiscoAddrRestrictedEv
	CiscoAddrRestrictedOnTerminalEv
	CiscoCall
	CiscoCallChangedEv
	CiscoCallCtlTermConnHeldReversionEv
	CiscoCallEv
	CiscoCallSecurityStatusChangedEv
	CiscoConferenceChainAddedEv
	CiscoConferenceChainRemovedEv
	CiscoConferenceEndEv
	CiscoConferenceStartEv
	CiscoConnection
	CiscoConnectionUniqueIDChangedEv
	CiscoConsultCallActiveEv
	CiscoFeatureReason
	CiscoG711MediaCapability
	CiscoG723MediaCapability
	CiscoG729MediaCapability
	CiscoGSMMediaCapability
	CiscoJtapiException
	CiscoLocales
	CiscoMediaConnectionMode
	CiscoMediaEncryptionAlgorithmType
	CiscoMediaOpenLogicalChannelEv
	CiscoMediaSecurityIndicator
	CiscoOutOfServiceEv
	CiscoPartyInfo
	CiscoProvCallParkEv
	CiscoProvFeatureID
	CiscoProviderCapabilityChangedEv
	CiscoProvTerminalCapabilityChangedEv
	CiscoRemoteTerminal
	CiscoRestrictedEv
	CiscoRouteSession
	CiscoRouteTerminal
	CiscoRTPBitRate
	CiscoRTPInputKeyEv
	CiscoRTPInputStartedEv
	CiscoRTPInputStoppedEv
	CiscoRTPOutputKeyEv
	CiscoRTPOutputStartedEv
	CiscoRTPOutputStoppedEv
	CiscoRTPPayload
	CiscoTermActivatedEv
	CiscoTermButtonPressedEv
	CiscoTermConnMonitoringEndEv
	CiscoTermConnMonitoringStartEv
	CiscoTermConnMonitorInitiatorInfoEv
	CiscoTermConnMonitorTargetInfoEv
	CiscoTermConnPrivacyChangedEv
	CiscoTermConnRecordingEndEv
	CiscoTermConnRecordingStartEv
	CiscoTermConnRecordingTargetInfoEv
	CiscoTermConnSelectChangedEv
	CiscoTermCreatedEv
	CiscoTermDataEv
	CiscoTermDeviceStateActiveEv
	CiscoTermDeviceStateAlertingEv
	CiscoTermDeviceStateHeldEv
	CiscoTermDeviceStateIdleEv
	CiscoTermDeviceStateWhisperEv
	CiscoTermDNDOptionChangedEv
	CiscoTermDNDStatusChangedEv
	CiscoTerminal
	CiscoTerminalConnection
	CiscoTerminalProtocol
	CiscoTermInServiceEv
	CiscoTermOutOfServiceEv
	CiscoTermRegistrationFailedEv
	CiscoTermRemovedEv
	CiscoTermRestrictedEv
	CiscoTermSnapshotCompletedEv
	CiscoTermSnapshotEv
	CiscoTone
	CiscoToneChangedEv
	CiscoTransferEndEv
	CiscoTransferStartEv
	CiscoUrlInfo
	CiscoWideBandMediaCapability
	Alarm
	LogFileTraceWriter
	Trace

	Caveats
	Caveats for All Releases
	Single Versus Multiple CallObserver Clarification
	SIP and SCCP Dialing Differences with Overlapping Directory Number Patterns
	Translation Pattern Support
	DT24+ Limitation with PRI NI2 Trunk
	Connection for Park Number Not Created
	Inconsistency Between SIP and SCCP Phone
	Failure to Route Calls Across Destinations
	Incorrect Return Value for getCallingAddress()
	Call Fails to Disconnect Held Shared Line
	Limitation with sendData() API on CiscoTerminal
	Limitation in Using ; (Semi-Colon) and = (Equal) in User ID and Password
	Connection to Unknown Address When Unparking a Conference Call
	CTI Redirect to Voice Mail Wont Work with QSIG
	CiscoAddress.getForwarding() Returns Correct Value Only for In-Service Addresses
	Unsupported CTI Events for SIP Phones

	Caveats for Release 9.1(1)
	Connection for Park DN While UnPark

	Caveats for Release 8.6(1)
	Limitation While Using a Cisco Telepresense MCU

	Caveats for Release 8.5(1)
	Discouraged Use of JTAPIProperties.updateCertificate()
	Delete SecurityProperties Before Re-Use
	No ConnDisconnectedEv Event When Call Is Rejected

	Caveats for Release 8.0(1)
	Globalized Calling Party Number
	Conference Interaction with Chaperone Results in Unsupported Conference Chaining
	Wildcard Routepoint Interaction
	Inconsistent Address Type of ModifiedCalledAddress When a Call Is Made to a Hunt Pilot

	Caveats for Release 7.0.1
	Inconsistency in getModifiedCallingAddress()
	Conference Behavior for Selected and Active Calls
	Change in GlobalizedCallingParty Behavior

	Caveats for Release 6.0.1
	Call History Might Get Lost When AAR Routes Over QSIG Trunk
	Different Event Order If Consult Call Initiated on SIP Device

	Caveats for Release 5.0
	SRTP Support
	Partition Support
	TLS Security
	CiscoFeatureReason
	Unicode Issue in Calls Involving SIP Trunks
	Join Across Lines: Conference Two or More Addresses on Same Terminal
	JTAPI Exposes Incorrect Information with getCallingAddress() and getCalledAddress()

	Caveats for Release 4.1
	FAC-CMC
	setConferenceController
	Interval During DTMF Digits
	Shared Lines Support
	CP Requires Previous Calls on the Device to Be in Connected Call State
	CallInfo for Calls on QSIG Trunk

	Caveats for 4.0
	Extra Connection with Wild Card DN
	CallInfo in Barge Scenario
	CallInfo Issues When Caller Redirects Call
	Translation Pattern and Presentation Indication Interaction
	Extra TermConnHeld Events
	Transfer and Conference Interaction
	Dropping a Call on Shared Lines
	Barge Call
	Null lastRedirectingAddress
	Devices Configured with Same CLI
	Current Called Address

	Deprecated API
	Deprecated Interfaces
	Deprecated Fields
	Deprecated Methods

