
Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
First Published: 2019-07-20

Last Modified: 2023-09-11

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE.
EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at:
http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found
here http://www.cisco.com/c/en/us/products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any
such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature
roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based
on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language
that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 2019–2020 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/softwareterms
http://www.cisco.com/go/warranty
http://www.cisco.com/c/en/us/products/us-fcc-notice.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Preface xxiP R E F A C E

Audience xxi

Document Conventions xxi

Related Documentation for Cisco Nexus 9000 Series Switches xxii

Documentation Feedback xxii

Communications, Services, and Additional Information xxii

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Platform Support for Programmability Features 5C H A P T E R 2

Platform Support for Programmability Features 5

Overview 9C H A P T E R 3

Programmability Overview 9

Supported Platforms 10

Standard Network Manageability Features 10

Advanced Automation Features 10

Power On Auto Provisioning Support 10

XMPP Support 10

Chef and Puppet Integration 11

OpenDayLight Integration and OpenFlow Support 11

Programmability Support 11

NX-API Support 12

Python Scripting 12

Tcl Scripting 12

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
iii

Broadcom Shell 12

Bash 12

Bash Shell Access and Linux Container Support 12

Guest Shell 12

Container Tracker Support 14

Perl Modules 14

Shells and Scripting 17P A R T I

Bash 19C H A P T E R 4

About Bash 19

Guidelines and Limitations 19

Accessing Bash 20

Escalate Privileges to Root 21

Examples of Bash Commands 23

Displaying System Statistics 23

Running Bash from CLI 24

Managing Feature RPMs 24

RPM Installation Prerequisites 24

Installing Feature RPMs from Bash 24

Upgrading Feature RPMs 25

Downgrading a Feature RPM 26

Erasing a Feature RPM 26

Support for DME Modularity 27

Installing the DME RPMs 27

Verifying the Installed RPM 29

Querying for the RPM in the Local Repo 30

Downgrading Between Versions of DME RPM 30

Downgrading to the Base RPM 33

Managing Patch RPMs 35

RPM Installation Prerequisites 35

Adding Patch RPMs from Bash 35

Activating a Patch RPM 37

Committing a Patch RPM 38

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
iv

Contents

Deactivating a Patch RPM 39

Removing a Patch RPM 41

Persistently Daemonizing an SDK- or ISO-built Third Party Process 42

Persistently Starting Your Application from the Native Bash Shell 42

Synchronize Files from Active Bootflash to Standby Bootflash 43

Copy Through Kstack 44

An Example Application in the Native Bash Shell 45

Guest Shell 47C H A P T E R 5

About the Guest Shell 47

Guidelines and Limitations for Guestshell 48

Accessing the Guest Shell 53

Resources Used for the Guest Shell 54

Capabilities in the Guestshell 54

NX-OS CLI in the Guest Shell 55

Network Access in Guest Shell 55

Access to Bootflash in Guest Shell 57

Python in Guest Shell 58

Python 3 in Guest Shell versions up to 2.10 (CentOS 7) 58

Installing RPMs in the Guest Shell 61

Security Posture for Virtual ServicesGuest Shell 62

Kernel Vulnerability Patches 63

ASLR and X-Space Support 63

Namespace Isolation 63

Root-User Restrictions 64

Resource Management 65

Guest File System Access Restrictions 65

Managing the Guest Shell 65

Disabling the Guest Shell 69

Destroying the Guest Shell 70

Enabling the Guest Shell 70

Replicating the Guest Shell 72

Exporting Guest Shell rootfs 72

Importing Guest Shell rootfs 72

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
v

Contents

Importing YAML File 74

show guestshell Command 77

Verifying Virtual Service and Guest Shell Information 78

Persistently Starting Your Application From the Guest Shell 79

Procedure for Persistently Starting Your Application from the Guest Shell 80

An Example Application in the Guest Shell 80

Troubleshooting Guest Shell Issues 81

Broadcom Shell 83C H A P T E R 6

About the Broadcom Shell 83

Guidelines and Limitations 83

Accessing the Broadcom Shell (bcm-shell) 83

Accessing bcm-shell with the CLI API 83

Accessing the Native bcm-shell on the Fabric Module 84

Accessing the bcm-shell on the Line Card 85

Python API 87C H A P T E R 7

About the Python API 87

Using Python 87

Cisco Python Package 88

Using the CLI Command APIs 89

Invoking the Python Interpreter from the CLI 90

Display Formats 91

Non-Interactive Python 92

Running Scripts with Embedded Event Manager 93

Python Integration with Cisco NX-OS Network Interfaces 94

Cisco NX-OS Security with Python 95

Examples of Security and User Authority 95

Example of Running Script with Scheduler 96

Scripting with Tcl 99C H A P T E R 8

About Tcl 99

Guidelines and Limitations 99

Tclsh Command Help 99

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
vi

Contents

Tclsh Command History 100

Tclsh Tab Completion 100

Tclsh CLI Command 100

Tclsh Command Separation 101

Tcl Variables 101

Tclquit 101

Tclsh Security 101

Running the Tclsh Command 102

Navigating Cisco NX-OS Modes from the Tclsh Command 103

Tcl References 104

iPXE 105C H A P T E R 9

About iPXE 105

Netboot Requirements 106

Guidelines and Limitations for iPXE 106

Boot Mode Configuration 107

Verifying the Boot Order Configuration 108

Kernel Stack 109C H A P T E R 1 0

About Kernel Stack 109

Guidelines and Limitations 109

Changing the Port Range 110

About VXLAN with kstack 111

Setting Up VXLAN for kstack 111

Troubleshooting VXLAN with kstack 111

Netdevice Property Changes 112

Applications 115P A R T I I

Third-Party Applications 117C H A P T E R 1 1

About Third-Party Applications 117

Guidelines and Limitations 117

Installing Third-Party Native RPMs/Packages 118

Installing Signed RPM 119

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
vii

Contents

Checking a Signed RPM 119

Installing Signed RPMs by Manually Importing Key 120

Installing Signed Third-Party RPMs by Importing Keys Automatically 122

Adding Signed RPM into Repo 124

Persistent Third-Party RPMs 125

Installing RPM from VSH 125

Package Addition 125

Package Activation 126

Deactivating Packages 127

Removing Packages 127

Displaying Installed Packages 128

Displaying Detail Logs 128

Upgrading a Package 128

Downgrading a Package 129

Third-Party Applications 129

NX-OS 129

DevOps Configuration Management Tools 129

V9K 130

Automation Tool Educational Content 130

collectd 130

Ganglia 130

Iperf 130

LLDP 130

Nagios 131

OpenSSH 131

Quagga 131

Splunk 131

tcollector 131

tcpdump 132

TShark 132

Ansible 133C H A P T E R 1 2

Prerequisites 133

About Ansible 133

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
viii

Contents

Cisco Ansible Module 133

Puppet Agent 135C H A P T E R 1 3

About Puppet 135

Prerequisites 135

Puppet Agent NX-OS Environment 136

ciscopuppet Module 136

SaltStack 137C H A P T E R 1 4

About SaltStack 137

About NX-OS and SaltStack 138

Guidelines and Limitations 138

Cisco NX-OS Environment for SaltStack 138

Enabling NX-API for SaltStack 139

Installing SaltStack for NX-OS 139

Using Chef Client with Cisco NX-OS 141C H A P T E R 1 5

About Chef 141

Prerequisites 141

Chef Client NX-OS Environment 142

cisco-cookbook 142

Nexus Application Development - Yocto 145C H A P T E R 1 6

About Yocto 145

Installing Yocto 145

Nexus Application Development - SDK 149C H A P T E R 1 7

About the Cisco SDK 149

Installing the SDK 149

Procedure for Installation and Environment Initialization 150

Using the SDK to Build Applications 151

Using RPM to Package an Application 152

Creating an RPM Build Environment 153

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
ix

Contents

Using General RPM Build Procedure 153

Example to Build RPM for collectd with No Optional Plug-Ins 154

Example to Build RPM for collectd with Optional Curl Plug-In 155

NX-SDK 157C H A P T E R 1 8

About the NX-SDK 157

Considerations for Go Bindings 158

About On-Box (Local) Applications 158

Default Docker Images 158

Guidelines and Limitations for NX-SDK 159

About NX-SDK 2.0 160

About NX-SDK 2.5 160

About Remote Applications 160

NX-SDK Security 161

Security Profiles for NX SDK 2.0 161

Using Docker with Cisco NX-OS 163C H A P T E R 1 9

About Docker with Cisco NX-OS 163

Guidelines and Limitations for Docker 163

Prerequisites for Setting Up Docker Containers Within Cisco NX-OS 164

Starting the Docker Daemon 164

Configure Docker to Start Automatically 165

Starting Docker Containers: Host Networking Model 166

Starting Docker Containers: Bridged Networking Model 167

Mounting the bootflash and volatile Partitions in the Docker Container 168

Enabling Docker Daemon Persistence on Enhanced ISSU Switchover 168

Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover 169

Resizing the Docker Storage Backend 170

Stopping the Docker Daemon 172

Docker Container Security 173

Securing Docker Containers With User namespace Isolation 173

Moving the cgroup Partition 174

Adding Nodes to a Kubernetes Cluster 174

Docker Troubleshooting 177

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
x

Contents

Docker Fails to Start 177

Docker Fails to Start Due to Insufficient Storage 177

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message) 178

Failure to Pull Images from Docker Hub (Client Timeout Error Message) 178

Docker Daemon or Containers Not Running On Switch Reload or Switchover 179

Resizing of Docker Storage Backend Fails 179

Docker Container Doesn't Receive Incoming Traffic On a Port 180

Unable to See Data Port And/Or Management Interfaces in Docker Container 180

General Troubleshooting Tips 180

NX-API 181P A R T I I I

NX-API CLI 183C H A P T E R 2 0

About NX-API CLI 183

Guidelines and Limitations 183

Transport 183

Message Format 184

Security 184

Using NX-API CLI 185

Escalate Privileges to Root on NX-API 187

NX-API Management Commands 188

Working With Interactive Commands Using NX-API 191

NX-API Client Authentication 191

NX-API Client Basic Authentication 191

NX-API Client Certificate Authentication 191

Guidelines and Limitations 192

NX-API Client Certificate Authentication Prerequisites 193

Configuring NX-API Client Certificate Authentication 193

Example Python Scripts for Certificate Authentication 194

Example cURL Certificate Request 195

Validating Certificate Authentication 196

NX-API Request Elements 197

NX-API Response Elements 202

Restricting Access to NX-API 203

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xi

Contents

Updating an iptable 203

Making an Iptable Persistent Across Reloads 205

Table of NX-API Response Codes 206

JSON and XML Structured Output 208

About JSON (JavaScript Object Notation) 209

Examples of XML and JSON Output 209

Sample NX-API Scripts 218

NX-API REST 219C H A P T E R 2 1

About NX-API REST 219

DME Config Replace Through REST 220

About DME Full Config Replace Through REST Put 220

Guidelines and Limitations 220

Replacing the System-Level Configuration Through REST PUT 221

Replacing Feature-Level Config Through REST PUT 221

Replacing Property-Level Config Through REST POST 222

Troubleshooting Config Replace for REST PUT 223

NX-API Developer Sandbox 225C H A P T E R 2 2

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2) 225

About the NX-API Developer Sandbox 225

Guidelines and Restrictions for the Developer Sandbox 226

Guidelines and Limitations 226

Configuring the Message Format and Command Type 228

Using the Developer Sandbox 230

Using the Developer Sandbox to Convert CLI Commands to REST Payloads 230

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands 232

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later 237

About the NX-API Developer Sandbox 237

Guidelines and Limitations 238

Configuring the Message Format and Input Type 240

Using the Developer Sandbox 243

Using the Developer Sandbox to Convert CLI Commands to REST Payloads 243

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands 246

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xii

Contents

Using the Developer Sandbox to Convert from RESTCONF to json or XML 251

Model-Driven Programmability 255P A R T I V

Infrastructure Overview 257C H A P T E R 2 3

About Model-Driven Programmability 257

About the Programmable Interface Infrastructure 257

Managing Components 261C H A P T E R 2 4

About the Component RPM Packages 261

Preparing For Installation 263

Downloading Components from the Cisco Artifactory 264

Installing RPM Packages 265

Installing the Programmable Interface Base And Common Model Component RPM Packages 265

OpenConfig YANG 267C H A P T E R 2 5

About OpenConfig YANG 267

Guidelines and Limitations for OpenConfig YANG 267

Understanding Deletion of BGP Routing Instance 276

Verifying YANG 277

NETCONF Agent 279C H A P T E R 2 6

About the NETCONF Agent 279

Guidelines and Limitations for NETCONF 280

Configuring the NETCONF Agent 282

Configuring the NETCONF Agent Over SSH for Cisco NX-OS 9.3(5) and Later 282

Configuring the NETCONF Agent for Cisco NX-OS 9.3(4) and Earlier 283

Establishing a NETCONF Session 283

NETCONF Read and Write Configuration 285

NETCONF Notifications 293

About NETCONF Notifications 293

Capabilities Exchange 293

Event Stream Discovery 294

Creating Subscriptions 294

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xiii

Contents

Receiving Notifications 295

Terminating Subscriptions 296

NETCONF Examples 296

Troubleshooting the NETCONF Agent 301

Converting CLI Commands to Network Configuration Format 303C H A P T E R 2 7

Information About XMLIN 303

Licensing Requirements for XMLIN 303

Installing and Using the XMLIN Tool 304

Converting Show Command Output to XML 304

Configuration Examples for XMLIN 305

RESTConf Agent 309C H A P T E R 2 8

About the RESTCONF Agent 309

Guidelines and Limitations 310

Using the RESTCONF Agent 310

Troubleshooting the RESTCONF Agent 311

Ephemeral Data 312

About Ephemeral Data in RESTCONF 312

RESTCONF Ephemeral Data Example 313

gRPC Agent 315C H A P T E R 2 9

gRPC Agent 315

About the gRPC Agent 315

Guidelines and Limitations for gRPC 316

Configuring the gRPC Agent for Cisco NX-OS Release 9.3(3) and Later 317

Configuring gRPC 319

Configuring the gRPC Agent for Cisco NX-OS Release 9.3(2) and Earlier 320

Using the gRPC Agent 322

Troubleshooting the gRPC Agent 324

gRPC Protobuf File 324

Ephemeral Data 331

About Ephemeral Data in gRPC 331

gRPC Ephemeral Data Example 331

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xiv

Contents

gNMI - gRPC Network Management Interface 337C H A P T E R 3 0

About gNMI 337

VRF Contexts for gNMI 338

gNMI Subscribe RPC 338

Guidelines and Limitations for gNMI 340

Configuring gNMI 341

gNMI - gRPC Network Management Interface 343

Configuring Server Certificate 343

Generating Key/Certificate Examples 344

Generating and Configuring Key/Certificate Examples for Cisco NX-OS Release 9.3(2) and Earlier 344

Examples for Generating and Configuring Key/Certificate for Cisco NX-OS Release 9.3(3) and Later 346

Verifying gNMI 347

Clients 353

Sample DME Subscription - PROTO Encoding 353

Capabilities 354

About Capabilities 354

Guidelines and Limitations for Capabilities 355

Example Client Output for Capabilities 356

Get 358

About Get 358

Guidelines and Limitations for Get 358

Set 359

About Set 359

Guidelines and Limitations for Set 360

Subscribe 360

Guidelines and Limitations for Subscribe 360

gNMI Payload 362

Streaming Syslog 364

About Streaming Syslog for gNMI 364

Guidelines and Limitations for Streaming Syslog - gNMI 364

Syslog Native YANG Model 365

Subscribe Request Example 365

Sample PROTO Output 366

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xv

Contents

Sample JSON Output 369

Troubleshooting 370

Gathering TM-Trace Logs 370

Gathering MTX-Internal Logs 371

Dynamic Logger 375C H A P T E R 3 1

Prerequisites 375

Reference 375

Model Driven Telemetry 383C H A P T E R 3 2

About Telemetry 383

Telemetry Components and Process 383

High Availability of the Telemetry Process 385

Licensing Requirements for Telemetry 385

Guidelines and Limitations 385

Configuring Telemetry Using the CLI 391

Configuring Telemetry Using the NX-OS CLI 391

Configuring Cadence for YANG Paths 397

Configuration Examples for Telemetry Using the CLI 399

Displaying Telemetry Configuration and Statistics 403

Displaying Telemetry Log and Trace Information 413

Configuring Telemetry Using the NX-API 414

Configuring Telemetry Using the NX-API 414

Configuration Example for Telemetry Using the NX-API 424

Telemetry Model in the DME 427

Cloud Scale Software Telemetry 428

About Cloud Scale Software Telemetry 428

Cloud Scale Software Telemetry Message Formats 429

Guidelines and Limitations for Cloud Scale Software Telemetry 429

Telemetry Path Labels 430

About Telemetry Path Labels 430

Polling for Data or Receiving Events 430

Guidelines and Limitations for Path Labels 431

Configuring the Interface Path to Poll for Data or Events 431

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xvi

Contents

Configuring the Interface Path for Non-Zero Counters 433

Configuring the Interface Path for Operational Speeds 434

Configuring the Interface Path with Multiple Queries 436

Configuring the Environment Path to Poll for Data or Events 437

Configuring the Resources Path to Poll for Events or Data 439

Configuring the VXLAN Path to Poll for Events or Data 440

Verifying the Path Label Configuration 441

Displaying Path Label Information 442

Native Data Source Paths 444

About Native Data Source Paths 444

Telemetry Data Streamed for Native Data Source Paths 445

Guidelines and Limitations 447

Configuring the Native Data Source Path for Routing Information 448

Configuring the Native Data Source Path for MAC Information 449

Configuring the Native Data Source Path for All MAC Information 451

Configuring the Native Data Path for IP Adjacencies 453

Displaying Native Data Source Path Information 455

Streaming Syslog 456

About Streaming Syslog for Telemetry 456

Configuring the YANG Data Source Path for Syslog Information 456

Telemetry Data Streamed for Syslog Path 458

Sample JSON Output 459

Sample KVGPB Output 460

Additional References 462

Related Documents 462

XML Management Interface 463P A R T V

XML Management Interface 465C H A P T E R 3 3

About the XML Management Interface 465

Information About the XML Management Interface 465

NETCONF Layers 465

SSH xmlagent 466

Licensing Requirements for the XML Management Interface 466

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xvii

Contents

Prerequisites to Using the XML Management Interface 467

Using the XML Management Interface 467

Configuring the SSH and the XML Server Options Through the CLI 467

Starting an SSHv2 Session 468

Sending a Hello Message 469

Obtaining XML Schema Definition (XSD) Files 469

Sending an XML Document to the XML Server 470

Creating NETCONF XML Instances 470

RPC Request Tag 471

NETCONF Operations Tags 472

Device Tags 473

Extended NETCONF Operations 475

NETCONF Replies 479

RPC Response Tag 479

Interpreting the Tags Encapsulated in the data Tag 479

Information About Example XML Instances 480

Example XML Instances 480

NETCONF Close Session Instance 481

NETCONF Kill Session Instance 481

NETCONF Copy Config Instance 482

NETCONF Edit Config Instance 482

NETCONF Get Config Instance 484

NETCONF Lock Instance 484

NETCONF Unlock Instance 485

NETCONF Commit Instance: Candidate Configuration Capability 486

NETCONF Confirmed Commit Instance 486

NETCONF Rollback-On-Error Instance 486

NETCONF Validate Capability Instance 487

Additional References 487

Streaming Telemetry Sources 489A P P E N D I X A

About Streaming Telemetry 489

Guidelines and Limitations 489

Data Available for Telemetry 489

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xviii

Contents

WebSocket Subscription 491A P P E N D I X B

WebSocket Subscription 491

Programmability RFCs 493A P P E N D I X C

Programmability RFCs 493

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xix

Contents

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xx

Contents

Preface

This preface includes the following sections:

• Audience, on page xxi
• Document Conventions, on page xxi
• Related Documentation for Cisco Nexus 9000 Series Switches, on page xxii
• Documentation Feedback, on page xxii
• Communications, Services, and Additional Information, on page xxii

Audience
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which you supply the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments that are separated by
a vertical bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments that are separated by a vertical
bar indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xxi

DescriptionConvention

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string includes the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information that you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

Related Documentation for Cisco Nexus 9000 Series Switches
The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL:

http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to nexus9k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xxii

Preface
Related Documentation for Cisco Nexus 9000 Series Switches

http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/site/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xxiii

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
xxiv

Preface
Preface

C H A P T E R 1
New and Changed Information

This chapter provides release-specific information for each new and changed feature in this release of the
Cisco Nexus 9000 Series NX-OS Programmability Guide, 9.3(x).

• New and Changed Information, on page 1

New and Changed Information
This table summarizes the new and changed features for theCisco Nexus 9000 Series NX-OS Programmability
Guide, Release 9.3(x), and their corresponding sections.

Table 1: New and Changed Features

Where DocumentedChanged in ReleaseDescriptionFeature

Configuring Telemetry Using
the NX-OS CLI, on page 391

9.3(5)Added the alias keyword for
the path CLI command.

Alias Option for
Sensor Path for
Model-Driven
Telemetry

gNMI - gRPC Network
Management Interface, on page
337

9.3(5)Added the Get and Set
RPCs.

gNMI Get/Set

Configuring the NETCONF
Agent, on page 282

9.3(5)Documents the NETCONF
configuration procedure
beginning with Cisco
NX-OS Release 9.3(5)

NETCONF/gRPC

Guidelines and Limitations for
NETCONF, on page 280

9.3(5)Support added for both
Cisco Device YANG and
OpenConfig models in
NETCONF notifications.

NETCONF
OpenConfig
Notifications

About the PythonAPI , on page
87

9.3(5)Python 3 support added.Python 3

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
1

Where DocumentedChanged in ReleaseDescriptionFeature

Configuring Telemetry Using
the NX-OS CLI, on page 391

9.3(5)Added configuration for a
single telemetry DME
stream.

YANG Support for
Multiple Keys

NX-API Management
Commands, on page 188

9.3(5)Enables you to configure the
amount of time before an
idle NX-API session is
invalidated.

nxapi idle-timeout
<timeout>

Table of NX-API Response
Codes, on page 206

9.3(5)The following response
codes were added:

• INVALID_REMOTE_IP_ERR

• MAX_SESSIONS_ERR

2 error response codes
are added.

Guidelines and Limitations, on
page 226

9.3(5Details about enabling
features to access commands
were added to the developer
sandbox guidelines and
limitations section.

NX-API developer
sandbox

Guidelines and Limitations for
OpenConfig YANG, on page
267

9.3(5New limitations were added.OC YANG

Programmability RFCs, on
page 493

9.3(x)Added list of supported
RFCs.

RFCs

Guidelines and Limitations for
NETCONF, on page 280

9.3(3)Documented thatNETCONF
is compliant with RFC 6241.

NETCONFRFC6241

NX-API Client Certificate
Authentication, on page 191

9.3(3)Support for client-initiated
certificate-based
authentication is added, in
which both the NX-API
client and server are
authenticated through an
X509 SSL certificate that is
assigned through a valid
certificate authority (CA).

NX-API Client
Authentication

Model Driven Telemetry, on
page 383

9.3(3)Added support for Cisco
Nexus 9300-GX platform
switches.

Software Telemetry

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
2

New and Changed Information
New and Changed Information

Where DocumentedChanged in ReleaseDescriptionFeature

About Streaming Syslog for
gNMI, on page 364

9.3(3)Support added for Streaming
Syslog and Filtered Syslog
in the NX-SDK, gNMI –
gRPCNetworkManagement
Interface, andModel Driven
Telemetry chapters.

Streaming Syslog and
Filtered Syslog

9.3(3)Subscribe supports the
OpenConfig model

Telemetry/gNMI
OpenConfig

9.3(3)Subscribe supports the
OpenConfig model.

Telemetry/gNMI OC
Fast Path

Configuring the Native Data
Source Path for All MAC
Information, on page 451

9.3(2)Added procedure with path
mac-all command.

Native Data Source

gNMI - gRPC Network
Management Interface, on page
337

9.3(2)Updated show command
outputs.

Telemetry
Multi-Threading

NX-SDK, on page 1579.3(1)Added support for NX-SDK
2.0, which includes support
for remote (off-box)
applications and enhanced
security.

NX-SDK

SaltStack, on page 1379.3(1)Added support for SaltStack
automation and integration.

SaltStack

About Cloud Scale Software
Telemetry, on page 428

9.3(1)Increased performance of
data telemetry for Cisco's
CloudScale family of
switches.

CloudScale Telemetry

Copy Through Kstack, on page
44

9.3(1)Enhanced the speed and
operability of the switch's
copy command.

NX-OS copy
commands

JSON and XML Structured
Output, on page 208

9.3(1)Added JSON Native and
JSON Native Pretty support
for NX-OS show
commands.

NX-OS show
commands

NX-API CLI, on page 1839.3(1)Enhanced messages and
chunking functionality.

NX-API Chunking

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
3

New and Changed Information
New and Changed Information

Where DocumentedChanged in ReleaseDescriptionFeature

About DME Full Config
Replace Through REST Put, on
page 220

9.3(1)Added REST support for
replacing the switch
configuration at the tree,
subtree, and leaf level of the
DME.

REST API

Support for DME Modularity,
on page 27

9.3(1)Addedmodularity to support
non-intrusive upgrade or
downgrade of DME RPMs.

Modular DME
Infrastructure

About Telemetry Path Labels,
on page 430

Model Driven Telemetry, on
page 383

9.3(1)Added Path Labels, which
consolidate multiple queries
for telemetry path data

Added support for setting or
changing the node ID string
for telemetry messages

Model Driven
Telemetry, ease of use
enhancements

About Native Data Source
Paths, on page 444

9.3(1)Added support for
applications to stream
telemetry data without the
restriction of a specific type
of infrastructure or database.

Model-Driven
Telemetry, Native
Data Source Paths

Not applicableNot applicableFirst 9.3(x) releaseNo updates since
Cisco NX-OS Release
9.2(x)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
4

New and Changed Information
New and Changed Information

C H A P T E R 2
Platform Support for Programmability Features

This chapter defines platform support for features that are not supported across the entire suite of Cisco Nexus
platforms.

• Platform Support for Programmability Features, on page 5

Platform Support for Programmability Features
The following tables list the supported platforms for each feature and the release in which they were first
introduced. See the Release Notes for details about the platforms supported in the initial product release.

Bash Shell

Return to About Bash, on page 19.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

Cisco NX-OS 9.3(1)Cisco Nexus 9000 Series
switches

DME Modularity

Chef Client

Return to Using Chef Client with Cisco NX-OS, on page 141.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

N9K-C92348GCCisco NX-OS 7.0(3)I2(5)Cisco Nexus 9300
platform switches

Cisco Nexus 9500
platform switches and line
cards

Chef Agent

Model-Driven Telemetry

Return to Model Driven Telemetry.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
5

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

N9K-C92348GCCisco NX-OS 9.3(5)Cisco Nexus 9200,
9300-EX,
9300-FX/FX2/FXP
platform switches

Cisco Nexus 9500
platform switches with
EX/FX line cards

Alias Option for Sensor
Path

N9K-92348GCCisco NX-OS 7.0(3)I5(1)Cisco Nexus 9000
platform switches

Software Telemetry
(dial-out)

NETCONF Agent

Return to NETCONF Agent.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

N9K-C92348GCCisco Nexus 9000
platform switches

NETCONF Support

NX-API REST

Return to NX-API REST, on page 219.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

N9K-C92348GCCisco NX-OS 9.3(1)Cisco Nexus 9000
platform switches

DME Config Replace

N9K-C92348GCCisco NX-OS 9.3(1)Cisco Nexus 9000
platform switches

DME Support

Python API

Return to Python API, on page 87.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

Cisco NX-OS 9.3(5)Cisco Nexus 9000 Series
switches

Python 3

Puppet Agent

Return to Puppet Agent, on page 135.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
6

Platform Support for Programmability Features
Platform Support for Programmability Features

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

N9K-C92348GCCisco NX-OS 7.0(3)I2(5)Cisco Nexus 9300 and
9500 platform switches

Puppet Agent

SaltStack

Return to SaltStack, on page 137.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

Cisco NX-OS 9.3(1)Cisco Nexus 9000 Series
switches

SaltStack

TCL Scripting

Return to Scripting with Tcl, on page 99.

Platform ExceptionsFirst Supported ReleaseSupported Platforms or
Line Cards

Feature

-Cisco Nexus 9000 Series
switches

TCL Shell

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
7

Platform Support for Programmability Features
Platform Support for Programmability Features

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
8

Platform Support for Programmability Features
Platform Support for Programmability Features

C H A P T E R 3
Overview

• Programmability Overview, on page 9
• Supported Platforms, on page 10
• Standard Network Manageability Features, on page 10
• Advanced Automation Features, on page 10
• Programmability Support, on page 11

Programmability Overview
The Cisco NX-OS software running on the Cisco Nexus 9000 Series switches is as follows:

• Resilient

Provides critical business-class availability.

• Modular

Has extensions that accommodate business needs.

• Highly Programmatic

Allows for rapid automation and orchestration through Application Programming Interfaces (APIs).

• Secure

Protects and preserves data and operations.

• Flexible

Integrates and enables new technologies.

• Scalable

Accommodates and grows with the business and its requirements.

• Easy to use

Reduces the amount of learning required, simplifies deployment, and provides ease of manageability.

With the Cisco NX-OS operating system, the device functions in the unified fabric mode to provide network
connectivity with programmatic automation functions.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
9

Cisco NX-OS contains Open Source Software (OSS) and commercial technologies that provide automation,
orchestration, programmability, monitoring, and compliance support.

For more information on Open NX-OS, see https://developer.cisco.com/site/nx-os/.

Supported Platforms
Starting with Cisco NX-OS release 7.0(3)I7(1), use the Nexus Switch Platform Support Matrix to know from
which Cisco NX-OS releases various Cisco Nexus 9000 and 3000 switches support a selected feature.

Standard Network Manageability Features
• SNMP (V1, V2, V3)

• Syslog

• RMON

• NETCONF

• CLI and CLI scripting

Advanced Automation Features
The enhanced Cisco NX-OS on the device supports automation. The platform includes support for Power On
Auto Provisioning (POAP).

The enhanced Cisco NX-OS on the device supports automation. The platform includes the features that support
automation.

Power On Auto Provisioning Support
Power On Auto Provisioning (POAP) automates the process of installing and upgrading software images and
installing configuration files on switches that are being deployed in the network for the first time. It reduces
the manual tasks that are required to scale the network capacity.

When a switch with the POAP feature boots and does not find the startup configuration, the device enters
POAP mode. It locates a DHCP server and bootstraps itself with its interface IP address, gateway, and DNS
server IP addresses. The device obtains the IP address of a TFTP server or the URL of an HTTP server and
downloads a configuration script that enables the device to download and install the appropriate software
image and configuration file.

XMPP Support
The enhanced NX-OS on Nexus 9000 family of switches integrates an XMPP client into the operating system.
This allows a Nexus 9000 switch to be managed and configured with XMPP enabled chat clients. (Chat clients
are commonly used for communication among users). The XMPP support enables certain useful capabilities:

• Group configuration

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
10

Overview
Supported Platforms

https://developer.cisco.com/site/nx-os/
https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

When you add a set of Nexus 9000 devices into a chat group, you can manage a set of Nexus 9000
switches as a group. This is useful to push certain common configurations to a set of Nexus 9000 devices,
instead of configuring the devices individually.

• Single point of management

The XMPP server can act as a single point of management.When you authenticate against a single XMPP
server, you gain access to all the devices registered on the server.

• Security

The XMPP interface supports role-based access control. It ensures that users execute only the commands
they are authorized for.

• Automation

XMPP is a standards-based interface. The interface allows scripts and management tools to automate
the management of Nexus 9000 devices.

Chef and Puppet Integration
Chef and Puppet are two intent-based infrastructure automation frameworks.

Chef allows you to define your intent with a recipe. A recipe is a reusable set of configuration or management
tasks. Chef allows the recipe to be deployed on numerous devices. When deployed on a switch, a recipe
translates into a network configuration or a set of commands for gathering statistics and analytics information.
A recipe provides a way for automated configuration and management of a switch.

Puppet provides a similar intent definition construct that is called a manifest. When deployed on a switch, a
manifest translates into a network configuration or a set of commands for gathering information from the
switch.

The switch supports both the Puppet and Chef frameworks. The Puppet client and the Chef client are both
integrated into the enhanced Cisco NX-OS on the switch.

OpenDayLight Integration and OpenFlow Support
Cisco Nexus switches support integration with the open source OpenDayLight project. OpenDayLight helps
meet some of the requirements of operators and application developers for infrastructure:

• Real-time orchestration and operation of integrated virtual compute, application, and network.

• Simple interface to the network. An underlying detail such as a router, switch, or topology can be made
abstract and more simple.

For OpenDayLight orchestration of Cisco Nexus switches, support is also available for other programmatic
interfaces, such as NETCONF, that OpenDaylight can use in the southbound flow.

Cisco Nexus switches also support OpenFlow to enable use cases such as network TAP aggregation.

Programmability Support
Cisco NX-OS software on switches support several capabilities to aid programmability.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
11

Overview
Chef and Puppet Integration

NX-API Support
Cisco NX-API allows for HTTP-based programmatic access to the switches. This support is delivered by
NX-API, an open source webserver. NX-API provides the configuration and management capabilities of the
Cisco NX-OS CLI with web-based APIs. The device can be set to publish the output of the API calls in XML
or JSON format. This API enables rapid development on the switches.

Python Scripting
Cisco NX-OS supports Python v2.7.5 in both interactive and noninteractive (script) modes.

Beginning in Cisco NX-OS Release 9.3(5), Python 3 is also supported.

The Python scripting capability on the devices provides programmatic access to the switch CLI to perform
various tasks, and to Power-On Auto Provisioning (POAP) and Embedded Event Manager (EEM) actions.
Responses to Python calls that invoke the Cisco NX-OS CLI return text or JSON output.

The Python interpreter is included in the Cisco NX-OS software.

Tcl Scripting
Cisco Nexus 9000 Series switches support Tcl (Tool Command Language). Tcl is a scripting language that
enables greater flexibility with CLI commands on the switch. You can use Tcl to extract certain values in the
output of a show command, perform switch configurations, run Cisco NX-OS commands in a loop, or define
EEM policies in a script.

Broadcom Shell
The Cisco Nexus 9000 Series switch front panel and fabric module line cards contain Broadcom Network
Forwarding Engine (NFE). You can access the Broadcom command-line shell (bcm-shell) from these NFEs.

Bash
Cisco Nexus switches support direct Bourne-Again Shell (Bash) access. With Bash, you can access the
underlying Linux system on the device and manage the system.

Bash Shell Access and Linux Container Support
Cisco Nexus switches support direct Linux shell access and Linux containers. With Linux shell access, you
can access the underlying Linux system on the switch and manage the underlying system. You can also use
Linux containers to securely install your own software and to enhance the capabilities of the Cisco Nexus
switch. For example, you can install bare-metal provisioning tools like Cobbler on a Cisco Nexus switch to
enable automatic provisioning of bare-metal servers from the top-of-rack switch.

Guest Shell

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
12

Overview
NX-API Support

In process-hosted deployments, a virtual service execution environment (VSEE) isolates the onePK application
from core routing and switching applications that the NOS provides; the environment also isolates its contents
from other virtual services on the same host. The Application Developer can allocate specified quantities of
CPU time, memory, disk space, and other resources to any particular VSEE.

Cisco utilizes the Cisco Secure Development Lifecycle (SDLC) to develop onePK applications that run in
VSEEs on closed Cisco systems. The SDLC comprises a continuously evolving set of industry-recognized
best practices and tools (including Cisco-proprietary tools) that reduce the vulnerability footprint of
Cisco-provided applications, VSEEs, and platforms. These practices include the use of runtime checks that
ensure the integrity of Cisco-signed binaries before loading them, and the establishment of a trust domain
in which Cisco-provided onePK applications are allowed to run as trusted processes.

onePK applications in a VSEE communicate with the network element using onePK APIs that the onePK
SDK provides. A secure communications channel carries messages between the VSEE and the onePK server.
The use of the trust domain ensures the integrity of interprocess communications within the Cisco-provided
VSEE, and additional security measures protect communications between the VSEE and the Cisco host.

The Network Administrator exercises direct control over the deployment of VSEEs and applications that
interact with network elements. The duties of the Network Administrator include responsibility for verifying
the integrity and validity of application packages. Cisco provides information (such as digital signatures or
MD5 checksums) that enable Network Administrators to use standard software development tools to verify
the integrity of application packages before deploying them. In addition, the default settings of the onePK
VSEE security infrastructure allow only Cisco-signed application packages to run in process-hosted mode.
To allow the deployment of unsigned containers or those containers that signed by third parties, the Network
Administrator must take explicit action.

Because onePK allows low-level access to network elements, the Network Administrator must be very
selective about user profiles and applications that are given access to onePK.

The Cisco Nexus 9000 Series switches support a virtual service environment that runs inside a secure Linux
container (LXC). It isolates the application running in the guest shell of the virtual service environment from
other routing and switching applications that the host Cisco NX-OS provides. The environment also isolates
its contents from other virtual services on the same host. You can allocate specified quantities of CPU time,
memory, disk space, and other resources to any particular virtual service environment.

Cisco utilizes the Cisco Secure Development Lifecycle (SDLC) to develop applications that run in virtual
service environments on Cisco Nexus 9000 Series devices. The SDLC comprises a continuously evolving
set of industry-recognized best practices and tools (including Cisco-proprietary tools) that reduce the
vulnerability footprint of Cisco-provided applications, virtual service environments, and platforms. These
practices include the use of runtime checks that ensure the integrity of Cisco-signed binaries before loading
them, and the establishment of a trust domain in which Cisco-provided applications are allowed to run as
trusted processes.

Applications in a guest shell communicate with the network using APIs. A secure communications channel
carries messages between the guest shell and the device. The use of the trust domain ensures the integrity
of interprocess communications within the Cisco-provided guest shell, and additional security measures
protect communications between the guest shell and the device.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
13

Overview
Guest Shell

A network administrator controls the deployment of virtual service environments and applications that
interact with the network. The duties of a network administrator include the responsibility for verifying the
integrity and validity of application packages. Cisco provides information (such as digital signatures or MD5
checksums) that enable network administrators to use standard software development tools to verify the
integrity of application packages before deploying them. In addition, the default settings of the guest shell
security infrastructure allow only Cisco-signed application packages to run on the host. To allow the
deployment of unsigned containers or those containers that are signed by third parties, the network
administrator must take explicit action.

The Cisco Nexus 9000 Series switches support a guest shell that provides Bash access into a Linux execution
space on the host system that is decoupled from the host Cisco Nexus 9000 NX-OS software. With the guest
shell, you can add software packages and update libraries as neededwithout impacting the host system software.

Applications running in the guest shell have IP connectivity to the host system and the external network
through socket APIs.

The guest shell is implemented as a secure Linux container (LXC) and is started automatically when the host
system is started. This allows applications in the guest shell to be automatically started when the system is
started. The amount of CPU, memory, and bootflash space used for the guest shell can be tuned to balance
the resource usage between the guest shell and the host system. The guest shell mounts the system's bootflash
to allow access to files on the bootflash using Linux commands.

Container Tracker Support
Cisco NX-OS is configured to communicate with the Kubernetes API Server to understand the capabilities
of the containers behind a given switch port.

The following commands communicate with the Kubernetes API Server:

• The show containers kubernetes command obtains data from kube-apiserver using API calls over
HTTP.

• The kubernetes watch resource command uses a daemon to subscribe to requested resources and process
streaming data from kube-apiserver.

• The action assigned in the watch command is performed on pre-defined triggers. (For example, Add or
Delete of a Pod.)

Perl Modules

Beginning with Cisco NX-OS Release 9.2(2), support for the Perl modules has been added for the Cisco
Nexus 9504 and 9508 switches with -R line cards.

Note

In order to support more applications, the following Perl modules have been added:

• bytes.pm

• feature.pm

• hostname.pl

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
14

Overview
Container Tracker Support

• lib.pm

• overload.pm

• Carp.pm

• Class/Struct.pm

• Data/Dumper.pm

• DynaLoader.pm

• Exporter/Heavy.pm

• FileHandle.pm

• File/Basename.pm

• File/Glob.pm

• File/Spec.pm

• File/Spec/Unix.pm

• File/stat.pm

• Getopt/Std.pm

• IO.pm

• IO/File.pm

• IO/Handle.pm

• IO/Seekable.pm

• IO/Select.pm

• List/Util.pm

• MIME/Base64.pm

• SelectSaver.pm

• Socket.pm

• Symbol.pm

• Sys/Hostname.pm

• Time/HiRes.pm

• auto/Data/Dumper/Dumper.so

• auto/File/Glob/Glob.so

• auto/IO/IO.so

• auto/List/Util/Util.so

• auto/MIME/Base64/Base64.so

• auto/Socket/Socket.so

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
15

Overview
Perl Modules

• auto/Sys/Hostname/Hostname.so

• auto/Time/HiRes/HiRes.so

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
16

Overview
Perl Modules

P A R T I
Shells and Scripting

• Bash, on page 19
• Guest Shell, on page 47
• Broadcom Shell, on page 83
• Python API, on page 87
• Scripting with Tcl, on page 99
• iPXE, on page 105
• Kernel Stack, on page 109

C H A P T E R 4
Bash

This chapter contains the following topics:

• About Bash, on page 19
• Guidelines and Limitations, on page 19
• Accessing Bash, on page 20
• Escalate Privileges to Root, on page 21
• Examples of Bash Commands, on page 23
• Managing Feature RPMs, on page 24
• Support for DME Modularity, on page 27
• Managing Patch RPMs, on page 35
• Persistently Daemonizing an SDK- or ISO-built Third Party Process, on page 42
• Persistently Starting Your Application from the Native Bash Shell, on page 42
• Synchronize Files from Active Bootflash to Standby Bootflash, on page 43
• Copy Through Kstack, on page 44
• An Example Application in the Native Bash Shell, on page 45

About Bash
In addition to the Cisco NX-OS CLI, Cisco Nexus 30009000 Series switches support access to the
Bourne-Again SHell (Bash). Bash interprets commands that you enter or commands that are read from a shell
script. Using Bash enables access to the underlying Linux system on the device and to manage the system.

Guidelines and Limitations
The Bash shell has the following guidelines and limitations:

• When you define a link-local address for an interface, Netstack installs a /64 prefix on the net device in
the kernel.

When a new link-local address is configured on the kernel, the kernel installs a /64 route in the kernel
routing table.

If the peer box's interface is not configured with a link-local address that falls in the same /64 subnet,
the ping is not successful from the bash prompt. A Cisco NX-OS ping works fine.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
19

• The binaries in the /isan folder are meant to be run in an environment which is set up differently from
the environment of the shell that you enter by the run bash command. It is advisable not to use these
binaries from the Bash shell as the behavior within this environment isn't predictable.

• When importing Cisco Python modules, don't use Python from the Bash shell. Instead use the more recent
Python in NX-OS VSH.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, this key command can generate a SIGCONT (signal continuation) message, which can cause
the script to halt. Scripts that are halted through SIGCONTmessages require user intervention to resume
operation.

• If the show tech support command is running and you must kill it, don't use the clear tech-support
lock command. Use Ctrl+C.

The reason is that clear tech-support lock doesn't kill the background VSH session where the actual
collection of tech-support information happens. Instead, clear tech-support lock command kills only
the foreground VSH session where the show tech support CLI is called.

To correctly kill the show tech-support session, use Ctrl+C.

If you accidentally used clear tech-support lock, perform the following steps to kill the background
VSH process:

1. Enter the Bash shell.

2. Locate the VSH session (ps -l | more) for the show tech support command.

3. Kill the PID associated with the VSH for the show tech support session, for example, kill -9 PID.

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
20

Shells and Scripting
Accessing Bash

on the switch

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell

switch# run?
run Execute/run program
run-script Run shell scripts

switch# run bash?
bash Linux-bash

switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$

You can also execute Bash commands with run bash command.

For instance, you can run whoami using run bash command:
run bash whoami

You can also run Bash by configuring the user shelltype:
username foo shelltype bash

This command puts you directly into the Bash shell upon login. This does not require feature bash-shell to
be enabled.

Note

Escalate Privileges to Root
The privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• admin privilege user (network-admin / vdc-admin) is equivalent of Linux root privilege user in NX-OS

• Only an authenticated admin user can escalate privileges to root, and password is not required for an
authenticated admin privilege user *

• Bash must be enabled before escalating privileges.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
21

Shells and Scripting
Escalate Privileges to Root

• SSH to the switch using root username through a non-management interface will default to Linux Bash
shell-type access for the root user. Type vsh to return to NX-OS shell access.

* From Cisco NX-OS Release 9.2(3) onward, if password prompting is required for some use case even for
admin (user with role network-admin) privilege user, enter the system security hardening sudo
prompt-password command.

NX-OS network administrator users must escalate to root to pass configuration commands to the NX-OS
VSH if:

• The NX-OS user has a shell-type Bash and logs into the switch with a shell-type Bash.

• The NX-OS user that logged into the switch in Bash continues to use Bash on the switch.

Run sudo su 'vsh -c "<configuration commands>"' or sudo bash -c 'vsh -c "<configuration commands>"'.

The following example demonstrates with network administrator user MyUser with a default shell type Bash
using sudo to pass configuration commands to the NX-OS:
ssh -l MyUser 1.2.3.4
-bash-4.2$ sudo vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show
interface eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

The following example demonstrates with network administrator user MyUser with default shell type Bash
entering the NX-OS and then running Bash on the NX-OS:
ssh -l MyUser 1.2.3.4
-bash-4.2$ vsh -h
Cisco NX-OS Software
Copyright (c) 2002-2016, Cisco Systems, Inc. All rights reserved.
Nexus 9000v software ("Nexus 9000v Software") and related documentation,
files or other reference materials ("Documentation") are
the proprietary property and confidential information of Cisco
Systems, Inc. ("Cisco") and are protected, without limitation,
pursuant to United States and International copyright and trademark
laws in the applicable jurisdiction which provide civil and criminal
penalties for copying or distribution without Cisco's authorization.

Any use or disclosure, in whole or in part, of the Nexus 9000v Software
or Documentation to any third party for any purposes is expressly
prohibited except as otherwise authorized by Cisco in writing.
The copyrights to certain works contained herein are owned by other
third parties and are used and distributed under license. Some parts
of this software may be covered under the GNU Public License or the
GNU Lesser General Public License. A copy of each such license is
available at
http://www.gnu.org/licenses/gpl.html and
http://www.gnu.org/licenses/lgpl.html

* Nexus 9000v is strictly limited to use for evaluation, demonstration *
* and NX-OS education. Any use or disclosure, in whole or in part of *
* the Nexus 9000v Software or Documentation to any third party for any *
* purposes is expressly prohibited except as otherwise authorized by *
* Cisco in writing. *

switch# run bash

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
22

Shells and Scripting
Escalate Privileges to Root

bash-4.2$ vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface
eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

Do not use sudo su - or the system hangs.Note

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root
bash-4.2# whoami
root
bash-4.2# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example displays system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
<snip>
MemTotal: 16402560 kB
MemFree: 14098136 kB
Buffers: 11492 kB
Cached: 1287880 kB
SwapCached: 0 kB
Active: 1109448 kB
Inactive: 717036 kB
Active(anon): 817856 kB
Inactive(anon): 702880 kB
Active(file): 291592 kB
Inactive(file): 14156 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 527088 kB
Mapped: 97832 kB
<\snip>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
23

Shells and Scripting
Examples of Bash Commands

Running Bash from CLI
The following example runs ps from Bash using run bash command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1

Managing Feature RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2018 Mar 27 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Installing Feature RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the NX-OS feature RPMs
installed on the switch.

sudo yum installed | grep platformStep 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
24

Shells and Scripting
Running Bash from CLI

PurposeCommand or Action

Displays a list of the available RPMs.yum list availableStep 2

Installs an available RPM.sudo yum -y install rpmStep 3

Example

The following is an example of installing the bfd RPM:
bash-4.2$ yum list installed | grep n9000
base-files.n9000 3.0.14-r74.2 installed
bfd.lib32_n9000 1.0.0-r0 installed
core.lib32_n9000 1.0.0-r0 installed
eigrp.lib32_n9000 1.0.0-r0 installed
eth.lib32_n9000 1.0.0-r0 installed
isis.lib32_n9000 1.0.0-r0 installed
lacp.lib32_n9000 1.0.0-r0 installed
linecard.lib32_n9000 1.0.0-r0 installed
lldp.lib32_n9000 1.0.0-r0 installed
ntp.lib32_n9000 1.0.0-r0 installed
nxos-ssh.lib32_n9000 1.0.0-r0 installed
ospf.lib32_n9000 1.0.0-r0 installed
perf-cisco.n9000_gdb 3.12-r0 installed
platform.lib32_n9000 1.0.0-r0 installed
shadow-securetty.n9000_gdb 4.1.4.3-r1 installed
snmp.lib32_n9000 1.0.0-r0 installed
svi.lib32_n9000 1.0.0-r0 installed
sysvinit-inittab.n9000_gdb 2.88dsf-r14 installed
tacacs.lib32_n9000 1.0.0-r0 installed
task-nxos-base.n9000_gdb 1.0-r0 installed
tor.lib32_n9000 1.0.0-r0 installed
vtp.lib32_n9000 1.0.0-r0 installed
bash-4.2$ yum list available
bgp.lib32_n9000 1.0.0-r0
bash-4.2$ sudo yum -y install bfd

Upon switch reload during boot up, use the rpm command instead of yum for persistent RPMs.
Otherwise, RPMs initially installed using yum bash or install cli shows reponame or filename
instead of installed.

Note

Upgrading Feature RPMs

Before you begin

There must be a higher version of the RPM in the yum repository.

Procedure

PurposeCommand or Action

Upgrades an installed RPM.sudo yum -y upgrade rpmStep 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
25

Shells and Scripting
Upgrading Feature RPMs

Example

The following is an example of upgrading the bfd RPM:
bash-4.2$ sudo yum -y upgrade bfd

Downgrading a Feature RPM

Procedure

PurposeCommand or Action

Downgrades the RPM if any of the dnf
repositories has a lower version of the RPM.

sudo yum -y downgrade rpmStep 1

Example

The following example shows how to downgrade the bfd RPM:
bash-4.2$ sudo yum -y downgrade bfd

Erasing a Feature RPM

The SNMP RPM and the NTP RPM are protected and cannot be erased.

You can upgrade or downgrade these RPMs. It requires a system reload for the upgrade or downgrade to take
effect.

For the list of protected RPMs, see /etc/yum/protected.d/protected_pkgs.conf.

Note

Procedure

PurposeCommand or Action

Erases the RPM.sudo yum -y erase rpmStep 1

Example

The following example shows how to erase the bfd RPM:
bash-4.2$ sudo yum -y erase bfd

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
26

Shells and Scripting
Downgrading a Feature RPM

Support for DME Modularity
Beginning with NX-OS release 9.3(1), the Cisco NX-OS image supports DMEmodularity, which interoperates
with the switch's RPMmanager to enable non-intrusive upgrade or downgrade of DME RPMs. Non-intrusive
upgrade or downgrade enables installing RPMs without performing a system restart and prevents disturbing
other applications that have their configs in the DME database. DMEModularity enables you to apply model
changes to the switch without an ISSU or system reload.

After loading the DME RPM, you must restart VSH to enable querying the new MOs.Note

Installing the DME RPMs
By default, the base DME RPM, which is a mandatory upgradeable RPM package, is installed and active
when you upgrade to NX-OS release 9.3(1). The DME RPM is installed in the default install directory for
RPM files, which is /rpms.

If you make code or model changes, you will need to install the DMERPM. To install it, use either the NX-OS
RPM manager, which uses the install command, or standard RPM tools, such as yum. If you use yum, you
will need access to the switch's Bash shell.

Procedure

Step 1 copy path-to-dme-rpm bootflash: [//sup-#][/path]

Example:

switch-1# copy scp://test@10.1.1.1/dme-2.0.1.0-9.3.1.lib32_n9000.rpm
bootflash://
switch-1#

Copies the DME RPM to bootflash through SCP.

Step 2 Choose any of the following methods to install or upgrade the DME RPM.

To use the NX-OS install command:

• install add path-to-dme-rpm activate

Example:

switch-1#install add dme-2.0.1.0-9.3.1.lib32_n9000.rpm activate
Adding the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 90 completed successfully at Fri Jun 7 07:51:58 2019

Activating the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 91 completed successfully at Fri Jun 7 07:52:35 2019
switch-1#

• install add path-to-dme-rpm activate upgrade

Example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
27

Shells and Scripting
Support for DME Modularity

switch-1#install add dme-2.0.1.0-9.3.1.lib32_n9000.rpm activate upgrade
Adding the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 87 completed successfully at Fri Jun 7 07:18:55 2019

Activating the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 88 completed successfully at Fri Jun 7 07:19:35 2019
switch-1#

• install add path-to-dme-rpm then install activate path-to-dme-rpm

Example:

switch-1#install add bootflash:dme-2.0.1.0-9.3.1.lib32_n9000.rpm
[####################] 100%
Install operation 92 completed successfully at Fri Jun 7 09:31:04 2019
switch-1#install activate dme-2.0.1.0-9.3.1.lib32_n9000.rpm
[####################] 100%
Install operation 93 completed successfully at Fri Jun 7 09:31:55 2019
switch-1#

To use yum install:

• yum install --add path-to-dme-rpm

switch-1# yum install --add bootflash:///dme-2.0.10.0-9.3.1.lib32_n9000.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
[##################] 90%Install operation 96 completed successfully at Fri Jun 7
22:58:50 2019.

[####################] 100%
switch-1#

• yum install --no-persist --nocommit path-to-dme-rpm

This option requires user intervention, as shown below.

Example:

switch-1# yum install --no-persist --nocommit dme-2.0.10.0-9.3.1.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
localdb/primary | 6.2 kB 00:00 ...
localdb 2/2
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
wrl-repo | 951 B 00:00 ...
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package dme.lib32_n9000 0:2.0.1.0-9.3.1 will be updated
---> Package dme.lib32_n9000 0:2.0.10.0-9.3.1 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Updating:
dme lib32_n9000 2.0.10.0-9.3.1 localdb 45 M

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
28

Shells and Scripting
Installing the DME RPMs

Transaction Summary
==
Upgrade 1 Package

Total download size: 45 M
Is this ok [y/N]: y
Retrieving key from file:///etc/pki/rpm-gpg/arm-Nexus9k-dev.gpg
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
/bootflash/.rpmstore/config/etc/pki/rpm-gpg/arm-Nexus9k-dev.gpg
System at HA Standby, running transaction on Standby first
Updating : dme-2.0.10.0-9.3.1.lib32_n9000 1/2

starting pre-install package version mgmt for dme
pre-install for dme complete
ln: failed to create symbolic link /var/run/mgmt/sharedmeta-hash: File exists
ln: failed to create symbolic link /var/run/mgmt/dme-objstores.conf: File exists
ln: failed to create symbolic link /var/run/mgmt/samlog.config: File exists
mgmt/
mgmt/shmetafiles/
mgmt/shmetafiles/sharedmeta-ArgMetaData
mgmt/shmetafiles/sharedmeta-RelsMetaData
mgmt/shmetafiles/sharedmeta-ClassRelMetaData
mgmt/shmetafiles/sharedmeta-ChunkMetaData
mgmt/shmetafiles/sharedmeta-ConstPropMetaData
mgmt/shmetafiles/sharedmeta-ConstIdMetaData
mgmt/shmetafiles/sharedmeta-ClassMetaData
mgmt/shmetafiles/sharedmeta-PropRefsMetaData
mgmt/shmetafiles/sharedmeta-SvcMetaData
mgmt/shmetafiles/sharedmeta-ActionContextMetaData
mgmt/shmetafiles/sharedmeta-ConstDefTypeMetaData
mgmt/shmetafiles/sharedmeta-ConstArgMetaData
mgmt/shmetafiles/sharedmeta-ClassNamingMetaData
mgmt/shmetafiles/sharedmeta-ConstMetaData
mgmt/shmetafiles/sharedmeta-PropMetaData
mgmt/shmetafiles/sharedmeta-DnMetaData
Cleanup : dme-2.0.1.0-9.3.1.lib32_n9000 2/2

Updated:
dme.lib32_n9000 0:2.0.10.0-9.3.1

Complete!
switch-1#

Verifying the Installed RPM
You can verify that the DME RPM is installed by using either the NX-OS show install command or yum
list.

Procedure

Choose the method:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
29

Shells and Scripting
Verifying the Installed RPM

• For NX-OS:

show install active

Example:

switch-1# show install active
Boot Image:

NXOS Image: bootflash:///<boot_image.bin>

Active Packages:
dme-2.0.1.0-9.3.1.lib32_n9000

switch-1#

• For yum list, you must log in to the switch's Bash shell (run bash) before issuing the yum commands.

yum list --patch-only installed | grep dme

Example:

switch-1# yum list --patch-only installed | grep dme
dme.lib32_n9000 2.0.1.0-9.3.1 @localdb

Querying for the RPM in the Local Repo
You can query the on-switch (local) repo to verify that the RPM is present.

Procedure

Step 1 run bash

Example:
switch-1# run bash
bash-4.3$

Logs in to the switch's Bash shell.

Step 2 ls /bootflash/.rpmstore/patching/localrepo/dme-2.0.1.0-9.3.1.lib32_n9000.rpm

Example:
bash-4.3$ ls /bootflash/.rpmstore/patching/localrepo/dme-2.0.1.0-9.3.1.lib32_n9000.rpm
inactive_feature_rpms.inf
repodata

bash-4.3$

When the base DME RPM is installed, it is in /rpms.

Downgrading Between Versions of DME RPM
You can downgrade from a higher version of DME RPM to a lower version through either the NX-OS install
command or yum. By downgrading, you retain the DME Modularity functionality.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
30

Shells and Scripting
Querying for the RPM in the Local Repo

The DME RPM is protected, so install deactivate and install remove are not supported.

Procedure

Choose the downgrade method:
For NX-OS:

• install add path-to-dme-rpm activate downgrade

Example:

switch-1# install add bootflash:dme-2.0.1.0-9.3.1.lib32_n9000.rpm activate downgrade
Adding the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 94 completed successfully at Fri Jun 7 22:48:34 2019

Activating the patch (/dme-2.0.1.0-9.3.1.lib32_n9000.rpm)
[####################] 100%
Install operation 95 completed successfully at Fri Jun 7 22:49:12 2019
switch-1#

• show install active | include dme

Example:

switch-1# show install active | include dme
dme-2.0.1.0-9.3.1.lib32_n9000

switch-1#

In this example, the DME RPM was downgraded to version 2.0.1.0-9.3.1.

For yum, you must run commands in Bash shell as root user (run bash sudo su):

• In Bash, run yum downgrade dme dme-rpm.

This option enables you download directly to a lower version of DME RPM in the repository.

This option option requires user intervention to complete as highlighted in the following command output.

Example:

bash-4.3# yum downgrade dme 2.0.1.0-9.3.1
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
Setting up Downgrade Process
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
wrl-repo | 951 B 00:00 ...
Resolving Dependencies
--> Running transaction check
---> Package dme.lib32_n9000 0:2.0.1.0-9.3.1 will be a downgrade
---> Package dme.lib32_n9000 0:2.0.10.0-9.3.1 will be erased
--> Finished Dependency Resolution

Dependencies Resolved
==
Package Arch Version Repository Size
==
Downgrading:
dme lib32_n9000 2.0.10.0-9.3.1 localdb 45 M

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
31

Shells and Scripting
Downgrading Between Versions of DME RPM

Transaction Summary
==
Downgrade 1 Package

Total download size: 45 M
Is this ok [y/N]: y
Retrieving key from file:///etc/pki/rpm-gpg/arm-Nexus9k-dev.gpg
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
/bootflash/.rpmstore/config/etc/pki/rpm-gpg/arm-Nexus9k-dev.gpg
System at HA Standby, running transaction on Standby first
Installing : dme-2.0.1.0-9.3.1.lib32_n9000 1/2

starting pre-install package version mgmt for dme
pre-install for dme complete
ln: failed to create symbolic link /var/run/mgmt/sharedmeta-hash: File exists
ln: failed to create symbolic link /var/run/mgmt/dme-objstores.conf: File exists
ln: failed to create symbolic link /var/run/mgmt/samlog.config: File exists
mgmt/
mgmt/shmetafiles/
mgmt/shmetafiles/sharedmeta-ArgMetaData
mgmt/shmetafiles/sharedmeta-RelsMetaData
mgmt/shmetafiles/sharedmeta-ClassRelMetaData
mgmt/shmetafiles/sharedmeta-ChunkMetaData
mgmt/shmetafiles/sharedmeta-ConstPropMetaData
mgmt/shmetafiles/sharedmeta-ConstIdMetaData
mgmt/shmetafiles/sharedmeta-ClassMetaData
mgmt/shmetafiles/sharedmeta-PropRefsMetaData
mgmt/shmetafiles/sharedmeta-SvcMetaData
mgmt/shmetafiles/sharedmeta-ActionContextMetaData
mgmt/shmetafiles/sharedmeta-ConstDefTypeMetaData
mgmt/shmetafiles/sharedmeta-ConstArgMetaData
mgmt/shmetafiles/sharedmeta-ClassNamingMetaData
mgmt/shmetafiles/sharedmeta-ConstMetaData
mgmt/shmetafiles/sharedmeta-PropMetaData
mgmt/shmetafiles/sharedmeta-DnMetaData
Cleanup : dme-2.0.10.0-9.3.1.lib32_n9000 2/2

Removed:
dme.lib32_n9000 0:2.0.10.0-9.3.1

Installed:
dme.lib32_n9000 0:2.0.1.0-9.3.1

Complete!

Downgrades from one version of DME RPM to a lower version. In this example, version 2.0.10.0-9.3.1
is downgraded to version 2.0.1.0-9.3.1.

• yum list --patch-only installed | grep dme

Example:

bash-4.3# yum list --patch-only installed | grep dme
dme.lib32_n9000 2.0.1.0-9.3.1 @groups-repo
bash-4.3#

Displays the installed version of DME RPM.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
32

Shells and Scripting
Downgrading Between Versions of DME RPM

Downgrading to the Base RPM
You can downgrade from a higher version of the DME RPM to the base DME RPM by either installing the
base DME RPM through the NX-OS install command or using yum downgrade.

Procedure

Choose the downgrade method:
For NX-OS:

• install activate dme-rpm

Example:

switch-1# install activate dme-2.0.0.0-9.2.1.lib32_n9000.rpm
[####################] 100%
Install operation 89 completed successfully at Fri Jun 7 07:21:45 2019
switch-1#

• show install active | dme

Example:

switch-1# show install active | include dme
dme-2.0.0.0-9.2.1.lib32_n9000

switch-1#

For yum, you must run commands in Bash shell as root user (run bash sudo su):

• In Bash, run yum downgrade dme dme-rpm.

This option enables downgrading directly to the base DME RPM.

This option requires user intervention to complete as highlighted in the following command output.

Example:

bash-4.3# yum downgrade dme-2.0.0.0-9.3.1.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
Setting up Downgrade Process
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
wrl-repo | 951 B 00:00 ...
Resolving Dependencies
--> Running transaction check
---> Package dme.lib32_n9000 0:2.0.0.0-9.3.1 will be a downgrade
---> Package dme.lib32_n9000 0:2.0.10.0-9.3.1 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Downgrading:
dme lib32_n9000 2.0.0.0-9.3.1 groups-repo 44 M

Transaction Summary

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
33

Shells and Scripting
Downgrading to the Base RPM

==
Downgrade 1 Package

Total download size: 44 M
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : dme-2.0.0.0-9.3.1.lib32_n9000 1/2

starting pre-install package version mgmt for dme
pre-install for dme complete
mgmt/
mgmt/shmetafiles/
mgmt/shmetafiles/sharedmeta-ChunkMetaData
mgmt/shmetafiles/sharedmeta-ClassMetaData
mgmt/shmetafiles/sharedmeta-ArgMetaData
mgmt/shmetafiles/sharedmeta-ConstMetaData
mgmt/shmetafiles/sharedmeta-ConstIdMetaData
mgmt/shmetafiles/sharedmeta-ConstDefTypeMetaData
mgmt/shmetafiles/sharedmeta-ConstPropMetaData
mgmt/shmetafiles/sharedmeta-ConstArgMetaData
mgmt/shmetafiles/sharedmeta-ClassRelMetaData
mgmt/shmetafiles/sharedmeta-DnMetaData
mgmt/shmetafiles/sharedmeta-PropRefsMetaData
mgmt/shmetafiles/sharedmeta-PropMetaData
mgmt/shmetafiles/sharedmeta-RelsMetaData
mgmt/shmetafiles/sharedmeta-ActionContextMetaData
mgmt/shmetafiles/sharedmeta-SvcMetaData
mgmt/shmetafiles/sharedmeta-ClassNamingMetaData
Cleanup : dme-2.0.10.0-9.3.1.lib32_n9000 2/2

Removed:
dme.lib32_n9000 0:2.0.10.0-9.3.1

Installed:
dme.lib32_n9000 0:2.0.0.0-9.3.1

Complete!
bash-4.3#

Installs the base DME RPM.

• yum list --patch-only installed | grep dme

Example:
bash-4.3# yum list --patch-only installed | grep dme
dme.lib32_n9000 2.0.0.0-9.3.1 @groups-repo
bash-4.3#

Displays the installed base DME RPM.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
34

Shells and Scripting
Downgrading to the Base RPM

Managing Patch RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2018 Mar 27 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Adding Patch RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the patch RPMs present on
the switch.

yum list --patch-onlyStep 1

Adds the patch to the repository, where
URL_of_patch is a well-defined format, such

sudo yum install --add URL_of_patchStep 2

as bootflash:/patch, not in standard
Linux format, such as /bootflash/patch.

Displays a list of the patches that are added to
the repository but are in an inactive state.

yum list --patch-only availableStep 3

Example

The following is an example of installing the
nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 RPM:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
35

Shells and Scripting
Managing Patch RPMs

bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#
bash-4.2# sudo yum install --add
bootflash:/nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 135 completed successfully at Tue Mar 27 17:45:34
2018.

[####################] 100%
bash-4.2#

Once the patch RPM is installed, verify that it was installed properly. The following command lists
the patches that are added to the repository and are in the inactive state:
bash-4.2# yum list --patch-only available
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#

You can also add patches to a repository from a tar file, where the RPMs are bundled in the tar file.
The following example shows how to add two RPMs that are part of the
nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 tar file to the patch
repository:
bash-4.2# sudo yum install --add
bootflash:/nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000.tar
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 146 completed successfully at Tue Mar 27 21:17:39
2018.

[####################] 100%
bash-4.2#
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 942 B 00:00 ...
patching 2/2
thirdparty | 951 B 00:00 ...

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
36

Shells and Scripting
Adding Patch RPMs from Bash

nxos.CSCab00003-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
nxos.CSCab00002-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#

Activating a Patch RPM

Before you begin

Verify that you have added the necessary patch RPM to the repository using the instructions in #unique_84.

Procedure

PurposeCommand or Action

Activates the patch RPM, where patch_RPM is
a patch that is located in the repository. Do not
provide a location for the patch in this step.

sudo yum install patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
command means that the patch
RPM is activated in this step, but
not committed. See Committing
a Patch RPM, on page 38 for
instructions on committing the
patch RPM after you have
activated it.

Note

Example

The following example shows how to activate the
nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0-7.0.3.I7.3 patching 28 k

Transaction Summary

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
37

Shells and Scripting
Activating a Patch RPM

===
Install 1 Package

Total download size: 28 k
Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 1/1

[##################] 90%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found

Installed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3

Complete!
Install operation 140 completed successfully at Tue Mar 27 18:07:40 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM was activated successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 installed
bash-4.2#

Committing a Patch RPM

Procedure

PurposeCommand or Action

Commits the patch RPM. The patch RPMmust
be committed to keep it active after reloads.

sudo yum install patch_RPM --commitStep 1

Example

The following example shows how to commit the
nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
38

Shells and Scripting
Committing a Patch RPM

thirdparty | 951 B 00:00 ...
Install operation 142 completed successfully at Tue Mar 27 18:13:16 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM was committed successfully:
bash-4.2# yum list --patch-only committed
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 installed
bash-4.2#

Deactivating a Patch RPM

Procedure

PurposeCommand or Action

Deactivates the patch RPM.sudo yum erase patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
command means that the patch
RPM is only deactivated in this
step.

Note

Commits the patch RPM. You will get an error
message if you try to remove the patch RPM
without first committing it.

sudo yum install patch_RPM --commitStep 2

Example

The following example shows how to deactivate the
nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum erase nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Removing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0-7.0.3.I7.3 @patching 82 k

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
39

Shells and Scripting
Deactivating a Patch RPM

Transaction Summary
===
Remove 1 Package

Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
[######] 30%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found
Erasing : nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 1/1

[##################] 90%
Removed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3

Complete!
Install operation 143 completed successfully at Tue Mar 27 21:03:47 2018.

[####################] 100%
bash-4.2#

You must commit the patch RPM after deactivating it. If you do not commit the patch RPM after
deactivating it, you will get an error message if you try to remove the patch RPM using the instructions
in Removing a Patch RPM, on page 41.
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 144 completed successfully at Tue Mar 27 21:09:28 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM has been committed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
40

Shells and Scripting
Deactivating a Patch RPM

Removing a Patch RPM

Procedure

PurposeCommand or Action

Removes an inactive patch RPM.sudo yum install --remove patch_RPMStep 1

Example

The following example shows how to remove the
nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install --remove nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##########] 50%Install operation 145 completed successfully at Tue Mar 27 21:11:05
2018.

[####################] 100%
bash-4.2#

If you see the following error message after attempting to remove the patch RPM:

Install operation 11 "failed because patch was not committed". at Wed Mar 28 22:14:05 2018

Then you did not commit the patch RPM before attempting to remove it. See Deactivating a Patch
RPM, on page 39 for instructions on committing the patch RPM before attempting to remove it.

Note

Enter the following command to verify that the inactive patch RPM was removed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 197 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
41

Shells and Scripting
Removing a Patch RPM

Persistently Daemonizing an SDK- or ISO-built Third Party
Process

Your application should have a startup Bash script that gets installed in /etc/init.d/application_name.
This startup Bash script should have the following general format (for more information on this format, see
http://linux.die.net/man/8/chkconfig).
#!/bin/bash
#
<application_name> Short description of your application
#
chkconfig: 2345 15 85
description: Short description of your application
#
BEGIN INIT INFO
Provides: <application_name>
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Short description of your application
END INIT INFO
See how we were called.
case "$1" in
start)
Put your startup commands here
Set RETVAL to 0 for success, non-0 for failure
;;
stop)
Put your stop commands here
Set RETVAL to 0 for success, non-0 for failure
;;
status)
Put your status commands here
Set RETVAL to 0 for success, non-0 for failure
;;
restart|force-reload|reload)
Put your restart commands here
Set RETVAL to 0 for success, non-0 for failure
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL

Persistently Starting Your Application from the Native Bash
Shell

Procedure

Step 1 Install your application startup Bash script that you created into /etc/init.d/application_name

Step 2 Start your application with /etc/init.d/application_name start

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
42

Shells and Scripting
Persistently Daemonizing an SDK- or ISO-built Third Party Process

http://linux.die.net/man/8/chkconfig

Step 3 Enter chkconfig --add application_name

Step 4 Enter chkconfig --level 3 application_name on

Run level 3 is the standard multi-user run level, and the level at which the switch normally runs.

Step 5 Verify that your application is scheduled to run on level 3 by running chkconfig --list application_name and
confirm that level 3 is set to on

Step 6 Verify that your application is listed in /etc/rc3.d. You should see something like this, where there is an
'S' followed by a number, followed by your application name (tcollector in this example), and a link to
your Bash startup script in ../init.d/application_name

bash-4.2# ls -l /etc/rc3.d/tcollector

lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector

bash-4.2#

Synchronize Files from Active Bootflash to Standby Bootflash
Cisco Nexus 9500 platform switches are generally configured with two supervisor modules to provide high
availability (one active supervisor module and one standby supervisor module). Each supervisor module has
its own bootflash file system for file storage, and the Active and Standby bootflash file systems are generally
independent of each other. If there is a need for specific content on the active bootflash, that same content is
probably also needed on the standby bootflash in case there is a switchover at some point.

Before the Cisco NX-OS 9.2(2) release, you had to manually manage this content between the Active and
Standby supervisor modules. Starting with Cisco NX-OS 9.2(2), certain files and directories on the active
supervisor module, or active bootflash (/bootflash), can be automatically synchronized to the standby
supervisor module, or standby bootflash (/bootflash_sup-remote), if the standby supervisor module
is up and available. You can select the files and directories to be synchronized by loading Bash on your switch,
then adding the files and directories that you would like to have synchronized from the active bootflash to the
standby bootflash into the editable file /bootflash/bootflash_sync_list.

For example:
switch# run bash
bash-4.2# echo "/bootflash/home/admin" | sudo tee --append /bootflash/bootflash_sync_list
bash-4.2# echo "/bootflash/nxos.7.0.3.I7.3.5.bin" | sudo tee --append
/bootflash/bootflash_sync_list
bash-4.2# cat /bootflash/bootflash_sync_list
/bootflash/home/admin
/bootflash/nxos.7.0.3.I7.3.5.bin

bash-4.2# echo /bootflash/home/admin >> /bootflash/bootflash_sync_list

bash-4.2# echo /bootflash/nxos.7.0.3.I7.3.5.bin >>
/bootflash/bootflash_sync_list

When changes are made to the files or directories on the active bootflash, these changes are automatically
synchronized to standby bootflash, if the standby bootflash is up and available. If the standby bootflash is
rebooted, either as a regular boot, switchover or manual standby reload, a catch-up synchronization of changes
to the active bootflash is pushed out to the standby bootflash, once the standby supervisor comes online.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
43

Shells and Scripting
Synchronize Files from Active Bootflash to Standby Bootflash

Following are the characteristics and restrictions for the editable /bootflash/bootflash_sync_list
file:

• The /bootflash/bootflash_sync_list file is automatically created on the first run and is
empty at that initial creation state.

• Entries in the /bootflash/bootflash_sync_list file follow these guidelines:

• One entry per line

• Entries are given as Linux paths (for example, /bootflash/img.bin)

• Entries must be within the /bootflash file system

• The /bootflash/bootflash_sync_list file itself is automatically synchronized to the standby
bootflash. You can also manually copy the /bootflash/bootflash_sync_list file to or from
the supervisor module using the copy virtual shell (VSH) command.

• You can edit the /bootflash/bootflash_sync_list file directly on the supervisor module
with the following command:
run bash vi /bootflash/bootflash_sync_list

All output from the synchronization event is redirected to the log file /var/tmp/bootflash_sync.log.
You can view or tail this log file using either of the following commands:
run bash less /var/tmp/bootflash_sync.log

run bash tail -f /var/tmp/bootflash_sync.log

The synchronization script will not delete files from the standby bootflash directories unless it explicitly
receives a delete event for the corresponding file on the active bootflash directories. Sometimes, the standby
bootflash might have more used space than the active bootflash, which results in the standby bootflash running
out of space when the active bootflash is synchronizing to it. To make the standby bootflash an exact mirror
of the active bootflash (to delete any extra files on the standby bootflash), enter the following command:
run bash sudo rsync -a --delete /bootflash/ /bootflash_sup-remote/

The synchronization script should continue to run in the background without crashing or exiting. However,
if it does stop running for some reason, you can manually restart it using the following command:
run bash sudo /isan/etc/rc.d/rc.isan-start/S98bootflash_sync.sh start

Copy Through Kstack
In Cisco NX-OS release 9.3(1) and later, file copy operations have the option of running through a different
network stack by using the use-kstack option. Copying files through use-kstack enables faster copy times.
This option can be beneficial when copying files from remote servers that are multiple hops from the switch.
The use-kstack option work with copying files from, and to, the switch though standard file copy features,
such as scp and sftp.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
44

Shells and Scripting
Copy Through Kstack

The use-kstack option does not work when the switch is running the FIPS mode feature. If the switch has
FIPS mode that is enabled, the copy operation is still successful, but through the default copy method.

Note

To copy through use-kstack, append the argument to the end of an NX-OS copy command. Some examples:

switch-1# copy scp://test@10.1.1.1/image.bin . vrf management use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin bootflash:// vrf management
use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin . use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin bootflash:// vrf default
use-kstack
switch-1#

The use-kstack option is supported for all NX-OS copy commands and file systems. The option is OpenSSL
(Secure Copy) certified.

An Example Application in the Native Bash Shell
The following example demonstrates an application in the Native Bash Shell:
bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash

PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello

echo $$ > $PIDFILE
rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
bash-4.2#
bash-4.2#
bash-4.2# cat /etc/init.d/hello
#!/bin/bash
#
hello Trivial "hello world" example Third Party App
#
chkconfig: 2345 15 85
description: Trivial example Third Party App
#
BEGIN INIT INFO
Provides: hello
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Trivial example Third Party App
END INIT INFO

PIDFILE=/tmp/hello.pid

See how we were called.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
45

Shells and Scripting
An Example Application in the Native Bash Shell

case "$1" in
start)

/etc/init.d/hello.sh &
RETVAL=$?

;;
stop)

kill -9 `cat $PIDFILE`
RETVAL=$?

;;
status)

ps -p `cat $PIDFILE`
RETVAL=$?

;;
restart|force-reload|reload)

kill -9 `cat $PIDFILE`
/etc/init.d/hello.sh &
RETVAL=$?

;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off
bash-4.2# ls -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello
bash-4.2#
bash-4.2# reboot

After reload
bash-4.2# ps -ef | grep hello
root 8790 1 0 18:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh
root 8973 8775 0 18:04 ttyS0 00:00:00 grep hello
bash-4.2#
bash-4.2# ls -al /tmp/hello*
-rw-rw-rw- 1 root root 205 Sep 27 18:04 /tmp/hello
-rw-rw-rw- 1 root root 5 Sep 27 18:03 /tmp/hello.pid
bash-4.2# cat /tmp/hello.pid
8790
bash-4.2# cat /tmp/hello
Sun Sep 27 18:03:49 UTC 2015
Hello World
Sun Sep 27 18:03:59 UTC 2015
Hello World
Sun Sep 27 18:04:09 UTC 2015
Hello World
Sun Sep 27 18:04:19 UTC 2015
Hello World
Sun Sep 27 18:04:29 UTC 2015
Hello World
Sun Sep 27 18:04:39 UTC 2015
Hello World
bash-4.2#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
46

Shells and Scripting
An Example Application in the Native Bash Shell

C H A P T E R 5
Guest Shell

• About the Guest Shell, on page 47
• Guidelines and Limitations for Guestshell, on page 48
• Accessing the Guest Shell, on page 53
• Resources Used for the Guest Shell, on page 54
• Capabilities in the Guestshell, on page 54
• Security Posture for Virtual ServicesGuest Shell, on page 62
• Guest File System Access Restrictions , on page 65
• Managing the Guest Shell, on page 65
• Verifying Virtual Service and Guest Shell Information, on page 78
• Persistently Starting Your Application From the Guest Shell, on page 79
• Procedure for Persistently Starting Your Application from the Guest Shell, on page 80
• An Example Application in the Guest Shell, on page 80
• Troubleshooting Guest Shell Issues, on page 81

About the Guest Shell
In addition to the NX-OS CLI and Bash access on the underlying Linux environment, switches support access
to a decoupled execution space running within a Linux Container (LXC) called the “Guest Shell”.

From within the Guest Shell the network-admin has the following capabilities:

• Access to the network over Linux network interfaces.

• Access to the switch's bootflash.

• Access to the switch's volatile tmpfs.

• Access to the switch's CLI.

• Access to the switch's host file system.

• Access to Cisco NX-API REST.

• The ability to install and run python scripts.

• The ability to install and run 32-bit and 64-bit Linux applications.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
47

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

On NX-OS devices, Linux Containers are installed and managed with the virtual-service commands. The
Guest Shell will appear in the virtual-service show command output.

By default, the Guest Shell occupies approximately 5 MB of RAM and 200 MB of bootflash when enabled.
Beginning with Cisco NX-OS Release 7.0(3)I2(1) the Guest Shell occupies approximately 35 MB of RAM.
Use the guestshell destroy command to reclaim resources if the Guest Shell is not used.

Note

Beginning with Cisco NX-OS 7.0(3)F3(1)NX-OS 7.0(3)I7(1), the Guest Shell is supported on the Cisco Nexus
95083500 switch.

Note

Guidelines and Limitations for Guestshell
Common Guidelines Across All Releases

If you have performed custom work inside your installation of the Guestshell, save your changes to the
bootflash, off-box storage, or elsewhere outside the Guestshell root file system before performing a guestshell
upgrade.

The guestshell upgrade command essentially performs a guestshell destroy and guestshell enable

in succession.

Important

• Guest Shell is not supported on 3500 models with 4GB of memory (3524, 3548, 3524-X, 3548-X). It is
supported on the platforms with higher memory, such as -XL.

• If you are running a third-party DHCPD server in Guestshell, there might be issues with offers reaching
the client if used along with SVI. A possible workaround is to use broadcast responses.

• Use the run guestshell CLI command to access the Guestshell on the switch: The run guestshell

command parallels the run bash command that is used to access the host shell. This command allows
you to access the Guestshell and get a Bash prompt or run a commandwithin the context of the Guestshell.
The command uses password-less SSH to an available port on the localhost in the default network
namespace.

• The sshd utility can secure the pre-configured SSH access into the Guestshell by listening on localhost
to avoid connection attempts from outside the network. The sshd has the following features:

• It is configured for key-based authentication without fallback to passwords.

• Only root can read keys use to access the Guestshell after Guestshell restarts.

• Only root can read the file that contains the key on the host to prevent a nonprivileged user with
host Bash access from being able to use the key to connect to the Guestshell. Network-admin users

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
48

Shells and Scripting
Guidelines and Limitations for Guestshell

may start another instance of sshd in the Guestshell to allow remote access directly into the Guestshell,
but any user that logs into the Guestshell is also given network-admin privilege.

Introduced in Guestshell 2.2 (0.2), the key file is readable for whom the user
account was created for.

In addition, the Guestshell accounts are not automatically removed, and must be
removed by the network administrator when no longer needed.

Guestshell installations before 2.2 (0.2) will not dynamically create individual
user accounts.

Note

• Installing the Cisco NX-OS software release on a fresh out-of-the-box switch will automatically enable
the Guestshell. Subsequent upgrades to the switch software will not automatically upgrade Guestshell.

• Guestshell releases increment the major number when distributions or distribution versions change.

• Guestshell for NX-OS can access front-panel ports as first-class Linux interfaces.

• Guestshell for NX-OS can access Command shell through dohost using local Unix socket to NX-API.

1. Guestshell for NX-OS: Access to NX-API socket is allowed only for root/admin user privilege from
9.3(8) and later.

2. Guestshell for NX-OS: Access to NX-OS filesystem only as root/admin user in 9.3(8) and later.

• Guestshell releases increment the minor number when CVEs have been addressed. The Guestshell updates
CVEs only when CentOS makes them publicly available.

• Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from
the CentOS repository. This provides the flexibility of getting updates as, and when, available without
needing to wait for a Cisco NX-OS software update.

Alternatively, using the guestshell update command would replace the existing Guestshell rootfs. Any
customizations and software package installations would then need to be performed again within the
context of this new Guestshell rootfs.

CentOS end of life and impact on Guestshell

Guestshell is an LXC container based on CentOS environment. As per updates in the open source
community, CentOS 8 Project is reaching end of support by December 2021. The CentOS 7 project is to
continue through and is targeted to reach end of support by June 2024. Due to this long term support for
CentOS 7, the latest Cisco NX-OS software 10.2.x is packaged with Guestshell 2.11 (CentOS 7 based). This
replaces Guestshell 3.0 (CentOS 8) which is the default environment in 10.1.x release.

Guestshell 2.11

Beginning with Cisco NX-OS release 10.2(1), CentOS 7 is re-introduced as the default Guestshell environment.
See section "CentOS End of Life" for a detailed explanation on the reasons.

Guestshell 2.11 comes with python2 and python3.6 support. The functionality between Guestshell 2.11 and
Guestshell 3.0 remains the same.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
49

Shells and Scripting
Guidelines and Limitations for Guestshell

The rootfs size of Guestshell 2.11 has increased to approximately 200 MB.Note

Guestshell 4.x

Guestshell 2.x contains Centos 7. End of life for Centos 7 is early 2024. Hence, Guestshell 4.x is a RockyLinux
9 based lxc container that will replace Guestshell 2.x. Guestshell 4.x is available in the following NX-OS
releases as downloadable and default options.

Guestshell downloadable option
applicable

Guestshell default package
version

NXOS release

Not needed4.1 or above9.3(14) and above

4.02.1510.2(6)

4.12.1510.2(7)

Not needed4.1 or above10.2(8) and above

4.02.1510.3(4)

Not needed4.1 or above10.3(5) and above

4.02.1510.4(1) and 10.4(2)

Not needed4.1 or above10.4(3) and above

Not needed4.1 or above10.5(1) and above

The rootfs size in Guestshell 4.x is 400MB versus the 350MB in Guestshell 2.x. Guestshell 4.x downloadable
OVA is backward compactable to all releases running Guestshell 2.x as default.

Note

Upgrading from Guestshell 1.0 to Guestshell 2.x

Guestshell 2.x is based on a CentOS 7 root file system. If you have an off-box repository of .conf files or
utilities that pulled the content down into Guestshell 1.0, you must repeat the same deployment steps in
Guestshell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7 differences.

Systems with 4 GB of RAM will not enable Guestshell by default. Use the guestshell enable command to
install and enable Guestshell.

Note

The install all command validates the compatibility between the current Cisco NX-OS image against the
target Cisco NX-OS image.

The following is an example output from installing an incompatible image:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
50

Shells and Scripting
Guidelines and Limitations for Guestshell

switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guestshell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

As a best practice, remove the Guestshell with the guestshell destroy command before reloading an older
Cisco NX-OS image that does not support the Guestshell.

Note

Pre-Configured SSHD Service

The Guestshell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on
the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the
Guestshell from the NX-OS virtual-shell when the guestshell keyword is entered. If this server is killed or its
configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guestshell from
the NX-OS CLI might not work.

The following steps instantiate an OpenSSh server within the Guestshell as root:

1. Determine which network namespace or VRF you want to establish your SSH connections through.

2. Determine the port that youwant OpenSSH to listen on. Use the NX-OS command show socket connection
to view ports already in use.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
51

Shells and Scripting
Guidelines and Limitations for Guestshell

The Guestshell sshd service for password-less access uses a randomized port starting at 17680 through 49150.
To avoid port conflict, choose a port outside this range.

Note

The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns
on IP address 10.122.84.34:2222:

1. Create the following files: /usr/lib/systemd/systm/sshd-mgmt.service and
/etc/ssh/sshd-mgmt_config. The files should have the following configurations:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config

2. Copy the Unit and Service contents from the /usr/lib/systemd/system/ssh.service file
to sshd-mgmt.service.

3. Edit the sshd-mgmt.service file to match the following:
[Unit]
Description=OpenSSH server daemon
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config
-D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target

4. Copy the contents of /etc/ssh/sshd-config to /etc/ssh/sshd-mgmt_config. Modify
the ListenAddress IP and port as necessary.
Port 2222
ListenAddress 10.122.84.34

5. Start the systemctl daemon using the following commands:
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l

6. (Optional) Check the configuration.
ss -tnldp | grep 2222

7. SSH into Guestshell:
ssh -p 2222 guestshell@10.122.84.34

8. Save the configuration across multiple Guestshell or switch reboots.
sudo systemctl enable sshd-mgmt.service

9. For passwordless SSH/SCP and remote execution, generate the public and private keys for the user ID
you want to user for SSH/SCP using the ssh-keygen -t dsa command.

The key is then stored in the id_rsa and id_rsa.pub files in the /.ssh directory:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
52

Shells and Scripting
Guidelines and Limitations for Guestshell

[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub

10. Copy the public key into the machine you want to SSH into and fix permissions:
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*

11. SSH or SCP into the remote switch without a password:
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination

Localtime

The Guestshell shares /etc/localtime with the host system.

If you do not want to share the same localtime with the host, this symlink can be broken and a Guestshell
specific /etc/localtime can be created.

Note

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017

Accessing the Guest Shell
In Cisco NX-OS, only network-admin users can access the Guest Shell by default. It is automatically enabled
in the system and can be accessed using the run guestshell command. Consistent with the run bash command,
these commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS
CLI command.

The Guest Shell is automatically enabled on systems with more than 4 GB of RAM.Note

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
53

Shells and Scripting
Accessing the Guest Shell

The Guest Shell starting in 2.2(0.2) will dynamically create user accounts with the same as the user logged
into switch. However, all other information is NOT shared between the switch and the Guest Shell user
accounts.

In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network
administrator when no longer needed.

Note

Resources Used for the Guest Shell
By default, the resources for the Guest Shell have a small impact on resources available for normal switch
operations. If the network-admin requires additional resources for the Guest Shell, the guestshell resize {cpu
| memory | rootfs} command changes these limits.

Minimum/MaximumDefaultResource

1/620%1%CPU

256/3840 MB400 MBMemory

200/2000 MB200 MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the Guest Shell are not limited.

A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Capabilities in the Guestshell
The Guestshell has a number of utilities and capabilities available by default.

The Guestshell is populated with CentOS 7 Linux which provides the ability to dnf install software packages
built for this distribution. The Guestshell is pre-populated with many of the common tools that would naturally
be expected on a networking device including net-tools, iproute, tcpdump and OpenSSH. For Guestshell
2.x, python 2.7.5 is included by default as is the PIP for installing additional python packages. In Guestshell
2.11, by default, python 3.6 is also included.

By default the Guestshell is a 64-bit execution space. If 32-bit support is needed, the glibc.i686 package can
be dnf installed.

The Guestshell has access to the Linux network interfaces used to represent the management and data ports
of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters.
When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a
network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns
utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo, are

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
54

Shells and Scripting
Resources Used for the Guest Shell

provided as a convenience for running in a different namespace and getting information about which
namespace/vrf a process is running in.

systemd is used to manage services in CentOS 8 environments, including the Guestshell.

NX-OS CLI in the Guest Shell
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

When invoking the dohost command each NX-OS command may be in single or double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"
Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.):

[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$

For release 7.0(3)I5(2) usingStarting with Guest Shell 2.2 (0.2), commands issued on the host through the
dohost command are run with privileges based on the effective role of the Guest Shell user.

Prior versions of Guest Shell will run command with network-admin level privileges.

The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed.

Note

Network Access in Guest Shell
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linuxmethods
like view stats in /proc/net/dev, through ifconfig or ethtool are all supported:

The Guest Shell has a number of typical network utilities included by default and they can be used on different
VRFs using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
55

Shells and Scripting
NX-OS CLI in the Guest Shell

inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Within the Guest Shell, the networking state can bemonitored, but may not be changed. To change networking
state, use the NX-OS CLI or the appropriate Linux utilities in the host bash shell.

The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the
management or switch ports.

The sudo ip netns exec management ping utility is a common method for running a command in the context
of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Commands that are run without the chvrf command are run in the current VRF/network namespace.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html
index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$

To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the
dohost command:

Example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
56

Shells and Scripting
Network Access in Guest Shell

[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --

Within the Guest Shell, the network namespaces associated with the VRFs are what is actually used. It can
be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red
[guestshell@guestshell bootflash]$

To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the Guest Shell to include a DNS nameserver and domain as appropriate for the network.

Example:

nameserver 10.1.1.1
domain cisco.com

The nameserver and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy environment
variables must be set up within the Guest Shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin
can operate on these files with Linux commands.

Example:

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
57

Shells and Scripting
Access to Bootflash in Guest Shell

While the name of the user within the Guest Shell is the same as when on the host, the Guest Shell is in a
separate user namespace, and the uid does not match that of the user on the host. The file permissions for
group and others will control the type of access the Guest Shell user has on the file.

Note

Python in Guest Shell
Python can be used interactively or python scripts can be run in the Guest Shell.

Example:

guestshell:~$ python
Python 2.7.5 (default, Jun 24 2015, 00:41:19)
[GCC 4.8.3 20140911 (Red Hat 4.8.3-9)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
guestshell:~$

The pip python package manager is included in the Guest Shell to allow the network-admin to install new
python packages.

Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#

You must enter the sudo su command before entering the pip install command.Note

Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
Guest Shell 2.X provides a CentOS 7.1 environment, which does not have Python 3 installed by default. There
are multiple methods of installing Python 3 on CentOS 7.1, such as using third-party repositories or building
from source. Another option is using the Red Hat Software Collections, which supports installing multiple
versions of Python within the same system.

To install the Red Hat Software Collections (SCL) tool:

1. Install the scl-utils package.

2. Enable the CentOS SCL repository and install one of its provided Python 3 RPMs.

[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
58

Shells and Scripting
Python in Guest Shell

Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1

Installed:
scl-utils.x86_64 0:20130529-19.el7

Complete!

[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2

Installed:
centos-release-scl.noarch 0:2-3.el7.centos

Dependency Installed:
centos-release-scl-rh.noarch 0:2-3.el7.centos

Complete!

[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm:
[Errno 12] Timeout on
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28,
'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG
(https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7

Complete!

Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables
automatically setup.

The root user is not needed to use the SCL Python installation.Note

[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python SCL installation also provides the pip utility.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
59

Shells and Scripting
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading

https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl
(57kB)

100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading

https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl
(58kB)

100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl
(133kB)

100% |################################| 143kB 441kB/s
Collecting certifi>=2017.4.17 (from requests)
Downloading

https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl
(156kB)

100% |################################| 163kB 447kB/s
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading

https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl
(125kB)

100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0
urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>

The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!

Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case,
it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7
rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
60

Shells and Scripting
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

Complete!

[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue
where the libpython shared object file cannot be loaded. There is a workaround where you can use the source
scl_source enable python-installation command to properly set up the environment in the current bash session.

The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs
size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is
sufficient.

Note

Installing RPMs in the Guest Shell
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow
instructions in that file if changes are needed.

Yum can be pointed to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

For applications to be installed inside Guest Shell 2.x, go to the CentOS 7 repo at http://mirror.centos.org/
centos/7/os/x86_64/Packages/.

Yum resolves the dependencies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package:
glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k

Transaction Summary
==
Install 1 Package (+1 Dependent package)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
61

Shells and Scripting
Installing RPMs in the Guest Shell

http://mirror.centos.org/centos/7/os/x86_64/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/

Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--
Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt
to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2

Installed:
glibc.i686 0:2.17-78.el7

Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7

Complete!

Whenmore space is needed in the Guest Shell root file system for installing or running packages, the guestshell
resize roofs size-in-MB command is used to increase the size of the file system.

Note

Some open source software packages from the repository might not install or run as expected in the Guest
Shell as a result of restrictions that have been put into place to protect the integrity of the host system.

Note

Security Posture for Virtual ServicesGuest Shell
Use of the Guest Shell and virtual services in switches are only two of the many ways that the network-admin
can manage or extend the functionality of the system. These options are geared toward providing an execution
environment that is decoupled from the native host context. This separation allows the introduction of software
into the system that may not be compatible with the native execution environment. It also allows the software
to run in an environment that does not interfere with the behavior, performance, or scale of the system.

Use of the Guest Shell in switches is just one of the many ways the network admin can manage or extend the
functionality of the system. The Guest Shell is intended to provide an execution environment that is decoupled
from the native host context. This separation allows the introduction of software into the system that may not
be compatible with the native execution environment. It also allows the software to run in an environment
that does not interfere with the behavior, performance, or scale of the system.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
62

Shells and Scripting
Security Posture for Virtual ServicesGuest Shell

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco 30009000 NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable
Space Protection (X-Space) for runtime defense. The software in Cisco-signed packages make use of this
capability. If other software is installed on the system, it is recommended that it be built using a host OS and
development toolchain that supports these technologies. Doing so reduces the potential attack surface that the
software presents to potential intruders.

Namespace Isolation
The Guest Shell environment runs within a Linux container that makes use of various namespaces to decouple
the Guest Shell execution space from that of the host. Starting in the NX-OS 9.2(1) release, the Guest Shell
is run in a separate user namespace, which helps protect the integrity of the host system, as processes running
as root within the Guest Shell are not root of the host. These processes appear to be running as uid 0 within
the Guest Shell due to uid mapping, but the kernel knows the real uid of these processes and evaluates the
POSIX capabilities within the appropriate user namespace.

When a user enters the Guest Shell from the host, a user of the same name is created within the Guest Shell.
While the names match, the uid of the user within the Guest Shell is not the same as the uid on the host. To
still allow users within the Guest Shell to access files on shared media (for example, /bootflash or
/volatile), the common NX-OS gids used on the host (for example, network-admin or network-operator)
are mapped into the Guest Shell such that the values are the same and the Guest Shell instance of the user is
associated with the appropriate groups based on group membership on the host.

As an example, consider user bob. On the host, bob has the following uid and gid membership:
bash-4.3$ id
uid=2004(bob) gid=503(network-admin) groups=503(network-admin),504(network-operator)

When user bob is in the Guest Shell, the group membership from the host is set up in the Guest Shell:
[bob@guestshell ~]$ id
uid=1002(bob) gid=503(network-admin)
groups=503(network-admin),504(network-operator),10(wheel)

Files created by user bob in the host Bash shell and the Guest Shell have different owner ids. The example
output below shows that the file created from within the Guest Shell has owner id 12002, instead of 1002 as
shown in the example output above. This is due to the command being issued from the host Bash shell and
the id space for the Guest Shell starting at id 11000. The group id of the file is network-admin, which is 503
in both environments.
bash-4.3$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 12002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 2004 503 4 Jun 22 15:47 /bootflash/bob_host

bash-4.3$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 12002 network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
63

Shells and Scripting
Kernel Vulnerability Patches

-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_host

The user is allowed to access the file due to the file permission settings for the network-admin group, and the
fact that bob is a member of network-admin in both the host and Guest Shell.

Inside the Guest Shell environment, the example output below shows that the owner id for the file created by
bob from the host is 65534. This indicates the actual id is in a range that is outside range of ids mapped into
the user namespace. Any unmapped id will be shown as this value.
[bob@guestshell ~]$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 1002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 503 4 Jun 22 15:47 /bootflash/bob_host

[bob@guestshell ~]$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 network-admin 4 Jun 22 15:47 /bootflash/bob_host

Root-User Restrictions
As a best practice for developing secure code, it is recommend running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest
Shell should follow this best practice.

All processes within a virtual servicethe Guest Shell are subject to restrictions imposed by reduced Linux
capabilities. If your application must perform operations that require root privileges, restrict the use of the
root account to the smallest set of operations that absolutely requires root access, and impose other controls
such as a hard limit on the amount of time that the application can run in that mode.

The set of Linux capabilities that are dropped for root within virtual servicesthe Guest Shell follow:

CAP_SYS_PACCTCAP_MKNODCAP_SYS_BOOT

CAP_SYS_RESOURCECAP_MAC_OVERRIDECAP_SYS_MODULE

CAP_AUDIT_WRITECAP_SYS_RAWIOCAP_SYS_TIME

CAP_NET_ADMINCAP_SYS_NICECAP_AUDIT_CONTROL

CAP_SYS_PTRACECAP_MAC_ADMIN

• cap_audit_control

• cap_audit_write

• cap_mac_admin

• cap_mac_override

• cap_mknod

• cap_net_broadcast

• cap_sys_boot

• cap_syslog

• cap_sys_module

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
64

Shells and Scripting
Root-User Restrictions

• cap_sys_nice

• cap_sys_pacct

• cap_sys_ptrace

• cap_sys_rawio

• cap_sys_resource

• cap_sys_time

• cap_wake_alarm

As root within a virtual service, bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts
are prevented.

While the net_admin capability is not dropped, user namespace and the host ownership of the network
namespaces prevents the Guest Shell user from modifying the interface state. As root within the Guest Shell,
bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources among all virtual servicesbetween Guest Shell and services on the host.

Guest File System Access Restrictions
To preserve the integrity of the files within the virtual services, the file systems of the virtual services are not
accessible from the NX-OS CLI. If a given virtual-service allows files to be modified, it needs to provide an
alternate means by which this can be done (i.e. yum install, scp, ftp, etc).

To preserve the integrity of the files within the Guest Shell, the file systems of the Guest Shell are not accessible
from the NX-OS CLI.

The Guest Shell mounts the bootflash of the host system at /bootflash. The network-admin can access
the file using an NX-OS CLI or Linux command from within the Guest Shell.

bootflash: and volatile: of the host are mounted as /bootflash and /volatile within the Guest
Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or
using Linux commands from within the Guest Shell.

Managing the Guest Shell
The following are commands to manage the Guest Shell:

Table 2: Guest Shell CLI Commands

DescriptionCommands

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
65

Shells and Scripting
Resource Management

DescriptionCommands

• When guest shell OVA file is specified:

Installs and activates the Guest Shell using the
OVA that is embedded in the system image.

Installs and activates the Guest Shell using the
specified software package (OVA file) or the
embedded package from the system image (when
no package is specified). Initially, Guest Shell
packages are only available by being embedded
in the system image.

When the Guest Shell is already installed, this
command enables the installed Guest Shell.
Typically this is used after a guestshell disable
command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs when the Guest
Shell is in a destroyed state. This command
brings up the Guest Shell with the specified
package.

guestshell enable {package [guest shell OVA file |
rootfs-file-URI]}

Exports a Guest Shell rootfs file to a local URI
(bootflash, USB1, etc.). (7.0(3)I7(1) and later releases)

guestshell export rootfs package destination-file-URI

Shuts down and disables the Guest Shell.guestshell disable

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
66

Shells and Scripting
Managing the Guest Shell

DescriptionCommands

• When guest shell OVA file is specified:

Deactivates and upgrades the Guest Shell using
the specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially Guest Shell
packages are only available by being embedded
in the system image.

The current rootfs for the Guest Shell is replaced
with the rootfs in the software package. The
Guest Shell does not make use of secondary
filesystems that persist across an upgrade.
Without persistent secondary filesystems, a
guestshell destroy command followed by a
guestshell enable command could also be used
to replace the rootfs. When an upgrade is
successful, the Guest Shell is activated.

You are prompted for a confirmation prior to
carrying out the upgrade command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs file when the Guest
Shell is already installed. This command removes
the existing Guest Shell and installs the

specified package.

guestshell upgrade {package [guest shell OVA file
| rootfs-file-URI]}

Deactivates the Guest Shell and then reactivates it.

You are prompted for a confirmation prior to carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a
guestshell enable command in exec
mode.

This is useful when processes inside the
Guest Shell have been stopped and need
to be restarted. The run guestshell
command relies on sshd running in the
Guest Shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the
Guest Shell from the NX-OSCLI allows
it to restart and restore the command.

Note

guestshell reboot

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
67

Shells and Scripting
Managing the Guest Shell

DescriptionCommands

Deactivates and uninstalls the Guest Shell. All
resources associated with the Guest Shell are returned
to the system. The show virtual-service global
command indicates when these resources become
available.

Issuing this command results in a prompt for a
confirmation prior to carrying out the destroy
command.

guestshell destroy

Connects to the Guest Shell that is already running
with a shell prompt. No username/password is
required.

guestshell

run guestshell

Executes a Linux/UNIX commandwithin the context
of the Guest Shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the Guest
Shell. The changes take effect the next time the Guest
Shell is enabled or rebooted.

Resize values are cleared when the
guestshell destroy command is used.

Note

guestshell resize [cpu | memory | rootfs]

On systems that have active and standby supervisors,
this command synchronizes the Guest Shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
Guest Shell rootfs has been set up to a point that they
would want the same rootfs used on the standby
supervisor when it becomes the active supervisor. If
this command is not used, the Guest Shell is freshly
installed when the standby supervisor transitions to
an active role using the Guest Shell package available
on that supervisor.

guestshell sync

In the event that the guestshell or virtual-services
cannot be managed, even after a system reload, the
reset command is used to force the removal of the
Guest Shell and all virtual-services. The system needs
to be reloaded for the cleanup to happen. No Guest
Shell or additional virtual-services can be installed or
enabled after issuing this command until after the
system has been reloaded.

You are prompted for a confirmation prior to initiating
the reset.

virtual-service reset force

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
68

Shells and Scripting
Managing the Guest Shell

Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment.Note

The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Virtual-service commands that do not pertain to the Guest Shell are being deprecated. These commands have
been hidden in the NX-OS 9.2(1) release and will be removed in future releases.

The following exec keywords are being deprecated:
virtual-service ?
connect Request a virtual service shell
install Add a virtual service to install database
uninstall Remove a virtual service from the install database
upgrade Upgrade a virtual service package to a different version

show virtual-service ?
detail Detailed information config)

The following config keywords are being deprecated:
(config) virtual-service ?
WORD Virtual service name (Max Size 20)

(config-virt-serv)# ?
activate Activate configured virtual service
description Virtual service description

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the Guest Shell.

When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.

Example:

switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
69

Shells and Scripting
Disabling the Guest Shell

2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The Guest Shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove
the Guest Shell OVA.

When the Guest Shell is destroyed and the system is reloaded, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The Guest Shell can be re-enabled with the guestshell enable command.Note

If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the
Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest
Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically
started.

Note

Enabling the Guest Shell
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default,
the package embedded in the system image is used for the installation. The command is also used to reactivate
the Guest Shell if it has been disabled.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
70

Shells and Scripting
Destroying the Guest Shell

When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Enabling the Guest Shell in Base Boot Mode

Beginning in the NX-OS 9.2(1) release, you can choose to boot your system in base boot mode. When you
boot your system in base boot mode, the Guest Shell is not started by default. In order to use the Guest Shell
in this mode, you must activate the RPMs containing the virtualization infrastructure as well as the Guest
Shell image. Once you have done this, the Guest Shell and virtual-service commands will be available.

If the RPM activation commands are run in this order:

1. install activate guestshell

2. install activate virtualization

The Guest Shell container will be activated automatically as it would have been if the system had been booted
in full mode.

If the RPM activation commands are run in the reverse order:

1. install activate virtualization

2. install activate guestshell

Then the Guest Shell will not be enabled until you run the guestshell enable command.

Enabling the Guest Shell on Cisco Nexus 3000 with Compacted Image

The Guest Shell software is not available in a Cisco NX-OS image that has been compacted for the Cisco
Nexus 3000 Series switches with 1.6 GB bootflash and 4 GB RAM. You can still use the Guest Shell in this
case, but you will need to download the software package from software.cisco.com for the Cisco NX-OS
release, then you will need to copy it onto the Cisco Nexus 3000 Series switch and enable it.

For more information on compacted images, refer to the Cisco Nexus 3000 Series NX-OS Software Upgrade
and Downgrade Guide, Release 9.2(1).

The Guest Shell software installs onto the bootflash of the switch. To create as much free bootflash space as
possible, put the downloaded guestshell.ova file onto the volatile: storage media. Once the Guest

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
71

Shells and Scripting
Enabling the Guest Shell

Shell is successfully activated, the guestshell.ova file can be deleted. It will not be needed again unless
the Guest Shell is destroyed at some point and needs to be re-installed.

For example:
switch# copy scp://admin@1.2.3.4/guestshell.ova volatile: vrf management
guestshell.ova 100% 55MB 10.9MB/s 00:05
Copy complete, now saving to disk (please wait)...
Copy complete.

switch# dir volatile: | inc .ova
57251840 Jun 22 11:56:51 2018 guestshell.ova

switch# guestshell enable package volatile:guestshell.ova
2018 Jun 7 19:13:03 n3x-164 %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2018 Jun 7 19:13:56 n3x-164 %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2018 Jun 7 19:13:56 n3x-164 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2018 Jun 7 19:15:34 n3x-164 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# del volatile:guestshell.ova
Do you want to delete "/guestshell.ova" ? (yes/no/abort) [y] y

switch# guestshell
[admin@guestshell ~]$

Replicating the Guest Shell
Beginning with Cisco NX-OS release 7.0(3)I7(1), a Guest Shell rootfs that is customized on one switch can
be deployed onto multiple switches.

The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP
script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell
across many devices simultaneously.

Exporting Guest Shell rootfs

Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.

The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file
allows for local URI options (bootflash, USB1, etc.).

The guestshell export rootfs package command:

• Disables the Guest Shell (if already enabled).

• Creates a Guest Shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.

• Copies the rootfs ext4 file to the target URI location.

• Re-enables the Guest Shell if it had been previously enabled.

Importing Guest Shell rootfs

When importing a Guest Shell rootfs, there are two situations to consider:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
72

Shells and Scripting
Replicating the Guest Shell

• Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.

• Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified
package.

The rootfs-file-URI parameter is the rootfs file stored on local storage (bootflash, USB, etc.).

When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.

As a best practice, you should copy the file to the bootflash and validate the md5sum before using the
guestshell upgrade package rootfs-file-URI command.

The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell.Note

The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling
as shown in the example:

(config-virt-serv-global)# signing level unsigned
Note: Support for unsigned packages has been user-enabled. Unsigned packages are not endorsed
by Cisco. User assumes all responsibility.

Note

To restore the embedded version of the rootfs:

• Use the guestshell upgrade command (without additional parameters) when the Guest Shell has already
been installed.

• Use the guestshell enable command (without additional parameters) when the Guest Shell had been
destroyed.

Note

When running this command from within a Guest Shell, or outside a switch using NX-API, you must set
terminal dont-ask to skip any prompts.

Note

The guestshell enable package rootfs-file-URI command:

• Performs basic validation of the rootfs file.

• Moves the rootfs into the storage pool.

• Mounts the rootfs to extract the YAML file from the /cisco directory.

• Parses the YAML file to obtain VM definition (including resource requirements).

• Activates the Guest Shell.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
73

Shells and Scripting
Importing Guest Shell rootfs

Example workflow for guestshell enable :

switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8
Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual
service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed.Note

Resize values are cleared when the guestshell upgrade command is used.Note

Importing YAML File
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as
a part of the export operation. It is embedded into the Guest Shell rootfs in the /cisco directory. It is not a
complete descriptor for the Guest Shell container. It only contains some of the parameters that are user
modifiable.

Example of a Guest Shell import YAML file:

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.2(0.3)"
description: "Exported GuestShell: 20170216T175137Z"

app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250

...

The YAML file is generated when the guestshell export rootfs package command is executed. The file
captures the values of the currently running Guest Shell.

The info section contains non-operational data that is used to help identify the Guest Shell. Some of the
information will be displayed in the output of the show guestshell detail command.

The description value is an encoding of the UTC time when the YAML file was created. The time string
format is the same as DTSTAMP in RFC5545 (iCal).

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
74

Shells and Scripting
Importing YAML File

The resources section describes the resources required for hosting the Guest Shell. The value "/" for the
target-dir in the example identifies the disk as the rootfs.

If resized values were specified while the Guest Shell was destroyed, those values take precedence over the
values in the import YAML file when the guestshell enable package command is used.

Note

The cpuarch value indicates the CPU architecture that is expected for the container to run.

You can modify the YAML file (such as the description or increase the resource parameters, if appropriate)
after the export operation is complete .

Cisco provides a python script that you can run to validate a modified YAML file with a JSON schema. It is
not meant to be a complete test (for example, device-specific resource limits are not checked), but it is able
to flag common errors. The python script with examples is located at Guest Shell Import Export. The following
JSON file describes the schema for version 1.0 of the Guest Shell import YAML .

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {
"id": "/import-schema-version",
"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [

"1.0"
]

},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29

},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"author-name": {
"id": "/info/author-name",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
75

Shells and Scripting
Importing YAML File

https://github.com/datacenter/opennxos/tree/master/guestshell_import_export

"type": "string",
"minLength": 1,
"maxLength": 199

},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199

}
}

},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"

]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"x86_64"

]
},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1

},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024

},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
76

Shells and Scripting
Importing YAML File

"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",
"minLength": 1,
"maxLength": 1,
"enum": [
"/"

]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1

}
}

}
}

},
"required": [
"memory",
"disk"

]
}

},
"required": [
"apptype",
"cpuarch",
"resources"

]
}

},
"required": [
"app"

]
}

show guestshell Command
The output of the show guestshell detail command includes information that indicates whether the Guest
Shell was imported or was installed from an OVA.

Example of the show guestshell detail command after importing rootfs.

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : rootfs_puppet
Path : usb2:/rootfs_puppet
Application
Name : GuestShell
Installed version : 2.3(0.0)
Description : Exported GuestShell: 20170613T173648Z

Signing
Key type : Unsigned
Method : Unknown

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
77

Shells and Scripting
show guestshell Command

Licensing
Name : None
Version : None

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and Guest Shell information with the following commands:

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global

Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.11
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:
Name Quota Committed Available

system CPU (%) 20 1 19
memory (MB) 3840 256 3584
bootflash (MB) 8192 200 7992
switch#

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list *

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova
chef Installed chef-0.8.1-n9000-spa-k9.ova

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
78

Shells and Scripting
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guestshell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isan/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.2(0.2)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 400 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Persistently Starting Your Application From the Guest Shell
Your application should have a systemd / systemctl service file that gets installed in
/usr/lib/systemd/system/application_name.service. This service file should have the following
general format:
[Unit]
Description=Put a short description of your application here

[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

To run systemd as a specific user, add User=<username> to the [Service] section of your service.Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
79

Shells and Scripting
Persistently Starting Your Application From the Guest Shell

Procedure for Persistently Starting Your Application from the
Guest Shell

Procedure

Step 1 Install your application service file that you created above into
/usr/lib/systemd/system/application_name.service

Step 2 Start your application with systemctl start application_name

Step 3 Verify that your application is running with systemctl status -l application_name

Step 4 Enable your application to be restarted on reload with systemctl enable application_name

Step 5 Verify that your application is running with systemctl status -l application_name

An Example Application in the Guest Shell
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash

OUTPUTFILE=/tmp/hello

rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon

[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon

Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago

Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
80

Shells and Scripting
Procedure for Persistently Starting Your Application from the Guest Shell

##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10

Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#
[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y

After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#

Running under systemd / systemctl, your application is automatically restarted if it dies (or if you
kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a
Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#

Troubleshooting Guest Shell Issues
Unable to Get Into Guest Shell After Downgrade to 7.0(3)I7

If you downgrade from the NX-OS 9.2(1) release to the NX-OS 7.0(3)7 release image (which does not have
user namespace support) while the Guest Shell is in the process of activating or deactivating, you may run
into the following condition where the Guest Shell activates, but you are unable to get into the Guest Shell.
The reason for this issue is that if a reload is issued while the Guest Shell is in transition, the files within the
Guest Shell can't get shifted back into an id range that is usable for NX-OS releases that don't have user
namespace support.
switch# guestshell
Failed to mkdir .ssh for admin
admin RSA add failed

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
81

Shells and Scripting
Troubleshooting Guest Shell Issues

ERROR: Failed to connect with Virtual-service 'guestshell+'
switch#
switch# sh virt list

Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshell.ova

switch# run bash ls -al /isan/vdc_1/virtual-instance/guestshell+/rootfs/
drwxr-xr-x 24 11000 11000 1024 Apr 11 10:44 .
drwxrwxrwx 4 root root 80 Apr 27 20:08 ..
-rw-r--r-- 1 11000 11000 0 Mar 21 16:24 .autorelabel
lrwxrwxrwx 1 11000 11000 7 Mar 21 16:24 bin -> usr/bin

To recover from this issue without losing the contents of the Guest Shell, reload the system with the
previously-running NX-OS 9.2(x) image and let the Guest Shell get to the Activated state before reloading
the systemwith the NX-OS 7.0(3)I7 image. Another option is to disable the Guest Shell while running NX-OS
9.2(x) and re-enable it after reloading with 7.0(3)I7.

If you do not have anything to preserve in the Guest Shell and you just want to recover it, you can destroy
and recreate it without needing to change images.

Unable to Access Files on bootflash from root in the Guest Shell

You may find that you are unable to access files on bootflash from root in the Guest Shell.

From the host:
root@switch# ls -al /bootflash/try.that
-rw-r--r-- 1 root root 0 Apr 27 20:55 /bootflash/try.that
root@switch#

From the Guest Shell:
[root@guestshellbootflash]# ls -al /bootflash/try.that
-rw-r--r-- 1 65534 host-root 0 Apr 27 20:55 /bootflash/try.that
[root@guestshellbootflash]# echo "some text" >> /bootflash/try.that
-bash: /bootflash/try.that: Permission denied
[root@guestshellbootflash]#

This may be due to the fact that, because the user namespace is being used to protect the host system, root in
the Guest Shell is not actually the root of the system.

To recover from this issue, verify that the file permissions and group-id of the files allow for shared files on
bootflash to be accessed as expected. You may need to change the permissions or group-id from the host Bash
session.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
82

Shells and Scripting
Troubleshooting Guest Shell Issues

C H A P T E R 6
Broadcom Shell

• About the Broadcom Shell, on page 83
• Guidelines and Limitations, on page 83
• Accessing the Broadcom Shell (bcm-shell), on page 83

About the Broadcom Shell
The switch's front panel and fabric module line cards contain BroadcomNetwork Forwarding Engines (NFE).
The number of NFEs varies depending upon the specific model of the front panel line card (LC) or the fabric
module (FM).

Guidelines and Limitations
You can access and read information from the T2 ASICs without any limitations. However, Cisco does not
recommend changing the T2 configuration settings. Use caution when accessing the Broadcom Shell.

Accessing the Broadcom Shell (bcm-shell)
The following sections describe approaches to access the Broadcom Shell (bcm-shell).

Accessing bcm-shell with the CLI API
The bcm-shell commands are passed directly from the Cisco NX-OS CLI to the specific T2 ASIC instance.
The T2 ASIC instance can be on the fabric module or on the front panel line card.

The command syntax is as follows:

bcm-shell module module_number [instance_number:command]

Where

Module number in the chassis.module_number

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
83

T2 instance number

• When not specified, the T2 instance number defaults to 0.

• When a wildcard ('*') is specified, all T2 instances are processed.

instance_number

Broadcom commandcommand

Cisco NX-OS command extensions such as ‘pipe include’ or ‘redirect output to file’ can be used to manage
command output.

Note

Entering commands with the CLI API are recorded in the system accounting log for auditing purposes.
Commands that are entered directly from the bcm-shell are not recorded in the accounting log.

Note

Accessing the Native bcm-shell on the Fabric Module
An eight-slot line card (LC) chassis can host a maximum of six fabric modules (FMs). These slots are numbered
21 through 26.You must specify the FM that you wish to access the bcm-shell on.

The following example shows how to access the bcm-shell on the FM in slot 24, access context help, and exit
the bcm-shell.

• Use the show module command to display the FMs.
switch# show module
Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
3 36 36p 40G Ethernet Module N9k-X9636PQ ok
4 36 36p 40G Ethernet Module N9k-X9636PQ ok
21 0 Fabric Module Nexus-C9508-FM ok
22 0 Fabric Module Nexus-C9508-FM ok
23 0 Fabric Module Nexus-C9508-FM ok
24 0 Fabric Module Nexus-C9508-FM ok
25 0 Fabric Module Nexus-C9508-FM ok
26 0 Fabric Module Nexus-C9508-FM ok
27 0 Supervisor Module Nexus-SUP-A active *
29 0 System Controller Nexus-SC-A active

• Attach to module 24 to gain access to the command line for the FM in slot 24.
switch# attach module 24
Attaching to module 24 ...
To exit type 'exit', to abort type '$.'

• Enter the command to gain root access to the fabric module software.
module-24# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1
bcm-shell.0> 1

At this point, you are at the Broadcom shell for the fabric module in slot 24, T2 ASIC instance 1. Any
commands that you enter are specific to this specific ASIC instance.

• Use the exit command to exit the bcm-shell and to detach from the FM.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
84

Shells and Scripting
Accessing the Native bcm-shell on the Fabric Module

bcm-shell.1> exit
module-24# exit
rlogin: connection closed.

Accessing the bcm-shell on the Line Card
When connecting to the T2 ASIC on the line card (LC), you first attach to the module, enter root mode, run
the shell access exec, and select the ASIC instance to which you want to attach. The number of available
ASICs depends on the model of the line card to which you are attached.

The following example shows how to access the bcm-shell of ASIC instance 1 on the LC in slot 2 and exit
the bcm-shell on an LC that contains three T2 instances.

• Attach to module 2 to gain access to the command line for the LC in slot 2.

switch# attach module 2
Attaching to module 2 ...
To exit type 'exit', to abort type '$.'
Last login: Wed Aug 7 14:13:15 UTC 2013 from sup27 on ttyp0

• Enter the command to gain root access to the line card software.

switch-2# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1 2
bcm-shell.0> 1
bcm-shell.1>

At this point, you are at the Broadcom shell for the line card module in slot 2, T2 ASIC instance 1.

• Use the exit command to exit the bcm-shell and detach from the FM.
bcm-shell.1> exit
module-2# exit
rlogin: connection closed.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
85

Shells and Scripting
Accessing the bcm-shell on the Line Card

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
86

Shells and Scripting
Accessing the bcm-shell on the Line Card

C H A P T E R 7
Python API

• About the Python API , on page 87
• Using Python, on page 87

About the Python API
Beginning with Cisco NX-OS Release 9.3(5), Python 3 is now supported. Python 2.7 will continue to be
supported. We recommend that you use the python3 command for new scripts.

The Cisco Nexus 30009000 Series switches support Python v2.7.11 and v3.7.3 in both interactive and
noninteractive (script) modes and are available in the Guest Shell. For a list of Cisco Nexus switches that
support Python scripting, see Platform Support for Programmability Features, on page 5.

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development
in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all
major platforms from the Python website:

http://www.python.org/

The same site also contains distributions of and pointers to many free third-party Python modules, programs
and tools, and more documentation.

The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to
perform various tasks and Power On Auto Provisioning (POAP) or Embedded EventManager (EEM) actions.
Python can be accessed from the Bash shell.

The Python interpreter is available in the Cisco NX-OS software.

For the platforms that support Python, users are allowed to access low level OS system calls.Note

Using Python
This section describes how to write and execute Python scripts.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
87

http://www.python.org

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network-device modules,
such as interfaces, VLANs, VRFs, ACLs, and routes. You can display the details of the Cisco Python package
by entering the help() command. To obtain additional information about the classes and methods in a module,
you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco Python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

The following is an example of how to display information about the Cisco Python Package for Python 3:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

PACKAGE CONTENTS
acl
bgp

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
88

Shells and Scripting
Cisco Python Package

buffer_depth_monitor
check_port_discards
cisco_secret
feature
historys
interface
ipaddress
key
line_parser
mac_address_table
md5sum
nxcli
nxos_cli
ospf
routemap
routes
section_parser
ssh
system
tacacs
transfer
vlan
vrf

CLASSES
builtins.dict(builtins.object)
cisco.history.History
builtins.object
cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You must enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Table 3: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control or special characters.

The interactive Python interpreter prints
control or special characters 'escaped'.
A carriage return is printed as '\n' and
gives results that can be difficult to read.
The clip() API gives results that are
more readable.

Note

cli()

Example:
string = cli (“cli-command”)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
89

Shells and Scripting
Using the CLI Command APIs

DescriptionAPI

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

This API can be useful when searching
the output of show commands.

Note

clid()

Example:
json_string = clid (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. The semicolon (;) must be surrounded with
single blank characters.

Note

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python 2 from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

Python 2.7 is End of Support, Future NX-OS software deprecates Python 2.7 support. We recommend for
new scripts to use python3' instead. Type python3 to use the new shell.

Important

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
90

Shells and Scripting
Invoking the Python Interpreter from the CLI

switch# python
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
loopback1
>>>

The following example shows how to invoke Python 3 from the CLI:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print(intf['interface'])
...
mgmt0
loopback1
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
91

Shells and Scripting
Display Formats

username: admin
vdc: switch
routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> r = cli('where detail')
>>> print(r)
mode:
username: admin
vdc: switch
routing-context vrf: default

>>>

Example 4:

Non-Interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command-line arguments for the Python script are allowed with the Python CLI command.

The switch also supports the source CLI command for running Python scripts. The bootflash:scripts
directory is the default script directory for the source CLI command.

This example shows the script first and then executing it. Saving is like bringing any file to the bootflash.
switch# show file bootflash:scripts/deltaCounters.py
#!/isan/bin/python3
from cli import *
import sys, time
ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'
out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print ('row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast')
print ('===')
print (' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc))
print ('===')
i = 0
while (i < count):

time.sleep(delay)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
92

Shells and Scripting
Non-Interactive Python

out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print ('%-3d %8d %8d %8d %8d %8d %8d' % (i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew -

rxbc, txucNew - txuc, txmcNew - txmc, txbcNew - txbc))

switch# python bootflash:scripts/deltaCounters.py mgmt0 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

291 8233 1767 185 57 2
===
1 1 4 1 1 0 0
2 2 5 1 2 0 0
3 3 9 1 3 0 0
4 4 12 1 4 0 0
5 5 17 1 5 0 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
On Cisco Nexus switches, Embedded Event Manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Running configuration last done at: Thu Jun 25 15:29:38 2020
!Time: Thu Jun 25 15:33:19 2020

version 9.3(5) Bios:version 07.67
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py

switch# show file logflash:vdc_1/event_archive_1 | last 33

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
93

Shells and Scripting
Running Scripts with Embedded Event Manager

eem_event_time:06/25/2020,15:34:24 event_type:cli event_id:24 slot:active(1) vdc
:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
stty: standard input: Inappropriate ioctl for device
Executing the following commands succeeded:

python bootflash:pydate.py
Completed executing policy a1
Event Id:24 event type:10241 handling completed

• You can search for the action that is triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
On Cisco Nexus switches, Python is integrated with the underlying Cisco NX-OS network interfaces. You
can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the in-band interface by switching to a desired
virtual routing context.
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000
>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:
set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
94

Shells and Scripting
Python Integration with Cisco NX-OS Network Interfaces

python libraries).
Arguments:
vrf: VRF name (string) or the VRF ID (int).
Returns: Nothing
>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

All users who are associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users
who are granted access to Python with a custom role are regarded as nonprivileged users. Nonprivileged users
have limited access to Cisco NX-OS resources, such as the file system, guest shell, and Bash commands.
Privileged users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:

Python 3 example.
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
17
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print(r.read())
hello from python
>>> r.close()
>>>

The following example shows a nonprivileged user being denied access:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','w')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

PermissionError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
95

Shells and Scripting
Cisco NX-OS Security with Python

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'Warning: No NTP peer/server configured. Time may be out of sync.\n15:39:39.513 UTC Thu Jun
25 2020\nTime source is NTP\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Running configuration last done at: Thu Jun 25 15:39:49 2020
!Time: Thu Jun 25 15:39:55 2020

version 9.3(5) Bios:version 07.67

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a nonprivileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

switch# show role name python-role

Example of Running Script with Scheduler
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *
from nxos import *
import os

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
96

Shells and Scripting
Example of Running Script with Scheduler

print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts

Python 3 example.
#!/bin/env python3
from cli import *
from nxos import *
import os

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print(msg)
py_syslog(1, msg)

Save this script in bootflash:///scripts

switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature scheduler
switch(config)# scheduler job name testplan
switch(config-job)# python bootflash:///scripts/test.py
switch(config-job)# exit
switch(config)# scheduler schedule name testplan
switch(config-schedule)# job name testplan
switch(config-schedule)# time start now repeat 0:0:4
Schedule starts from Sat Jun 13 04:29:38 2020
switch# 2020 Jun 13 04:29:41 switch %USER-1-SYSTEM_MSG: No user ran /bootflash/scripts/test.py
on : switch - nxpython
switch# show scheduler schedule
Schedule Name : testplan

User Name : admin
Schedule Type : Run every 0 Days 0 Hrs 4 Mins
Start Time : Sat Jun 13 04:29:38 2020
Last Execution Time : Sat Jun 13 04:29:38 2020
Last Completion Time: Sat Jun 13 04:29:41 2020
Execution count : 1

Job Name Last Execution Status

testplan Success (0)
==
switch#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
97

Shells and Scripting
Example of Running Script with Scheduler

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
98

Shells and Scripting
Example of Running Script with Scheduler

C H A P T E R 8
Scripting with Tcl

This chapter contains the following topics:

• About Tcl, on page 99
• Running the Tclsh Command, on page 102
• Navigating Cisco NX-OS Modes from the Tclsh Command, on page 103
• Tcl References, on page 104

About Tcl
Tcl (pronounced "tickle") is a scripting language that increases flexibility of CLI commands. You can use Tcl
to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS
commands in a loop, or define Embedded Event Manager (EEM) policies in a script.

This section describes how to run Tcl scripts or run Tcl interactively on switches.

Guidelines and Limitations
Following are guidelines and limitations for TCL scripting:

• For notes about platform support, see Platform Support for Programmability Features, on page 5.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, a SIGCONT (signal continuation) message can be generated, which can cause the script to
halt. Scripts that are halted through SIGCONT messages require user intervention to resume operation.

Tclsh Command Help
Command help is not available for Tcl commands. You can still access the help functions of Cisco NX-OS
commands from within an interactive Tcl shell.

This example shows the lack of Tcl command help in an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?

^
% Invalid command at '^' marker.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
99

switch-tcl# configure ?
<CR>
session Configure the system in a session
terminal Configure the system from terminal input

switch-tcl#

In the preceding example, the Cisco NX-OS command help function is still available but the Tcl puts command
returns an error from the help function.

Note

Tclsh Command History
You can use the arrow keys on your terminal to access commands you previously entered in the interactive
Tcl shell.

The tclsh command history is not saved when you exit the interactive Tcl shell.Note

Tclsh Tab Completion
You can use tab completion for Cisco NX-OS commands when you are running an interactive Tcl shell. Tab
completion is not available for Tcl commands.

Tclsh CLI Command
Although you can directly access Cisco NX-OS commands from within an interactive Tcl shell, you can only
execute Cisco NX-OS commands in a Tcl script if they are prepended with the Tcl cli command.

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod

In a Tcl script, you must prepend Cisco NX-OS commands with the Tcl cli command as shown in the following
example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"

If you use the following commands in your script, the script fails and the Tcl shell displays an error:
show module $x | incl Mod
"show module $x | incl Mod"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
100

Shells and Scripting
Tclsh Command History

Tclsh Command Separation
The semicolon (;) is the command separator in both Cisco NX-OS and Tcl. To execute multiple Cisco NX-OS
commands in a Tcl command, you must enclose the Cisco NX-OS commands in quotes ("").

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#

In an interactive Tcl shell, you can also execute Cisco NX-OS commands directly without prepending the Tcl
cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#

Tcl Variables
You can use Tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into
Tcl scripts. Tcl variables are not persistent.

The following example shows how to use a Tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#

Tclquit
The tclquit command exits the Tcl shell regardless of which Cisco NX-OS commandmode is currently active.
You can also press Ctrl-C to exit the Tcl shell. The exit and end commands change Cisco NX-OS command
modes. The exit command terminates the Tcl shell only from the EXEC command mode.

Tclsh Security
The Tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS
system. The system monitors CPU, memory, and file system resources being used by the Tcl shell to detect
events such as infinite loops, excessive memory utilization, and so on.

You configure the initial Tcl environment with the scripting tcl init init-file command.

You can define the looping limits for the Tcl environment with the scripting tcl recursion-limit iterations
command. The default recursion limit is 1000 iterations.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
101

Shells and Scripting
Tclsh Command Separation

Running the Tclsh Command
You can run Tcl commands from either a script or on the command line using the tclsh command.

You cannot create a Tcl script file at the CLI prompt. You can create the script file on a remote device and
copy it to the bootflash: directory on the Cisco NX-OS device.

Note

Procedure

PurposeCommand or Action

Starts a Tcl shell.tclsh [bootflash:filename [argument ...
]]

Step 1

If you run the tclsh command with no
arguments, the shell runs interactively, readingExample:
Tcl commands from standard input and printingswitch# tclsh ?

<CR>
bootflash: The file to run

command results and error messages to the
standard output. You exit from the interactive
Tcl shell by typing tclquit or Ctrl-C.

If you run the tclsh command with arguments,
the first argument is the name of a script file
containing Tcl commands and any additional
arguments are made available to the script as
variables.

Example

The following example shows an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# cli show module $x | incl Mod
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch-tcl# exit
switch#

The following example shows how to run a Tcl script:
switch# show file bootflash:showmodule.tcl
set x 1
while {$x < 19} {
cli show module $x | incl Mod
set x [expr {$x + 1}]
}

switch# tclsh bootflash:showmodule.tcl
Mod Ports Module-Type Model Status

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
102

Shells and Scripting
Running the Tclsh Command

1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch#

Navigating Cisco NX-OS Modes from the Tclsh Command
You can change modes in Cisco NX-OS while you are running an interactive Tcl shell.

Procedure

PurposeCommand or Action

Starts an interactive Tcl shell.tclsh

Example:

Step 1

switch# tclsh
switch-tcl#

Runs a Cisco NX-OS command in the Tcl shell,
changing modes.

configure terminal

Example:

Step 2

The Tcl prompt changes to
indicate the Cisco NX-OS
command mode.

Noteswitch-tcl# configure terminal
switch(config-tcl)#

Terminates the Tcl shell, returning to the
starting mode.

tclquit

Example:

Step 3

switch-tcl# tclquit
switch#

Example

The following example shows how to change Cisco NX-OS modes from an interactive Tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
103

Shells and Scripting
Navigating Cisco NX-OS Modes from the Tclsh Command

end Go to exec mode
exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in

switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit
Exiting Tcl
switch#

Tcl References
The following titles are provided for your reference:

• Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA,
USA, ISBN 0-201-63474-0, 1998

• John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading,MA, USA, ISBN 0-201-63337-X,
1994.

• Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA,
ISBN 0-13-038560-3, 2003.

• J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by JohnWiley and Sons,
ISBN 0-8186-8515-8, 1998.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
104

Shells and Scripting
Tcl References

C H A P T E R 9
iPXE

This chapter contains the following sections:

• About iPXE, on page 105
• Netboot Requirements, on page 106
• Guidelines and Limitations for iPXE, on page 106
• Boot Mode Configuration, on page 107
• Verifying the Boot Order Configuration, on page 108

About iPXE
iPXE is an open source network-boot firmware. iPXE is based on gPXE, which is an open-source PXE client
firmware and bootloader derived from Etherboot. Standard PXE clients use TFTP to transfer data whereas
gPXE supports more protocols.

Here is a list of additional features that iPXE provides over standard PXE:

• Boots from a web server via HTTP, iSCSI SAN, FCoE, and so on

• Supports both IPv4 and IPv6

• Netboot supports HTTP/TFTP, IPv4, and IPv6

• Supports embedded scripts into the image or served by the HTTP/TFTP, and so on

• Supports stateless address autoconfiguration (SLAAC) and stateful IP autoconfiguration variants for
DHCPv6. iPXE supports boot URI and parameters for DHCPv6 options. This depends on IPv6 router
advertisement.

In addition, we have disabled some of the existing features from iPXE for security reasons such as:

• Boot support for standard Linux image format such as bzImage+initramfs/initrd, or ISO, and so on

• Unused network boot options such as FCoE, iSCSI SAN, Wireless, and so on

• Loading of unsupported NBP (such as syslinux/pxelinux) because these can boot system images that are
not properly code-signed.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
105

Netboot Requirements
The primary requirements are:

• A DHCP server with proper configuration.

• A TFTP/HTTP server.

• Enough space on the device's bootflash because NX-OS downloads the image when the device is PXE
booted.

• IPv4/IPv6 support—for better deployment flexibility

Guidelines and Limitations for iPXE
PXE has the following configuration guidelines and limitations:

• While autobooting through iPXE, there is a window of three seconds where you can enter Ctrl+B to
exit out of the PXE boot. The system prompts you with the following options:

Please choose a bootloader shell:
1). GRUB shell
2). PXE shell
Enter your choice:

• HTTP image download vs. TFTP—TFTP is a UDP-based protocol, and it can be problematic if packet
loss starts appearing. TCP is a window-based protocol and handles bandwidth sharing or losses better.
As a result, TCP-based protocols support is more suitable given the sizes of the Cisco NX-OS images
which are over 250 Mbytes.

• iPXE only allows or boots Cisco signed NBI images. Other standard-image format support is disabled
for security reasons.

• On switches that have multiple supervisors, the behavior of supervisor A+ and B+ that are configured
to PXE boot is different than the behavior of supervisor A or B.

When supervisor A+ or B+ is configured to boot from PXE boot first and bootflash second, the supervisor
continuously attempts to boot from PXE and does not switch over to bootflash (GRUB) after unsuccessful
PXE-boot retries. To boot from bootflash, the supervisor requires manual intervention to reload the
supervisors.

You can interrupt PXE boot by entering Ctrl+C, and then you should get a prompt to stop PXE boot
by entering Ctrl+B. The supervisors will then boot from bootflash after manually reloading them.

This limitation applies only to supervisor A+ and B+. In a similar configuration, supervisor A and B
attempt to PXE boot four times before rebooting automatically and loading from bootflash.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
106

Shells and Scripting
Netboot Requirements

Boot Mode Configuration
VSH CLI

switch# configure terminal
switch(conf)# boot order bootflash|pxe [bootflash|pxe]
switch(conf)# end

The keyword bootflash indicates it is Grub based booting.Note

For example, to do a PXE boot mode only, the configuration command is:
switch(conf)# boot order pxe

To boot Grub first, followed by PXE:
switch(conf)# boot order bootflash pxe

To boot PXE first, followed by Grub:
switch(conf)# boot order pxe bootflash

If you set boot order pxe bootflash on supervisor A+ or B+, the supervisor continually tries to PXE boot.
Supervisor A+ or B+ does not switch over to boot from GRUB without manual intervention.

Note

If you never use the boot order command, by default the boot order is Grub.

The following sections describe how you can toggle from Grub and iPXE.Note

Grub CLI

bootmode [-g|-p|-p2g|-g2p]

FunctionKeyword

Grub only-g

PXE only-p

PXE first, followed by Grub if PXE failed-p2g

Grub first, followed by PXE if Grub failed-g2p

The Grub CLI is useful if you want to toggle the boot mode from the serial console without booting a full
Cisco NX-OS image. It also can be used to get a box out of the continuous PXE boot state.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
107

Shells and Scripting
Boot Mode Configuration

iPXE CLI

bootmode [-g|--grub] [-p|--pxe] [-a|--pxe2grub] [-b|--grub2pxe]

FunctionKeyword

Grub only– – grub

PXE only– – pxe

PXE first, followed by Grub if PXE failed– – pxe2grub

Grub first, followed by PXE if Grub failed– – grub2pxe

The iPXE CLI is useful if you wish to toggle the boot mode from the serial console without booting a full
Cisco NX-OS image. It also can be used to get a box out of continuous PXE boot state.

Verifying the Boot Order Configuration
To display boot order configuration information, enter the following command:

PurposeCommand

Displays the current boot order from the running
configuration and the boot order value on the next
reload from the startup configuration.

show boot order

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
108

Shells and Scripting
Verifying the Boot Order Configuration

C H A P T E R 10
Kernel Stack

This chapter contains the following sections:

• About Kernel Stack, on page 109
• Guidelines and Limitations, on page 109
• Changing the Port Range, on page 110
• About VXLAN with kstack, on page 111
• Netdevice Property Changes, on page 112

About Kernel Stack
Kernel Stack (kstack) uses well known Linux APIs to manage the routes and front panel ports.

Open Containers, like the Guest Shell, are Linux environments that are decoupled from the host software.
You can install or modify software within that environment without impacting the host software packages.

Kernel Stack has the following features:

Guidelines and Limitations
• Guest shell, Docker containers, and the host Bash Shell use Kernel Stack (kstack).

• The Guest Shell and the host Bash Shell start in the default network namespace. Docker containers start
in the management network namespace by default.

• Other network namespaces may be accessed by using the setns system call

• The nsenter and ip netns exec utilities can be used to execute within the context of a different
network namespace.

• The interface state may be read from /proc/net/dev or retrieved using other typical Linux utilities
such as ip, ifconfig, or netstat. The counters are for packets that have initiated or terminated on the
switch.

• ethtool –S may be used to get extended statistics from the net devices, which includes packets that are
switched through the interface.

• Packet capture applications like tcpdump may be run to capture packets that are initiated from or
terminated on the switch.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
109

• There is no support for networking state changes (interface creation or deletion, IP address configuration,
MTU change, and so on) from the Guest Shell.

• IPv4 and IPv6 are supported.

• Raw PF_PACKET is supported.

• Only on stack (Netstack or kstack) at a time can use well-known ports (0-15000), regardless of the
network namespace.

• There is no IP connectivity between applications using Nestack and applications running kstack on the
same switch. This limitation holds true regardless of whether the kstack applications are being run from
the host Bash Shell or within a container.

• Applications within the Guest Shell are not allowed to send packets directly over an Ethernet out-of-band
channel (EOBC) interface to communicate with the line cards or standby Sup.

• The management interface (mgmt0) is represented as eth1 in the kernel netdevices.

• Use of the VXLAN overlay interface (NVE x) is not supported for applications utilizing the kernel stack.
NX-OS features, including CLI commands, are able to use this interface via netstack.

For more information about the NVE interface, see the Cisco Nexus 9000 Series NX-OS VXLAN
Configuration Guide.

Changing the Port Range
Netstack and kstack divide the port range between them. The default port ranges are as follows:

• Kstack—15001 to 58000

• Netstack—58001 to 65535

Within this range 63536 to 65535 are reserved for NAT.Note

The ports configured with nxapi use-vrf management uses kstack and are accessible.Note

Procedure

PurposeCommand or Action

This command modifies the port range for
kstack. This command does not modify the
Netstack range.

[no] sockets local-port-range start-port
end-port

Step 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
110

Shells and Scripting
Changing the Port Range

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/vxlan/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_VXLAN_Configuration_Guide_7x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/vxlan/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_VXLAN_Configuration_Guide_7x.html

Example

The following example sets the kstack port range:
switch# sockets local-port-range 15001 25000

What to do next

After you have entered the command, be aware of the following issues:

• Reload the switch after entering the command.

• Leave a minimum of 7000 ports unallocated which are used by Netstack.

• Specify the start-port as 15001 or the end-port as 65535 to avoid holes in the port range.

About VXLAN with kstack
Starting with NX-OS 9.2(1), VXLAN EVPN is supported with kstack to be leveraged by third-party
applications. This functionality is supported on the Cisco Nexus 9000 ToR switches.

Setting Up VXLAN for kstack
No additional configuration is required to make the interfaces or network namespaces for VXLAN EVPN
accessible to the third-party applications. The VXLAN EVPN routes are programmed automatically in the
kernel based on the NX-OS VXLAN EVPN configuration. For more information, see the "Configuring
VXLAN BGP EVPN" chapter in the Cisco Nexus 9000 Series NX-OS VXLAN Configuration Guide.

Troubleshooting VXLAN with kstack
To troubleshoot VXLAN issues, enter the following command to list several critical pieces of information to
be collected:
switch(config)# show tech-support kstack

• Run the ip route show command:
root@switch(config)# run bash sudo su-
root@switch# ip netns exec evpn-tenant-kk1 ip route show

Output similar to the following appears:
10.160.1.0/24 dev Vlan1601 proto kernel scope link src 10.160.1.254
10.160.1.1 dev veth1-3 proto static scope link metric 51
10.160.2.0/24 dev Vlan1602 proto kernel scope link src 10.160.2.253
127.250.250.1 dev veth1-3 proto static scope link metric 51

Verify that all EVPN routes for the corresponding VRF are present in the kernel.

• Run the ip neigh show command:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
111

Shells and Scripting
About VXLAN with kstack

root@switch(config)# run bash sudo su-
root@switch# ip netns exec evpn-tenant-kk1 ip neigh show

Output similar to the following appears:
10.160.1.1 dev veth1-3 lladdr 0c:75:bd:07:b4:33 PERMANENT
127.250.250.1 devveth1-3 lladdr0c:75:bd:07:b4:33 PERMANENT

Netdevice Property Changes
Starting with the NX-OS 9.2(2) release, netdevices representing the front channel port interfaces are always
in the ADMIN UP state. The final, effective state is determined by the link carrier state.

The following example shows the following interfaces in NX-OS, where eth1/17 is shown as up and eth1/1
is shown as down:
root@kstack-switch# sh int ethernet 1/17 brief
Eth1/17 -- eth routed up none 1000(D) –

root@kstack-switch# sh int ethernet 1/1 brief
Eth1/1 -- eth routed down Link not connected auto(D) –

The following example shows these same interfaces, but this time as shown in the Bash shell using the ip link
show command:
bash-4.3# ip link show Eth1-17
49: Eth1-17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT group default qlen 100

link/ether 00:42:68:58:f8:eb brd ff:ff:ff:ff:ff:ff

bash-4.3# ip link show Eth1-1
33: Eth1-1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN mode
DEFAULT group default qlen 100

link/ether 00:42:68:58:f8:eb brd ff:ff:ff:ff:ff:ff

In this example, Eth1-1 is shown as being UP, but is shown as NO-CARRIER and state DOWN.

The following example shows these same interfaces, but this time as shown in the Bash shell using the ifconfig
command:
bash-4.3# ifconfig Eth1-17
Eth1-17 Link encap:Ethernet HWaddr 00:42:68:58:f8:eb

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:7388 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 B) TX bytes:1869164 (1.7 MiB)

bash-4.3# ifconfig Eth1-1
Eth1-1 Link encap:Ethernet HWaddr 00:42:68:58:f8:eb

inet addr:99.1.1.1 Bcast:99.1.1.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
112

Shells and Scripting
Netdevice Property Changes

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The output from the ifconfig command provides different information, where the RUNNING keyword is
used to represent the final state. By default, all netdevices show the keywordUP, which represents the ADMIN
state of the netdevice in the kernel.

Following are the changes that are part of the NX-OS 9.2(2) release:

• IPv4 address on netdevices —Before the NX-OS 9.2(2) release, the IPv4 address would be plumbed
to the netdevice in the kernel even when the corresponding interface in NX-OS was in the DOWN state.
Starting with the NX-OS 9.2(2) release, the IPv4 address are plumbed to the kernel space only when the
interface is in the UP state. Once plumbed, the IPv4 address continues to stay with the netdevice in the
kernel even if the interface goes DOWN. It will be removed only after you have entered the following
CLI command to explicitly remove the IP address from the NX-OS interface:
Interface Eth1/1

no ip address IP-address

• IPv6 address on netdevices —Before the NX-OS 9.2(2) release, the IPv6 address would get flushed
from the netdevices in the kernel when the interface wasDOWN. Starting with the NX-OS 9.2(2) release,
the netdevices are always in the admin UP state, so the IPv6 addresses will not get flushed from the
kernel when the interface goes down.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
113

Shells and Scripting
Netdevice Property Changes

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
114

Shells and Scripting
Netdevice Property Changes

P A R T II
Applications

• Third-Party Applications, on page 117
• Ansible, on page 133
• Puppet Agent, on page 135
• SaltStack, on page 137
• Using Chef Client with Cisco NX-OS, on page 141
• Nexus Application Development - Yocto, on page 145
• Nexus Application Development - SDK, on page 149
• NX-SDK, on page 157
• Using Docker with Cisco NX-OS, on page 163

C H A P T E R 11
Third-Party Applications

This chapter contains the following sections:

• About Third-Party Applications, on page 117
• Guidelines and Limitations, on page 117
• Installing Third-Party Native RPMs/Packages, on page 118
• Installing Signed RPM, on page 119
• Persistent Third-Party RPMs, on page 125
• Installing RPM from VSH, on page 125
• Third-Party Applications, on page 129

About Third-Party Applications
The RPMs for the Third-Party Applications are available in the repository at https://devhub.cisco.com/
artifactory/open-nxos/7.0-3-I2-1/x86_64/https://devhub.cisco.com/artifactory/open-nxos/9.2.1/. These
applications are installed in the native host by using the yum command in the Bash shell or through the NX-OS
CLI.

When you enter the yum install rpm command, a Cisco YUM plug-in gets executed. This plug-in copies the
RPM to a hidden location. On switch reload, the system reinstalls the RPM.

For configurations in /etc, a Linux process, incrond, monitors artifacts that are created in the directory and
copies them to a hidden location, which gets copied back to /etc.

Guidelines and Limitations
RPMs for the third-party applications have the following guidelines and limitations:

• Starting with Cisco NX-OS Release 9.2(1), the Cisco repository where agents are stored is now located
at https://devhub.cisco.com/artifactory/open-nxos/9.2.1/. All RPMs hosted in this repository are signed
with the release key.

• The NX-OS 9.2(1) release has a new operating system and rootfs, based onWind River Linux 8 (WRL8),
so third-party RPMs that were built usingWRL5might not be compatible withWRL8, so the third-party
software might not work. In this case, remove old versions of your apps used with previous releases and
replace them with new software that is compatible with WRL8, which is available in the repository at
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
117

https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/
https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/

• Guidelines and instructions for installing signed RPMs are provided in the Cisco Nexus 9000 Series
NX-OS Software Upgrade and Downgrade Guide, Release 9.2(x), including YUM and VSH CLI options
for managing RPMs, signed and nonsigned RPM installations, the clean-up of repositories, and so on.

• The third-party applications are started during switch startup. It is possible that a third-party application
could be started before its communication interface is up, or before the routing between the switch and
any communication peer or server is established. Therefore, all third-party applications should be written
to be robust in case of communication failure, and the application should retry establishing the connection.
If an application is not resilient in the presence of a communication failure, a “wrapper” application
might be required to establish that any communication peer is reachable before starting the desired
application, or restart the desired application if necessary.

Installing Third-Party Native RPMs/Packages
The complete workflow of package installation is as follows:

Procedure

Configure the repository on the switch to point to the Cisco repository where agents are stored.
bash-4.2# cat /etc/yum/repos.d/open-nxos.repo
[open-nxos]
name=open-nxos
baseurl=https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/
baseurl=https://devhub.cisco.com/artifactory/open-nxos/9.2.1/

enabled=1
gpgcheck=0
sslverify=0

Instructions for using the CLIs to import the digital signature are available in the section "Using Install CLIs
for Digital Signature Support" in the Cisco Nexus 9000 Series NX-OS Software Upgrade and Downgrade
Guide, Release 9.2(x).

An example of installation of an RPM using yum, with full install log.

Example:
bash-4.2# yum install splunkforwarder
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package splunkforwarder.x86_64 0:6.2.3-264376 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===

Package Arch Version Repository Size
===
Installing:
splunkforwarder x86_64 6.2.3-264376 open-nxos 13 M

Transaction Summary

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
118

Applications
Installing Third-Party Native RPMs/Packages

https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/

===
Install 1 Package

Total size: 13 M
Installed size: 34 M
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : splunkforwarder-6.2.3-264376.x86_64

1/1
complete

Installed:
splunkforwarder.x86_64 0:6.2.3-264376

Complete!
bash-4.2#

An example of querying the switch for successful installation of the package, and verifying that its processes
or services are up and running.

Example:
bash-4.2# yum info splunkforwarder
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages
Fretta | 951 B 00:00 ...
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Installed Packages
Name : splunkforwarder
Arch : x86_64
Version : 6.2.3
Release : 264376
Size : 34 M
Repo : installed
From repo : open-nxos
Summary : SplunkForwarder
License : Commercial
Description : The platform for machine data.

Installing Signed RPM

Checking a Signed RPM
Run the following command to check if a given RPM is signed or not.
Run, rpm -K rpm_file_name

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
119

Applications
Installing Signed RPM

Not a Signed RPM

bash-4.2# rpm -K bgp-1.0.0-r0.lib32_n9000.rpm

bgp-1.0.0-r0.lib32_n9000.rpm: (sha1) dsa sha1 md5 OK

Signed RPM

bash-4.2#
rpm -K puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm: RSA sha1 MD5 NOT_OK

bash-4.2#

Signed third-party RPM requires public GPG key to be imported first before the package can be
installed otherwise yum throws the following error:
bash-4.2#
yum install puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm -q

Setting up Install Process

warning: rpmts_HdrFromFdno: Header V4 RSA/SHA1 signature: NOKEY, key ID 4bd6ec30

Cannot open: puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm. Skipping.

Error: Nothing to do

Installing Signed RPMs by Manually Importing Key
• Copy the GPG keys to /etc rootfs so that they are persisted across reboots.

bash-4.2# mkdir -p /etc/pki/rpm-gpg

bash-4.2# cp -f RPM-GPG-KEY-puppetlabs /etc/pki/rpm-gpg/

• Import the keys using the following command.
bash-4.2# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

bash-4.2#

bash-4.2# rpm -q gpg-pubkey

gpg-pubkey-4bd6ec30-4c37bb40

bash-4.2# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

bash-4.2#

bash-4.2# rpm -q gpg-pubkey

gpg-pubkey-4bd6ec30-4c37bb40

• Install the signed RPM with yum command
bash-4.2#
yum install puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
120

Applications
Installing Signed RPMs by Manually Importing Key

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages

groups-repo | 1.1 kB 00:00 ...

.
localdb | 951 B 00:00 ...

patching | 951 B 00:00 ...

thirdparty | 951 B 00:00 ...

Setting up Install Process

Examining puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm:
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64

Marking puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos will be installed

--> Finished Dependency ResolutionDependencies Resolved

==

Package Arch Version Repository
Size

==

Installing:

puppet-enterprise x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos /puppet-enterprise-
46 M

3.7.1.rc2.6.g6cdc186-1.
pe.nxos.x86_64

Transaction Summary

==

Install 1 Package

Total size: 46 M

Installed size: 46 M

Is this ok [y/N]: y

Downloading Packages:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
121

Applications
Installing Signed RPMs by Manually Importing Key

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Installing : puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64
1/1

Installed:

puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos

Complete!

bash-4.2#

Installing Signed Third-Party RPMs by Importing Keys Automatically
Set up the yum repo to point to the keys and RPM.
root@switch# cat /etc/yum/repos.d/puppet.repo

[puppet]

name=Puppet RPM

baseurl=file:///bootflash/puppet

enabled=1

gpgcheck=1

gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs

metadata_expire=0

cost=500

bash-4.2# yum install puppet-enterprise

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages

groups-repo | 1.1 kB 00:00 ...

localdb | 951 B 00:00 ...

patching | 951 B 00:00 ...

puppet | 951 B 00:00 ...

thirdparty | 951 B 00:00 ...

Setting up Install Process

Resolving Dependencies

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
122

Applications
Installing Signed Third-Party RPMs by Importing Keys Automatically

--> Running transaction check

---> Package puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

Package Arch Version Repository Size

==

Installing:

puppet-enterprise x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos puppet 14 M

Transaction Summary

==

Install 1 Package

Total download size: 14 M

Installed size: 46 M

Is this ok [y/N]: y

Retrieving key from file:///bootflash/RPM-GPG-KEY-puppetlabs

Importing GPG key 0x4BD6EC30:

Userid: "Puppet Labs Release Key (Puppet Labs Release Key) <info@puppetlabs.com>"

From : /bootflash/RPM-GPG-KEY-puppetlabs

Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Warning! Standby is not ready. This can cause RPM database inconsistency.

If you are certain that standby is not booting up right now, you may proceed.

Do you wish to continue?

Is this ok [y/N]: y

Warning: RPMDB altered outside of yum.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
123

Applications
Installing Signed Third-Party RPMs by Importing Keys Automatically

Installing : puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64
1/1

/sbin/ldconfig: /usr/lib/libboost_regex.so.1.49.0 is not a symbolic link

Installed:

puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos

Complete!

Adding Signed RPM into Repo

Procedure

Step 1 Copy signed RPM to the repo directory

Step 2 Import the corresponding key for the create repo to succeed.

bash-4.2# ls
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm RPM-GPG-KEY-puppetlabs
bash-4.2#
bash-4.2# rpm --import RPM-GPG-KEY-puppetlabs
bash-4.2# createrepo .
1/1 - puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm
Saving Primary metadata
Saving file lists metadata
Saving other metadata
bash-4.2#

Without importing keys
bash-4.2# ls
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm RPM-GPG-KEY-puppetlabs
bash-4.2#
bash-4.2# createrepo .
warning: rpmts_HdrFromFdno: Header V4 RSA/SHA1 signature: NOKEY, key ID 4bd6ec30

Error opening package - puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

Saving Primary metadata
Saving file lists metadata
Saving other metadata

Step 3 Create repo config file under /etc/yum/repos.d pointing to this repo.

bash-4.2# cat /etc/yum/repos.d/puppet.repo
[puppet]
name=Puppet RPM
baseurl=file:///bootflash/puppet
enabled=1
gpgcheck=1
gpgkey=file:///bootflash/puppet/RPM-GPG-KEY-puppetlabs
#gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
metadata_expire=0
cost=500

bash-4.2# yum list available puppet-enterprise -q
Available Packages
puppet-enterprise.x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
124

Applications
Adding Signed RPM into Repo

puppet
bash-4.2#

Persistent Third-Party RPMs
The following is the logic behind persistent third-party RPMs:

• A local yum repository is dedicated to persistent third-party RPMs. The
/etc/yum/repos.d/thirdparty.repo points to/bootflash/.rpmstore/thirdparty.

• Whenever you enter the yum install third-party.rpm command, a copy of the RPM is saved in
//bootflash/.rpmstore/thirdparty.

• During a reboot, all the RPMs in the third-party repository are reinstalled on the switch.

• Any change in the /etc configuration files persists under /bootflash/.rpmstore/config/etc
and they are replayed during boot on /etc.

• Any script that is created in the /etc directory persists across reloads. For example, a third-party service
script that is created under /etc/init.d/ brings up the apps during a reload.

The rules in iptables are not persistent across reboots when they are modified in
a bash-shell.

To make the modified iptables persistent, seeMaking an Iptable Persistent Across
Reloads, on page 205.

Note

Installing RPM from VSH

Package Addition
NX-OS feature RPMs can also be installed by using the VSH CLIs.

Procedure

PurposeCommand or Action

Displays the packages and versions that already
exist.

show install packageStep 1

Determine supported URIs.install add ?Step 2

The install add command copies the package
file to a local storage device or network server.

install add rpm-packagenameStep 3

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
125

Applications
Persistent Third-Party RPMs

Example

The following example shows how to activate the Chef RPM:
switch# show install package
switch# install add ?
WORD Package name
bootflash: Enter package uri
ftp: Enter package uri
http: Enter package uri
modflash: Enter package uri
scp: Enter package uri
sftp: Enter package uri
tftp: Enter package uri
usb1: Enter package uri
usb2: Enter package uri
volatile: Enter package uri
switch# install add
bootflash:chef-12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5.x86_64.rpm
[####################] 100%
Install operation 314 completed successfully at Thu Aug 6 12:58:22 2015

What to do next

When you are ready to activate the package, go to Package Activation, on page 126.

Adding and activating an RPM package can be accomplished in a single command:
switch#
install add bootflash:chef-12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5.x86_64.rpm
activate

Note

Package Activation

Before you begin

The RPM has to have been previously added.

Procedure

PurposeCommand or Action

Displays the list of packages that were added
and not activated.

show install inactiveStep 1

Activates the package.install activate rpm-packagenameStep 2

Example

The following example shows how to activate a package:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
126

Applications
Package Activation

switch# show install inactive
Boot image:

NXOS Image: bootflash:///yumcli6.bin

Inactive Packages:
sysinfo-1.0.0-7.0.3.x86_64

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages

Available Packages
chef.x86_64 12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5 thirdparty
eigrp.lib32_n9000 1.0.0-r0 groups-rep
o
sysinfo.x86_64 1.0.0-7.0.3 patching
switch# install activate chef-12.0-1.el5.x86_64.rpm
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Deactivating Packages

Procedure

PurposeCommand or Action

Deactivates the RPM package.install deactivate package-nameStep 1

Example

The following example shows how to deactivate the Chef RPM package:
switch# install deactivate chef

Removing Packages

Before you begin

Deactivate the package before removing it. Only deactivated RPM packages can be removed.

Procedure

PurposeCommand or Action

Removes the RPM package.install remove package-nameStep 1

Example

The following example shows how to remove the Chef RPM package:
switch# install remove chef-12.0-1.el5.x86_64.rpm

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
127

Applications
Deactivating Packages

Displaying Installed Packages

Procedure

PurposeCommand or Action

Displays a list of the installed packages.show install packagesStep 1

Example

The following example shows how to display a list of the installed packages:
switch# show install packages

Displaying Detail Logs

Procedure

PurposeCommand or Action

Displays the detail logs.show tech-support installStep 1

Example

The following example shows how to display the detail logs:
switch# show tech-support install

Upgrading a Package

Procedure

PurposeCommand or Action

Upgrade a package.install add package-name activate upgradeStep 1

Example

The following example shows how to upgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate upgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
128

Applications
Displaying Installed Packages

Downgrading a Package

Procedure

PurposeCommand or Action

Downgrade a package.install add package-name activate downgradeStep 1

Example

The following example shows how to downgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate downgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Third-Party Applications

NX-OS
For more information about the Cisco NX-OS repository for other third-party applications, see
https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/

For more information about NX-API REST API object model specifications, see https://developer.cisco.com/
media/dme/index.html

DevOps Configuration Management Tools
For DevOps configuration management tools, refer to the following links:

• Ansible 2.0 Release(Nexus Support), Ansible Release Index

• Ansible NX-OS Sample Modules, Ansible NX-OS Sample Modules

• Puppet, Puppet Forge Cisco Puppet

• Cisco Puppet Module(Git), Cisco Network Puppet Module

• Chef, Chef Supermarket Cisco Cookbook

• Cisco Chef Cookbook(Git), Cisco Network Chef Cookbook

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
129

Applications
Downgrading a Package

https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/
https://developer.cisco.com/media/dme/index.html
https://developer.cisco.com/media/dme/index.html
https://releases.ansible.com/ansible/
https://github.com/jedelman8/nxos-ansible
https://forge.puppet.com/puppetlabs/ciscopuppet
https://github.com/cisco/cisco-network-puppet-module/tree/master
https://supermarket.chef.io/cookbooks/cisco-cookbook
https://github.com/cisco/cisco-network-chef-cookbook/tree/master

V9K
To download a virtual Nexus 9000 switch, for an ESX5.1/5.5, VirtualBox, Fusion, and KVM, go to
https://software.cisco.com/portal/pub/download/portal/
select.html?&mdfid=286312239&flowid=81422&softwareid=282088129.

Automation Tool Educational Content
For a free book on Open NX-OS architecture and automation, see http://www.cisco.com/c/dam/en/us/td/docs/
switches/datacenter/nexus9000/sw/open_nxos/programmability/guide/Programmability_Open_NX-OS.pdf

collectd
collectd is a daemon that periodically collects system performance statistics and provides multiple means to
store the values, such as RRD files. Those statistics can then be used to find current performance bottlenecks
(for example, performance analysis) and predict future system load (that is, capacity planning).

For additional information, see https://collectd.org.

Ganglia
Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters
and grids. It is based on a hierarchical design that is targeted at federations of clusters. It leverages widely
used technologies such as XML for data representation, XDR for compact, portable data transport, and RRDtool
for data storage and visualization. It uses engineered data structures and algorithms to achieve low per-node
overheads and high concurrency. The implementation is robust, has been ported to an extensive set of operating
systems and processor architectures, and is currently in use on thousands of clusters around the world. It has
been used to link clusters across university campuses and around the world and can scale to handle clusters
with 2000 nodes.

For additional information, see http://ganglia.info.

Iperf
Iperf was developed by NLANR/DAST to measure maximum TCP and UDP bandwidth performance. Iperf
allows the tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram
loss.

For additional information, see http://sourceforge.net/projects/iperf/ or http://iperf.sourceforge.net.

LLDP
The link layer discover protocol (LLDP) is an industry standard protocol that is designed to supplant proprietary
link layer protocols such as EDP or CDP. The goal of LLDP is to provide an intervendor compatible mechanism
to deliver link layer notifications to adjacent network devices.

For more information, see https://vincentbernat.github.io/lldpd/index.html.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
130

Applications
V9K

https://software.cisco.com/portal/pub/download/portal/select.html?&mdfid=286312239&flowid=81422&softwareid=282088129
https://software.cisco.com/portal/pub/download/portal/select.html?&mdfid=286312239&flowid=81422&softwareid=282088129
http://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/nexus9000/sw/open_nxos/programmability/guide/Programmability_Open_NX-OS.pdf
http://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/nexus9000/sw/open_nxos/programmability/guide/Programmability_Open_NX-OS.pdf
https://collectd.org
http://ganglia.info
http://sourceforge.net/projects/iperf/
http://iperf.sourceforge.net
https://vincentbernat.github.io/lldpd/index.html

Nagios
Nagios is open source software that monitors the following through the Nagios remote plug-in executor
(NRPE) and through SSH or SSL tunnels:

• Network services through ICMP, SNMP, SSH, FTP, HTTP, and so on

• Host resources, such as CPU load, disk usage, system logs, and so on

• Alert services for servers, switches, applications

• Services

For more information, see https://www.nagios.org/.

OpenSSH
OpenSSH is an open-source version of the SSH connectivity tools that encrypts all traffic (including passwords)
to eliminate eavesdropping, connection hijacking, and other attacks. OpenSSH provides secure tunneling
capabilities and several authentication methods, and supports all SSH protocol versions.

For more information, see http://www.openssh.com.

Quagga
Quagga is a network routing software suite that implements various routing protocols. Quagga daemons are
configured through a network accessible CLI called a "vty."

Only Quagga BGP has been validated.Note

For more information, see http://www.nongnu.org/quagga/.

Splunk
Splunk is a web-based data collection, analysis, and monitoring tool that has search, visualization, and
prepackaged content for use-cases. The raw data is sent to the Splunk server using the Splunk Universal
Forwarder. Universal Forwarders provide reliable, secure data collection from remote sources and forward
that data into the Splunk Enterprise for indexing and consolidation. They can scale to tens of thousands of
remote systems, collecting terabytes of data with a minimal impact on performance.

For additional information, see http://www.splunk.com/en_us/download/universal-forwarder.html.

tcollector
tcollector is a client-side process that gathers data from local collectors and pushes the data to Open Time
Series Database (OpenTSDB).

tcollector has the following features:

• Runs data collectors and collates the data.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
131

Applications
Nagios

https://www.nagios.org/
http://www.openssh.com
http://www.nongnu.org/quagga/
http://www.splunk.com/en_us/download/universal-forwarder.html

• Manages connections to the time series database (TSD).

• Eliminates the need to embed TSD code in collectors.

• Deduplicates repeated values.

• Handles wire protocol work.

For additional information, see http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html.

tcpdump
tcpdump is a CLI application that prints a description of the contents of packets on a network interface that
match a Boolean expression. The description is preceded by a timestamp, printed, by default, as hours, minutes,
seconds, and fractions of a second since midnight.

tcpdump can be run with the following flags:

• -w, which causes it to save the packet data to a file for later analysis.

• -r, which causes it to read from a saved packet file rather than to read packets from a network interface.

• -V, which causes it to read a list of saved packet files.

In all cases, tcpdump processes only the packets that match the expression.

For more information, see http://www.tcpdump.org/manpages/tcpdump.1.html.

TShark
TShark is a network protocol analyzer on the CLI. Tshar lets you capture packet data from a live network, or
read packets from a previously saved capture file. You can print either a decoded form of those packets to the
standard output or write the packets to a file. TShark's native capture file format is pcap, the format that is
used by tcpdump and various other tools also. TShark can be used within the Guest Shell after removing the
cap_net_admin file capability.
setcap
cap_net_raw=ep /sbin/dumpcap

This command must be run within the Guest Shell.Note

For more information, see https://www.wireshark.org/docs/man-pages/tshark.html.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
132

Applications
tcpdump

http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html
http://www.tcpdump.org/manpages/tcpdump.1.html
https://www.wireshark.org/docs/man-pages/tshark.html

C H A P T E R 12
Ansible

• Prerequisites, on page 133
• About Ansible, on page 133
• Cisco Ansible Module, on page 133

Prerequisites
Go to https://docs.ansible.com/ansible/latest/getting_started/index.html for installation requirements for
supported control environments.

About Ansible
Ansible is an open-source IT automation engine that automates cloud provisioning, configurationmanagement,
application deployment, intraservice orchestration, and other IT needs.

Ansible uses small programs that are called Ansible modules to make API calls to your nodes, and apply
configurations that are defined in playbooks.

By default, Ansible represents what machines it manages using a simple INI file that puts all your managed
machines in groups of your own choosing.

More information can be found from Ansible:

https://www.ansible.com/Ansible

https://docs.ansible.com/Ansible Automation Solutions. Includes installation
instructions, playbook instructions and examples,
module lists, and so on.

Cisco Ansible Module
There are multiple Cisco NX-OS-supported modules and playbooks for Ansible, as per the following table
of links:

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
133

https://docs.ansible.com/ansible/latest/getting_started/index.html
https://www.ansible.com/
https://docs.ansible.com/
https://developer.cisco.com/docs/nx-os/#getting-started

Repo for ansible nxos playbooksAnsible NX-OS playbook examples

nxos network modulesAnsible NX-OS network modules

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
134

Applications
Cisco Ansible Module

https://github.com/datacenter/Ansible-NXOS
http://docs.ansible.com/ansible/latest/list_of_network_modules.html#nxos

C H A P T E R 13
Puppet Agent

This chapter contains the following topics:

• About Puppet, on page 135
• Prerequisites, on page 135
• Puppet Agent NX-OS Environment, on page 136
• ciscopuppet Module, on page 136

About Puppet
The Puppet software package, developed by Puppet Labs, is an open source automation toolset for managing
servers and other resources. The Puppet software accomplishes server and resource management by enforcing
device states, such as configuration settings.

Puppet components include a puppet agent which runs on the managed device (node) and a Puppet Primary
(server). The Puppet Primary typically runs on a separate dedicated server and serves multiple devices. The
operation of the puppet agent involves periodically connecting to the Puppet Primary, which in turn compiles
and sends a configuration manifest to the agent. The agent reconciles this manifest with the current state of
the node and updates state that is based on differences.

A puppet manifest is a collection of property definitions for setting the state on the device. The details for
checking and setting these property states are abstracted so that a manifest can be used for more than one
operating system or platform. Manifests are commonly used for defining configuration settings, but they also
can be used to install software packages, copy files, and start services.

More information can be found from Puppet Labs:

https://puppetlabs.comPuppet Labs

https://puppet.com/blog/
how-get-started-puppet-enterprise-faq/

Puppet Labs FAQ

https://puppet.com/docsPuppet Labs Documentation

Prerequisites
The following are prerequisites for the Puppet Agent:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
135

http://puppetlabs.com/
https://puppet.com/blog/how-get-started-puppet-enterprise-faq/
https://puppet.com/blog/how-get-started-puppet-enterprise-faq/
https://puppet.com/docs

• You must have the required disk storage available on the device for virtual services installation and
deployment of Puppet Agent.

• A minimum of 450-MB free disk space on the bootflash.

• You must have a Puppet Primary server with Puppet 4.0 or later.

• You must have Puppet Agent 4.0 or later.

Puppet Agent NX-OS Environment
The Puppet Agent software must be installed on a switch in the Guest Shell (the Linux container environment
running CentOS). The Guest Shell provides a secure, open execution environment that is decoupled from the
host.

Starting with the CiscoNX-OSRelease 9.2(1), the Bash-shell (nativeWindRiver Linux environment underlying
Cisco NX-OS) install of Puppet Agent is no longer supported.

The following provides information about agent-software download, installation, and setup:

https://github.com/cisco/
cisco-network-puppet-module/blob/develop/docs/
README-agent-install.md

Puppet Agent: Installation & Setup on Cisco Nexus
switches (Manual Setup)

ciscopuppet Module
The ciscopuppet module is a Cisco developed open-source software module. It interfaces between the abstract
resources configuration in a puppet manifest and the specific implementation details of the Cisco NX-OS
operating system and platform. This module is installed on the Puppet Primary and is required for puppet
agent operation on Cisco Nexus switches.

The ciscopuppet module is available on Puppet Forge.

The following provide additional information about the ciscopuppet module installation procedures:

Puppet Forgeciscopuppet Module location

(Puppet Forge)

Cisco Puppet Resource ReferenceResource Type Catalog

Cisco Network Puppet Moduleciscopuppet Module: Source Code
Repository

Cisco Puppet Module::README.mdciscopuppetModule: Setup&Usage

https://puppet.com/docs/puppet/7/modules_installing.htmlPuppet Labs: Installing Modules

Cisco Network Puppet Module ExamplesPuppet NX-OS Manifest Examples

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
136

Applications
Puppet Agent NX-OS Environment

https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://forge.puppet.com/puppetlabs/ciscopuppet
https://github.com/cisco/cisco-network-puppet-module/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-puppet-module/tree/master
https://github.com/cisco/cisco-network-puppet-module/tree/master#setup
https://puppet.com/docs/puppet/7/modules_installing.html
https://github.com/cisco/cisco-network-puppet-module/tree/master/examples
https://developer.cisco.com/site/nx-os/docs/automation/configuration-management/index.gsp

C H A P T E R 14
SaltStack

This chapter contains the following topics:

• About SaltStack, on page 137
• Guidelines and Limitations, on page 138
• Cisco NX-OS Environment for SaltStack, on page 138
• Enabling NX-API for SaltStack, on page 139
• Installing SaltStack for NX-OS, on page 139

About SaltStack
The Cisco Nexus switches support SaltStack through NX-OS. For information about Cisco NX-OS releases
that support SaltStack, see https://github.com/saltstack/salt/blob/develop/doc/topics/installation/
nxos.rst#step-1-verify-platform-and-software-version-support.

SaltStack is a free and open source automation framework for configuration, management, and remote execution
of servers and other network devices. The SaltStack framework consists of a server that is called the Salt
primary, and Salt nodes that run client programs, called minions. The Cisco Nexus switch (switch) is a Salt
node, not the Salt primary.

SaltStack minions can run either on-box or off-box, respective to the switch, to execute the configuration or
management operations:

• On-box, the minions run in the switch's Bash shell. These native minions receive and execute remote
commands from the primary, and relay the command's results to the primary. In an on-box deployment,
the minions are enabled in the switch's Guest shell.

• Off-box, a different type of minion, a proxy minion, runs over an SSH connection to the switch or through
the NX-API. The proxy minion, either the SSH proxy minion or the NX-API proxy minion, receives and
executes the commands. The proxy then relays the command's results to the primary.

Keys are used to ensure security between the Salt primary and the minions running on the Cisco Nexus switch.
When the Salt primary initiates its connection with a minion running on the Cisco Nexus switch, it first passes
a key. The minion receives the key, then computes the correct response, and transmits the key back to the
primary. The primary also has computed the correct response value for the key. When the primary receives
the key from the minion, if the keys match, the session is open. The Salt primary can then send commands.
Sessions are not persistent across power cycles or reboots.

SaltStack manages and configures the switch through execution modules and salt states, which affect the
switch's CLI, properties, and features. For example, through the modules, SaltStack can be used to upgrade

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
137

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support

the Cisco Nexus switches. The Salt primary sends commands programmatically to leverage automation and
scalability.

For more information, consult the following documentation:

https://www.saltstack.com/SaltStack

https://docs.saltstack.com/en/latest/SaltStack Documentation

https://github.com/saltstack/salt/blob/develop/doc/
topics/installation/nxos.rst

Cisco Nexus Salt Minion Installation and
Configuration Guide

About NX-OS and SaltStack
Salt Open is the open source, community edition of the Salt configuration management and distributed remote
execution system. Cisco NX-OS provides an intermediate layer between the physical switch and the Salt Open
software. Cisco NX-OS and Salt Open interoperate to provide the API and command-execution layer between
Salt minions and Cisco Nexus switches. Cisco NX-OS hosts the minions and enables them to run as follows:

• On the switch, the Cisco NX-OS guest shell hosts SaltStackminions and provides automated orchestration
of one or more switches through a unified interface. The minion running in the guest shell is a native
minion and it connects over the NX-API the UNIX Domain Socket (UDS).

• Off the switch, the Salt primary runs the Salt Open software on a network device and communicates with
NX-OS through SSH (the SSH proxy minion) or NX-API over HTTPS (the NX-API proxy minion).
Cisco NX-OS interprets the commands, performs required configuration tasks, and reports success or
failure back to the appropriate proxy minion. The proxy minion, in turn, transmits this data back to the
Salt primary.

Guidelines and Limitations
The following are the guidelines and limitations for implementing SaltStack on the Cisco Nexus switches:

• For notes about platform support, see Nexus Switch Platform Support Matrix.

• If you are running SaltStack over SSH or NX-API HTTPS, enable the NX-API feature (feature nxapi)
before you run Salt.

• The Salt primary listens for minions on port 4506. Make sure that this port is open (unblocked) and not
used by another service.

Cisco NX-OS Environment for SaltStack
The Cisco NX-OS environment is different depending on whether you are running Salt on box or off box.

• For on-box management of the switch, you must install the SaltStack minion RPM in the Guest Shell,
which is the hosting environment for the minion.

• For off-box management of the switch, SSH or NX-API must be enabled in NX-OS.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
138

Applications
About NX-OS and SaltStack

https://www.saltstack.com/
https://docs.saltstack.com/en/latest/
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst
https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

For more information, such as which Cisco Nexus switches support SaltStack, go to https://github.com/
saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support.

Enabling NX-API for SaltStack
Before you begin

For proxy minions running over SSH or NX-API HTTPS, the NX-API feature must be enabled for SaltStack
to function. By default, NX-API is enabled. The following instructions are provided in case you need to
reenable it.

Procedure

PurposeCommand or Action

Enters configuration mode.config terminalStep 1

Example:

switch-1# config terminal
Enter configuration commands, one per
line. End with CNTL/Z.
switch-1(config)#

Enables NX-API for proxy minions.feature nxapi

Example:

Step 2

switch-1# feature nxapi
switch-1#(config)#

What to do next

Install SaltStack.

Installing SaltStack for NX-OS
Use the following installation guide to install and bring up SaltStack on the Cisco Nexus switches:

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/
nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
139

Applications
Enabling NX-API for SaltStack

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
140

Applications
Installing SaltStack for NX-OS

C H A P T E R 15
Using Chef Client with Cisco NX-OS

• About Chef, on page 141
• Prerequisites, on page 141
• Chef Client NX-OS Environment, on page 142
• cisco-cookbook, on page 142

About Chef
Chef is an open-source software package that is developed by Chef Software, Inc. The software package is a
systems and cloud infrastructure automation framework that deploys servers and applications to any physical,
virtual, or cloud location, no matter the size of the infrastructure. Each organization consists of one or more
workstations, a single server, and every node that the chef-client has configured and is maintaining. Cookbooks
and recipes are used to tell the chef-client how each node should be configured. The chef-client, which is
installed on every node, does the actual configuration.

A Chef cookbook is the fundamental unit of configuration and policy distribution. A cookbook defines a
scenario and contains everything that is required to support that scenario, including libraries, recipes, files,
and more. A Chef recipe is a collection of property definitions for setting state on the device. The details for
checking and setting these property states are abstracted away so that a recipe may be used for more than one
operating system or platform. While recipes are commonly used for defining configuration settings, they also
can be used to install software packages, copy files, start services, and more.

The following references provide more information from Chef:

LinkTopic

https://www.chef.ioChef home

https://docs.chef.io/chef_overview.htmlChef overview

https://docs.chef.io/Chef documentation (all)

Prerequisites
The following are prerequisites for Chef:

• You must have the required disk storage available on the device for Chef deployment:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
141

https://www.chef.io
https://docs.chef.io/chef_overview.html
https://docs.chef.io/

• A minimum of 500 MB of free disk space on bootflash

• You need a Chef server with Chef 12.4.1 or higher.

• You need Chef Client 12.4.1 or higher.

Chef Client NX-OS Environment
The chef-client software must be installed on a switch in the Guest Shell (the Linux container environment
running CentOS). This software provides a secure, open execution environment that is decoupled from the
host.

Starting with the CiscoNX-OSRelease 9.2(1), the Bash-shell (nativeWindRiver Linux environment underlying
NX-OS) install of chef-client is no longer supported.

The following documents provide step-by-step guidance about agent-software download, installation, and
setup:

LinkTopic

Latest information on Client RPM is available here.Chef Client (Native)

Latest information on Client RPM is available here.Chef Client (Guest Shell, CentOs7)

cisco-cookbook::README-install-agent.mdChef Client: Installation and setup on Cisco Nexus
platform (manual setup)

cisco-cookbook::README-chef-provisioning.mdChef Client: Installation and setup on a switch
(automated installation using the Chef provisioner)

https://wwwin-github.cisco.com/agents/
DevNet-Config-Management

Cisco NX-OS developer landing page

cisco-cookbook
cisco-cookbook is a Cisco-developed open-source interface between the abstract resources configuration in
a Chef recipe and the specific implementation details of the switch. This cookbook is installed on the Chef
Server and is required for proper Chef Client operation on switches.

The cisco-cookbook can be found on Chef Supermarket.

The following documents providemore detail for cisco-cookbook and generic cookbook installation procedures:

LinkTopic

Chef Supermarket Cisco Cookbookcisco-cookbook location

Resource Catalog (by Technology)Resource Type Catalog

Cisco Network Chef Cookbookcisco-cookbook: Source Code Repository

Chef Cookbook Setup and Usagecisco-cookbook: Setup and usage

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
142

Applications
Chef Client NX-OS Environment

https://s3.amazonaws.com/alpha-builds/chef-12.4.1.cisco%2B20150826000706-1.nexus5.x86_64.rpm
https://s3.amazonaws.com/alpha-builds/chef-12.4.1.cisco%2B20150826204615-1.el7.x86_64.rpm
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md
https://wwwin-github.cisco.com/agents/DevNet-Config-Management
https://wwwin-github.cisco.com/agents/DevNet-Config-Management
https://supermarket.chef.io/cookbooks/cisco-cookbook
https://github.com/cisco/cisco-network-chef-cookbook/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook/tree/master
https://github.com/cisco/cisco-network-chef-cookbook/blob/master/README.md#setup

LinkTopic

Chef SupermarketChef Supermarket

Cisco Network Chef Cookbook RecipesChef NX-OS Manifest Examples

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
143

Applications
cisco-cookbook

https://supermarket.chef.io/
https://github.com/cisco/cisco-network-chef-cookbook/tree/master/recipes

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
144

Applications
cisco-cookbook

C H A P T E R 16
Nexus Application Development - Yocto

This chapter contains the following sections:

• About Yocto, on page 145
• Installing Yocto, on page 145

About Yocto
The Cisco NX-OS Release 9.2(1) software is based on Yocto 2.0. More applications can be installed by
downloading Yocto 2.0, downloading the new software to be built, building the software, and installing the
software on the switch.

Installing Yocto
In the example below, we are building Ruby version 2.2.2 in a Ubuntu 16.04 virtual machine.

Procedure

Step 1 Install all essential packages on the Ubuntu 16.04 virtual machine.
sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential
chrpath socat cpio python python3 python3-pip python3-pexpect xz-utils debianutils
iputils-ping libsdl1.2-dev xterm

Step 2 Download Yocto 2.0.
wget http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/poky-jethro-14.0.0.tar.bz2
tar -xjfv poky-jethro-14.0.0.tar.bz2
cd poky-jethro-14.0.0

Step 3 Source the oe-init-build-env file.

source oe-init-build-env

Step 4 Use a text editor to edit conf/local.conf to add the following lines:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
145

MACHINE = "genericx86-64"
DEFAULTTUNE = "x86-64"

Step 5 Enter the following command:
bitbake ruby

After the build completes, the RPMs are present in tmp/deploy/rpm/x86_64/*.rpm.

Step 6 Copy the RPMs to the switch.
Switch# copy scp://<username>@<IP_address>/ruby-2.2.2-r0.x86_64.rpm bootflash: vrf management
use-kstack
Switch# copy scp://<username>@<IP_address>/libyaml-0-2-0.1.6-r0.x86_64.rpm bootflash: vrf
management use-kstack

Step 7 From the Bash shell, enter the following commands.

You will be entering y at one point in the install process.

bash-4.3# yum install /bootflash/libyaml-0-2-0.1.6-r0.x86_64.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Setting up Install Process
Examining /bootflash/libyaml-0-2-0.1.6-r0.x86_64.rpm: libyaml-0-2-0.1.6-r0.x86_64
Marking /bootflash/libyaml-0-2-0.1.6-r0.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package libyaml-0-2.x86_64 0:0.1.6-r0 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===

Package Arch Version Repository Size
===
Installing:
libyaml-0-2 x86_64 0.1.6-r0 /libyaml-0-2-0.1.6-r0.x86_64 119 k

Transaction Summary
===
Install 1 Package

Total size: 119 k
Installed size: 119 k
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : libyaml-0-2-0.1.6-r0.x86_64 1/1

/sbin/ldconfig: /usr/lib/libboost_regex.so.1.49.0 is not a symbolic link

Installed:
libyaml-0-2-0.1.6-r0.x86_64

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
146

Applications
Installing Yocto

Complete!
Install operation 2450 completed successfully at Fri Jul 27 18:54:55 2018.

[####################] 100%

Step 8 The following commands provide an example of building Ruby version 2.2.2 in a Ubuntu 16.04 virtual
machine.

You will be entering y at one point in the install process.

bash-4.3# yum install /bootflash/ruby-2.2.2-r0.x86_64.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
thirdparty/primary | 1.8 kB 00:00 ...
thirdparty 2/2
Setting up Install Process
Examining /bootflash/ruby-2.2.2-r0.x86_64.rpm: ruby-2.2.2-r0.x86_64
Marking /bootflash/ruby-2.2.2-r0.x86_64.rpm to be installed
Resolving Dependencies
--> Running transaction check
---> Package ruby.x86_64 0:2.2.2-r0 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===

Package Arch Version Repository Size
===
Installing:
ruby x86_64 2.2.2-r0 /ruby-2.2.2-r0.x86_64 32 M

Transaction Summary
===
Install 1 Package

Total size: 32 M
Installed size: 32 M
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : ruby-2.2.2-r0.x86_64 1/1

/sbin/ldconfig: /usr/lib/libboost_regex.so.1.49.0 is not a symbolic link

Installed:
ruby.x86_64 0:2.2.2-r0

Complete!
Install operation 2451 completed successfully at Fri Jul 27 18:55:23 2018.

[####################] 100%

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
147

Applications
Installing Yocto

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
148

Applications
Installing Yocto

C H A P T E R 17
Nexus Application Development - SDK

This chapter contains the following sections:

• About the Cisco SDK, on page 149
• Installing the SDK, on page 149
• Procedure for Installation and Environment Initialization, on page 150
• Using the SDK to Build Applications, on page 151
• Using RPM to Package an Application, on page 152
• Creating an RPM Build Environment, on page 153
• Using General RPM Build Procedure, on page 153
• Example to Build RPM for collectd with No Optional Plug-Ins, on page 154
• Example to Build RPM for collectd with Optional Curl Plug-In, on page 155

About the Cisco SDK
The Cisco SDK is a development kit that is based on Yocto 2.0. It contains all the tools to build applications
for execution on a Cisco Nexus switch running the Cisco NX-OS Release 9.2(1). The basic components are
the C cross-compiler, linker, libraries, and header files that are commonly used in many applications. The list
is not exhaustive, and you might need to download and build any dependencies that are needed for any
particular application. Some applications are ready to be downloaded and used from the Cisco devhub website
and do not require building. The SDK can be used to build RPM packages which may be directly installed
on a switch.

Installing the SDK
The following lists the system requirements:

• The SDK can run on most modern 64-bit x86_64 Linux systems. It has been verified on CentOS 7 and
Ubuntu 14.04. Install and run the SDK under the Bash shell.

• The SDK includes binaries for both 32-bit and 64-bit architectures, so it must be run on an x86_64 Linux
system that also has 32-bit libraries installed.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
149

Procedure

Check if the 32-bit libraries are installed:

Example:
bash$ ls /lib/ld-linux.so.2

If this file exists, then 32-bit libraries should be installed already. Otherwise, install 32-bit libraries as follows:

• For CentOS 7:
bash$ sudo yum install glibc.i686

• For Ubuntu 14.04:
bash$ sudo apt-get install gcc-multilib

Procedure for Installation and Environment Initialization
The SDK is available for download at: https://devhub.cisco.com/artifactory/open-nxos/9.2.1/
wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh.

This file is a self-extracting archive that installs the SDK into a directory of your choice. You are prompted
for a path to an SDK installation directory.
bash$./wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
Wind River Linux SDK installer version 8.0-n9000
==
Enter target directory for SDK (default: /opt/windriver/wrlinux/8.0-n9000):
You are about to install the SDK to "/opt/windriver/wrlinux/8.0-n9000". Proceed[Y/n]? Y
Extracting
SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Each time that you want to use the SDK in a new shell session, you will need to source the environment setup
script. For example:
$. /opt/windriver/wrlinux/8.0-n9000/environment-setup-x86-wrsmllib32-linux
$. /opt/windriver/wrlinux/8.0-n9000/environment-setup-x86_64-wrs-linux
bash$

Use the source environment-setup-x86-wrsmllib32-linux and source environment-setup-x86_64-wrs-linux
commands to add the SDK-specific paths to your shell environment. Add the SDK-specific paths for each
shell you intend to use with the SDK. Adding the SDK-specific paths is the key to setting up the SDK to use
the correct versions of the build tools and libraries.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
150

Applications
Procedure for Installation and Environment Initialization

https://devhub.cisco.com/artifactory/open-nxos/9.2.1/wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
https://devhub.cisco.com/artifactory/open-nxos/9.2.1/wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh

Procedure

Step 1 Browse to the installation directory.
Step 2 Enter the following commands at the Bash prompt:

bash$ source environment-setup-x86-wrsmllib32-linux
bash$ source environment-setup-x86_64-wrs-linux

Using the SDK to Build Applications
Many of the common Linux build processes work for this scenario. Use the techniques that are best suited
for your situation.

The source code for an application package can be retrieved in various ways. For example, you can get the
source code either in tar file form or by downloading from a git repository where the package resides.

The following are examples of some of the most common cases.

(Optional) Verify that the application package builds using standard configure/make/make install.

bash$ tar --xvzf example-app.tgz
bash$ mkdir example-lib-install
bash$ cd example-app/
bash$./configure --prefix=/path/to/example-app-install
bash$ make
bash$ make install

Sometimes it is necessary to pass extra options to the ./configure script, for example to specify which
optional components and dependencies are needed. Passing extra options depends entirely on the application
being built.

Example - Build Ganglia and its dependencies

In this example, we build ganglia, along with the third-party libraries that it requires - libexpat, libapr, and
libconfuse.

libexpat

bash$ wget 'http://downloads.sourceforge.net/project/expat/expat/2.1.0/expat-2.1.0.tar.gz'
bash$ mkdir expat-install
bash$ tar xvzf expat-2.1.0.tar.gz
bash$ cd expat-2.1.0
bash$./configure --prefix=/home/sdk-user/expat-install
bash$ make
bash$ make install
bash$ cd ..

libapr

bash$ wget 'http://www.eu.apache.org/dist/apr/apr-1.5.2.tar.gz'
bash$ mkdir apr-install
bash$ tar xvzf apr-1.5.2.tar.gz
bash$ cd apr-1.5.2
bash$./configure --prefix=/home/sdk-user/apr-install

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
151

Applications
Using the SDK to Build Applications

bash$ make
bash$ make install
bash$ cd ..

libconfuse

confuse requires the extra --enable-shared option to ./configure, otherwise it builds a statically linked
library instead of the required shared library.

Note

bash$ wget 'http://savannah.nongnu.org/download/confuse/confuse-2.7.tar.gz'
bash$ mkdir confuse-install
bash$ tar xvzf confuse-2.7.tar.gz
bash$ cd confuse-2.7
bash$./configure --prefix=/home/sdk-user/confuse-install --enable-shared
bash$ make
bash$ make install
bash$ cd ..

ganglia

The locations to all the required libraries are passed to ./configure.Note

bash$ wget
'http://downloads.sourceforge.net/project/ganglia/ganglia%20monitoring%20core/3.7.2/ganglia-3.7.2.tar.gz'
bash$ mkdir ganglia-install
bash$ tar xvzf ganglia-3.7.2.tar.gz
bash$ cd ganglia-3.7.2
bash$./configure --with-libexpat=/home/sdk-user/expat-install
--with-libapr=/home/sdk-user/apr-install/bin/apr-1-config
--with-libconfuse=/home/sdk-user/confuse-install --prefix=/home/sdk-user/ganglia-install
bash$ make
bash$ make install
bash$ cd ..

Using RPM to Package an Application
If the application successfully builds using "make", then it can be packaged into an RPM.

RPM and spec files

The RPM package format is designed to package up all files (binaries, libraries, configurations, documents,
etc) that are needed for a complete install of the given application. The process of creating an RPM file is
therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything
about the build process.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
152

Applications
Using RPM to Package an Application

Many third-party applications are available on the internet in the form of source code packaged into tarballs.
In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many
of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no
spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can
be built.

Note

Creating an RPM Build Environment
Before using the SDK to build RPMs, an RPM build directory structure must be created, and some RPM
macros set.

Procedure

Step 1 Create the directory structure:
bash$ mkdir rpmbuild
bash$ cd rpmbuild
bash$ mkdir BUILD RPMS SOURCES SPECS SRPMS

Step 2 Set the topdir macro to point to the directory structure created above:
bash$ echo "_topdir ${PWD}" > ~/.rpmmacros

This step assumes that the current user does not already have a .rpmmacros file that is already
set up. If it is inconvenient to alter an existing .rpmmacros file, then the following may be added
to all rpmbuild command lines:

Note

--define "_topdir ${PWD}"

Step 3 Refresh the RPM DB:
bash$ rm /path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm/__db.*
bash$ rpm --rebuilddb

The rpm and rpmbuild tools in the SDK have been modified to use
/path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm as theRPM
database instead of the normal /var/lib/rpm. This modification prevents any conflicts with
the RPM database for the host when not using the SDK and removes the need for root access.
After SDK installation, the SDK RPM database must be rebuilt through this procedure.

Note

Using General RPM Build Procedure
General RPM Build procedure is as follows:
bash$ wget --no-check-certificate --directory-prefix=SOURCES http://<URL of example-app
tarball>
bash$ # determine location of spec file in tarball:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
153

Applications
Creating an RPM Build Environment

bash$ tar tf SOURCES/example-app.tar.bz2 | grep '.spec$'
bash$ tar xkvf SOURCES/example-app.tar.bz2 example-app/example-app.spec
bash$ mv example-app/example-app.spec SPECS/
bash$ rm -rf example-app
bash$ rpmbuild -v --bb SPECS/example-app.spec

The result is a binary RPM in RPMS/ that can be copied to the switch and installed. Installation and
configuration of applications can vary. Refer to the application documents for those instructions.

This rpmbuild and installation on the switch is required for every software package that is required to support
the application. If a software dependency is required that is not already included in the SDK, the source code
must be obtained and the dependencies built. On the build machine, the package can be built manually for
verification of dependencies. The following example is the most common procedure:
bash$ tar xkzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example-lib-install
bash$ make
bash$ make install

These commands place the build files (binaries, headers, libraries, and so on) into the installation directory.
From here, you can use standard compiler and linker flags to pick up the location to these new dependencies.
Any runtime code, such as libraries, are required to be installed on the switch also, so packaging required
runtime code into an RPM is required.

There are many support libraries already in RPM form on the Cisco devhub website.Note

Example to Build RPM for collectd with No Optional Plug-Ins
Download source tarball and extract spec file:
bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive and is the only one
that contains the correct collectd version. We will use it as an example.

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you will use
the /usr/sbin/chkconfig instead. Edit the following edited in the spec file:

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
154

Applications
Example to Build RPM for collectd with No Optional Plug-Ins

collectd has numerous optional plug-ins. This spec file enables many plug-ins by default. Many plug-ins have
external dependencies, so options to disable these plug-ins must be passed to the rpmbuild command line.
Instead of typing out one long command line, we can manage the options in a Bash array as follows:
bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

You can then find the resulting RPMs for collectd in the RPMS directory.

These RPM files can now be copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm

Example to Build RPM for collectd with Optional Curl Plug-In
The collectd curl plug-in has libcurl as a dependency.

In order to satisfy this link dependency during the RPM build process, it is necessary to download and build
curl under the SDK:
bash$ wget --no-check-certificate http://curl.haxx.se/download/curl-7.24.0.tar.gz
bash$ tar xkvf curl-7.24.0.tar.gz
bash$ cd curl-7.24.0
bash$./configure --without-ssl --prefix /path/to/curl-install
bash$ make
bash$ make install
bash$ cd ..

The curl binaries and libraries are installed to /path/to/curl-install. This directory will be created
if it does not already exist, so you must have write permissions for the current user. Next, download the source
tarball and extract the spec file. This step is exactly the same as in the collectd example for no plugins.

Note

bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
155

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you
must use/usr/sbin/chkconfig instead, so the following can be edited in the spec file:

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive, and it is the only
one to contain the correct collectd version. We will use that one as an example.

Note

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

Here a deviation from the previous example is encountered. The collectd rpmbuild process needs to know the
location of libcurl. Edit the collectd spec file to add the following.

Find the string%configure in SPECS/collectd.spec. This line and those following it define the options
that rpmbuild will pass to the ./configure script.

Add the following option:
--with-libcurl=/path/to/curl-install/bin/curl-config \

Next a Bash array is built again to contain the rpmbuild command options. Note the following differences:

• curl is removed from the list of plug-ins not to be built

• The addition of --with curl=force

bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=("--with")
bash$ rpmbuild_opts+=("curl=force")bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

The resulting RPMs in the RPMs directory will now also include collectd-curl. These RPM files can now be
copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm
bash$ rpm --noparentdirs -i /bootflash/collectd-curl-5.5.0-1.ia32e.rpm

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
156

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

C H A P T E R 18
NX-SDK

This chapter contains the following topics:

• About the NX-SDK, on page 157
• About On-Box (Local) Applications, on page 158
• Default Docker Images, on page 158
• Guidelines and Limitations for NX-SDK, on page 159
• About NX-SDK 2.0 , on page 160
• About NX-SDK 2.5, on page 160
• About Remote Applications, on page 160
• NX-SDK Security, on page 161
• Security Profiles for NX SDK 2.0, on page 161

About the NX-SDK
The Cisco NX-OS SDK (NX-SDK) is a C++ abstraction and plugin-library layer that streamlines access to
infrastructure for automation and custom application creation, such as generating custom:

• CLIs

• Syslogs

• Event and Error managers

• Inter-application communication

• High availability (HA)

• Route manager

You can use C++, Python, or Go for application development with NX-SDK.

Requirements

The NX-SDK has the following requirements:

• Docker

• A Linux environment (either Ubuntu 14.04, or Centos 6.7). Cisco recommends using the provided
NX-SDK Docker containers. For more information, see Cisco DevNet NX-SDK.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
157

https://github.com/CiscoDevNet/NX-SDK

Support for Local (On Switch) and Remote (Off Switch) Applications

Applications that are developed with NX-SDK are created or developed off the Cisco Nexus switch in the
Docker containers that NX-SDK provides. After the application is created, you have flexibility of where the
applications can be deployed:

• Local (on-box) applications run on the switch. For information, see About On-Box (Local) Applications,
on page 158

• Remote (off-box) applications run off switch. This option, supported with NX-SDK 2.0 and later, enables
you to deploy the application to run anywhere other than on the switch. For information, see About
Remote Applications, on page 160.

Related Information

For more information about Cisco NX-SDK, go to:

• Cisco DevNet NX-SDK. Click the versions.md link (https://github.com/CiscoDevNet/NX-SDK/
blob/master/versions.md) to get information about features and details on each supported release.

• NX-SDK Readmes

As needed, Cisco adds information for NX-SDK to GitHub.

Considerations for Go Bindings
Go bindings are supported at various levels depending on the release of NX-SDK and whether apps are running
locally or remotely.

• Go bindings for any version of NX-SDK remote application are pre-EFT quality.

• Go bindings for a local NX-SDK 2.0 application is pre-EFT.

• Go bindings for a local NX-SDK 1.7.5 application or earlier is supported.

For more information, see GO Bindings for NX-SDK Applications.

About On-Box (Local) Applications
With on box (local) applications, you install the NX-SDK, build your application in whichever supported
language you choose, package the app as an .rpm file which can be installed on the switch, then install and
run your applications on the switch. The .rpm files can be manually generated or autogenerated.

Application development occurs in the containers that are provided by NX-SDK. You will use a different
container and tools for local applications than remote applications. For more information, see Default Docker
Images, on page 158.

For information about building, installing, and running local applications, see Cisco DevNet NX-SDK .

Default Docker Images
NX-SDK has the following Docker images and tools by default for local or remote use.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
158

Applications
Considerations for Go Bindings

https://github.com/CiscoDevNet/NX-SDK
https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md
https://github.com/CiscoDevNet/NX-SDK/tree/master/readmes
https://github.com/CiscoDevNet/NX-SDK/tree/master/go
https://github.com/CiscoDevNet/NX-SDK#custom-application-development-flow-using-nx-sdk

ContentsUsage

Cisco ENXOS SDK

Wind River Linux (WRL) tool chain for cross
compiling

Multi-language binding toolkit

Beginning with NX-SDK 1.75, a Go compiler

On Switch

NX-SDK multi-language binding Toolkit with
pre-built libnxsdk.so

A Go compiler

RapidJSON

gRPC for remote API support

Off switch (remote)

For more information, see https://github.com/CiscoDevNet/NX-SDK#readme.

Guidelines and Limitations for NX-SDK
NX-SDK has usage guidelines and limitations for running applications locally (on box) or remotely (off box).

For guidelines and limitations, see "Helpful Notes" at Cisco DevNet NX-SDK .

• For remote applications, ports that connect to the SDK server are from 50002 through 50100. Make sure
that these ports are open and not used by other services. Port 50051 is blocked for use by an internal
application, and cannot be used by remote applications.

• The following limitations apply to developing a custom application through NX-SDK:

• Youmust develop applications with any current Linux distribution that have GNUC/C++ toolchains
and standard libraries.

• We recommend developing applications in the provided Docker images. Run the Docker image and
associated tools requires a minimum of 8 MB of free memory and 64-bit hosts. See Default Docker
Images, on page 158.

• Cisco recommends that you build and test your applications in Bash.When you deploy them in production,
build the applications as RPMs and run them in the NX-OS VSH (Vshell).

• Cisco Nexus switches support a maximum of 32 applications in Bash and VSH.

• For NX-SDK 2.0, there is a 1-to-1 limit for remote NX-SDK applications and NX-SDK servers running
in the Cisco Nexus switch.

• A maximum of 10 remote NX-SDK applications can run simultaneously in a switch.

• The NX-SDK server accepts remote requests only from a CLI-configured application and not from
random applications.

• For any error that occurs, the SDK server throws an exception.

• Some APIs do not run in a remote application. Refer to API documentation for more information.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
159

Applications
Guidelines and Limitations for NX-SDK

https://github.com/CiscoDevNet/NX-SDK#readme
https://github.com/CiscoDevNet/NX-SDK/blob/master/README.md#cisco-nx-sdk

• Remote client library code is not open source, so NX-SDK remote apps need to run in the NX-SDK
remote docker container. To use remote NX-SDK in your own OS, make a request in github with your
OS and compiler version. Cisco can generate a remote libnxsdk.so based on your version.

About NX-SDK 2.0
The NX-SDK version 2.0 enables execution-environment flexibility for developers to run their applications
wherever needed. With this version of NX-SDK, your applications are still developed off the switch in
containers, but you can run the apps either on the switch or off the switch, for example in a cloud.

NX-SDK 2.0 offers the following benefits:

• Easy integration of the switch into the customer environment.

• Scalability to enable the switch to seamlessly operate in data centers, public clouds, and private clouds.

• Decoupling customer apps from switch resources so that changes at the switch-level resources do not
require change or rewrite of applications.

• Single library with simple to use APIs for applications to link against, which simplifies switch interactions
and allows applications to be written in high-level languages that are easier to write and debug.

• Running Remote services are more secure than on-box applications.

For more information, see https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_
NXOS.md.

About NX-SDK 2.5
Beginning with Cisco NX-OS Release 9.3(3), support is added for the Streaming Syslog feature.

For more information, see CiscoDevNet.

Table 4: Syslog Events

DetailsFeatures

• Ability for custom applications to register for
Cisco NX-OS syslog events.

• Refer to watchSyslog and postSyslogCbAPIs in
nx_trace.h for more details.

Syslog Events

About Remote Applications
Remote applications can be on a different switch that is not a Cisco Nexus switch. Remote, or off-box,
applications call through the NX-SDK layer to interact with the switch to read information (get) or write
information (set).

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
160

Applications
About NX-SDK 2.0

https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md
https://wwwin-github.cisco.com/sathsrin/nxsdk/blob/master/include/nx_trace.h

Both local and remote NX-SDK applications use the same APIs, which offer you the flexibility to deploy
NX-SDK applications on- or off-box.

To run remotely, an application must meet specific requirements. For information, see https://github.com/
CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md.

Backward Compatibility for Pre-2.0 NX-SDK Applications

NX-SDK 2.0 has conditional backward compatibility for NX-SDK v1.75 applications depending on how
these applications were developed:

• Usually, NX-SDK supports remotely running an app that you created before NX-SDK 2.0 without
requiring you to completely rewrite your app. Instead, you can reuse the same app without modifying it
to change the API calls. To support older apps in the new NX-SDK 2.0 model, the API call must provide
IP and Port parameters. These parameters are not available in NX-SDK 1.75 and earlier, but you can add
the IP address and Port information as environment variables that the app can export to the SDK server.

• However, sometimes backward compatibility for pre-NX-SDK 2.0 apps might not be supported. It is
possible that some APIs in older apps might not support, or be capable of, running remotely. In this case,
the APIs can throw an exception. Depending on how complete and robust the exception-handling is for
the original application, the application might operate unpredictably, and in worst cases, possibly crash.

For more information, see https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_
NXOS.md.

NX-SDK Security
Beginning with NX-OS 9.3(1), NX-SDK 2.0 supports the following security features:

• Session security. Remote applications can connect to the NX SDK server on the switch through Transport
Layer Service (TLS) to provide encrypted sessions between the applications and the switch's NX SDK
server.

• Server certificate security. For new switch deployments with Cisco NX-OS 9.3(1), the NX-SDK server
generates a one-day temporary certificate to provide enough time to install a custom certificate.

If your NX-SDK server already has a custom certificate that is installed, for example, if you are upgrading
from a previous NX-SDK version to NX-SDK 2.0, your existing certificate is retained and used after
upgrade.

• API write-call control. NX-SDK 2.0 introduces security profiles, which enable you to select a pre-defined
policy for controlling howmuch control an application has with the NX-SDK server. For more information
about security profiles, see Security Profiles for NX SDK 2.0, on page 161.

Security Profiles for NX SDK 2.0
In previous releases, the APIs for SDK version 1.75 were permitted only to read and get data for events.
Beginning in Cisco NX-OS Release 9.3(1), NX-SDK 2.0 supports different types of operations, including
write calls.

The ability of an app to read or write to the switch can be controlled through a security profile. A security
profile is an optional object that is attached to the applications' service running in the switch. Security profiles

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
161

Applications
NX-SDK Security

https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/NXSDK_in_NXOS.md

control an application's ability to write to the switch, and in turn, control the applications ability to modify,
delete, or configure switch functionality. By default, application writes are disallowed, so for each application,
you will need to create a security profile that enables write access to the switch.

Cisco's NX-SDK offers the following security profiles.

ValuesDescriptionProfile

This is the default profile.Prevents any API calls fromwriting to the
switch except for adding CLIs.

Deny

The throttle is 50 API calls, and the
throttle resets after five seconds.

Allows APIs that modify the switch, but
only up to a specified number of calls. This
security profile applies throttling to control
the number of API calls.

The application is allowed to write up to
the limit, but when the limit is exceeded,
writing stops, and the reply sends an error
message.

Throttle

APIs that modify the switch are allowed
without restriction

Permit

For more information about security profiles in NX-SDK, see Security Profiles for NX-SDK Applications .

For additional information about building, installing, and running applications, go to CiscoDevNet NX-SDK
.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
162

Applications
Security Profiles for NX SDK 2.0

https://github.com/CiscoDevNet/NX-SDK/blob/master/readmes/security_profiles.md
https://github.com/CiscoDevNet/NX-SDK#custom-application-development-flow-using-nx-sdk

C H A P T E R 19
Using Docker with Cisco NX-OS

This chapter contains the following topics:

• About Docker with Cisco NX-OS, on page 163
• Guidelines and Limitations for Docker, on page 163
• Prerequisites for Setting Up Docker Containers Within Cisco NX-OS, on page 164
• Starting the Docker Daemon, on page 164
• Configure Docker to Start Automatically, on page 165
• Starting Docker Containers: Host Networking Model, on page 166
• Starting Docker Containers: Bridged Networking Model, on page 167
• Mounting the bootflash and volatile Partitions in the Docker Container, on page 168
• Enabling Docker Daemon Persistence on Enhanced ISSU Switchover, on page 168
• Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover, on page 169
• Resizing the Docker Storage Backend, on page 170
• Stopping the Docker Daemon, on page 172
• Docker Container Security, on page 173
• Adding Nodes to a Kubernetes Cluster, on page 174
• Docker Troubleshooting, on page 177

About Docker with Cisco NX-OS
Docker provides a way to run applications securely isolated in a container, packaged with all its dependencies
and libraries. See https://docs.docker.com/ for more information on Docker.

Beginning with Cisco NX-OS Release 9.2(1), support is now added for using Docker within Cisco NX-OS
on a switch.

The version of Docker that is included on the switch is 1.13.1. The Docker daemon is not running by default.
You must start it manually or set it up to automatically restart when the switch boots up.

This section describes how to enable and use Docker in the specific context of the switch environment. Refer
to the Docker documentation at https://docs.docker.com/ for details on general Docker usage and functionality.

Guidelines and Limitations for Docker
Following are the guidelines and limitations for using Docker on Cisco NX-OS on a switch:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
163

https://docs.docker.com/
https://docs.docker.com/

• If you are running a third-party DHCPD server in Docker, there might be issues with offers reaching the
client if used along with SVI. A possible workaround is to use broadcast responses.

• Docker functionality is supported on the Cisco Nexus 9000Cisco Nexus 3000 Series switches with at
least 8 GB of system RAM.

Prerequisites for Setting Up Docker Containers Within Cisco
NX-OS

Following are the prerequisites for using Docker on Cisco NX-OS on a switch:

• Enable the host Bash shell. To use Docker on Cisco NX-OS on a switch, you must be the root user on
the host Bash shell:
switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature bash-shell

• If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy

environment variables must be set up in /etc/sysconfig/docker. For example:
export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

• Verify that the switch clock is set correctly, or you might see the following error message:
x509: certificate has expired or is not yet valid

• Verify that the domain name and name servers are configured appropriately for the network and that it
is reflected in the/etc/resolv.conf file:
switch# conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address
A:B::C:D Enter an IPv6 address

root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch#

Starting the Docker Daemon
When you start the Docker daemon for the first time, a fixed-size backend storage space is carved out in a
file called dockerpart on the bootflash, which is then mounted to /var/lib/docker. If necessary, you can
adjust the default size of this space by editing /etc/sysconfig/docker before you start the Docker daemon
for the first time. You can also resize this storage space if necessary as described later on.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
164

Applications
Prerequisites for Setting Up Docker Containers Within Cisco NX-OS

To start the Docker daemon:

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker daemon.
root@switch# service docker start

Step 3 Check the status.
root@switch# service docker status
dockerd (pid 3597) is running...
root@switch#

Once you start the Docker daemon, do not delete or tamper with the dockerpart file on the
bootflash since it is critical to the docker functionality.
switch# dir bootflash:dockerpart
2000000000 Mar 14 12:50:14 2018 dockerpart

Note

Configure Docker to Start Automatically
You can configure the Docker daemon to always start up automatically when the switch boots up.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Use the chkconfig utility to check the Docker service settings.
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch#

Step 4 To remove the configuration so that Docker does not start up automatically:
root@switch# chkconfig --del docker
root@switch# chkconfig --list | grep docker

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
165

Applications
Configure Docker to Start Automatically

root@switch#

Starting Docker Containers: Host Networking Model
If you want Docker containers to have access to all the host network interfaces, including data port and
management, start the Docker containers with the --network host option. The user in the container can
switch between the different network namespaces at /var/run/netns (corresponding to different VRFs
configured in Cisco NX-OS) using the ip netns exec <net_namespace> <cmd>.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and viewing all the network
interfaces. The container is launched into the management network namespace by default.
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cap-add SYS_ADMIN -it alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
management
default
/ #
/ # ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
3: gre0@NONE: <NOARP> mtu 1476 qdisc noop state DOWN group default
link/gre 0.0.0.0 brd 0.0.0.0
...
/ #
/ # ip netns exec default ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
166

Applications
Starting Docker Containers: Host Networking Model

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/16 scope host lo
valid_lft forever preferred_lft forever
2: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
link/ether 42:0d:9b:3c:d4:62 brd ff:ff:ff:ff:ff:ff
3: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
...

Starting Docker Containers: Bridged Networking Model
If you want Docker containers to only have external network connectivity (typically through the management
interface) and you don't necessarily care about visibility into a specific data port or other switch interface,
you can start the Docker container with the default Docker bridged networking model. This is more secure
than the host networking model described in the previous section since it also provides network namespace
isolation.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and installing the iproute2
package.
root@switch# docker run -it --rm alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
/ #

Step 3 Determine if you want to set up user namespace isolation.

For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See Securing Docker Containers With User namespace Isolation, on page 173 for more
information.

You can use standard Docker port options to expose a service from within the container, such as sshd. For
example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
167

Applications
Starting Docker Containers: Bridged Networking Model

root@switch# docker run -d -p 18877:22 --name sshd_container sshd_ubuntu

This maps port 22 from within the container to port 18877 on the switch. The service can now be accessed
externally through port 18877, as shown in the following example:
root@ubuntu-vm# ssh root@ip_address -p 18887

Mounting the bootflash and volatile Partitions in the Docker
Container

You can make the bootflash and volatile partitions visible in the Docker container by passing in the -v
/bootflash:/bootflash and -v /volatile:/volatile options in the run command for the Docker container.
This is useful if the application in the container needs access to files shared with the host, such as copying a
new NX-OS system image to bootflash.

This -v command option allows for any directory to bemounted into the container andmay result in information
leaking or other accesses that may impact the operation of the NX-OS system. Limit this to resources such
as /bootflash and /volatile that are already accessible using NX-OS CLI.

Note

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Pass in the -v /bootflash:/bootflash and -v /volatile:/volatile options in the run command for the
Docker container.
root@switch# docker run -v /bootflash:/bootflash -v /volatile:/volatile -it --rm alpine
/# ls /
bin etc media root srv usr
bootflash home mnt run sys var
dev lib proc sbin tmp volatile
/ #

Enabling Docker Daemon Persistence on Enhanced ISSU
Switchover

You can have both the Docker daemon and any running containers persist on an Enhanced ISSU switchover.
This is possible since the bootflash on which the backend Docker storage resides is the same and shared
between both Active and Standby supervisors.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
168

Applications
Mounting the bootflash and volatile Partitions in the Docker Container

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Before starting the switchover, use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Start any containers using the --restart unless-stopped option so that they will be restarted automatically
after the switchover.

The following example starts an Alpine container and configures it to always restart unless it is explicitly
stopped or Docker is restarted:
root@switch# docker run -dit --restart unless-stopped alpine
root@n9k-2#

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Enabling Docker Daemon Persistence on the Cisco Nexus
Platform Switches Switchover

You can have both the Docker daemon and any running containers persist on a switchover between two
separate physical supervisors with distinct bootflash partitions. However, for the Cisco Nexus switches, the
bootflash partitions on both supervisors are physically separate. You will therefore need to copy the
dockerpart file manually to the standby supervisor before performing the switchover.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start any containers using the --restart unless-stopped option so that they will be restarted automatically
after the switchover.

The following example starts an Alpine container and configures it to always restart unless it is explicitly
stopped or Docker is restarted:
root@switch# docker run -dit --restart unless-stopped alpine
root@n9k-2#

Note that the Docker containers will be disrupted (restarted) during the switchover, so they will not be running
continuously.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
169

Applications
Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover

Step 3 Before starting the switchover, use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 4 Copy the Docker backend storage partition from the active to the standby supervisor bootflash:
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

root@switch# cp /bootflash/dockerpart /bootflash_sup-remote/

root@switch# service docker start

Resizing the Docker Storage Backend
After starting or using the Docker daemon, you can grow the size of the Docker backend storage space
according to your needs.

Procedure

Step 1 Disable the Guest Shell.

If you do not disable the Guest Shell, it may interfere with the resize.
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n] y
switch# 2018 Mar 15 17:16:55 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating
virtual service 'guestshell+'
2018 Mar 15 17:16:57 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'

Step 2 Load Bash and become superuser.
switch# run bash sudo su -

Step 3 Get information on the current amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/loop12 1.9G 7.6M 1.8G 1% /var/lib/docker
root@n9k-2#

Step 4 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 5 Get information on the current size of the Docker backend storage space (/bootflash/dockerpart).
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2000000000 Mar 15 16:53 /bootflash/dockerpart

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
170

Applications
Resizing the Docker Storage Backend

root@n9k-2#

Step 6 Resize the Docker backend storage space.

For example, the following command increases the size by 500 megabytes:
root@switch# truncate -s +500MB /bootflash/dockerpart
root@n9k-2#

Step 7 Get updated information on the size of the Docker backend storage space to verify that the resizing process
was completed successfully.

For example, the following output confirms that the size of the Docker backend storage was successfully
increased by 500 megabytes:
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2500000000 Mar 15 16:54 /bootflash/dockerpart
root@n9k-2#

Step 8 Check the size of the filesystem on /bootflash/dockerpart.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/122160 files (0.6% non-contiguous), 17794/488281 blocks

Step 9 Resize the filesystem on /bootflash/dockerpart.
root@switch# /sbin/resize2fs /bootflash/dockerpart
resize2fs 1.42.9 (28-Dec-2013)
Resizing the filesystem on /bootflash/dockerpart to 610351 (4k) blocks.
The filesystem on /bootflash/dockerpart is now 610351 blocks long.

Step 10 Check the size of the filesystem on /bootflash/dockerpart again to confirm that the filesystem was
successfully resized.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/154736 files (0.6% non-contiguous), 19838/610351 blocks

Step 11 Start the Docker daemon again.
root@switch# service docker start
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.
Starting dockerd with args '--debug=true':

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
171

Applications
Resizing the Docker Storage Backend

Step 12 Verify the new amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/loop12 2.3G 7.6M 2.3G 1% /var/lib/docker

Step 13 Exit out of Bash shell.
root@switch# exit
logout
switch#

Step 14 Enable the Guest Shell, if necessary.
switch# guestshell enable

switch# 2018 Mar 15 17:12:53 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual
service 'guestshell+'
switch# 2018 Mar 15 17:13:18 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
activated virtual service 'guestshell+'

Stopping the Docker Daemon
If you no longer wish to use Docker, follow the procedures in this topic to stop the Docker daemon.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 3 Verify that the Docker daemon is stopped.
root@switch# service docker status
dockerd is stopped
root@switch#

You can also delete the dockerpart file on the bootflash at this point, if necessary:
switch# delete bootflash:dockerpart
Do you want to delete "/dockerpart" ? (yes/no/abort) y
switch#

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
172

Applications
Stopping the Docker Daemon

Docker Container Security
Following are the Docker container security recommendations:

• Run in a separate user namespace if possible.

• Run in a separate network namespace if possible.

• Use cgroups to limit resources. An existing cgroup (ext_ser) is created to limit hosted applications to
what the platform team has deemed reasonable for extra software running on the switch. Docker allows
use of this and limiting per-container resources.

• Do not add unnecessary POSIX capabilities.

Securing Docker Containers With User namespace Isolation
For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See https://docs.docker.com/engine/security/userns-remap/ for more information.

Procedure

Step 1 Determine if a dockremap group already exists on your system.

A dockremap user must already be set up on your system by default. If the dockremap group doesn't already
exist, follow these steps to create it.

a) Enter the following command to create the dockremap group:
root@switch# groupadd dockremap -r

b) Create the dockremap user, unless it already exists:
root@switch# useradd dockremap -r -g dockremap

c) Verify that the dockremap group and the dockremap user were created successfully:
root@switch# id dockremap
uid=999(dockremap) gid=498(dockremap) groups=498(dockremap)
root@switch#

Step 2 Add the desired re-mapped ID and range to the /etc/subuid and /etc/subgid.

For example:
root@switch# echo "dockremap:123000:65536" >> /etc/subuid
root@switch# echo "dockremap:123000:65536" >> /etc/subgid

Step 3 Using a text editor, add the --userns-remap=default option to the other_args field in the
/etc/sysconfig/docker file.

For example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
173

Applications
Docker Container Security

https://docs.docker.com/engine/security/userns-remap/

other_args="–debug=true --userns-remap=default"

Step 4 Restart the Docker daemon, or start it if it is not already running, using service docker [re]start.

For example:
root@switch# service docker [re]start

Refer to the Docker documentation at https://docs.docker.com/engine/security/userns-remap/ for more
information on configuring and using containers with user namespace isolation.

Moving the cgroup Partition
The cgroup partition for third-party services is ext_ser, which limits CPU usage to 25% per core. Cisco
recommends that you run your Docker container under this ext_ser partition.

If the Docker container is run without the --cgroup-parent=/ext_ser/ option, it can get up to the full 100%
host CPU access, which can interfere with the regular operation of Cisco NX-OS.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Run the Docker container under the ext_ser partition.

For example:
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cgroup-parent=/ext_ser/ --cap-add SYS_ADMIN -it alpine
/ #

Adding Nodes to a Kubernetes Cluster
This topic describes how to add nodes to a Kubernetes cluster. In this example:

• The Kubernetes (Ubuntu) primary has an IP address of 10.122.197.246

• The switch software running as Docker containers has an IP address of 10.122.84.24

In the following examples, long single lines of text are broken up with the \ character to improve readability.Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
174

Applications
Moving the cgroup Partition

https://docs.docker.com/engine/security/userns-remap/

Procedure

Step 1 Run the following commands (on? for?) the Kubernetes (Ubuntu) primary.
a) Enter this command:

root@switch# docker run -d --net=host gcr.io/google_containers/etcd:2.2.1
/usr/local/bin/etcd --listen-client-urls=http://0.0.0.0:4001
--advertise-client-urls=http://0.0.0.0:4001 --data-dir=/var/etcd/data

b) Enter this command:
root@switch# docker run -d --name=api --net=host --pid=host --privileged=true
gcr.io/google_containers/hyperkube:v1.2.2 /hyperkube apiserver
--insecure-bind-address=0.0.0.0 --allow-privileged=true
--service-cluster-ip-range=10.0.0.1/24 --etcd_servers=http://127.0.0.1:4001 --v=2

c) Enter this command:
root@switch# docker run -d --name=kubs --volume=/:/rootfs:ro --volume=/sys:/sys:ro
--volume=/dev:/dev --volume=/var/lib/docker/:/var/lib/docker:rw
--volume=/var/lib/kubelet/:/var/lib/kubelet:rw --volume=/var/run:/var/run:rw --net=host
--pid=host --privileged=true gcr.io/google_containers/hyperkube:v1.2.2 /hyperkube kubelet
--allow-privileged=true --hostname-override="127.0.0.1" --address="0.0.0.0"
--api-servers=http://0.0.0.0:8080 --cluster_dns=10.0.0.10 --cluster_domain=cluster.local
--config=/etc/kubernetes/manifests-multi

d) Enter this command:
root@switch# docker run -d --name=proxy --net=host --privileged
gcr.io/google_containers/hyperkube:v1.2.2 /hyperkube proxy --master=http://0.0.0.0:8080
--v=2

e) Enter this command:
root@switch# export KUBERNETES_MASTER=http://10.122.197.246:8080

f) Enter this command:
root@switch# curl -o /usr/bin/kubectl
http://storage.googleapis.com/kubernetes-release/release/v1.2.2/bin/linux/amd64/kubectl

g) Enter this command:
root@switch# kubectl -s $KUBERNETES_MASTER create –f kube-system.json

h) Enter this command:
root@switch# kubectl -s $KUBERNETES_MASTER create –f skydns-rc.yaml

i) Enter this command:
root@switch# kubectl -s $KUBERNETES_MASTER create –f skydns-svc.yaml

j) Enter this command:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
175

Applications
Adding Nodes to a Kubernetes Cluster

root@switch# kubectl -s $KUBERNETES_MASTER create –f dashboard.yaml
kubectl -s $KUBERNETES_MASTER cluster-info

k) Enter this command:
root@switch# kubectl -s $KUBERNETES_MASTER cluster-info

Step 2 Run the following steps (on? for?) the switch.
a) Enter this command:

root@switch# docker run -d --name=kubs --net=host --pid=host --privileged=true
--volume=/:/rootfs:ro --volume=/sys:/sys:ro --volume=/dev:/dev
--volume=/var/lib/docker/:/var/lib/docker:rw
--volume=/var/lib/kubelet/:/var/lib/kubelet:rw --volume=/var/run:/var/run:rw
gcr.io/google_containers/hyperkube:v1.2.2 /hyperkube kubelet --allow-privileged=true
--containerized --enable-server --cluster_dns=10.0.0.10 --cluster_domain=cluster.local
--config=/etc/kubernetes/manifests-multi --hostname-override="10.122.84.34"
--address=0.0.0.0 --api-servers=http://10.122.197.246:8080

b) Enter this command:
root@switch# docker run -d --name=proxy --net=host --privileged=true
gcr.io/google_containers/hyperkube:v1.2.2 /hyperkube proxy
--master=http://10.122.197.246:8080 --v=2

Step 3 Run the following commands (on? for?) the Kubernetes (Ubuntu) primary to deploy an nginx app in a replication
controller object.
a) Enter this command:

lab@rnimbalk-ubuntu1:~$ kubectl get node
NAME STATUS AGE
10.122.84.34 Ready 16m
127.0.0.1 Ready 22m

b) Enter this command:
lab@rnimbalk-ubuntu1:~$ kubectl apply –f replication.yaml
replicationcontroller "nginx" created

c) Enter this command:
lab@rnimbalk-ubuntu1:~$ kubectl describe –f replication.yaml
Name: nginx
Namespace: default
Image(s): nginx
Selector: app=nginx
Labels: app=nginx
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
No volumes.
Events:
FirstSeen LastSeen Count From SubobjectPath
Type Reason Message
--------- -------- ----- ---- -------------
-------- ------ -------
17s 17s 1 {replication-controller }

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
176

Applications
Adding Nodes to a Kubernetes Cluster

Normal SuccessfulCreate Created pod: nginx-zqfpz
17s 17s 1 {replication-controller }
Normal SuccessfulCreate Created pod: nginx-jij40
17s 17s 1 {replication-controller }
Normal SuccessfulCreate Created pod: nginx-loa0g

Docker Troubleshooting
These topics describe issues that can arise with Docker containers and provides possible resolutions.

Docker Fails to Start
Problem: Docker fails to start, showing an error message similar to the following:
switch# run bash
bash-4.3$ service docker start
Free bootflash: 39099 MB, total bootflash: 51771 MB
Carving docker bootflash storage: 2000 MB
2000+0 records in
2000+0 records out
2000000000 bytes (2.0 GB) copied, 22.3039 s, 89.7 MB/s
losetup: /dev/loop18: failed to set up loop device: Permission denied
mke2fs 1.42.9 (28-Dec-2013)
mkfs.ext4: Device size reported to be zero. Invalid partition specified, or

partition table wasn't reread after running fdisk, due to
a modified partition being busy and in use. You may need to reboot
to re-read your partition table.

Failed to create docker volume

Possible Cause: You might be running Bash as an admin user instead of as a root user.

Solution: Determine if you are running Bash as an admin user instead of as a root user:
bash-4.3$ whoami
admin

Exit out of Bash and run Bash as root user:

bash-4.3$ exit
switch# run bash sudo su -

Docker Fails to Start Due to Insufficient Storage
Problem:Docker fails to start, showing an error message similar to the following, due to insufficient bootflash
storage:
root@switch# service docker start
Free bootflash: 790 MB, total bootflash: 3471 MB
Need at least 2000 MB free bootflash space for docker storage

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
177

Applications
Docker Troubleshooting

Possible Cause: You might not have enough free bootflash storage.

Solution: Free up space or adjust the variable_dockerstrg values in /etc/sysconfig/docker as needed,
then restart the Docker daemon:
root@switch# cat /etc/sysconfig/docker
Replace the below with your own docker storage backend boundary value (in MB)
if desired.
boundary_dockerstrg=5000

Replace the below with your own docker storage backend values (in MB) if
desired. The smaller value applies to platforms with less than
$boundary_dockerstrg total bootflash space, the larger value for more than
$boundary_dockerstrg of total bootflash space.
small_dockerstrg=300
large_dockerstrg=2000

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error
Message)

Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest
Error response from daemon: Get https://registry-1.docker.io/v2/: x509: certificate has
expired or is not yet valid

Possible Cause: The system clock might not be set correctly.

Solution: Determine if the clock is set correctly or not:
root@n9k-2# sh clock
15:57:48.963 EST Thu Apr 25 2002
Time source is Hardware Calendar

Reset the clock, if necessary:
root@n9k-2# clock set hh:mm:ss { day month | month day } year

For example:
root@n9k-2# clock set 14:12:00 10 feb 2018

Failure to Pull Images from Docker Hub (Client Timeout Error Message)
Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest
Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: request canceled
while waiting for connection (Client.Timeout exceeded while awaiting headers)

Possible Cause: The proxies or DNS settings might not be set correctly.

Solution: Check the proxy settings and fix them, if necessary, then restart the Docker daemon:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
178

Applications
Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message)

root@switch# cat /etc/sysconfig/docker | grep proxy
#export http_proxy=http://proxy.esl.cisco.com:8080
#export https_proxy=http://proxy.esl.cisco.com:8080
root@switch# service docker [re]start

Check the DNS settings and fix them, if necessary, then restart the Docker daemon:
root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch# # conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address
A:B::C:D Enter an IPv6 address

root@switch# service docker [re]start

Docker Daemon or Containers Not Running On Switch Reload or Switchover
Problem: The Docker daemon or containers do not run after you have performed a switch reload or switchover.

Possible Cause: The Docker daemon might not be configured to persist on a switch reload or switchover.

Solution: Verify that the Docker daemon is configured to persist on a switch reload or switchover using the
chkconfig command, then start the necessary Docker containers using the --restart unless-stopped option.
For example, to start an Alpine container:
root@switch# chkconfig --add docker
root@switch#
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch# docker run -dit --restart unless-stopped alpine

Resizing of Docker Storage Backend Fails
Problem: An attempt to resize the Docker backend storage failed.

Possible Cause: You might not have Guest Shell disabled.

Solution: Use the following command to determine if Guest Shell is disabled:
root@switch# losetup -a | grep dockerpart
root@n9k-2#

The command should not display any output if Guest Shell is disabled.

Enter the following command to disable the Guest Shell, if necessary:
switch# guestshell disable

If you still cannot resize the Docker backend storage, you can delete /bootflash/dockerpart, then adjust
the [small_]large_dockerstrg in /etc/sysconfig/docker, then start Docker again to get a fresh Docker
partition with the size that you want.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
179

Applications
Docker Daemon or Containers Not Running On Switch Reload or Switchover

Docker Container Doesn't Receive Incoming Traffic On a Port
Problem: The Docker container doesn't receive incoming traffic on a port.

Possible Cause: The Docker container might be using a netstack port instead of a kstack port.

Solution: Verify that any ephemeral ports that are used by Docker containers are within the kstack range.
Otherwise any incoming packets can get sent to netstack for servicing and dropped.
switch# show socket local-port-range
Kstack local port range (15001 - 58000)
Netstack local port range (58001 - 63535) and nat port range (63536 - 65535)
switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# sockets local-port-range <start_port> <end_port>
switch# run bash sudo su -
root@switch# cat /proc/sys/net/ipv4/ip_local_port_range
15001 58000
root@switch#

Unable to See Data Port And/Or Management Interfaces in Docker Container
Problem: You are unable to see the data port or management interfaces in the Docker container.

Solution:

• Verify that the Docker container is started in the host network namespace with all host namespaces
mapped in using the -v /var/run/netns:/var/run/netns:ro,rslave --network host options.

• Once in the container, you will be in the management network namespace by default. You can use the
ip netns utility to move to the default (init) network namespace, which has the data port interfaces.
The ip netns utility might need to be installed in the container using yum, apk, or something similar.

General Troubleshooting Tips
Problem: You have other issues with Docker containers that were not resolved using other troubleshooting
processes.

Solution:

• Look for dockerd debug output in /var/log/docker for any clues as to what is wrong.

• Verify that your switch has 8 GB or more of RAM. Docker functionality is not supported on any switch
that has less than 8 GB of RAM.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
180

Applications
Docker Container Doesn't Receive Incoming Traffic On a Port

P A R T III
NX-API

• NX-API CLI, on page 183
• NX-API REST, on page 219
• NX-API Developer Sandbox, on page 225

C H A P T E R 20
NX-API CLI

• About NX-API CLI, on page 183
• Using NX-API CLI, on page 185
• Table of NX-API Response Codes, on page 206
• JSON and XML Structured Output, on page 208
• Sample NX-API Scripts, on page 218

About NX-API CLI
NX-API CLI is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API CLI
also supports JSON output format for specific commands.

On Cisco Nexus switches, command-line interfaces (CLIs) are run only on the switch. NX-API CLI improves
the accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You
can use this extension to the existing Cisco NX-OS CLI system on the switches. NX-API CLI supports show
commands, configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

Guidelines and Limitations
NX-API CLI spawns VSH to execute Cisco NX-OS CLIs on a switch. The VSH timeout limit is 5 minutes.
If the CiscoNX-OSCLIs take longer than 5minutes to execute, the commands fail with themessage: "Back-end
processing error.". This is governed by the NX-API command timeout, which governs how long a command
requested via NX-API can run. It is fixed at 300s and cannot be changed.

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

Starting with Cisco NX-OS Release 9.2(1), the NX-API feature is enabled by default on HTTPS port 443.
HTTP port 80 is disabled.

NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or
within Guest Shell.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are
under the Linux cgroup protection where the CPU and memory usage is capped. The NX-API processes are

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
183

part of the cgroup ext_ser_nginx, which is limited to 2,147,483,648 bytes of memory. If the Nginx memory
usage exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF,
port, and certificate configurations) is restored.

Message Format
NX-API is an enhancement to the Cisco Nexus 7000 Series CLI system, which supports XML output. NX-API
also supports JSON output format for specific commands.

NX-API is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API also
supports JSON output format for specific commands.

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Security
• NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

• NX-API does not support insecure HTTP by default.

• NX-API does not support weak TLSv1 protocol by default.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
184

NX-API
Message Format

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the Cisco Nexus 9000 Series switches are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPS POST. The response to the request is returned
in XML or JSON output format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 206.Note

NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
Enter configuration commands, one per line.
End with CNTL/Z.
switch(config)# interface mgmt 0
switch(config-if)# ip address 10.126.67.53/25
switch(config-if)# vrf context managment
switch(config-vrf)# ip route 0.0.0.0/0 10.126.67.1
switch(config-vrf)# end
switch#

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
185

NX-API
Using NX-API CLI

<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

There is a known issue where an attempt to delete a user might fail, resulting in an error message similar to
the following appearing every 12 hours or so:
user delete failed for username:userdel: user username is currently logged in - securityd

This issue might occur in a scenario where you try to delete a user who is still logged into a switch through
NX-API. Enter the following command in this case to try to log the user out first:
switch(config)# clear user username

Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC
for further assistance.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
186

NX-API
Using NX-API CLI

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Escalation to root is password protected.

The following examples show how an admin escalates privileges to root and how to verify the escalation.
Note that after becoming root, the whoami command shows you as admin; however, the admin account has
all the root privileges.

First example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
187

NX-API
Escalate Privileges to Root on NX-API

<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 5: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port and certificate information.

The "show nxapi" command doesn't display
certificate/config information for network-operator
role.

Note

show nxapi

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Installs NX-API certificates with encrypted private keys:

The passphrase for decrypting the encrypted private
key is pass123!.

Note

Example:
nxapi certificate httpskey keyfile bootflash:encr-cc.pem
password pass123!

nxapi certificatehttpskey keyfile
filename password passphrase

Enables a certificate.nxapi certificate enable

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
188

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

This CLI provides a secure way of authenticating to the device
by using Secure Unique Device Identifier (SUDI).

The SUDI based authentication in nginx will be used by the
CISCO SUDI compliant controllers.

SUDI is an IEEE 802.1AR-compliant secure device identity in
an X.509v3 certificate which maintains the product identifier and
serial number of Cisco devices. The identity is implemented at
manufacturing and is chained to a publicly identifiable root
certificate authority.

WhenNX-API comes upwith the SUDI certificate,
it is not accessible by any third-party applications
like browser, curl, and so on.

Note

"nxapi certificate sudi" will overwrite the custom
certificate/key if configured, and there is no way to
get the custom certificate/key back.

Note

"nxapi certificate sudi" and "nxapi certificate
trustpoint" and "nxapi certificate enable" are
mutually exclusive , and configuring one will delete
the other configuration.

Note

NX-API do not support SUDI certificate-based
client certificate authentication. If client certificate
authentication is needed, then Identity certificate
need to be used.

Note

As NX-API certificate CLI is not present in show
run output, CR/Rollback case currently does not go
back to the custom certificate once it is overwritten
with "nxapi certificate sudi" options.

Note

nxapi certificate sudi

Beginning with Cisco NX-OS Release 9.2(1), weak ciphers are
disabled by default. Running this command changes the default
behavior and enables the weak ciphers for NGINX. The no form
of the command changes it to the default (by default, the weak
ciphers are disabled).

nxapi ssl-ciphers weak

Beginning with Cisco NX-OS Release 9.2(1), TLS1.0 is disabled
by default. Running this command enables the TLS versions
specified in the string, including the TLS1.0 that was disabled
by default, if necessary. The no form of the command changes
it to the default (by default, only TLS1.1 and TLS1.2 will be
enabled).

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2}

Specifies the default VRF, management VRF, or named VRF.

In CiscoNX-OSRelease 7.0(3)I2(1) NGINX listens
on only one VRF.

Note

nxapi use-vrf vrf

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
189

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run
the command from Bash Shell. For more
information on Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

For more information about making iptables
persistent across reloads when they are modified in
a bash-shell, see Making an Iptable Persistent
Across Reloads, on page 205.

Note

ip netns exec management iptables

Starting with Release 9.3(5), you can configure the amount of
time before an idle NX-API session is invalidated. The time can
be 1 - 1440 minutes. The default time is 10 minutes. Return to
the default value by using the no form of the command: no nxapi
idle-timeout <timeout>

nxapi idle-timeout <timeout>

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

You must configure the certificate and key before enabling the certificate.Note

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

The following is an example of how to install an encrypted NXAPI server certificate:
switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!

switch(config)#nxapi certificate enable
switch(config)#

In some situations, you might get an error message saying that the key file is encrypted:

switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
ERROR: Unable to load private key!
Check keyfile or provide pwd if key is encrypted, using 'nxapi certificate httpskey keyfile
<keyfile> password <passphrase>'.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
190

NX-API
NX-API Management Commands

In this case, the passphrase of the encrypted key file must be specified using nxapi certificatehttpskey keyfile
filename password passphrase.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!
switch(config)# nxapi certificate enable
switch(config)#

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Client Authentication

NX-API Client Basic Authentication
NX-API clients can authenticate with the NGINX server on the switch through basic authentication over
SSL/TLS. This authentication method is supported by configuring a username and password that is saved to
a database on the switch. When the NX-API client initiates a connection request, it sends the Hello message
which contains the username and password. Assuming the username and password exist in the database, the
switch responds by sending the Hello response, which contains a cookie. After this initial handshake is
complete, the communication session is open, and the client can begin sending API calls to the switch. For
additional information, see Security, on page 184.

For additional information about basic authentication, including how to configure the username and password
on the switch, refer to the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

NX-API Client Certificate Authentication
Beginning with NX-OS 9.3(3), NX-API supports client-initiated certificate-based authentication.
Certificate-based authentication offers stronger security by mutually authenticating both the client, using a
trusted party–the Certificate Authority (CA)–and the server during the TLS handshake. Certificate-based
authentication allows for human authentication, as well as machine authentication, for accessing the NX-OS
switch.

Client certificate authentication is supported by using an X509 SSL certificate that is assigned through a valid
CA (certificate authority) and stored on the NX-API client. A certificate is assigned to each NX-API username.

When the NX-API client initiates a connection request with a Hello message, the server Hello response contains
the list of valid CAs. The client’s response contains additional information elements, including the certificate
for the specific username that the NX-API client is using.

You can configure the NX-API client to use either basic authentication, certificate authentication, or give
priority to certificate but fallback to basic authentication if the certificate authenticationmethod is not available.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
191

NX-API
Working With Interactive Commands Using NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

Guidelines and Limitations
Certificate authentication has the following guidelines and limitations:

• The NX-API client must be configured with a user name and password.

• The NX-API client and the switch communicate over HTTP by default on its well-known port. For
flexibility HTTP is also supported on its well-known port. However, you can configure additional ports.

• Python scripting of client certificate authentication is supported. If the client certificate is encrypted with
a passphrase, python successfully prompts for the passphrase. However, the passphrase cannot be passed
into the script due to a current limitation with the Python requests library.

• The NX-API client and switch must use the same trustpoint.

• The maximum number of trustpoints supported is 26 for each switch.

• The list of trusted CAs must be the same for all NX-API clients and the switch. Separate lists of trusted
CAs are not supported.

• Certificate authentication is not supported for the NX-API sandbox.

• The following conditions determine if the NX-API sandbox loads on the switch:

• The NX-API sandbox loads only when nxapi client certificate authentication optional or no
nxapi client certificate authentication are configured.

• The NX-API sandbox does not load for strict and two-step authentication modes unless a valid
client certificate is presented to the browser when a connection is being established.

• The switch has an embedded NGINX server. If multiple trustpoints are configured, but a certificate
revocation list (CRL) is installed for only one of the trustpoints, NX-API client certificate authentication
fails because of an NGINX limitation. To workaround this limitation, configure CRLs for all trustpoints.

• Certificates can expire or become out of date, which can affect the validity of the CRL set by the CA
(trustpoint). To ensure the switch uses valid CRLs, always install CRLs for all of the configured trustpoints.
If no certificates were revoked by the trustpoints, an empty CRL should be generated, installed, and
updated periodically, for example, once a week.

After you update the CRLs through the crypto CLIs, issue nxapi client cert authentication to reapply
the newly updated CRLs.

• If you use ASCII reload when NX-API client certificate authentitcation is enabled, you must issue nxapi
client certificate authentication after the reload is complete.

• The certificate path must terminate with a trusted CA certificate.

• Server certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

• Client certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

• The feature supports CRLs (certificate revocation lists). Online Certificate Status Protocol (OSCP) is
not supported.

• Follow the additional Guidelines and Limitations in the NX-OS Security Guide.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
192

NX-API
Guidelines and Limitations

• Use both certificate and basic authentication. By doing so, the correct user and password is still
required if the certificate somehow gets compromised.

• Keep private keys private, as the servers public key is accessible to anyone attempting a connection.

• CRLs should be downloaded from the central CA and kept current. Out-of-date CRLs can lead to
a security risk.

• Keep trustpoints updated. When a trust point or configuration change is made to the certificate
authentication feature, explicitly disable then reenable the feature to reload the updated information.

• There is a maximum file size limit of 8K for the client certificate identity file associated to NX-API with
nxapi certificate httpscert certfile bootflash:<> " CLI." This is a day-1 limitation.

• In the NX-APIManagement Commands Table 1 for the row associatedwith the command nxapi certificate
{httpscrt certfile | httpskey keyfile} filename, the maximum certfile size supported is less than 8K.

NX-API Client Certificate Authentication Prerequisites
Before configuring certificate authentication, make sure the following are present on the switch:

1. Configure the client with a username and password. For information see Configuring User Accounts and
RBAC.

2. Configure the CA(s) (trustpoint) and CRL(s) (if any).

If no certificates were revoked by a trustpoint, create a blank CRL for each trustpoint.

For information, see the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

Configuring NX-API Client Certificate Authentication
You can configure the NX-API certificate authentication through the nxapi client certificate authentication
command. The command supports restriction options that control how authentication occurs.

You can disable this feature by using no nxapi client certificate authentication .

To configure certificate authentication for NX-API clients, follow this procedure:

Procedure

PurposeCommand or Action

See NX-API Client Certificate Authentication
Prerequisites, on page 193.

Make sure the prerequisites for the feature are
complete.

Step 1

Enters configuration mode.config terminal

Example:

Step 2

switch-1# config terminal
Enter configuration commands, one per
line. End with CNTL/Z.
switch-1(config)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
193

NX-API
NX-API Client Certificate Authentication Prerequisites

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

PurposeCommand or Action

Enables certificate authentication in any of the
following modes:

nxapi client certificate authentication
[{optional | strict | two-step}]

Example:

Step 3

• optional requests a client certificate:
switch-1# nxapi client certificate
authentication strict
switch-1(config)#

• If the client provides a certificate,
mutual verification occurs between
the client and the server.

• If the client provides an invalid
certificate, authentication fails and
fall back to basic authentication does
not occur.

• If the client does not provide a
certificate, authentication falls back
to basic authentication (username and
password).

• strict enables client certificate verification
and requires a valid client certificate to be
presented for authentication.

• two-step enables two-step verification in
which both the basic authentication and
certificate authentication methods are
required.

If no trustpoints are configured on
the switch, this feature cannot be
enabled, and the switch displays
an onscreen error message.
No trustpoints configured!
Please configure trustpoint
using 'crypto ca trustpoint
<trustpoint-label>' and
associated commands, and then
enable this feature.

Note

Example Python Scripts for Certificate Authentication
The following example shows a Python script with a client certificate for authentication.
import requests
import json

"""
Modify these please
"""
switchuser='USERID'
switchpassword='PASSWORD'
mgmtip='NXOS MANAGEMENT IP/DOMAIN NAME'

client_cert_file='PATH_TO_CLIENT_CERTIFICATE'

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
194

NX-API
Example Python Scripts for Certificate Authentication

client_key_file='PATH_TO_CLIENT_KEY_FILE'
ca_cert='PATH_TO_CA_CERT_THAT_SIGNED_NXAPI_SERVER_CERT'

url='https://' + mgmtip + '/ins'
myheaders={'content-type':'application/json-rpc'}
payload=[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 1

}
]
response = requests.post(url,data=json.dumps(payload),
headers=myheaders,auth=(switchuser,switchpassword),cert=(client_cert_file_path,client_key_file),verify=ca_cert).json()

If needed, you can change the script:

• Depending on the client certificate authentication mode, you can omit the switch password by setting
the switch password to a null value (switchpassword=):

• For optional and strict modes, the switchpassword= can be left blank. In this situation, NX-API
authenticates the client based on username and client certificate alone.

• For two-step mode, a password is required, so you must specify a value for switchpassword=.

• You can bypass verifying that the NX-API server's certificate is valid by setting verify=False in the
POST command.

Example cURL Certificate Request
The following example shows a correctly structured cURL certificate request for NX-API client authentication.
/usr/bin/curl --user admin: --tlsv1.2 --cacert ./ca.pem --cert ./user.crt:pass123! --key
./user.key -v -X POST -H "Accept: application/json" -H "Content-type: application/json"
--data '{"ins_api":{"version": "1.0", "type": "cli_show", "chunk": "0", "sid": "1", "input":
"show clock","output_format": "json"}}' https://<device-management-ip>:443/ins

Syntax Elements

The following table shows the parameters that are used in this request.

DescriptionParameter

Takes the username that the user wants to log in as,
which should be same as the common name in
user.crt).

To provide a password for user, specify it after a
colon, for example: --user
username:password

--user

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
195

NX-API
Example cURL Certificate Request

DescriptionParameter

Takes the path to the CA that signed the NX-API
server certificate.

If the server certificate does not need to be verified,
specify cURL with the -k (insecure) option, for
example: /usr/bin/curl -k

--cacert

Takes the path to the client certificate.

If the client certificate is encrypted, specify the
password after a colon, for example: --cert
user.crt:pass123!

--cert

Takes the path to the client certificate's private key.--key

Validating Certificate Authentication
When correctly configured, certificate authentication occurs and the NX-API clients can access the switch.

If the NX-API client cannot access the switch, you can use the following guidelines to assist with
troubleshooting:

Procedure

PurposeCommand or Action

If any of the following errors occur:Check user or cookie errors.Step 1

• No username provided in auth header and
no valid cookie provided

• Incorrect user provided in auth header

• Invalid cookie provided

• Mismatch between username in auth
header and username in client certificate's
CN field

You will see specific errors depending on the
NX-API method used:

• For JSON/XML, a 401 Authentication

failure - user not found. error occurs.
For example:
{{{
"code": "400",
"msg": "Authentication failure -
user not found."
}}}

• For JSON RPC 2.0, a -32004 Invalid

username or password error occurs. For
example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
196

NX-API
Validating Certificate Authentication

PurposeCommand or Action
{{
"code": -32004,
"message": "Invalid username or
password"
}}

Look for HTTPs 400 errors which can indicate
the following:

Check for client or certificate errors.Step 2

• If an invalid or revoked client certificate
was provided.

• If the CRL configured on the switch has
expired.

For example:
<html>
<head><title>400 The SSL certificate
error</title></head>
<body bgcolor="white">
<center><h1>400 Bad
Request</h1></center>
<center>The SSL certificate
error</center>
<hr<center>nginx/1.7.10</center>
</body>
</html>

Disables, then reenables certificate
authentication.

If errors occur, flap the feature to reload any
changes to the trustpoint, CA, CRL, or NX-OS
certificate feature, by issuing no nxapi client

Step 3

certificate authentication , then nxapi client
certificate authentication .

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Users need to have permission to execute "configure terminal" command. When JSON-RPC is the input
request format, the "configure terminal" command will always be executed before any commands in the
payload are executed.

Note

Table 6: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
197

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_array

CLI show commands that expect structured output. Only for
show commands. Similar to cli_show, but with
cli_show_array, data is returned as a list of one element, or
an array, within square brackets [].

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the
current user's authority.

• The pipe operation is supported in the output
when the message type is ASCII. If the output
is in XML format, the pipe operation is not
supported.

• Amaximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
198

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Note Do not chunk output.0

Chunk output.1

Note • Only show commands support chunking. When
a series of show commands are entered, only the
first command is chunked and returned.

• The output message format options are XML or
JSON.

• For the XML output message format , special
characters, such as < or >, are converted to form
a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked
output.

• When the output message format is JSON, the
chunks are concatenated to create a valid JSON
object.

When chunking is enabled, the maximum message
size supported is currently 200MB of chunked output.

Note

chunk

Valid only for configuration CLIs, not for show commands.
Specifies the configuration rollback options. Specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores and continues with other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

The rollback element is available in the cli_conf mode
when the input request format is XML or JSON.

Note

rollback

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
199

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

NX-OS release 9.3(1) introduces the sid option clear. When a new
chunk request is initiated with the sid set to clear, all current chunk
requests are discarded or abandoned.

When you receive response code 429: Max number of concurrent

chunk request is 2, use sid clear to abandon the current chunk
requests. After using sid clear, subsequent response codes operate
as usual per the rest of the request.

sid

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated
with " ; ". (The ; must be surrounded with single blank
characters.)

Prepend commandswith terminal dont-ask to avoid
timing out with an error code 500. For example:
terminal dont-ask ; cli_conf ; interface
Eth4/1 ; no shut ; switchport

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

Note show version ; show interface brief
; show vlan

cli_show

interface Eth4/1 ; no shut ;
switchport

cli_conf

cd /bootflash;mkdir new_dirbash

input

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
200

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The available output message formats are the following:

Note Specifies output in XML format.xml

Specifies output in JSON format.json

The Cisco NX-OS CLI supports XML output, which
means that the JSON output is converted from XML.
The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML
output is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table
to specify a CLI command:

Table 7: NX-API Request Elements for JSON-RPC Format

DescriptionNX-API Request Element

A string specifying the version of the JSON-RPC protocol.

Version must be 2.0.

jsonrpc

A string containing the name of the method to be invoked.

NX-API supports either:

• cli ̶ show or configuration commands

• cli_ascii ̶ show or configuration commands; output without
formatting

• cli_array ̶ only for show commands; similar to cli, but with
cli_array, data is returned as a list of one element, or an array,
within square brackets, [].

method

A structured value that holds the parameter values used during the
invocation of a method.

It must contain the following:

• cmd ̶ CLI command

• version ̶ NX-API request version identifier

params

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
201

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Valid only for configuration CLIs, not for show commands.
Configuration rollback options. You can specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores the failed CLI and continues with
other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

rollback

Configuration validation settings. This element allows you to
validate the commands before you apply them on the switch. This
enables you to verify the consistency of a configuration (for
example, the availability of necessary hardware resources) before
applying it. Choose the validation type from the Validation Type
drop-down list.

• Validate-Only—Validates the configurations, but does not
apply the configurations.

• Validate-and-Set—Validates the configurations, and applies
the configurations on the switch if the validation is successful.

validate

An exclusive lock on the configuration can be specified, whereby
no other management or programming agent will be able to modify
the configuration if this lock is held.

lock

An optional identifier established by the client that must contain a
string, number, or null value, if it is specified. The value should
not be null and numbers contain no fractional parts. If a user does
not specify the id parameter, the server assumes that the request is
simply a notification, resulting in a no response, for example, id :
1

id

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 8: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
202

NX-API
NX-API Response Elements

DescriptionNX-API Response Element

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a
specific VRF. For information about configuring ACLs, see the Cisco Nexus Series NX-OS Security
Configuration Guide for your switch family.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 203.

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for
NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP
and HTTPS access to an existing iptable.

Procedure

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
203

NX-API
Restricting Access to NX-API

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j
DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

What to do next

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 205.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
204

NX-API
Updating an iptable

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create the /etc/sys/iptables file where your iptables changes will be saved:
bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

Step 3 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
205

NX-API
Making an Iptable Persistent Across Reloads

;;
*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

Step 4 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 5 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules
persistent.

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The following are the possible NX-API errors, error codes, and messages of an NX-API response.

When the request format is in XML or JSON format, the following are the possible NX-API errors, error
codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 9: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Bash command error.400BASH_CMD_ERR

Chunking honors only one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

The eoc value is not allowed as session Id in the
request.

400EOC_NOT_ALLOWED_ERR

Incoming message is invalid.400IN_MSG_ERR

Unable to retrieve remote ip of request.400INVALID_REMOTE_IP_ERR

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
206

NX-API
Table of NX-API Response Codes

Message version mismatch.400MSG_VER_MISMATCH

No input command.400NO_INPUT_CMD_ERR

Invalid character that is entered as a session ID.400SID_NOT_ALLOWED_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Response size stopped processing because it
exceeded the maximum message size. The
maximum is 200 MB.

413RESP_SIZE_LARGE_ERR

Maximum number of concurrent chunk requests
is exceeded. The maximum is 2.

429EXCEED_MAX_INFLIGHT_CHUNK_REQ_ERR

Max sessions reached. If you are a new
user/client, please try again later.

429MAX_SESSIONS_ERR

Requested object does not exist.432OBJ_NOT_EXIST

Backend processing error.500BACKEND_ERR

Error creating a checkpoint.500CREATE_CHECKPOINT_ERR

Error deleting a checkpoint.500DELETE_CHECKPOINT_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error. This is a
request format error.

500LIBXML_NS_ERR

System internal LIBXML parse error. This is a
request format error.

500LIBXML_PARSE_ERR

System internal LIBXML path context error. This
is a request format error.

500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

Error executing a rollback.500ROLLBACK_ERR

Request is rejected because the server is busy.500SERVER_BUSY_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

Volatile memory is full. Free up memory space
and retry.

500VOLATILE_FULL

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
207

NX-API
Table of NX-API Response Codes

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

Response chunking allowed only in show

commands.
501CHUNK_ONLY_ALLOWED_IN_SHOW_ERR

Timeout while generating chunk response.501CHUNK_TIMEOUT

CLI command not supported.501CLI_CMD_NOT_SUPPORTED_ERR

JSON not supported due to a potential large
amount of output.

501JSON_NOT_SUPPORTED_ERR

Malformed XML output.501MALFORMED_XML

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Output redirection is not supported.501OUTPUT_REDIRECT_NOT_SUPPORTED_ERR

Pipe operation is not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML for this command is not allowed in
input.

501PIPE_XML_NOT_ALLOWED_IN_INPUT

Pipe is not allowed for this input type.501PIPE_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Response is greater than the allowed maximum.
The maximum is 10 MB. Use XML or JSON
output with chunking enabled.

501RESP_BIG_USE_CHUNK_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Unknown error.600ERR_UNDEFINED

JSON and XML Structured Output
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML
• JSON. The limit for JSON output is 60 MB.
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read. The limit for
JSON output is 60 MB.

• Introduced in NX-OS release 9.3(1), JSON Native and JSON Pretty Native displays JSON output faster
and more efficiently by bypassing an extra layer of command interpretation. JSON Native and JSON

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
208

NX-API
JSON and XML Structured Output

Pretty Native preserve the data type in the output. They display integers as integers instead of converting
them to a string for output.

Converting the standard NX-OS output to any of these formats occurs on the NX-OS CLI by "piping" the
output to a JSON or XML interpreter. For example, you can issue the show ip access command with the
logical pipe (|) and specify the output format. If you do, the NX-OS command output is properly structured
and encoded in that format. This feature enables programmatic parsing of the data and supports streaming
data from the switch through software streaming telemetry. Most commands in Cisco NX-OS support JSON,
JSON Pretty, JSON Native, JSON Native Pretty, and XML output. Some, for example, consistency checker
commands, do not support all formats. Consistency checker commands support XML, but not any variant of
JSON.

To avoid validation error, use file redirection to redirect the JSON output to a file, and use the file output.

Example:
Switch#show version | json > json_output ; run bash cat /bootflash/json_output

Note

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard that is designed for human-readable data and is an alternative
to XML. JSON was originally designed from JavaScript, but it is language-independent data format. JSON
and JSON Pretty format, as well as JSONNative and JSON Pretty Native, are supported for command output.

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array
• Unordered List (Name/Value pair) :: Objects

JSON or XML output for a show command can be accessed through the NX-API sandbox also.

CLI Execution
switch-1-vxlan-1# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SWITCH-1", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco AA-C0000
S-29-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "SWITCH-1-VXLAN-1(FOC1234A01B)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

Examples of XML and JSON Output
This section documents selected examples of NX-OS commands that are displayed as XML and JSON output.

This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
209

NX-API
About JSON (JavaScript Object Notation)

"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
210

NX-API
Examples of XML and JSON Output

": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in XML format:

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display ACL statistics in XML format.
switch-1(config-acl)# show ip access-lists acl-test1 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:1.0:aclmgr" xmlns:nf="urn:ietf:p
arams:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
<ip_ipv6_mac>ip</ip_ipv6_mac>
<access-lists>
<__XML__OPT_Cmd_show_acl_name>
<name>acl-test1</name>
<__XML__OPT_Cmd_show_acl_capture>
<__XML__OPT_Cmd_show_acl_expanded>
<__XML__OPT_Cmd_show_acl___readonly__>
<__readonly__>
<TABLE_ip_ipv6_mac>
<ROW_ip_ipv6_mac>
<op_ip_ipv6_mac>ip</op_ip_ipv6_mac>
<show_summary>0</show_summary>
<acl_name>acl-test1</acl_name>
<statistics>enable</statistics>
<frag_opt_permit_deny>permit-all</frag_opt_permit_deny>
<TABLE_seqno>
<ROW_seqno>
<seqno>10</seqno>
<permitdeny>permit</permitdeny>
<ip>ip</ip>
<src_ip_prefix>192.0.2.1/24</src_ip_prefix>
<dest_any>any</dest_any>
</ROW_seqno>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
211

NX-API
Examples of XML and JSON Output

</TABLE_seqno>
</ROW_ip_ipv6_mac>
</TABLE_ip_ipv6_mac>
</__readonly__>
</__XML__OPT_Cmd_show_acl___readonly__>
</__XML__OPT_Cmd_show_acl_expanded>
</__XML__OPT_Cmd_show_acl_capture>
</__XML__OPT_Cmd_show_acl_name>
</access-lists>
</__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1(config-acl)#

This example shows how to display ACL statistics in JSON format.
switch-1(config-acl)# show ip access-lists acl-test1 | json
{"TABLE_ip_ipv6_mac": {"ROW_ip_ipv6_mac": {"op_ip_ipv6_mac": "ip", "show_summar
y": "0", "acl_name": "acl-test1", "statistics": "enable", "frag_opt_permit_deny
": "permit-all", "TABLE_seqno": {"ROW_seqno": {"seqno": "10", "permitdeny": "pe
rmit", "ip": "ip", "src_ip_prefix": "192.0.2.1/24", "dest_any": "any"}}}}}
switch-1(config-acl)#

The following example shows how to display the switch's redundancy status in JSON format.
switch-1# show system redundancy status | json
{"rdn_mode_admin": "HA", "rdn_mode_oper": "None", "this_sup": "(sup-1)", "this_
sup_rdn_state": "Active, SC not present", "this_sup_sup_state": "Active", "this
_sup_internal_state": "Active with no standby", "other_sup": "(sup-1)", "other_
sup_rdn_state": "Not present"}
nxosv2#
switch-1#

This example shows how to display the switch's redundancy information in JSON Pretty Native format.
switch-1# show system redundancy status | json-pretty native
{

"rdn_mode_admin": "HA",
"rdn_mode_oper": "None",
"this_sup": "(sup-1)",
"this_sup_rdn_state": "Active, SC not present",
"this_sup_sup_state": "Active",
"this_sup_internal_state": "Active with no standby",
"other_sup": "(sup-1)",
"other_sup_rdn_state": "Not present"

}
switch-1#

The following example shows how to display the switch's OSPF routing parameters in JSON Native format.
switch-1# show ip ospf | json native
{"TABLE_ctx":{"ROW_ctx":[{"ptag":"Blah","instance_number":4,"cname":"default","
rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr
_grace_period":"PT60S","gr_state":"inactive","gr_last_status":"None","support_t
os0_only":"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false"
,"admin_dist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S"
,"spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_
time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"m
ax_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cn
t":0,"asopaque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_
nssa":0,"act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa
":0,"no_discard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"100","ins
tance_number":3,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":
"true","gr_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
212

NX-API
Examples of XML and JSON Output

,"gr_last_status":"None","support_tos0_only":"true","support_opaque_lsa":"true"
,"is_abr":"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_
time":"PT0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0
S","lsa_hold_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_
aging_pace":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"
asext_lsa_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"
area_normal":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal"
:0,"act_area_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_
rt_int":"false"},{"ptag":"111","instance_number":1,"cname":"default","rid":"0.0
.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr_grace_pe
riod":"PT60S","gr_state":"inactive","gr_last_status":"None","support_tos0_only"
:"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false","admin_d
ist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S","spf_max
_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_time":"PT
5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"max_metric
_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cnt":0,"aso
paque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_nssa":0,"
act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa":0,"no_d
iscard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"112","instance_num
ber":2,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","g
r_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive","gr_last
_status":"None","support_tos0_only":"true","support_opaque_lsa":"true","is_abr"
:"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_time":"PT
0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_h
old_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pac
e":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa
_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"area_norm
al":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal":0,"act_a
rea_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_rt_int":"
false"}]}}
switch-1#

The following example shows how to display OSPF routing parameters in JSON Pretty Native format.
switch-1# show ip ospf | json-pretty native
{

"TABLE_ctx": {
"ROW_ctx": [{

"ptag": "Blah",
"instance_number": 4,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",
"gr_last_status": "None",
"support_tos0_only": "true",
"support_opaque_lsa": "true",
"is_abr": "false",
"is_asbr": "false",
"admin_dist": 110,
"ref_bw": 40000,
"spf_start_time": "PT0S",
"spf_hold_time": "PT1S",
"spf_max_time": "PT5S",
"lsa_start_time": "PT0S",
"lsa_hold_time": "PT5S",
"lsa_max_time": "PT5S",
"min_lsa_arr_time": "PT1S",
"lsa_aging_pace": 10,
"spf_max_paths": 8,
"max_metric_adver": "false",
"asext_lsa_cnt": 0,

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
213

NX-API
Examples of XML and JSON Output

"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}, {
"ptag": "100",
"instance_number": 3,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",

... content deleted for brevity ...

"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}]
}

}
switch-1#

The following example shows how to display the IP route summary in XML format.
switch-1# show ip route summary | xml
<?xml version="1.0" encoding="ISO-8859-1"?> <nf:rpc-reply
xmlns="http://www.cisco.com/nxos:1.0:urib" xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">

<nf:data>
<show>
<ip>
<route>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip>
<__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
<__XML__OPT_Cmd_urib_show_ip_route_command_topology>
<__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
<__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
<__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
<__XML__OPT_Cmd_urib_show_ip_route_command_summary>
<__XML__OPT_Cmd_urib_show_ip_route_command_vrf>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
214

NX-API
Examples of XML and JSON Output

<__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
<__readonly__>
<TABLE_vrf>
<ROW_vrf>
<vrf-name-out>default</vrf-name-out>
<TABLE_addrf>
<ROW_addrf>
<addrf>ipv4</addrf>
<TABLE_summary>
<ROW_summary>
<routes>938</routes>
<paths>1453</paths>
<TABLE_unicast>
<ROW_unicast>
<clientnameuni>am</clientnameuni>
<best-paths>2</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>local</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>direct</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>broadcast</clientnameuni>
<best-paths>203</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>ospf-10</clientnameuni>
<best-paths>1038</best-paths>
</ROW_unicast>
</TABLE_unicast>
<TABLE_route_count>
<ROW_route_count>
<mask_len>8</mask_len>
<count>1</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>24</mask_len>
<count>600</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>31</mask_len>
<count>13</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>32</mask_len>
<count>324</count>
</ROW_route_count>
</TABLE_route_count>
</ROW_summary>
</TABLE_summary>
</ROW_addrf>
</TABLE_addrf>
</ROW_vrf>
</TABLE_vrf>
</__readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
</__XML__OPT_Cmd_urib_show_ip_route_command_summary>
</__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
215

NX-API
Examples of XML and JSON Output

</__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
</__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
</__XML__OPT_Cmd_urib_show_ip_route_command_topology>
</__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip>
</route>
</ip>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1#

The following example shows how to display the IP route summary in JSON format.
switch-1# show ip route summary | json
{"TABLE_vrf": {"ROW_vrf": {"vrf-name-out": "default", "TABLE_addrf": {"ROW_addrf": {"addrf":
"ipv4", "TABLE_summary": {"ROW_summary": {"routes": "938", "paths": "
1453", "TABLE_unicast": {"ROW_unicast": [{"clientnameuni": "am", "best-paths": "2"},
{"clientnameuni": "local", "best-paths": "105"}, {"clientnameuni": "direct",
"best-paths": "105"}, {"clientnameuni": "broadcast", "best-paths": "203"}, {"clientnameuni":
"ospf-10", "best-paths": "1038"}]}, "TABLE_route_count": {"ROW_route_
count": [{"mask_len": "8", "count": "1"}, {"mask_len": "24", "count": "600"}, {"mask_len":
"31", "count": "13"}, {"mask_len": "32", "count": "324"}]}}}}}}}}
switch-1#

The following example shows how to display the IP route summary in JSON Pretty format.
switch-1# show ip route summary | json-pretty
{

"TABLE_vrf": {
"ROW_vrf": {

"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": {
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": {
"routes": "938",
"paths": "1453",
"TABLE_unicast": {

"ROW_unicast": [
{

"clientnameuni": "am",
"best-paths": "2"

},
{

"clientnameuni": "local",
"best-paths": "105"

},
{

"clientnameuni": "direct",
"best-paths": "105"

},
{

"clientnameuni": "broadcast",
"best-paths": "203"

},
{

"clientnameuni": "ospf-10",
"best-paths": "1038"

}
]

},
"TABLE_route_count": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
216

NX-API
Examples of XML and JSON Output

"ROW_route_count": [
{

"mask_len": "8",
"count": "1"

},
{

"mask_len": "24",
"count": "600"

},
{

"mask_len": "31",
"count": "13"

},
{

"mask_len": "32",
"count": "324"

}
]

}
}

}
}

}
}

}
}
switch-1#

The following example shows how to display the IP route table in JSON native format.
switch-1(config)# show ip route summary | json native
{"TABLE_vrf":{"ROW_vrf":[{"vrf-name-out":"default","TABLE_addrf":{"ROW_addrf":[{"addrf":"ipv4","TABLE_summary":{"ROW_summary":[{"routes":3,"p
aths":3,"TABLE_unicast":{"ROW_unicast":[{"clientnameuni":"broadcast","best-paths":3}]},"TABLE_route_count":{"ROW_route_count":[{"mask_len":8,
"count":1},{"mask_len":32,"count":2}]}}]}}]}}]}}
switch-1(config)#

Notice that with JSON native (as well as JSON pretty native), integers are represented as true integers. For
example,"mask len:" is displayed as the actual value of 32.

The following example shows to display the IP route table in JSON Pretty Native format.
switch-1(config)# show ip route summary | json-pretty native
{
"TABLE_vrf": {
"ROW_vrf": [{

"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": [{
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": [{
"routes": 3,
"paths": 3,

"TABLE_unicast": {
"ROW_unicast": [{

"clientnameuni": "broadcast",
"best-paths": 3

}]
},
"TABLE_route_count": {

"ROW_route_count":[{
"mask_len": 8,
"count": 1

}, {
"mask_len": 32,

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
217

NX-API
Examples of XML and JSON Output

"count": 2
}]

}
}]

}
}]

}
}]

}
}
switch-1(config)#

Sample NX-API Scripts
You can access sample scripts that demonstrate how to use a script with NX-API. To access a sample script,
click the following link then choose the directory that corresponds to the required software release: Cisco
Nexus 9000 NX-OS NX-API

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
218

NX-API
Sample NX-API Scripts

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/
https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

C H A P T E R 21
NX-API REST

This chapter contains the following topics:

• About NX-API REST, on page 219
• DME Config Replace Through REST, on page 220

About NX-API REST
NX-API REST

In Release 7.0(3)I2(1), the NX-API REST SDK has been added.

On Cisco Nexus switches, configuration is performed using command-line interfaces (CLIs) that run only on
the swtich. NX-API REST improves the accessibility of the Cisco Nexus configuration by providing
HTTP/HTTPS APIs that:

• Make specific CLIs available outside of the switch.

• Enable configurations that would require issuing many CLI commands by combining configuration
actions in relatively few HTTP/HTTPS operations.

NX-API REST supports show commands, basic and advanced switch configurations, and Linux Bash.

NX-API REST uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.
The NX-API REST backend uses the Nginx HTTP server. The Nginx process,and all of its children processes,
are under Linux cgroup protection where the CPU and memory usage is capped. The NX-API processes are
part of the cgroup ext_ser_nginx, which is limited to 2,147,483,648 bytes of memory. If the Nginx memory
usage exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF,
port, and certificate configurations) is restored.

For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST SDK, see
https://developer.cisco.com/docs/nx-os-n3k-n9k-api-ref/.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
219

https://developer.cisco.com/docs/nx-os-n3k-n9k-api-ref/

DME Config Replace Through REST

About DME Full Config Replace Through REST Put
Beginning with Cisco NX-OSRelease 9.3(1), Cisco NX-OS supports model-based full config replace through
REST PUT operations. This method of replacing configurations uses the Cisco DME model.

The DME Full Config replace feature enables you to use the REST programmatic interface to replace the
switch running configuration. The feature provides the following extra benefits:DME full config replace
occurs through a PUT operation. All parts of the config tree (system-level, subtree, and leaf) support DME
full config replace.

• Supports non-disruptive replacement of the switch configuration

• Supports automation

• Offers the ability to selectively modify features without affecting other features or their configs.

• Simplifies config changes and eliminates human error by enabling you to specify the final config outcome.
The switch calculates the differences and pushes them to the affected parts of config tree.

Although not accomplished through a programmatic interface, you can also achieve a full config replace by
using the config replace config-file-name Cisco NX-OS CLI command.

Note

Guidelines and Limitations
The following are the guidelines and limitations for the DME full config replace feature:

• For information about supported platforms for Cisco NX-OS prior to release 9.3(x), see Platform Support
for Programmability Features, on page 5. Starting with Cisco NX-OS release 9.3(x), for information
about supported platforms, see the Nexus Switch Platform Matrix.

• DME is not supported on N9K-92348GC-X.

• It is important for you to know the tree and know where you are applying the config replace. If you are
using the Sandbox for the config replace operation, the Sandbox defaults to the subtree, so you might
need to change the URI to target the correct node in the config tree.

• If you use the NX-OS Sandbox to Convert (for Replace), you must use the POST operation because of
the presence of the status: 'replaced' attribute in the request. If you are using any other conversion
option, you can use the PUT operation.

• If you use the REST PUT option for this feature on a subtree node, config replace operation is applied
to the entire subtree. The target subtree node is correctly changed with the config replace data in the
PUT, but be aware that leaf nodes of the subtree node are also affected by being set to default values.

If you do not want the leaf nodes to be affected, do not use a PUT operation. Instead, you can use a POST
operation with the status:'replaced' attribute.

If you are applying the config replace to a leaf node, the PUT operation operates predictably.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
220

NX-API
DME Config Replace Through REST

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

Replacing the System-Level Configuration Through REST PUT
You can replace the entire configuration for the switch by sending a REST PUT from the management client.

Use the following procedure:

Procedure

Step 1 From the client, issue a REST PUT operation with the payload as the System level with the URL as
/api/mo/sys.json.

The payload must be a valid config, and the config must be retrievable from the switch at any time by issuing
a GET on /api/mo/sys.json?rsp-subtree=full&rsp-prop-include=set-config-only.

Step 2 Send a GET on the DN you used for the config replace by using
/api/mo/sys.json?rsp-subtree=full&rsp-prop-include=set-config-only.

Step 3 (Optional) Compare the payload that you sent with the GET on the DN you replaced. The payload of the GET
should be the same as the payload you sent.

Replacing Feature-Level Config Through REST PUT
Cisco DME supports replacing feature-level configurations through REST PUT operations. You can replace
the configuration for specific features by sending a PUT at the feature level of the model.

Use the following procedure:

Procedure

Step 1 From the client, issue a REST PUT operation at the model object (MO) of the feature:
a) The Put must specify the URL from the top System level to the MO of the feature.

For example, for a BGP /api/mo/sys/bgp.json

The payload must be a valid config, and the config must be retrievable from the switch at any time by
issuing a GET on the DN of the feature. For example, for BGP,
/api/mo/sys/bgp.json?rsp-subtree=full&rsp-prop-include=set-config-only.

b) The payload for the feature should start with the MO that you want to replace (for example, bgp).
For example:
{

"bgpInst": {
"attributes": {
"asn": "100",
"rn": "inst"

},
"children": [

... content removed for brevity ...

{
"bgpDom": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
221

NX-API
Replacing the System-Level Configuration Through REST PUT

"attributes": {
"name": "vrf1",
"rn": "dom-vrf1"

},
"children": [
{
"bgpPeer": {
"attributes": {
"addr": "10.1.1.1",
"inheritContPeerCtrl": "",
"rn": "peer-[10.1.1.1]"

}
}

}
]

}
},
{
"bgpDom": {
"attributes": {
"name": "default",
"rn": "dom-default",
"rtrId": "1.1.1.1"

}
}

}
]

}
}

Step 2 Send a GET on the DN you used for the config replace by using
/api/mo/sys/bgp.json?rsp-subtree=full&rsp-prop-include=set-config-only.

Step 3 (Optional) Compare the payload that you sent with the GET on the DN you replaced. The payload of the GET
should be the same as the payload you sent.

Replacing Property-Level Config Through REST POST
Cisco's DME model supports property-level config replace for CLI-based features through a REST POST
operation. You can replace the config for the property of a feature through the NX-OS Sandbox by generating
a request payload and sending it to the switch through a REST POST operation. For information about the
NX-OS Sandbox, see NX-API Developer Sandbox, on page 225.

Procedure

Step 1 Connect to the switch through NX-OS Sandbox through HTTPS and provide your login credentials.
Step 2 In the work area, enter the CLI for the feature that you want to change.
Step 3 In the field below the work area, set the URI to the MO in the tree for the feature that you want to configure.

This MO level is where you will send the Put request.
Step 4 For Method, select NX-API (DME).
Step 5 For Input Type, select CLI.
Step 6 From the Convert drop-down list, select Convert (for replace) to generate the payload in the Request

pane.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
222

NX-API
Replacing Property-Level Config Through REST POST

Step 7 Click the request using a POST operation to the switch..

Property-level config replace can fail if the config is a default config because the replace operation
tries to delete all the children MOs and reset all properties to default.

Note

Troubleshooting Config Replace for REST PUT
The following are steps to help troubleshoot if config replace through a REST Put operation is not successful.

Procedure

Step 1 Check if the request is valid.

The URL, operation, and payload should be valid. For example, if the URL is api/mo/sys/foo.json then
the payload should start with foo

Step 2 Make sure the payload is valid and contains only the config properties which are:

• Successfully set
• Taken from a valid device config

To get only the config properties, use a GET that filters for
rsp-subtree=full&rsp-prop-include=set-config-only

Step 3 To validate the payload, send it to the switch using a DME POST operation.
Step 4 Check the error to verify that it has the name of the MO and property.
Step 5 Validate the payload also has the name of the MO and property.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
223

NX-API
Troubleshooting Config Replace for REST PUT

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
224

NX-API
Troubleshooting Config Replace for REST PUT

C H A P T E R 22
NX-API Developer Sandbox

• NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2), on page 225
• NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later, on page 237

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)

About the NX-API Developer Sandbox
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands
into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response— as shown
in the figure.

Figure 1: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API
REST, and a command type, such as XML or JSON. The available command type options vary depending
on the selected message format.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
225

When you type or paste one or more CLI commands into the Command pane, the web form converts the
commands into an API payload, checking for configuration errors, and displays the resulting payload in the
Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST
button in the Command pane, the Response pane displays the API response.

Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane
and select the nx-api restMessage format and the model Command type, Developer Sandbox checks
the payload for configuration errors, then the Response pane displays the equivalent CLIs.

Guidelines and Restrictions for the Developer Sandbox
• Clicking POST in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.
For example, configuring a BGP router requires first enabling BGP with the feature bgp command.
Similarly, configuring an OSPF router requires first enabling OSPF with the feature ospf command.
This also applies to evpn esi multihoming, which enables its dependent commands such as evpn
multihoming core-tracking. For more information about enabling features to access feature dependent
commands, see the Cisco Nexus 9000 Configuration GuidesCisco Nexus 3000 Configuration Guides.

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

• When you use XML or JSON as the Message Type for CLI input, you can use semicolon to separate
multiple commands on the same line. However, when you use JSON RPC as the Message Type for CLI
input, you cannot enter multiple commands on the same line and separate them with a semicolon (;).

For example, assume that you want to send show hostname and show clock commands through JSON
RPC as the following.

In the Sandbox, you enter the CLIs as follows.
show hostname ; show clock

In the JSON RPC request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname ; show clock",
"version": 1

},
"id": 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
226

NX-API
Guidelines and Restrictions for the Developer Sandbox

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/series.html#Configuration

}
]

When you send the request, the response returns the following error.
{
"jsonrpc": "2.0",
"error": {
"code": -32602,
"message": "Invalid params",
"data": {
"msg": "Request contains invalid special characters"

}
},
"id": 1

}

This situation occurs because the Sandbox parses each command in a JSON RPC request as individual
items and assigns an ID to each. When using JSON RPC requests, you cannot use internal punctuation
to separate multiple commands on the same line. Instead, enter each command on a separate line and the
request completes sucessfully.

Continuing with the same example, enter the commands as follows in the NX-API CLI.
show hostname
show clock

In the request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname",
"version": 1

},
"id": 1

},
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 2

}
]

The response completes successfully.
[
{
"jsonrpc": "2.0",
"result": {
"body": {
"hostname": "switch-1"

}
},
"id": 1

},
{
"jsonrpc": "2.0",
"result": {
"body": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
227

NX-API
Guidelines and Limitations

"simple_time": "12:31:02.686 UTC Wed Jul 10 2019\n",
"time_source": "NTP"

}
},
"id": 2

}
]

Configuring the Message Format and Command Type
The Message Format and Command Type are configured in the upper right corner of the Command pane
(the top pane). ForMessage Format, choose the format of the API protocol that you want to use. The Developer
Sandbox supports the following API protocols:

Table 10: NX-OS API Protocols

DescriptionProtocol

A standard lightweight remote procedure call (RPC) protocol that can be used to deliver
NX-OSCLI commands in a JSONpayload. The JSON-RPC 2.0 specification is outlined
by jsonrpc.org.

json-rpc

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML payload.

xml

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
a JSON payload.

json

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. For more information about the Cisco Nexus 3000 and 9000 Series NX-API
REST SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

nx-api rest

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

nx yang

When the Message Format has been chosen, a set of Command Type options are presented just below the
Message Format control. The Command Type setting can constrain the input CLI and can determine the
Request and Response format. The options vary depending on the Message Format selection. For each
Message Format, the following table describes the Command Type options:

Table 11: Command Types

Command typeMessage format

• cli — show or configuration commands

• cli-ascii — show or configuration commands, output without
formatting

json-rpc

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
228

NX-API
Configuring the Message Format and Command Type

http://www.jsonrpc.org
https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Command typeMessage format

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

xml

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

json

• cli — configuration commands

• model — DN and corresponding payload.

nx-api rest

• json — JSON structure is used for payload

• xml — XML structure is used for payload

nx yang

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
229

NX-API
Configuring the Message Format and Command Type

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Only configuration commands are supported.

Tip

Procedure

Step 1 Configure the Message Format and Command Type for the API protocol you want to use.

For detailed instructions, see Configuring the Message Format and Command Type, on page 228.

Step 2 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top
pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
230

NX-API
Using the Developer Sandbox

Step 3 Click the Convert at the bottom of the top pane.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Step 4 When a valid payload is present in the Request pane, you can click POST to send the payload as an API call
to the switch.

The response from the switch appears in the Response pane.

Clicking POST commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
231

NX-API
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Step 5 You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane.
Step 6 You can obtain a Python implementation of the request on the clipboard by clicking Python in the Request

pane.

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Tip

Procedure

Step 1 Select nx-api rest as the Message Format and model as the Command Type.

Example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
232

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Step 2 Enter a DN and payload into the text entry box in the top pane. Then click on the Convert button below the
top pane.

Example:

For this example, the DN is api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
233

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on theConvert button, the CLI equivalent appears in theCLI pane as shown in the following
image.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
234

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
235

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Developer Sandbox cannot convert all payloads into equivalent CLIs, even if the Sandbox
converted the CLIs to NX-API REST payloads. The following is a list of possible sources of
error that can prevent a payload from completely converting to CLI commands:

Table 12: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to
the attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element
'l1PhysIf'

The payload contains an attribute that does not
exist in the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",
"fakeattribute":

"totallyFake"
}

}
}

]
}

}
]

}
}

The Error Pane will return an error related to
the unsupported MO.

Example:

CLI

Error The entire subtree of
"sys/dhcp" is not converted.

The payload includes MOs that aren't yet
supported for conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled":

"yes"
}

}
}

]
}

}
]

}
}

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
236

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

About the NX-API Developer Sandbox
The Cisco NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OSCLI commands
into equivalent XML or JSON payloads and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request (middle pane), and Response
(bottom pane) — as shown in the figure below. The designated name (DN) field is located between the
Command and Request panes (seen in the figure below located between the POST and Send options).

The Request pane also has a series of tabs. Each tab represents a different language: Python, Python3, Java,
JavaScript, and Go-Lang. Each tab enables you to view the request in the respective language. For example,
after converting CLI commands into an XML or JSON payload, click the Python tab to view the request in
Python, which you can use to create scripts.

Figure 2: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane enable you to choose a supported API, such as NX-API REST, an input type,
such as model (payload) or CLI, and a message format, such as XML or JSON. The available options vary
depending on the chosen method.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
237

NX-API
NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

When you choose the NXAPI-REST (DME) method, type or paste one or more CLI commands into the
Command pane,and clickConvert, the web form converts the commands into a RESTAPI payload, checking
for configuration errors, and displays the resulting payload in the Request pane. If you then choose to post
the payload directly from the sandbox to the switch (by choosing the POST option and clicking SEND), the
Response pane displays the API response. For more information, see Using the Developer Sandbox to Convert
CLI Commands to REST Payloads, on page 243

Conversely, the Cisco NX-API Developer Sandbox checks the payload for configuration errors then displays
the equivalent CLis in the Response pane. For more information, see Using the Developer Sandbox to Convert
from REST Payloads to CLI Commands, on page 246

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.
For example, configuring a BGP router requires first enabling BGP with the feature bgp command.
Similarly, configuring an OSPF router requires first enabling OSPF with the feature ospf command.
This also applies to evpn esi multihoming, which enables its dependent commands such as evpn
multihoming core-tracking. For more information about enabling features to access feature dependent
commands, see the Cisco Nexus 9000 Configuration GuidesCisco Nexus 3000 Configuration Guides.

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

• When you use XML or JSON as the Message Type for CLI input, you can use semicolon to separate
multiple commands on the same line. However, when you use JSON RPC as the Message Type for CLI
input, you cannot enter multiple commands on the same line and separate them with a semicolon (;).

For example, assume that you want to send show hostname and show clock commands through JSON
RPC as the following.

In the Sandbox, you enter the CLIs as follows.
show hostname ; show clock

In the JSON RPC request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname ; show clock",
"version": 1

},
"id": 1

}
]

When you send the request, the response returns the following error.
{
"jsonrpc": "2.0",
"error": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
238

NX-API
Guidelines and Limitations

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/series.html#Configuration

"code": -32602,
"message": "Invalid params",
"data": {
"msg": "Request contains invalid special characters"

}
},
"id": 1

}

This situation occurs because the Sandbox parses each command in a JSON RPC request as individual
items and assigns an ID to each. When using JSON RPC requests, you cannot use internal punctuation
to separate multiple commands on the same line. Instead, enter each command on a separate line and the
request completes sucessfully.

Continuing with the same example, enter the commands as follows in the NX-API CLI.
show hostname
show clock

In the request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname",
"version": 1

},
"id": 1

},
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 2

}
]

The response completes successfully.
[
{
"jsonrpc": "2.0",
"result": {
"body": {
"hostname": "switch-1"

}
},
"id": 1

},
{
"jsonrpc": "2.0",
"result": {
"body": {
"simple_time": "12:31:02.686 UTC Wed Jul 10 2019\n",
"time_source": "NTP"

}
},
"id": 2

}
]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
239

NX-API
Guidelines and Limitations

Configuring the Message Format and Input Type
The Method, Message format, and Input type are configured in the upper right corner of the Command
pane (the top pane). For Method, choose the format of the API protocol that you want to use. The Cisco
NX-API Developer Sandbox supports the following API protocols:

Table 13: NX-OS API Protocols

DescriptionProtocol

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML or a JSON payload.

NXAPI-CLI

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. The NXAPI-REST (DME) protocol displays a drop-down list that enables you
to choose from the following methods:

• POST

• GET

• PUT

• DELETE

For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST
SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

NXAPI-REST
(DME)

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

The RESTCONF (Yang) protocol displays a drop-down list that enables you to choose
from the following methods:

• POST

• GET

• PUT

• PATCH

• DELETE

RESTCONF (Yang)

When you choose the Method, a set of Message format or Input type options are displayed in a drop-down
list. The Message format can constrain the input CLI and determine the Request and Response format. The
options vary depending on the Method you choose.

The following table describes the Input/Command type options for each Message format:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
240

NX-API
Configuring the Message Format and Input Type

https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Table 14: Command Types

Input/Command typeMessage formatMethod

• cli — show or configuration commands

• cli-ascii — show or configuration commands,
output without formatting

• cli-array — show commands. Similar to cli, but
with cli_array, data is returned as a list of one
element, or an array, within square brackets, [].

json-rpcNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in
the switch.

Note

xmlNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

Beginning with Cisco NX-OS
Release 9.3(3), the cli_show_array
command is recommended over the
cli_show command.

Note

• cli_show_array — show commands. Similar to
cli_show, but with cli_show_array, data is
returned as a list of one element, or an array,
within square brackets [].

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in
the switch.

Note

jsonNXAPI-CLI

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
241

NX-API
Configuring the Message Format and Input Type

Input/Command typeMessage formatMethod

• cli — CLI to model conversion

• model — Model to CLI conversion.

NXAPI-REST (DME)

• json — JSON
structure is used for
payload

• xml — XML
structure is used for
payload

RESTCONF (Yang)

Output Chunking

JSON and XML NX-API message formats enable you to receive large show command responses in 10-MB
chunks. When received, the chunks are concatenated to create a valid JSON object or XML structure. To view
a sample script that demonstrates output chunking, click the following link and choose the directory that
corresponds to Release 9.3x: Cisco NX-OS NXAPI.

For chunk JSON mode, the browser or python script part does not provide the valid JSON output (there will
be no closing tags). To use chunk mode and get valid JSON, use the script provided in the directory.

Note

You receive the first chunk in the immediate command response, which also includes a sid field that contains
a session Id. To retrieve the next chunk, you enter the session Id from the previous chunk in the SID text box.
You repeat the process until reaching the last response, which is indicated by the eoc (end of content) value
in the sid field.

Chunk mode is available when using the NXAPI-CLI method with the JSON or XML format type and the
cli_show, cli_show_array, or cli_show_ascii command type. For more information about configuring the
chunk mode, see the Chunk Mode Fields table.

NX-API supports a maximum of 2 chunking sessions.Note

Table 15: Chunk Mode Fields

DescriptionField Name

Click to place a check mark in the Enable Chunk Mode check box to
enable chunking. When you enable chunk mode, responses that exceed
10 MB are sent in multiple chunks of up to 10 MB in size.

Enable Chunk Mode

Enter the session Id of the previous response in the SID text box to
retrieve the next chunk of the response message.

Only alphanumeric characters and ‘_’ are allowed. Invalid
characters receive an error.

Note

SID

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
242

NX-API
Configuring the Message Format and Input Type

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

• Online help is available by clicking the help icons (?) next to the field names located in the upper-right
corner of the Cisco NX-API Developer Sandbox window.

• For additional details, such as response codes and security methods, see the NX-API CLI chapter.

• Only configuration commands are supported.

Tip

The Cisco NX-API Developer Sandbox enables you to convert CLI commands to REST payloads.

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

The Input type drop-down list appears.

Step 2 Click the Input type drop-down list and choose cli.
Step 3 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top

pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
243

NX-API
Using the Developer Sandbox

Step 4 Click Convert.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Step 5 (Optional) To send a valid payload as an API call to the switch, click Send.

The response from the switch appears in the Response pane.

Clicking Send commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
244

NX-API
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Step 6 (Optional) To obtain the DN for an MO in the payload:

a. From the Request pane, choose POST.

b. Click the Convert drop-down list and choose Convert (with DN).

The payload appears with with a dn field that contains the DN that corresponds to each MO in the payload.

Step 7 (Optional) To overwrite the current configuration with a new configuration:

a. Click the Convert drop-down list and choose Convert (for Replace). The Request pane displays a
payload with a status field set to replace.

b. From the Request pane, choose POST.

c. Click Send.

The current configuration is replaced with the posted configuration. For example, if you start with the following
configuration:

interface eth1/2
description test
mtu 1501

Then use Convert (for Replace) to POST the following configuration:

interface eth1/2
description testForcr

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
245

NX-API
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

The mtu configuration is removed and only the new description (testForcr) is present under the interface.
This change is confirmed when entering show running-config .

Step 8 (Optional) To copy the contents of a pane, such as the Request or Response pane, click Copy. The contents
o the respective pane is copied to the clipboard.

Step 9 (Optional) To convert the request into an of the formats listed below, click on the appropriate tab in the
Request pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
TheCiscoNX-APIDeveloper Sandbox enables you to convert REST payloads to correspondingCLI commands.
This option is only available for the NXAPI-REST (DME) method.

• Online help is available by clicking help icons (?) next to the Cisco NX-API Developer Sandbox field
names. Click a help icon get information about the respective field.

For additional details, such as response codes and security methods, see the chapter NX-API CLI.

• The top-right corner of the Cisco NX-API Developer Sandbox contains links for additional information.
The links that appear depend on the Method you choose. The links that appear for the NXAPI-REST
(DME) method:

• NX-API References—Enables you to access additional NX-API documentation.

• DME Documentation—Enables you to access the NX-API DME Model Reference page.

• Model Browser—Enables you to access Visore, the Model Browser. Note that you might have to
manually enter the IP address for your switch to access the Visore page:

https://management-ip-address/visore.html.

Tip

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

Example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
246

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Step 2 Click the Input Type drop-down list and choose model.
Step 3 Enter the designated name (DN) that corresponds to the payload in the field above the Request pane.
Step 4 Enter the payload in the Command pane.
Step 5 Click Convert.

Example:

For this example, the DN is /api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
247

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on theConvert button, the CLI equivalent appears in theCLI pane as shown in the following
image.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
248

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
249

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Cisco NX-API Developer Sandbox cannot convert all payloads into equivalent CLIs, even
if the sandbox converted the CLIs to NX-API REST payloads. The following is a list of possible
sources of error that can prevent a payload from completely converting to CLI commands:

Table 16: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to
the attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element
'l1PhysIf'

The payload contains an attribute that does not
exist in the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",
"fakeattribute":

"totallyFake"
}

}
}

]
}

}
]

}
}

The Error Pane will return an error related to
the unsupported MO.

Example:

CLI

Error The entire subtree of
"sys/dhcp" is not converted.

The payload includes MOs that aren't yet
supported for conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled":

"yes"
}

}
}

]
}

}
]

}
}

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
250

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Using the Developer Sandbox to Convert from RESTCONF to json or XML

• Online help is available by clicking the help icon (?) in the upper-right corner of the Cisco NX-API
Developer Sandbox window.

• Click on the Yang Documentation link in the upper right corner of the Sandbox window to go to the
Model Driven Programmability with Yang page.

• Click on theYang Models link in the upper right corner of the Sandbox window to access the YangModels
GitHub site.

Tip

Procedure

Step 1 Click the Method drop-down list and choose RESTCONF (Yang).

Example:

Step 2 Click Message format and choose either json or xml.
Step 3 Enter a command in the text entry box in the top pane.
Step 4 Choose a message format.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
251

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Step 5 Click Convert.

Example:

For this example, the command is logging level netstack 6 and the message format is json:

Example:

For this example, the command is logging level netstack 6 and the message format is xml:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
252

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

When converting a negated CLI to a Yang payload using the XML or JSON message format, the
sandbox throws a warning and disables the Send option. The warning message that appears
depends on the message format:

• For the XML message format — "This is a Netconf payload as it is being generated for
DELETE operation(s), hence SEND option is disabled for Restconf!"

• For the JSONmessage format—"This is a gRPC payload as it is being generated for DELETE
operation(s), hence SEND option is disabled for Restconf!"

Note

Step 6 You can also convert the request into the following formats by clicking on the appropriate tab in the Request
pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
253

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

The Java-generated script does not work if you choose the PATCH option from the drop-down
menu in the area above the Request tab. This is a known limitation with Java and is expected
behavior.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
254

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

P A R T IV
Model-Driven Programmability

• Infrastructure Overview, on page 257
• Managing Components, on page 261
• OpenConfig YANG, on page 267
• NETCONF Agent, on page 279
• Converting CLI Commands to Network Configuration Format, on page 303
• RESTConf Agent, on page 309
• gRPC Agent, on page 315
• gNMI - gRPC Network Management Interface, on page 337
• Dynamic Logger, on page 375
• Model Driven Telemetry, on page 383

C H A P T E R 23
Infrastructure Overview

• About Model-Driven Programmability, on page 257
• About the Programmable Interface Infrastructure, on page 257

About Model-Driven Programmability
Themodel-driven programmability of the NX-OS device allows you to automate the configuration and control
of the device.

Data Modeling

Data modeling provides a programmatic and standards-basedmethod of writing configurations to the network
device, replacing the process of manual configuration. Data models are written in a standard, industry-defined
language. Although configuration using a CLI may be more human-friendly, automating the configuration
using data models results in better scalability.

The Cisco NX-OS device supports the YANG data modeling language. YANG is a data modeling language
used to describe configuration and operational data, remote procedure calls, and notifications for network
devices.

Programmable Interfaces

Three standards-based programmable interfaces are supported by NX-OS for operations on the data model:
NETCONF, RESTConf, and gRPC.

About the Programmable Interface Infrastructure
This section provides a brief overview of the NX-OS Programmable Interface infrastructure.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
257

When a request is received whether via NETCONF, RESTConf, or gRPC, the request is converted into an
abstract message object. That message object is distributed to the underlying model infrastructure based on
the namespace in the request. Using the namespace, the appropriate model is selected and the request is passed
to it for processing. The model infrastructure executes the request (read or write) on the device datastore. The
results are returned to the agent of origin for response transmission back to the requesting client.

NX-OS Programmable Interface Agents

Agents provide an interface between the Device and clients. They specify the transport, the protocol, and the
encoding of the communications with the Device. NX-OS Programmable Interfaces support three agents:
NETCONF, RESTConf, and gRPC, each providing different interfaces for configuration management of the
Device via YANG models.

Supported YANGmodels for each Cisco NX-OS release are provided at https://devhub.cisco.com/artifactory/
open-nxos-agents.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
258

Model-Driven Programmability
About the Programmable Interface Infrastructure

https://devhub.cisco.com/artifactory/open-nxos-agents
https://devhub.cisco.com/artifactory/open-nxos-agents

Table 17: NX-OS Programmable Interface Agents

EncodingProtocolTransportAgent

XMLRFC 6241[1]SSHNETCONF

XML or JSONdraft-ietf-netconf-restconf-10[1HTTPRESTConf

Google ProtobufgRPC Protocol Spec[2]HTTPgRPC

The protocol specifications are described in the following documents:

• [1] R. Enns, Ed., RFC6241:Network Configuration Protocol (NETCONF) http://www.rfc-editor.org/rfc/
rfc6241.txt

• [1] RESTCONF Protocol draft-ietf-netconf-restconf-10 https://tools.ietf.org/html/
draft-ietf-netconf-restconf-10

• [2] Cisco NX-OS gRPC Protocol Specification

Model Infrastructure

The Model Infrastructure takes requests that are received from the Agent, determines the namespace that is
associated with the YANG model in the request, and selects the model component matching the namespace
to process the request. When the selected model component completes request processing, the processing
results are sent to the requesting Agent for transmission back to the client. The Model Infrastructure is also
responsible for handling protocol initiation requests involving authentication, handshaking, and so on, as
specified by the Agent protocol.

Device YANG Model

The Device Configuration is described in a YANG model that is called a Device Model. The Device Model
is manifested in the Model Infrastructure as another model component with the Device namespace.

Common YANG Models

A Common Model is another kind of model component that contains within its elements, YANG Paths to the
equivalent DeviceModel elements. These equivalent DeviceModel elements are used to read and write Device
Model data in the Device YANG context.

Additional YANG References

The YANG modeling language is described in the following document: M. Bjorklund, Ed., RFC6020: YANG
- A Data Modeling Language for the Network Configuration Protocol (NETCONF) http://www.rfc-editor.org/
rfc/rfc6020.txt

Additional information about YANG can be found at the YANG Central Wiki https://handwiki.org/wiki/YANG
(M. Bjorklund, Ed.)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
259

Model-Driven Programmability
About the Programmable Interface Infrastructure

http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
https://tools.ietf.org/html/draft-ietf-netconf-restconf-10
https://tools.ietf.org/html/draft-ietf-netconf-restconf-10
http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc6020.txt
https://handwiki.org/wiki/YANG

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
260

Model-Driven Programmability
About the Programmable Interface Infrastructure

C H A P T E R 24
Managing Components

• About the Component RPM Packages, on page 261
• Preparing For Installation, on page 263
• Downloading Components from the Cisco Artifactory, on page 264
• Installing RPM Packages, on page 265

About the Component RPM Packages

Beginning with Cisco NX-OS Release 7.0(3)I6(2), the NX-OS Programmable Interface Base Component
RPM packages (agents, the Cisco native model, most of the other required models, and infrastructure) are
included in the Cisco NX-OS image. As a result, nearly all the required software is installed automatically
when the image is loaded. This situation means that there is no need to download and install the bulk of the
software from the Cisco Artifactory. The exception is the OpenConfig model, which is required. You must
explicitly download the OpenConfig models from the Cisco Artifactory.

But, for Cisco NX-OS Release 7.0(3)I6(1) and earlier releases, if you need to upgrade, the following sections
describing downloading and installing the packages are required.

Note

NX-OS Programmable Interface Component RPM packages may be downloaded from the Cisco Artifactory.
There are two types of component RPM packages that are needed:

• Base Components (required)

• Common Model Components (OpenConfig models must be explicitly downloaded and installed)

Base Components

The Base Components comprise the following required RPM packages:

• mtx-infra — Infrastructure

• mtx-device —Cisco native model

At least one of the following agent packages must be installed in order to have access to the modeled NX-OS
interface:

• mtx-netconf-agent —NETCONF agent

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
261

• mtx-restconf-agent —RESTCONF agent

• mtx-grpc-agent — gRPC agent

Common Model Components

Common Model component RPMs support OpenConfig models. To use the OpenConfig models, you must
download and install the OpenConfig RPMs. For convenience, there is a single combined package of all
supported OpenConfig models, mtx-openconfig-all.

While the single combined package is recommended, an alternative is to download and install RPMs of selected
models and their dependencies among the supported models listed in the following table. The
mtx-openconfig-all RPM is not compatible with the individual model RPMs. You must uninstall the
former before installing the latter, and you must unistall the latter before installing the former.

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-interfacesmtx-openconfig-acl1.0.02017-05-26openconfig-acl

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-bgp-policy4.0.12017-07-30openconfig-bgp-policy

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-if-aggregate2.0.02017-07-14openconfig-if-aggregate

mtx-openconfig-interfacesmtx-openconfig-if-ethernet2.0.02017-07-14openconfig-if-ethernet

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip1.0.22016-05-26openconfig-if-ip

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-if-ip

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip-ext2.3.02018-01-05openconfig-if-ip-ext

-mtx-openconfig-interfaces2.0.02017-07-14openconfig-interfaces

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
262

Model-Driven Programmability
About the Component RPM Packages

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-bgp-policy

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-vlan

mtx-openconfig-network-instance0.8.12017-08-24openconfig-network-instance

mtx-openconfig-routing-policymtx-openconfig-network-instance-policy0.1.02017-02-15openconfig-network-instance-policy

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-ospf-policy0.1.12017-08-24openconfig-ospf-policy

-mtx-openconfig-platform0.8.02018-01-16openconfig-platform

mtx-openconfig-platformmtx-openconfig-platform-linecard0.1.02017-08-03openconfig-platform-linecard

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-port0.3.02018-01-20openconfig-platform-port

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-transceiver0.4.12018-01-22openconfig-platform-transceiver

mtx-openconfig-interfacesmtx-openconfig-relay-agent0.1.02016-05-16openconfig-relay-agent

-mtx-openconfig-routing-policy2.0.12016-05-12openconfig-routing-policy

mtx-openconfig-interfacesmtx-openconfig-spanning-tree0.2.02017-07-14openconfig-spanning-tree

-mtx-openconfig-system0.3.02017-09-18openconfig-system

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan2.0.02017-07-14openconfig-vlan

Preparing For Installation
This section contains installation preparation and other useful information for managing NX-OS Programmable
Interface components.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
263

Model-Driven Programmability
Preparing For Installation

Opening the Bash Shell on the Device

RPM installation on the switch is performed in the Bash shell. Make sure that feature bash is configured on
the device.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature bash-shell
Switch(config)# end
Switch# run bash sudo su
bash-4.2#

To return to the device CLI prompt from Bash, type exit or Ctrl-D.

Verify Device Readiness

You can use the following CLI show commands to confirm the readiness of the device before installation of
an RPM.

• show module— Indicates whether all modules are up.
Switch# show module

• show system redundancy status— Indicates whether the standby device is up and running and in HA
mode. If a standby sync is in progress, the RPM installation may fail.
Switch# show system redundancy status

If the line cards have failed to come up, enter the createrepo /rpms command in the Bash shell.
bash-4.2# createrepo /rpms

Copying Files to the Device

You can use SCP to copy files to the device, using a command in this form.

copy scp://username@source_ip/path_to_agent_rpm bootflash: vrf management

Example:

Switch# copy scp://jdoe@192.0.20.123//myrpms/mtx-infra.1.0.0.r082616.x86_64.rpm bootflash:
vrf management

Displaying Installed NX-OS Programmable Interface RPMs

To show all installed NXOS Programmable Interface RPMs, issue the following command on the device:

bash-4.2# yum list installed | grep mtx

Downloading Components from the Cisco Artifactory
The NX-OS Programmable Interface Component RPMs can be downloaded from the Cisco Artifactory at the
following URL. The RPMs are organized by NX-OS release-specific directories. Ensure that you are
downloading the RPMs from the correct NX-OS release directory.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
264

Model-Driven Programmability
Downloading Components from the Cisco Artifactory

https://devhub.cisco.com/artifactory/open-nxos-agents

The NX-OS Programmable Interface Component RPMs adhere to the following naming convention:

<package>-<version>-<NX-OS release>.<architecture>.rpm

Select and download the desired NX-OS Programmable Interface Component RPM packages to the device
for installation as described in the following sections.

Installing RPM Packages

Installing the Programmable Interface Base And Common Model Component
RPM Packages

Before you begin

• From the Cisco Artifactory, download the following packages:

• mtx-infra

• mtx-device

• mtx-netconf-agent/mtx-restconf-agent/mtx-grpc-agent (at least one)

• mtx-openconfig-all (alternatively, selected individual models)

• Using the CLI commands in Verify Device Readiness, on page 264, confirm that all line cards in the
Active and Standby devices are up and ready.

Procedure

Step 1 Copy the downloaded RPMs to the device.

Example:

Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm bootflash:
vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management

Step 2 From the Bash shell, install the RPMs.

Example:

bash-4.2# cd /bootflash
bash-4.2# yum install mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm
mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
265

Model-Driven Programmability
Installing RPM Packages

https://devhub.cisco.com/artifactory/open-nxos-agents

mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm

Step 3 From the Bash shell, verify the installation.

Example:

bash-4.2# yum list installed | grep mtx

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
266

Model-Driven Programmability
Installing the Programmable Interface Base And Common Model Component RPM Packages

C H A P T E R 25
OpenConfig YANG

This section contains the following topics:

• About OpenConfig YANG, on page 267
• Guidelines and Limitations for OpenConfig YANG, on page 267
• Understanding Deletion of BGP Routing Instance, on page 276
• Verifying YANG, on page 277

About OpenConfig YANG
OpenConfig YANG supports modern networking principles, such as declarative configuration andmodel-driven
management and operations. OpenConfig provides vendor-neutral datamodels for configuration andmonitoring
of the network. And, helping with moving from a pull model to a push model, with subscriptions and event
update streaming.

Beginning with Cisco NX-OS Release 9.2(1), support is added across a broad range of functional areas. Those
include BGP, OSPF, Interface L2 and L3, VRFs, VLANs, and TACACs.

For additional information about OpenConfig YANG, see About OpenConfig YANG.

For the OpenConfig models for Cisco NX-OS 9.2(1), see YANGModels 9.2(1). OpenConfig YANG models
are grouped by Cisco NX-OS release, so when the Cisco NX-OS release number changes, the last digits in
the URL change.

Guidelines and Limitations for OpenConfig YANG
OpenConfig YANG has the following guidelines and limitations:

• For IPv4 and IPv6 addresses, you must provide the same operation for remove and delete for the IP
address field (oc-ip:ip and oc-ip:prefix_length).

For example:
oc-ip:ip: remove
oc-ip:prefix_length: remove

• Configuring BGP actions with set med and OSPF actions with metric in the same route-map via
OpenConfig NETCONF is not recommended as the OSPF actions metric takes precedence over BGP
set med property.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
267

https://developer.cisco.com/docs/openconfig-yang-release-9-2x/
https://github.com/YangModels/yang/tree/master/vendor/cisco/nx/9.2-1

Use two different route-maps to set metrics under OSPF actions. Use set-med under BGP actions using
separate route-maps.

We recommended that you do not change the metric of BGP actions to OSPF actions or OSPF actions
to BGP actions of a route-map in a single payload.

• In order to have a valid BGP instance, an autonomous system (AS) number must be provided. Since
there cannot be a default value for an AS number, any attempt to delete in NETCONF/OPENCONFIG
<asn> without removing the BGP instance, results in the following highlighted error message:
764
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1ea09de2-605e-46aa-984b-9dfdad03354d">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>
<nc:config>
<network-instances xmlns="http://openconfig.net/yang/network-instance">
<network-instance>
<name>default</name>
<protocols>
<protocol>
<identifier>BGP</identifier>
<name>bgp</name>
<bgp>
<global>
<config nc:operation="delete">
<as>100</as>

</config>
</global>
<neighbors>
<neighbor>
<neighbor-address>1.1.1.1</neighbor-address>
<enable-bfd xmlns="http://openconfig.net/yang/bfd">
<config>
<enabled>true</enabled>

</config>
</enable-bfd>

</neighbor>
</neighbors>

</bgp>
</protocol>

</protocols>
</network-instance>

</network-instances>
</nc:config>

</nc:edit-config>
</nc:rpc>

##
Received:
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1ea09de2-605e-46aa-984b-9dfdad03354d">

<rpc-error>
<error-type>protocol</error-type>
<error-tag>operation-failed</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">invalid property value , for property asn, class

bgpInst</error-message>
<error-path>/config/network-instances</error-path>

</rpc-error>
<rpc-error>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
268

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

<error-type>protocol</error-type>
<error-tag>operation-failed</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">invalid property value , for property asn, class

bgpInst Commit Failed</error-message>
<error-path>/config/network-instances</error-path>

</rpc-error>
</rpc-reply>

• The following OpenConfig YANG limitations exist for OC-BGP-POLICY:

• Action type is always permit for community-set and as-path-set, which applies to the
following containers:

• /bgp-defined-sets/community-sets/community-set/

• /bgp-defined-sets/as-path-sets/as-path-set/

In OpenConfig YANG, there is no action type concept as there is in the CLI for community-set
and as-path-set. Therefore, the action type is always permit for community-set and
as-path-set.

• The following OpenConfig YANG limitation applies to this container:
/bgp-defined-sets/community-sets/community-set/

In the CLI, community-list can have two different types: standard and expanded. However,
in the OpenConfig YANG model, community-set-name has no such differentiation.

When you create the community-set-name through OpenConfig YANG, the following things
happen internally:

• The _std suffix will be appended after community-set-name if community-member
is in the standard form (AS:NN).

• The _exp suffix will be appended after community-set-name if community-member
is in the expanded form (regex):
<community-set>

<community-set-name>oc_commset1d</community-set-name>
<config>

<community-set-name>oc_commset1d</community-set-name>
<community-member>0:1</community-member>
<community-member>_1_</community-member>

</config>
</community-set>

The preceding OpenConfig YANG configuration is mapped to the following CLI:
ip community-list expanded oc_commset1d_exp seq 5 permit "_1_"
ip community-list standard oc_commset1d_std seq 5 permit 0:1

• The following OpenConfig YANG limitation applies to this container:
/bgp-conditions/match-community-set/config/community-set/

OpenConfig YANG can only map to one community-set, while the CLI can match to multiple
instances of the community-set:

• In the CLI:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
269

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

ip community-list standard 1-1 seq 1 permit 1:1
ip community-list standard 1-2 seq 1 permit 1:2
ip community-list standard 1-3 seq 1 permit 1:3

route-map To_LC permit 10
match community 1-1 1-2 1-3

• The corresponding OpenConfig YANG payload follows:
<config>
<routing-policy xmlns="http://openconfig.net/yang/routing-policy">
<defined-sets>
<bgp-defined-sets xmlns="http://openconfig.net/yang/bgp-policy">
<community-sets>
<community-set>
<community-set-name>cs</community-set-name>
<config>
<community-set-name>cs</community-set-name>
<community-member>1:1</community-member>
<community-member>1:2</community-member>
<community-member>1:3</community-member>

</config>
</community-set>

</community-sets>
</bgp-defined-sets>

</defined-sets>
<policy-definitions>
<policy-definition>
<name>To_LC</name>
<statements>
<statement>
<name>10</name>
<conditions>
<bgp-conditions xmlns="http://openconfig.net/yang/bgp-policy">
<match-community-set>
<config>
<community-set>cs</community-set>

</config>
</match-community-set>

</bgp-conditions>
</conditions>

</statement>
</statements>

</policy-definition>
</policy-definitions>

</routing-policy>
</config>

As a workaround, create one community with multiple statements through OpenConfig YANG:
ip community-list standard cs_std seq 5 permit 1:1
ip community-list standard cs_std seq 10 permit 1:2
ip community-list standard cs_std seq 15 permit 1:3

route-map To_LC permit 10
match community cs_std

• The following OpenConfig YANG limitation applies to this container:
/bgp-conditions/state/next-hop-in

In OpenConfig YANG, the next-hop-in type is an IP address, but in the CLI, it is an IP prefix.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
270

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

While creating the next-hop-in through OpenConfig YANG, the IP address is converted to a
"/32" mask prefix in the CLI configuration. For example:

• Following is an example of next-hop-in in the OpenConfig YANG payload:
<policy-definition>

<name>sc0</name>
<statements>

<statement>
<name>5</name>
<conditions>

<bgp-conditions xmlns="http://openconfig.net/yang/bgp-policy">

<config>
<next-hop-in>2.3.4.5</next-hop-in>

</config>
</bgp-conditions>

</conditions>
</statement>

</statements>
</policy-definition>

• Following is an example of the same information in the CLI:
ip prefix-list IPV4_PFX_LIST_OPENCONFIG_sc0_5 seq 5 permit 2.3.4.5/32
route-map sc0 permit 5
match ip next-hop prefix-list IPV4_PFX_LIST_OPENCONFIG_sc0_5

• The following NX-OS limitations exist for OC-BGP-POLICY:

• /bgp-actions/set-community/config/method enum "REFERENCE" is not supported.

• enum "SELF", which is supported in the OpenConfig YANG model for
/bgp-actions/config/set-next-hop, is not supported.

• For OC-BGP-POLICY,
/bgp-conditions/match-community-set/config/community-set getmapped only to
match community <community-set>_std, so only standard community is supported. Match
to expanded community set is not supported.

• There is a limitation in replacingmatch-tag-set because defined sets fortag-sets are not currently
implemented.

Currently, replacing match-tag-set appends the values. To replace match-tag-set, delete it,
then create it again.

• The following guidelines and limitations apply to OSPF OpenConfig YANG:

• If you configure and remove an area configuration in OSPF, the deleted areas (stale entries) are still
shown in DME. Those stale area entries are shown in the GETCONFIG/GET output in OpenConfig
YANG.

• Only one area is supported in OpenConfig YANG in the OSPF policy match ospf-area
configuration. In the CLI, you can configure to match multiple areas, such as match ospf-area
100 101. However, in OpenConfig YANG, you can configure only one area (for example, match
ospf-area 100).

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
271

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

• The area virtual-link and area interface configurations payload cannot go under the same area list.
Split the area container payload as a Virtual link area and interface area in the same payload.

• The MD5 authentication string cannot be configured in OSPF OpenConfig YANG.

In the OSPF model, Authentication-type is defined for the Authentication:
leaf authentication-type {
type string;
description
"The type of authentication that should be used on this
interface";

}

OSPF OpenConfig YANG does not support an option for authentication password.

• The OSPF area authentication configuration is not supported. For example, area 0.0.0.200
authentication message-digest cannot be configured from OpenConfig YANG.

• The OSPF/BGP instance configuration that falls under default VRF (for example, router ospf
1/router bgp 1) is not deleted when you delete the Protocols container with the default network
instance.

• The following are guidelines and limitations for VLAN configuration between the OpenConfig payload
and the Cisco Nexus 9000 interfaces:

• When you attempt to simultaneously configure a trunk-mode interface and trunk VLANs in the
same OpenConfig payload, the configuration does not complete successfully. However, when you
split the payload so that the trunk-mode interface is sent first, then the trunk VLANs are sent, the
configuration completes successfully.

On Cisco NX-OS interfaces, the default interface mode is access. To implement any trunk-related
configurations, you must first change the interface mode to trunk, then configure the trunk VLAN
ranges. Do these configurations in separate payloads.

The following examples show the separate payloads for the configuring trunk mode and VLAN
ranges.

Example 1, payload configuring the interface to trunk mode.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>eth1/47</name>
<subinterfaces>
<subinterface>
<index>0</index>
<config>
<index>0</index>

</config>
</subinterface>

</subinterfaces>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<switched-vlan xmlns="http://openconfig.net/yang/vlan">
<config>
<interface-mode>TRUNK</interface-mode>

</config>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
272

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

</switched-vlan>
</ethernet>

</interface>
</interfaces>

</config>
</edit-config>

</rpc>

Example 2, payload configuring the VLAN ranges.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>eth1/47</name>
<subinterfaces>
<subinterface>
<index>0</index>
<config>
<index>0</index>

</config>
</subinterface>

</subinterfaces>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<switched-vlan xmlns="http://openconfig.net/yang/vlan">
<config>
<native-vlan>999</native-vlan>
<trunk-vlans xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

nc:operation="delete">1..4094</trunk-vlans>
<trunk-vlans>401</trunk-vlans>
<trunk-vlans>999</trunk-vlans>

</config>
</switched-vlan>

</ethernet>
</interface>

</interfaces>
</config>

</edit-config>
</rpc>

• Because of the design of OpenConfig YANG, when you configure VLANs, there must be no overlap
between the VLANs in the payload and the VLANs already configured on an interface. If an overlap
exists, the configuration throughOpenConfig is not successful.Make sure that the VLANs configured
on an interface are different from the VLANs in the OpenConfig payload. Pay particular attention
to the starting and ending VLANs in a range.

• The following guidelines and limitations apply to OC-LACP:

• Port-channel mode:

• OC-LACP enables configuring the port-channel mode on the port-channel interface. However,
through the NXOS-CLI, the port-channel mode is configured on the member interface using
channel-group mode active or passive.

• Although OC-LACP explicitly configures the port-channel mode on a port-channel interface,
issuing the NX-OS show running-config command on a port-channel interface does not show
the port-channel mode configuration for either empty or non-empty port-channels.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
273

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

• Once a member is added to the port-channel, show running interface ethernet <> shows the
port-channel mode configuration as a channel-group mode active or passive.

All port-channels that are created through OpenConfig should continue to be
managed by OpenConfig.

Note

• Port-channel interval rate:

• Port channel interval can only be changed when members are in shut state.

• The OC-LACP interval is per port-channel. The NX-OS LACP interval is per port-channel
member. Because of this difference, the following behavior can be expected:

• If you configure the port-channel interval through OpenConfig, all members in the
port-channel get the same configuration applied to them.

• If you configure the port-channel interval through OpenConfig and later a member is
added to the port-channel, you must configure the interval again through OpenConfig for
the configuration to be applied to the new member.

• System MAC ID:

• In this release, Cisco NX-OS does not support system-id-mac per port-channel.

• Member-state data for the following is present only when a port is in admin up state:

• LACP

• Interface

• Interfaces

• Member

• State

• OSPFv2 can send an error response when you attempt to add an interface through OpenConfig YANG.
When the problem occurs, the interface is not added, and the RPC reply contains a "list merge failed"
error as follows:
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:39507023-8569-4cf8-869c-e19aaf76a260">

<rpc-error>
<error-type>protocol</error-type>
<error-tag>operation-failed</error-tag>
<error-severity>error</error-severity>

<error-message xml:lang="en">List Merge Failed: operation-failed</error-message>

<error-path>/network-instances/network-instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/id</error-path>

</rpc-error>
</rpc-reply>

• Queueing stats for Hig (ii) ports is not supported.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
274

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

• You do not see the tx-packets, or bytes, and drop-packets per unicast, multicast, or broadcast queue. The
stats that display in the OC response are a sum of the ucast, mcast, and bcast queues per qos-group.

• OpenConfig YANG does not support stats for a QoS policy that is applied at the VLAN level.

• The ingress queue drop count that can be retrieved through OC can be displayed at the slice/port/queue
level depending on the platform.

• The following is the guideline and limitation for OpenConfig configurations for switchport, shut/no shut,
MTU, and mac-address:

• An ascii reload is required when configuring switchport, shut/no shut, MTU, and mac-address.
Using a binary reload results in the configuration being lost.

• The following new operational state OpenConfig paths are supported. Some paths have extra guidelines
and limitations as mentioned below:

• /network-instances/network-instance/fdb/l2rib/mac-table

• Parent level queries for l2rib are supported at l2rib level. For example, you can query until
network-instances/network-instance/fdb/l2rib but not at fdb level
network-instances/network-instance/fdb.

• /interfaces/interface/routed-vlan/ipv4/neighbors/neighbor/state

• /interfaces/interface/routed-vlan/ipv6/neighbors/neighbor/state

• For parent queries, the infrastructure retrieves all the keys for all the list items and a request is
sent to the back end to populate the rest of the data for each of these list items. This means that
the infrastructure must have the same view of the tree as the back end.

For example, if the infrastructure only sees static entries, while the back end has static and
dynamic entries, then for the list walk the infrastructure will only send requests for each static
entry which will result in incomplete data. The paths with this limitation in the current release
are
/interfaces/interface/routed-vlan/ipv6/neighbors/neighbor/state
and
/interfaces/interface/routed-vlan/ipv4/neighbors/neighbor/state.
The data contains both dynamic and static ARP and ND entries if the exact path is given but
would only contain the static entries if the parent path given.

• /network-instances/network-instance/protocols/protocol/bgp/rib/afi-safis/afi-safi/l2vpn-evpn/loc-rib/routes

• /network-instances/network-instance/protocols/protocol/bgp/rib/attr-sets

• /network-instances/network-instance/protocols/protocol/bgp/rib/communities

• /network-instances/network-instance/protocols/protocol/bgp/rib/ext-communities

• /network-instances/network-instance/connection-points/connection-point/endpoints/endpoint/vxlan/endpoint-peers

• /network-instances/network-instance/connection-points/connection-point/endpoints/endpoint/vxlan/endpoint-vnis

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
275

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

Understanding Deletion of BGP Routing Instance
With OpenConfig YANG network-instance (OCNI), when attempting to delete only the BGP configuration
of the default VRF instead of deleting the entire BGP routing instance, BGP information might not be deleted
at the protocols/BGP level. In this situation, when the delete is at the protocols or BGP level with the
autonomous system number in the payload, only the configuration of the default VRF is deleted instead of
removing the entire BGP routing instance.

Following is an example payload that would be used to delete the configuration under the default VRF in
BGP.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<network-instances xmlns="http://openconfig.net/yang/network-instance">
<network-instance>
<name>default</name>
<protocols>
<protocol>
<identifier>BGP</identifier>
<name>bgp</name>

<bgp xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation="delete">

<global>
<config>
<as>100</as>

</config>
</global>

</bgp>
</protocol>

</protocols>
</network-instance>

</network-instances>
</config>

</edit-config>
</rpc>

Expected Behavior: The BGP routing instance itself should be deleted, which is the equivalent to no router
bgp 100.

Actual Behavior: Only the BGP configuration under the default VRF is deleted, and there is no equivalent
single CLI configuration.

Following is the running configuration before the delete operation:
router bgp 100
router-id 1.2.3.4
address-family ipv4 unicast
vrf abc
address-family ipv4 unicast
maximum-paths 2

And following is the running configuration after the delete operation:
router bgp 100
vrf abc

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
276

Model-Driven Programmability
Understanding Deletion of BGP Routing Instance

address-family ipv4 unicast
maximum-paths 2

Verifying YANG
Use the following commands to verify YANG settings: :

Table 18: YANG Verification

DescriptionCommand

Displays the paths which are supported.show telemetry yang direct-path cisco-nxos-device

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
277

Model-Driven Programmability
Verifying YANG

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
278

Model-Driven Programmability
Verifying YANG

C H A P T E R 26
NETCONF Agent

This chapter contains the following topics:

• About the NETCONF Agent, on page 279
• Guidelines and Limitations for NETCONF, on page 280
• Configuring the NETCONF Agent, on page 282
• Establishing a NETCONF Session, on page 283
• NETCONF Read and Write Configuration, on page 285
• NETCONF Notifications, on page 293
• NETCONF Examples, on page 296
• Troubleshooting the NETCONF Agent, on page 301

About the NETCONF Agent
The Network Configuration Protocol (NETCONF) is a network management protocol defined by RFC 6241.
Cisco NX-OS provides a NETCONF agent which is a client-facing interface that provides secure transport
over SSH for the client requests and server responses in the form of a YANG model, encoded in XML.

NETCONF defines configuration datastores and a set of Create, Read, Update, and Delete (CRUD) operations
that allow manipulation and query on these datastores. Three datastores are supported on NX-OS: running,
startup, and candidate. Here’s a brief descriptions of the operations that are supported:

Table 19: Supported Operations

DescriptionOperation

Retrieve running configuration and operational stateget

Retrieve configuration from specified datastoreget-config

Load specified configuration to the specified target
datastore

edit-config

Request graceful termination of a sessionclose-session

Force the termination of a sessionkill-session

Create or replace datastore with the contents of
another datastore

copy-config

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
279

http://tools.ietf.org/html/rfc6241

DescriptionOperation

Lock the datastorelock

Unlock the datastoreunlock

Validate the contents of the specified configurationvalidate

Commit the candidate configuration as the new current
running configuration

commit

Cancel an ongoing confirmed commitcancel-commit

Revert the candidate configuration to the current
running configuration

discard-changes

Guidelines and Limitations for NETCONF
The NETCONF Agent has the following guideline and limitation:

• Cisco NX-OS supports both the Cisco Device YANG model and OpenConfig models in NETCONF
notifications.

• The device YANG model defines ephemeral data and they are marked with a comment "// Ephemeral
data". These nonpersistent large-volume data is handled differently from the rest of the model. They are
returned only when <get> query's <filter> parameter points specifically to the particular element marked
with the comment. Refer to the ephemeral data support documentation for detailed information on the
usage.

• Beginning with Cisco NX-OS Release 9.3(3), NETCONF is RFC 6241 compliant with the following
exceptions:

• Sibling content match nodes are logically combined in an "OR" expression instead of an "AND"
expression. (Section 6.2.5)

• Once a candidate datastore has been edited, the running configuration for the same property must
not be edited.

• In a single Get request, the number of objects that are supported is 250,000. If you see the following
error, it means that the data requested is more than 250,000. To avoid this error, send requests with filters
querying for a narrower scope of data.
too many objects(459134 > 250000) to query the entire device model.

• NETCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536.
Only users with a "network-admin" role are granted access to the NETCONF agent.

• Beginning with NX-OS 9.3(1), NETCONF get and get-config requests from the NETCONF client
to the switch must contain an explicit namespace and filter. This requirement affects requests to the
OpenConfig YANG and NETCONFDevice models. If you see a message that is similar to the following,
the requests are not carrying a namespace:
Request without namespace and filter is an unsupported operation

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
280

Model-Driven Programmability
Guidelines and Limitations for NETCONF

http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6536

The following example shows a get request and response with the behavior before this change. This
example shows the error message that is caused by behavior which is no longer supported.

Request:
<get>
</get>

Response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<rpc-error>

<error-type>protocol</error-type>
<error-tag>operation-not-supported</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">Request without filtering is an unsupported

operation</error-message>
</rpc-error>

</rpc-reply>

The following example shows a get request and response with the correct behavior in NX-OS release
9.3(1) and later.

Request:

<get>
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
</System>

</filter>
</get>

Response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>

<System> …
</data>

</rpc-reply>

• The <edit-config> "replace" operation sometimes might not work due to run-time default values and
behaviors that are implemented by the affected system component. Therefore, it's better to base the
configuration to replace on the configuration obtained through the <get-config> query instead of the
NX-API Developer Sandbox.

• The Cisco NX-OS NETCONF server supports a maximum of five subscriptions, one subscription per
client session.

• Per RFC 5277, autonomous notifications support NETCONF, SYSLOG, and SNMP streams for event
sources. In this release, Cisco NX-OS supports NETCONF streams only.

• Cisco NX-OS does not support the Replay option for subscriptions. Because Start Time and Stop Time
options are part of Replay, they are not supported.

• For a stream subscription and filtering, support is only for subtree filtering. XPath filtering is not supported.

• When the Cisco NX-OS NETCONFAgent is operating under a heavy load, it is possible that some event
notifications can get dropped.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
281

Model-Driven Programmability
Guidelines and Limitations for NETCONF

http://tools.ietf.org/html/rfc5277

• Cisco NX-OS supports NETCONF notifications beginning with Cisco NX-OS Release 9.3(1). Cisco
NX-OS supports only the Cisco Device YANG model.

• Cisco NX-OS supports both the Cisco Device YANG model and OpenConfig models. Support for
OpenConfig models in NETCONF notifications begins with the Cisco NX-OS 9.3(5) release.

Configuring the NETCONF Agent

Configuring the NETCONF Agent Over SSH for Cisco NX-OS 9.3(5) and Later
This procedure describes how to enable and configure the NETCONF Agent over SSH.

Use this procedure with Cisco NX-OS Release 9.3(5) and later.Note

Before you begin

Before communicating with the switch using NETCONF, the NETCONF Agent must be enabled. The
NETCONF Agent is enabled or disabled by entering the [no] feature netconf command.

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Enable NETCONF services.feature netconf

Example:

Step 2

switch(config)# feature netconf

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected. The

(Optional) netconf idle-timeout it-num

Example:

Step 3

range ofit-num is 0-1440 minutes. The default
switch(config)# netconf idle-timeout 5 timeout is 5 minutes. A value of 0 disables

timeout.

Specifies the number ofmaximum simultaneous
client sessions. The range of num-sessions is
1-10. The default is 5 sessions.

(Optional) netconf sessions num-sessions

Example:
switch(config)# netconf sessions 5

Step 4

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
282

Model-Driven Programmability
Configuring the NETCONF Agent

Configuring the NETCONF Agent for Cisco NX-OS 9.3(4) and Earlier

Use this procedure with Cisco NX-OS Release 9.3(4) and earlier.Note

The NETCONF Agent supports the following optional configuration parameters under the [netconf]
section in the configuration file (/etc/mtx.conf).

DescriptionParameter

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default value is 5 minutes.

A value of 0 disables timeout.

idle_timeout

(Optional) Specifies the number of maximum
simultaneous client sessions.

The default value is 5 sessions.

The range is 1-10.

limit

The following is an example of the [netconf] section in the configuration file:

[netconf]
mtxadapter=/opt/mtx/lib/libmtxadapternetconf.1.0.1.so
idle_timeout=10
limit=1

For the modified configuration file to take effect, you must restart the NETCONF Agent using the CLI
command [no] feature netconf to disable and reenable.

Establishing a NETCONF Session
NETCONF is a connection-oriented protocol requiring a persistent connection between client and server. The
NETCONF agent on the switch listens at port 830 of the management port IP address. The client can establish
a connection with the NETCONF subsystem over SSH.When a client establishes a session with the NETCONF
agent, the server sends a <hello> message to the client. The client likewise must send its <hello> message
to the server. The <hello> messages are exchanged simultaneously as soon as the connection is open. Each
<hello> message contains a list of the sending peer’s protocol version and capabilities. These messages are
used to determine protocol compatibility and capabilities. Both NETCONF peers must verify that a common
protocol version is advertised by the other peer’s <hello>message. Also, the server’s <hello>message must
include a <session-id> whereas the client’s <hello> message must not.

The following shows an example session establishment using the ssh command. The first <hello> message
is received from the server and the second message is sent from the client. The server’s <hello> message
shows the protocol version “urn:ietf:params:netconf:base:1.1” and NETCONF base capabilities that are
supported on Cisco NX-OS Release 9.3(4). Also, the server’s <hello> message includes supported data
models. They might not match the models supported in the current Cisco NX-OS release.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
283

Model-Driven Programmability
Configuring the NETCONF Agent for Cisco NX-OS 9.3(4) and Earlier

The server’s <hello> message has a <session-id>, but the client’s message does not.Note

client-host % ssh admin@172.19.193.166 -p 830 -s netconf
User Access Verification
Password:
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>
<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>

<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=report-all</capability>

<capability>http://cisco.com/ns/yang/cisco-nx-os-device?revision=2020-04-20&module=Cisco-NX-OS-device</capability>

<capability>http://openconfig.net/yang/acl?revision=2019-11-27&module=openconfig-acl&deviations=cisco-nx-openconfig-acl-deviations</capability>

<capability>http://openconfig.net/yang/bfd?revision=2019-10-25&module=openconfig-bfd&deviations=cisco-nx-openconfig-bfd-deviations</capability>

...
</capabilities>
<session-id>1286775422</session-id>

</hello>
]]>]]><hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>

</capabilities>
</hello>
]]>]]>

Using NETCONFwith the ssh command is not convenient and is prone to error, as the complexity for message
framing can be seen from RFC 6242 (Using the NETCONF Protocol over SSH). The ssh command is used
for the example above for illustration purposes only. There are various clients written for NETCONF which
are recommended over the ssh command. The ncclient is one such example and is used in the Usage Examples
section.

NETCONF supports two operations for terminating a session, namely, <close-session> and <kill-session>.
When the server receives a <close-session> request, it gracefully terminates the session by releasing any
locks and resources associated with the session and closing the connection with the client. The following is
an example of the <close-session> request and response for success:
<rpc message-id="1" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>

</rpc>

<rpc-reply message-id="1" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
284

Model-Driven Programmability
Establishing a NETCONF Session

The <kill-session> request forces the termination of another session and requires <session-id> in the
request message. Upon receiving the <kill-session> request, the server terminates current operations, releases
locks and resources, and closes the connection associated with the specified session ID. The following is an
example of the <kill-session> request and response for success:
<rpc message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-id>296324181</session-id>

</kill-session>
</rpc>

<rpc-reply message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Besides the <close-session> and <kill-session> requests, a session is terminated automatically if the client
does send any request for a certain length of time. The default is five minutes. See Configuring the NETCONF
Agent for configuring the idle timeout.

NETCONF Read and Write Configuration
This section describes supported base protocol operations to manipulate and query datastores. The client can
send RPC messages for these operations after establishing a session with the NETCONF agent. Basic usage
explanations are given and RFC 6242 can be referred to for thorough details about these operations.

<get-config>

This operation retrieves configuration data from a specified datastore. The supported parameters are <source>
and <filter>. The <source> specifies the datastore being queried such as <running/>, which holds the
currently active configuration. The <filter> specifies the portions of the specified datastore to retrieve.

The following are examples of <get-config> request and response messages.

• Retrieve the entire <System> subtree:
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get-config>
<source>

<running/>
</source>
<filter>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device"/>
</filter>

</get-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<data>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
...
</System>

</data>
</rpc-reply>

• Retrieve a specific list item:
<rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get-config>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
285

Model-Driven Programmability
NETCONF Read and Write Configuration

<source>
<running/>

</source>
<filter>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list>
<name>default</name>

</Dom-list>
</dom-items>

</inst-items>
</bgp-items>

</System>
</filter>

</get-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<data>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list>
<name>default</name>
...
<rtctrl-items>

<enforceFirstAs>enabled</enforceFirstAs>
<fibAccelerate>disabled</fibAccelerate>
<logNeighborChanges>enabled</logNeighborChanges>
<supprRt>enabled</supprRt>

</rtctrl-items>
<rtrId>1.2.3.4</rtrId>

</Dom-list>
</dom-items>

</inst-items>
</bgp-items>

</System>
</data>

</rpc-reply>

<edit-config>

This operation writes a specified configuration to the target datastore. The <target> parameter specifies the
datastore being edited, such as <running/> or <candidate/>. The candidate datastore can be manipulated
without impacting the running datastore until its changes are committed. For more information, see the
<commit> section. The <config> parameter specifies the modeled data to be written to the target datastore.
The model is specified by the “xmlns” attribute. Any number of elements in the <config> subtree may contain
an “operation” attribute. The operation of an element is inherited by its descendent elements until it’s overridden
by a new “operation” attribute. The supported operations are “merge”, “replace”, “create”, “delete”, and
“remove”. The “remove” operation is different from “delete” in that no error is returned if the configuration
data does not exist. If the “operation” attribute is not specified, the merge operation is assumed as default; the
default operation can be overridden by the optional <default-operation> parameter, which has “merge”,
“replace” or “none”.

The following are examples of <edit-config> request and response messages.

• Create a port-channel named "po5" with MTU 9216 and the description in the running configuration:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
286

Model-Driven Programmability
NETCONF Read and Write Configuration

<rpc message-id="103" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>

<target>
<running/>

</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>

<aggr-items>
<AggrIf-list xc:operation="create">

<id>po5</id>
<mtu>9216</mtu>
<descr>port-channel 5</descr>

</AggrIf-list>
</aggr-items>

</intf-items>
</System>

</config>
</edit-config>

</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="103">
<ok/>

</rpc-reply>

• Replace all configurations of a port-channel with new configurations:
<rpc message-id="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>
<target>

<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>

<aggr-items>
<AggrIf-list xc:operation="replace">

<id>po5</id>
<mtu>1500</mtu>
<adminSt>down</adminSt>

</AggrIf-list>
</aggr-items>

</intf-items>
</System>

</config>
</edit-config>

</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="104">
<ok/>

</rpc-reply>

• Delete a port-channel:
<rpc message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>
<target>

<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>

<aggr-items>
<AggrIf-list xc:operation="delete">

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
287

Model-Driven Programmability
NETCONF Read and Write Configuration

<id>po5</id>
</AggrIf-list>

</aggr-items>
</intf-items>

</System>
</config>

</edit-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="105">
<ok/>

</rpc-reply>

<copy-config>

This operation replaces the target configuration datastore with the contents of source configuration datastore.
The parameters for source datastore and target datastore are <source> and <target>, respectively.

The following are examples of <copy-config> request and response messages.

• Copy from running configuration to startup configuration:
<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<copy-config>
<target>

<startup/>
</target>
<source>

<running/>
</source>

</copy-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="106">
<ok/>

</rpc-reply>

• Copy from running configuration to candidate configuration:
<rpc message-id="107" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<copy-config>
<target>

<candidate/>
</target>
<source>

<running/>
</source>

</copy-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="107">
<ok/>

</rpc-reply>

<lock>

The <lock> operation allows a client to lock the configuration datastore, preventing other clients from locking
or modifying the datastore. The lock that is held by the client is released with either the <unlock> operation
or termination of a session. The <target> parameter is used to specify the datastore to be locked.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
288

Model-Driven Programmability
NETCONF Read and Write Configuration

The following are examples of <lock> request and response messages.

• A successful acquisition of a lock:
<rpc message-id="108" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<lock>
<target>

<running/>
</target>

</lock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="108">
<ok/>

</rpc-reply>

• A failed attempt to acquire a lock already in use by another session:
<rpc message-id="109" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<lock>
<target>

<candidate/>
</target>

</lock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="109">
<rpc-error>

<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">Lock failed, lock is already held</error-message>

<error-info>
<session-id>1553704357</session-id>

</error-info>
</rpc-error>

</rpc-reply>

<unlock>

The <unlock> operation releases a configuration lock, obtained with the <lock> operation. Only the same
session that issued the <lock> operation can use the <unlock> operation. The <target> parameter is used to
specify the datastore to be unlocked.

The following is an example of <unlock> request and response messages.

• Unlock
<rpc message-id="110" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<unlock>
<target>

<candidate/>
</target>

</unlock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="110">
<ok/>

</rpc-reply>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
289

Model-Driven Programmability
NETCONF Read and Write Configuration

<get>

The <get> operation retrieves running configuration and operational state data. The supported parameter is
<filter>. The <filter> specifies the portions of the running configuration operational state data to retrieve.

The following is an example of <get> request and response messages.

• Retrieve running configuration and operational state data of a list item:
<rpc message-id="111" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get>
<filter>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list>
<name>default</name>

</Dom-list>
</dom-items>

</inst-items>
</bgp-items>

</System>
</filter>

</get>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="111">
<data>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list>
<name>default</name>
<always>disabled</always>
<bestPathIntvl>300</bestPathIntvl>
<clusterId>120</clusterId>

<firstPeerUpTs>2020-04-20T16:19:03.784+00:00</firstPeerUpTs>

<holdIntvl>180</holdIntvl>
<id>1</id>
<kaIntvl>60</kaIntvl>
<mode>fabric</mode>
<numEstPeers>0</numEstPeers>
<numPeers>0</numPeers>
<numPeersPending>0</numPeersPending>
<operRtrId>1.2.3.4</operRtrId>
<operSt>up</operSt>
<pfxPeerTimeout>90</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>1.2.3.4</rtrId>
<vnid>0</vnid>
...

</Dom-list>
</dom-items>

</inst-items>
</bgp-items>

</System>
</data>

</rpc-reply>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
290

Model-Driven Programmability
NETCONF Read and Write Configuration

<validate>

This operation validates the configuration contents of the candidate datastore. It is useful for validating the
configuration changes made on the candidate datastore before committing them to the running datastore. The
<source> parameter supports <candidate/>.

The following is an example of <validate> request and response messages.

• Validate the contents of the candidate datastore:
<rpc message-id="112" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<validate>
<source>

<candidate/>
</source>

</validate>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="112">
<ok/>

</rpc-reply>

<commit>

This operation commits the candidate configuration to the running configuration. The operation without any
parameter is considered final and cannot be reverted. If <commit> is issued with the <confirmed/> parameter,
it is considered a confirmed commit, and commit is finalized only if it is followed by another <commit>
operation without the <confirmed/> parameter. That is, the confirming commit. The confirmed commit allows
two parameters: <confirm-timeout> and <persist>. The <confirm-timeout> is the period in seconds before
the confirmed commit is reverted, restoring the running configuration to its state before the confirmed commit
was issued, unless the confirming commit is issued before or the timeout is reset by another confirmed commit.
If the <confirm-timeout> is not specified, the default timeout is 600 seconds. Also, the confirmed commit
is reverted if the session is terminated. The <persist> parameter makes the confirmed commit to persist even
if the session is terminated. The value of the <persist> parameter is used to identify the confirmed commit
from any session, and must be used as the value of the <persist-id> parameter of subsequent confirmed
commit or confirming commit.

The following are examples of <commit> request and response messages.

• Commit the contents of the candidate datastore:
<rpc message-id="113" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<commit/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="113">
<ok/>

</rpc-reply>

• Confirmed commit with the timeout:
<rpc message-id="114" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>

</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="114">

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
291

Model-Driven Programmability
NETCONF Read and Write Configuration

<ok/>
</rpc-reply>

• Start a persistent confirmed commit and then confirm the persistent confirmed commit:
<rpc message-id="115" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<commit>
<confirmed/>
<persist>ID1234</persist>

</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="115">
<ok/>

</rpc-reply>

<!-- confirm the persistent confirmed-commit, from the same session or another session
-->
<rpc message-id="116" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<commit>
<persist-id>ID1234</persist-id>

</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="116">
<ok/>

</rpc-reply>

<cancel-commit>

This operation cancels an ongoing confirmed commit. If a confirmed commit from a different session needs
to be canceled, the <persist-id> parameter must be used with the same value that was given in the <persist>
parameter of the confirmed commit.

• Cancel the confirmed commit from the same sessions:
<rpc message-id="117" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<cancel-commit/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="117">
<ok/>

</rpc-reply>

<discard-changes>

This operation discards any uncommitted changes that are made on the candidate configuration by resetting
back to the content of the running configuration. No parameter is required.

The following is an example of <discard-changes> request and response messages.

• Discard the changes made on the candidate datastore:
<rpc message-id="118" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<discard-changes/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="118">
<ok/>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
292

Model-Driven Programmability
NETCONF Read and Write Configuration

</rpc-reply>

NETCONF Notifications

About NETCONF Notifications
NETCONF notification is a mechanism where a NETCONF client can subscribe to system events and then
receive notifications to these events from a NETCONF agent. These features are defined in RFC 5277.
Beginning with Cisco NX-OS Release 9.3(1), support for NETCONF notifications began as described in RFC
5277. This is an optional capability that is advertised in the NETCONF hello message.

A NETCONF client can subscribe for notifications using Deviceyang or OpenConfig models. Support for
OpenConfig models in NETCONF notifications begins with Cisco NX-OS Release 9.3(5).

With this support, any NETCONF client can:

• Subscribe to event notifications.

Each subscription is a one-time request over a session from a NETCONF client. The Cisco NX-OS
NETCONF agent responds, and the subscription is active until the session is explicitly closed by the
NETCONF client. The subscription can also be closed by an administrative action, such as a switch
restart or disabling NETCONF feature on the switch. The subscription is active as long as the underlying
NETCONF session is active. The events that are generated for these subscribed filters are sent as
notifications to the client. Clients can subscribe to notifications for system events. For example, port
state change, fan speed change, and process memory change to name a few. Also, configuration events
such as a new feature being enabled.

• Receive event notifications.

An event notification is a well-formed XML document that contains information about the configuration
or operational events on the switch. The NETCONF client can send filtering criteria in the subscription
request to specify a subset of events instead of all events.

• Interleave event notifications with other operations.

The Cisco NX-OS NETCONF agent can receive, process, and respond to NETCONF requests on a
session with an active notification subscription.

Capabilities Exchange
During the NETCONF handshake, the Cisco NX-OS NETCONF server sends the <capabilities> element to
the connecting NETCONF clients to indicate what requests that the server can process. As part of the exchange,
the server includes the following identifiers, which inform the client that the Cisco NX-OS NETCONF server
supports both notifications and interleave.

Capability identifier for notification:
urn:ietf:params:netconf:capability:notification:1.0

Capability identifier for interleave:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
293

Model-Driven Programmability
NETCONF Notifications

http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc5277

urn:ietf:params:netconf:capability:interleave:1.0

Event Stream Discovery
The client can discover the Cisco NX-OSNETCONF server's supported streams by using a NETCONF <get>
operation for all available <streams>. Cisco NX-OS supports the NETCONF stream only. Discovering event
streams occurs through a request and reply sequence.

Request to retrieve available streams:

Any NETCONF client can send a NETCONF <get> request with filter for <streams> to identify all supported
streams. The following example shows the payload of a client request message:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">

<streams/>
</netconf>

</filter>
</get>

</rpc>

Reply:

The Cisco NX-OS NETCONF server replies with all the event streams that are available and to which the
client can subscribe. Cisco NX-OS supports the NETCONF stream only.

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams>

<stream>
<name>NETCONF</name>
<description>default NETCONF event stream </description>

</stream>
</streams>
</netconf>

</data>
</rpc-reply>

Creating Subscriptions
NETCONF clients can create subscriptions for events on the switch through an RPC with a
<create-subscription> protocol operation.When the Cisco NX-OSNETCONF server responds with the <ok/>
element, the subscription is active.

Unlike synchronous Get and Set operations, a subscription is a persistent, asynchronous operation. The
subscription stays active until the client explicitly closes the subscription or the session goes offline. For
example, by a switch restart.

If a client subscribes to event notifications, but it goes offline, the server terminates the subscription and closes
the session.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
294

Model-Driven Programmability
Event Stream Discovery

If a subscription is closed, the NETCONF client must reconnect and create the subscription again to receive
all event notifications.

The server does not initiate subscriptions, so you must to write client programs that contain the
<create-subscription> operation. The following is an example for <create-subscription> sent by any
NETCONF client:

<create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<stream>NETCONF</stream>
<filter xmlns:ns1="urn:ietf:params:xml:ns:netconf:base:1.0" type="subtree">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>

<phys-items>
<PhysIf-list>

<id>eth1/54/1</id>
<phys-items>
<operSt/>

</phys-items>
</PhysIf-list>

</phys-items>
</intf-items>

</System>
</filter>

</create-subscription>

The <create-subscription> operation supports any of the following options:

• <stream>, which specifies which stream of events the client wants to subscribe to. If you specify no
stream, by default, events in the NETCONF stream are sent to the client.

• <filter>, which enables filtering the events to provide a subset of events carried on the stream.

The Cisco NX-OS NETCONF server responds back with an <ok> message if the server is able to create the
subscription successfully.

The following is a sample successful response received in the client for the <create-subscription> request
that it sent to the server.

Response for <create-subscription>, received in the client:
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:6ff0bda6-d3f1-4288-9a7e-0f30581e4bab">

<ok/>
</rpc-reply>

Subscriptions with Replay are not supported, so the Start Time and Stop Time options cannot be used.Note

Receiving Notifications
When the NETCONF client has successfully created a subscription, the Cisco NX-OS NETCONF server
begins sending relevant event notifications, for any events in the switch, for the filter used. The event notification
is its own XML-formatted document that contains the notification element.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
295

Model-Driven Programmability
Receiving Notifications

The following is a sample notification for an Ethernet interface going down, when the client subscribed to
interface operSt, from the DeviceYang model. The <create-subscription> is in the Creating Subscriptions
section.

<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

<eventTime>2020-05-05T10:22:52.260+00:00</eventTime>
<operation>modified</operation>
<event>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>

<phys-items>
<PhysIf-list>

<id>eth1/54/1</id>
<phys-items>

<operSt>down</operSt>
</phys-items>

</PhysIf-list>
</phys-items>

</intf-items>
</System>

</event>
</notification>

The <notification> messages contain the following fields:

• <eventTime>, the date and timestamp of when the event occurred.

• <operation>, the type of event on the model node.

• <event>, the model data to which the client is subscribed.

Terminating Subscriptions
Subscriptions are terminated when the NETCONF client sends specific operations to the Cisco NX-OS
NETCONF server in the payload of a NETCONF message. Subscription termination occurs in any of the
following ways:

• Closing the subscription session, which occurs when the <close-session> operation is sent to the
NETCONF Server for a specific subscription session.

• Terminating the NETCONF session, which occurs when the <kill-session> operation is sent to the
NETCONF server.

Every subscription is tied to one NETCONF session. It is a one-to-one relationship.

NETCONF Examples

All examples in this section use the ncclient python library.Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
296

Model-Driven Programmability
Terminating Subscriptions

Connecting Cisco NX-OS with the ncclient

The ncclient is a Python library for NETCONF clients. The following is an example of how to establish a
connection to Cisco NX-OS from the ncclient Manager API:
device = {

"address": "10.10.10.10",
"netconf_port": 830,
"username": "admin",
"password": "cisco"

}
with manager.connect(host = device["address"],

port = device["netconf_port"],
username = device["username"],
password = device["password"],
hostkey_verify = False) as m:

do your stuff

Using the Sandbox to Generate the NETCONF Payload

Refer to NXAPI Developer Sandbox section to enable it. In order to generate a payload for NETCONF, change
the method to RESTCONF (Yang) and message format to XML. Enter the command you need to convert in
the text window, click Convert and the equivalent payload is displayed in the Request text box:

Figure 3: NCCLIENT

Getting Configuration Data from Cisco NX-OS

Here is an example of how to use the ncclient to get the BGP configuration from Cisco NX-OS:
from ncclient import manager
import sys
from lxml import etree

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
297

Model-Driven Programmability
NETCONF Examples

device = {
"address": "nexus",
"netconf_port": 830,
"username": "admin",
"password": "cisco!"

}

create a main() method
def main():

bgp_dom = """
<filter type="subtree">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list/>
</dom-items>

</inst-items>
</bgp-items>

</System>
</filter>
"""

with manager.connect(host=device["address"],
port=device["netconf_port"],
username=device["username"],
password=device["password"],
hostkey_verify=False) as m:

Collect the NETCONF response
netconf_response = m.get_config(source='running', filter=bgp_dom)
Parse the XML and print the data
xml_data = netconf_response.data_ele
print(etree.tostring(xml_data, pretty_print=True).decode("utf-8"))

if __name__ == '__main__':
sys.exit(main())

Getting the Running Configuration and Operational Data from Cisco NX-OS

Here is example of getting the interface counters of all the physical interfaces on Cisco NX-OS:
from ncclient import manager
import sys
from lxml import etree

device = {
"address": "nexus",
"netconf_port": 830,
"username": "admin",
"password": "cisco"

}

def main():

intf_ctr_filter = """
<filter>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
298

Model-Driven Programmability
NETCONF Examples

<intf-items>
<phys-items>
<PhysIf-list>

<dbgIfIn-items/>
<dbgIfOut-items/>

</PhysIf-list>
</phys-items>

</intf-items>
</System>

</filter>"""

with manager.connect(host=device["address"],
port=device["netconf_port"],
username=device["username"],
password=device["password"],
hostkey_verify=False) as m:

Collect the NETCONF response
netconf_response = m.get(filter=intf_ctr_filter)
Parse the XML and print the data
xml_data = netconf_response.data_ele
print(etree.tostring(xml_data, pretty_print=True).decode("utf-8"))

if __name__ == '__main__':
sys.exit(main())

Creating a New Configuration Using NETCONF

Here is example of how to create VLAN 100 with name using edit config of ncclient:
from ncclient import manager
import sys
from lxml import etree

device = {
"address": "nexus",
"netconf_port": 830,
"username": "admin",
"password": "cisco"

}

def main():
add_vlan = """
<config>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bd-items>
<bd-items>
<BD-list>
<fabEncap>vlan-100</fabEncap>
<name>inb_mgmt</name>

</BD-list>
</bd-items>

</bd-items>
</System>

</config>
"""

with manager.connect(host=device["address"],
port=device["netconf_port"],
username=device["username"],
password=device["password"],

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
299

Model-Driven Programmability
NETCONF Examples

hostkey_verify=False) as m:

create vlan with edit_config
netconf_response = m.edit_config(target="running", config=add_vlan)
print(netconf_response)

if __name__ == '__main__':
sys.exit(main())

Deleting Configuration Using NETCONF

Here is example of deleting a loopback interface from Cisco NX-OS:
from ncclient import manager
import sys
from lxml import etree

device = {
"address": "nexus",
"netconf_port": 830,
"username": "admin",
"password": "cisco"

}

def main():
remove_loopback = """
<config>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<lb-items>
<LbRtdIf-list operation="delete">
<id>lo10</id>

</LbRtdIf-list>
</lb-items>

</intf-items>
</System>

</config>"""

with manager.connect(host=device["address"],
port=device["netconf_port"],
username=device["username"],
password=device["password"],
hostkey_verify=False) as m:

create vlan with edit_config
netconf_response = m.edit_config(target="running", config=remove_loopback)

print(netconf_response)

if __name__ == '__main__':
sys.exit(main())

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
300

Model-Driven Programmability
NETCONF Examples

Troubleshooting the NETCONF Agent
Troubleshooting Connectivity

• From a client system, ping the management port of the switch to verify that the switch is reachable.

• In Cisco NX-OS, enter the show feature | inc netconf command to check the agent status.

• There is the XML Management Interface (also known as xmlagent), which is quite different from and
often confused as the NETCONF Agent. Please ensure that you connect to the correct port 830 and
receive a correct <hello> message (similar to what is shown in the Establishing a NETCONF Session
section) from the server if the server does not respond with the correct NETCONF messages.

• You can view NETCONF agent debugs from the Bash shell by viewing the contents of the
/volatile/netconf-internal-log file. You can enable the Bash shell by using the feature bash command.
After enabling the Bash shell, enter the Bash shell through the run bash command. For more information,
see the chapter titled Bash in this document.

Note: The debug netconf commands cannot be used to debug NETCONF Agent operations. These
debug commands will not output any NETCONF Agent-related logs.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
301

Model-Driven Programmability
Troubleshooting the NETCONF Agent

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
302

Model-Driven Programmability
Troubleshooting the NETCONF Agent

C H A P T E R 27
Converting CLI Commands to Network
Configuration Format

• Information About XMLIN, on page 303
• Licensing Requirements for XMLIN, on page 303
• Installing and Using the XMLIN Tool, on page 304
• Converting Show Command Output to XML, on page 304
• Configuration Examples for XMLIN, on page 305

Information About XMLIN
The XMLIN tool converts CLI commands to the Network Configuration (NETCONF) protocol format.
NETCONF is a network management protocol that provides mechanisms to install, manipulate, and delete
the configuration of network devices. It uses XML-based encoding for configuration data and protocol
messages. The NX-OS implementation of the NETCONF protocol supports the following protocol operations:
<get>, <edit-config>, <close-session>, <kill-session>, and <exec-command>.

The XMLIN tool converts show, EXEC, and configuration commands to corresponding NETCONF <get>,
<exec-command>, and <edit-config> requests. You can enter multiple configuration commands into a single
NETCONF <edit-config> instance.

The XMLIN tool also converts the output of show commands to XML format.

Licensing Requirements for XMLIN
Table 20: XMLIN Licensing Requirements

License RequirementProduct

XMLIN requires no license. Any feature not included in a license package is bundled with
the Cisco NX-OS system images and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Cisco
NX-OS

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
303

Installing and Using the XMLIN Tool
You can install the XMLIN tool and then use it to convert configuration commands to NETCONF format.

Before you begin

The XMLIN tool can generate NETCONF instances of commands even if the corresponding feature sets or
required hardware capabilities are not available on the device. But, you might still need to install some feature
sets before entering the xmlin command.

Procedure

PurposeCommand or Action

switch# xmlinStep 1

Enters global configuration mode.switch(xmlin)# configure terminalStep 2

Converts configuration commands to
NETCONF format.

Configuration commandsStep 3

Generates the corresponding <edit-config>
request.

(Optional) switch(config)(xmlin)# endStep 4

Enter the end command to finish
the current XML configuration
before you generate an XML
instance for a show command.

Note

Converts show commands to NETCONF
format.

(Optional) switch(config-if-verify)(xmlin)#
show commands

Step 5

Returns to EXEC mode.(Optional) switch(config-if-verify)(xmlin)# exitStep 6

Converting Show Command Output to XML
You can convert the output of show commands to XML.

Before you begin

Make sure that all features for the commands you want to convert are installed and enabled on the device.
Otherwise, the commands fail.

You can use the terminal verify-only command to verify that a feature is enabled without entering it on the
device.

Make sure that all required hardware for the commands you want to convert are present on the device.
Otherwise, the commands fail.

Make sure that the XMLIN tool is installed.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
304

Model-Driven Programmability
Installing and Using the XMLIN Tool

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# show-command | xmlinStep 1

You cannot use this command
with configuration commands.

Note

Configuration Examples for XMLIN
The following example shows how the XMLIN tool is installed on the device and used to convert a set of
configuration commands to an <edit-config> instance.

switch# xmlin
**
Loading the xmlin tool. Please be patient.
**
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
% Success
switch(config-if-verify)(xmlin)# cdp enable
% Success
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec"
xmlns:m1="http://www.cisco.com/nxos:6.2.2.:configure__if-eth-base" message-id="1">
<nf:edit-config>

<nf:target>
<nf:running/>

</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>

<__XML__PARAM__interface>
<__XML__value>Ethernet2/1</__XML__value>
<m1:cdp>
<m1:enable/>

</m1:cdp>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
305

Model-Driven Programmability
Configuration Examples for XMLIN

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

The following example shows how to enter the end command to finish the current XML configuration before
you generate an XML instance for a show command.

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
switch(config-if-verify)(xmlin)# show interface ethernet 2/1
**
Please type "end" to finish and output the current XML document before building a new one.
**
% Command not successful

switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec" message-id="1">

<nf:edit-config>
<nf:target>

<nf:running/>
</nf:target>
<nf:config>

<m:configure>
<m:terminal>

<interface>
<__XML__PARAM__interface>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__interface>

</interface>
</m:terminal>
</m:configure>

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

switch(xmlin)# show interface ethernet 2/1
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager" message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<__XML__PARAM__ifeth>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__ifeth>

</interface>
</show>

</nf:filter>
</nf:get>

</nf:rpc>
]]>]]>
switch(xmlin)# exit
switch#

The following example shows how you can convert the output of the show interface brief command to XML.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
306

Model-Driven Programmability
Configuration Examples for XMLIN

switch# show interface brief | xmlin
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager"

message-id="1">
<nf:get>
<nf:filter type="subtree">

<show>
<interface>

<brief/>
</interface>

</show>
</nf:filter>

</nf:get>
</nf:rpc>
]]>]]>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
307

Model-Driven Programmability
Configuration Examples for XMLIN

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
308

Model-Driven Programmability
Configuration Examples for XMLIN

C H A P T E R 28
RESTConf Agent

• About the RESTCONF Agent, on page 309
• Guidelines and Limitations, on page 310
• Using the RESTCONF Agent, on page 310
• Troubleshooting the RESTCONF Agent, on page 311
• Ephemeral Data, on page 312

About the RESTCONF Agent
Cisco NX-OS RESTCONF is an HTTP -based protocol for configuring data that are defined in YANG version
1, using datastores defined in NETCONF.

NETCONF defines configuration datastores and a set of Create, Retrieve, Update, and Delete (CRUD)
operations that can be used to access these datastores. The YANG language defines the syntax and semantics
of datastore content, operational data, protocol operations, and event notifications.

Cisco NX-OS RESTCONF uses HTTP operations to provide CRUD operations on a conceptual datastore
containing YANG-defined data. This data is compatible with a server which implements NETCONF datastores.

The RESTCONF protocol supports both XML and JSON payload encodings. User authentication is done
through the HTTP Basic Authentication.

The following table shows the Protocol operations that the Cisco NX-OS RESTCONF Agent supports:

NETCONF EquivalentRESTCONF

NETCONF: noneOPTIONS

NETCONF: noneHEAD

NETCONF: <get-config>, <get>GET

NETCONF: <edit-config> (operation="create")POST

NETCONF: <edit-config> (operation="create/replace")PUT

NETCONF: <edit-config> (operation="merge")PATCH

NETCONF: <edit-config> (operation="delete")DELETE

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
309

Guidelines and Limitations
The RESTCONF Agent has the following guideline and limitation:

• Cisco NX-OS RESTCONF is based on an RFC draft entitled RESTCONF Protocol
draft-ietf-netconf-restconf-10. See https://tools.ietf.org/html/draft-ietf-netconf-restconf-10.

• RESTCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536.
Only users with a "network-admin" role are granted access to the RESTCONF agent.

Using the RESTCONF Agent
General Commands

• Configure the following commands to enable HTTP or HTTPS access:

• feature nxapi

• nxapi http port 80

• nxapi https port 443

General Control Commands

You can enable or disable the RESTCONF Agent [no] feature restconf command.

The available control commands for the RESTCONF agent are:

restconfctl { status | start | restart | reload | stop }

Viewing the Agent Status

To view the status of the RESTCONF agent, use the show feature command and include the expression
restconf.
switch-1# show feature | grep restconf
restconf 1 enabled
switch-1#

bash-4.2# restconfctl status
xosdsd is stopped
restconfctl is stopped

Starting the Agent

bash-4.2# restconfctl start
Starting Restconf Agent: [OK]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
310

Model-Driven Programmability
Guidelines and Limitations

https:/�/�tools.ietf.org/�html/�draft-ietf-netconf-restconf-10

Sending a POST Request to the Server Using Curl

client-host % curl -X POST -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Content-Type:
application/yang.data+xml" -d '<always>enabled</always><rtrId>2.2.2.2</rtrId>'
"http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list=default"
-i

HTTP/1.1 201 Created
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:25:31 GMT
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500853169574134
Status: 201 Created
Location: /System/bgp-items/inst-items/dom-items/Dom-list=default/always/rtrId/

Sending a GET Request to the Server Using Curl

client-host % curl -X GET -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Accept:
application/yang.data+xml"
"http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list?content=config"
-i

HTTP/1.1 200 OK
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:26:03 GMT
Content-Type: application/yang.data+xml
Content-Length: 395
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500856185650327
Status: 200 OK

<Dom-list>
<name>default</name>
<always>enabled</always>
<bestPathIntvl>300</bestPathIntvl>
<holdIntvl>180</holdIntvl>
<kaIntvl>60</kaIntvl>
<maxAsLimit>0</maxAsLimit>
<pfxPeerTimeout>30</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>2.2.2.2</rtrId>

</Dom-list>
client-host %

Troubleshooting the RESTCONF Agent
Troubleshooting Connectivity

• Enable the web server by issuing the feature nxapi command.

• Ensure that the nxapi http port 80 command is configured to open up the port for HTTP

• Ensure that the nxapi https port 443 command is configured to open up the port for HTTPS.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
311

Model-Driven Programmability
Troubleshooting the RESTCONF Agent

• Ping the management port of the switch to verify that the switch is reachable.

Troubleshooting Errors

The following shows a common error message and offers guidelines for resolving it.

Error Message: Sorry, the page you are looking for is currently unavailable

• If you receive this message soon after sending a request (for example, seconds), verify the following:

• The NXAPI feature is enabled as documented in "Troubleshooting Connectivity"

• The RESTCONF feature is enabled (show feature | grep restconf). If RESTCONF is not enabled,
enable it (feature restconf).

• The port is configured for HTTP or HTTPS by NX-API. Use show nxapi to verify that the port is
configured.
switch-1# show nxapi
nxapi enabled
HTTP Listen on port 80
HTTPS Listen on port 443
...
switch-1#

If the port is not configured for HTTP or HTTPs, configure it by issuing nxapi http port 80 or
nxapi https port 443.

• If you receive this message long after sending a request (for example, minutes), ensure that the system
is not overloaded with excessive concurrent requests to query from the top level of the switch. Excessive
top-level queries can create a significant resource burden.

You can ensure the switch is not overloaded by either of the following:

• Throttle back the number of requests that the client is sending.

• On the switch, restart the RESTCONF agent by issuing no feature restconf, then feature restconf.

Ephemeral Data

About Ephemeral Data in RESTCONF
This feature provides access to ephemeral data. Ephemeral data is high volume data. DME provides a batching
mechanism to retrieve the data so that each batch is of a manageable size in terms of memory usage. The size
of the batch is the number of MOs to be retrieved.

You can find information about which data is ephemeral by the comment "Ephemeral data" in the published
Cisco-NX-OS-device.yang file.

The output from ephemeral data is returned, if and only if the URI in the request points to:

• A leaf from ephemeral data

• A container or list with ephemeral data children

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
312

Model-Driven Programmability
Ephemeral Data

• An empty container that is used to wrap a list that has direct ephemeral data children

System level GET queries do not return ephemeral data.

RESTCONF Ephemeral Data Example
This is an example for retrieving ephemeral data.

The client might send the following GET request message:
GET
/restconf/data/Cisco-NX-OS-device:System//urib-items/table4-items/Table4-list=management/route4-items
HTTP/1.1
Host: example.com
Accept: application/yang.data+json

The server might respond:

HTTP/1.1 200 OK
Date: Fri, 06 Mar 2020 11:10:30 GMT
Server: nginx/1.7.10
Content-Type: application/yang.data+json

{
"route4-items": {

"Route4-list": [{
"prefix": "172.23.167.255/32",
"flags": "0",
...

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
313

Model-Driven Programmability
RESTCONF Ephemeral Data Example

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
314

Model-Driven Programmability
RESTCONF Ephemeral Data Example

C H A P T E R 29
gRPC Agent

• gRPC Agent, on page 315
• Ephemeral Data, on page 331

gRPC Agent

About the gRPC Agent
The Cisco NX-OS gRPC protocol defines a mechanism through which a network device can be managed and
its configuration data can be retrieved and installed. The protocol exposes a complete and formal Application
Programming Interface (API) that clients can use to manage device configurations.

The Cisco NX-OS gRPC protocol uses a remote procedure call (RPC) paradigm where an external client
manipulates device configurations utilizing Google Protocol Buffer (GPB)-defined API calls along with their
service- specific arguments. These GPB-defined APIs transparently cause an RPC call to the device that return
replies in the same GPB-defined API context.

The gRPC Agent provides a secure transport through TLS and user authentication and authorization through
AAA.

The functional objective of the Cisco NX-OS gRPC protocol is to mirror that provided by NETCONF,
particularly in terms of both stateless and stateful configuration manipulation for maximum operational
flexibility.

The Cisco NX-OS gRPC Agent supports the following protocol operations:

• Get

• GetConfig

• GetOper

• EditConfig

• StartSession

• CloseSession

• KillSession

The gRPC Agent supports two types of operations:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
315

• Stateless operations are performed entirely within a single message without creating a session.

• Stateful operations are performed using multiple messages. The following is the sequence of operations
that are performed:

1. Start the session. This action acquires a unique session ID.

2. Perform session tasks using the session ID.

3. Close the session. This action invalidates the session ID.

The following are the supported operations. See the Appendix for their RPC definitions in the .proto file that
is exported by the gRPC Agent.

DescriptionOperation

Starts a new session between the client and server and acquires a unique session
ID.

StartSession

Writes the specified YANG data subset to the target datastore.EditConfig

Retrieves the specified YANG configuration data subset from the source datastore.GetConfig

Retrieves the specified YANG operational data from the source datastore.GetOper

Retrieves the specified YANG configuration and operational data from the source
datastore.

Get

Forces the termination of a session.KillSession

Requests graceful termination of a session.CloseSession

GetConfig, GetOper, and Get are stateless operations so don’t require a session ID.

EditConfig can be either stateless or stateful. For a stateless operation, specify the SessionID as 0. For a stateful
operation, a valid (nonzero) SessionID is required.

The gRPC Agent supports timeout for the sessions. The idle timeout for sessions can be configured on the
device, after which idle sessions are closed and deleted.

Guidelines and Limitations for gRPC
The gRPC Agent has the following guideline and limitation:

• Beginning with Cisco NX-OS Release 9.3(3), if you have configured a custom gRPC certificate, upon
entering the reload ascii command the configuration is lost. It will revert to the default day-1 certificate.
After entering the reload ascii command, the switch will reload. Once the switch is up again, you need
to reconfigure the gRPC custom certificate.

• gRPC does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536. Only
users with a "network-admin" role are granted access to the gRPC agent.

• gRPC traffic destined for a Nexus device will hit the control-plane policer (CoPP) in the default class.
To limit the possibility of gRPC drops, configure a custom CoPP policy using the gRPC configured port
in the management class.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
316

Model-Driven Programmability
Guidelines and Limitations for gRPC

• Beginning with NX-OS 9.3(1), gRPC Get and GetConfig requests from the gRPC client to the switch
must contain an explicit namespace and filter. This requirement affects requests to the OpenConfig
YANG and Device models. If you see a message that is similar to the following, the requests are not
carrying a namespace:
Request without namespace and filter is an unsupported operation

The following example shows a Get request and response with the behavior before this change. This
example shows the error message that is caused by behavior which is no longer supported.

Request:
client-host % cat payload.json {
}

Response:
{"rpc-reply":

{"rpc-error":{ … Request without filtering is an unsupported operation” …}}
}

The following example shows a Get request and response with the correct behavior in NX-OS release
9.3(1) and later.

Request:
client-host % cat payload.json {

"namespace": "http://cisco.com/ns/yang/cisco-nx-os-device",
"System": {}

}

Response:
{"rpc-reply":

{"data":{"System": ...}}
}

Configuring the gRPC Agent for Cisco NX-OS Release 9.3(3) and Later
The gRPC Agent supports the following configuration commands:

DescriptionParameter

Configure the port number. The range of port-id is
from 1024 to 65535. 50051 is the default.

grpc port

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
317

Model-Driven Programmability
Configuring the gRPC Agent for Cisco NX-OS Release 9.3(3) and Later

DescriptionParameter

Specify the certificate trustpoint ID. For more
information, see the Installing Identity Certificates
section of the Cisco Nexus 9000 Series NX-OS
Security Configuration Guide, Release 9.3(x) for
importing the certificate to the switch.

This command is available beginning
with Cisco NX-OS Release 9.3(3).

Note

When the certificate is invalid and after
five consecutive failed attempts, the
server is put on hold with the following
syslog:
2020 May 17 00:35:44 n9k
%NXSDK-4-WARNING_MSG:
grpc (5459) Reached maximal mgt
server retry. Verify certificate
and port config are valid.

Note

grpc certificate

The gRPCAgent supports the following configuration parameters under the [grpc] section in the configuration
file (/etc/mtx.conf).

DescriptionParameter

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default timeout is 5 minutes.

A value of 0 disables timeout.

idle_timeout

(Optional) Specifies the number of maximum
simultaneous client sessions.

The default limit is 5 sessions.

The range is from 1 through 50.

limit

Specifies the type of secure connection.

Valid choices are:

• TLS for TLS

• NONE for an insecure connection

security

For the modified configuration file to take effect, you must either restart or reload the gRPC Agent using the
following commands:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
318

Model-Driven Programmability
Configuring the gRPC Agent for Cisco NX-OS Release 9.3(3) and Later

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

CommandAction

grpcctl restart

or

grpcctl stop

grpcctl start

Restart the agent

grpcctl reloadReload the configuration

About Certificates

For new switch deployments with Cisco NX-OS 9.3(1), the switch generates a one-day temporary certificate
to allow you enough time to install your custom certificate. This temporary one-day certificate replaces the
hard-coded default certificate that was generated in previous versions of Cisco NX-OS. The temporary one-day
certificate gets regenerated when a switch reload or system switchover event occurs.

If your switch already has a custom certificate that is installed, for example, if you are upgrading from a
previous NX-OS version to NX-OS 9.3(1), your existing certificate is retained and used after upgrade.

The following is an example of the [grpc] section in the configuration file:

[grpc]
mtxadapter=/opt/mtx/lib/libmtxadaptergrpc.1.0.1.so
idle_timeout=10
limit=1
lport=50051
security=TLS
cert=/etc/grpc.pem
key=/etc/grpc.key

Beginning with Cisco NX-OS Release 9.3(3) and later, lport=50051 is replaced by the grpc port command.
cert=/etc/grpc.pem and key=/etc/grpc.key are no longer needed and are replaced by the grpc certficate
command.

Configuring gRPC
Configure the gRPC feature through the grpc commands.

To import certificates used by the grpc certificate command onto the switch, see the Installing Identity
Certificates section of the Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 9.3(x).

When modifying the installed identity certificates or grpc port and grpc certificate values, the gRPC server
might restart to apply the changes. When the gRPC server restarts, any active subscription is dropped and you
must resubscribe.

Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
319

Model-Driven Programmability
Configuring gRPC

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch-1(config)#

Enables the gRPC agent, which supports the
gNMI interface for dial-in.

feature grpc

Example:

Step 2

switch# feature grpc
switch-1(config)#

Configure the port number. The range of port-id
is from 1024 to 65535. 50051 is the default.

grpc port port-id

Example:

Step 3

This command is available
beginning with Cisco NX-OS
Release 9.3(3).

Noteswitch(config)# grpc port 50051

Specify the certificate trustpoint ID. For more
information, see the Installing Identity

grpc certificate certificate-id

Example:

Step 4

Certificates section of the Cisco Nexus 9000
switch-1(config)# grpc certificate cert-1 Series NX-OS Security Configuration Guide,

Release 9.3(x) for importing the certificate to
the switch.

This command is available
beginning with Cisco NX-OS
Release 9.3(3).

Note

Configuring the gRPC Agent for Cisco NX-OS Release 9.3(2) and Earlier
The gRPCAgent supports the following configuration parameters under the [grpc] section in the configuration
file (/etc/mtx.conf).

DescriptionParameter

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default timeout is 5 minutes.

A value of 0 disables timeout.

idle_timeout

(Optional) Specifies the number of maximum
simultaneous client sessions.

The default limit is 5 sessions.

The range is from 1 through 50.

limit

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
320

Model-Driven Programmability
Configuring the gRPC Agent for Cisco NX-OS Release 9.3(2) and Earlier

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

DescriptionParameter

(Optional) Specifies the port number on which the
gRPC Agent listens.

The default port is 50051.

lport

Specifies the key file location for TLS authentication.

The default location is /opt/mtx/etc/grpc.key.

key

Specifies the certificate file location for TLS
authentication.

The default location is /opt/mtx/etc/grpc.pem.

Beginning with NX-OS release 9.3(1), some changes
are made to the certificate for gRPC Agent. See
"About Certificates" below.

cert

Specifies the type of secure connection.

Valid choices are:

• TLS for TLS

• NONE for an insecure connection

security

For the modified configuration file to take effect, you must either restart or reload the gRPC Agent using the
following commands:

CommandAction

grpcctl restart

or

grpcctl stop

grpcctl start

Restart the agent

grpcctl reloadReload the configuration

About Certificates

For new switch deployments with Cisco NX-OS 9.3(1), the switch generates a one-day temporary certificate
to allow you enough time to install your custom certificate. This temporary one-day certificate replaces the
hard-coded default certificate that was generated in previous versions of Cisco NX-OS. The temporary one-day
certificate gets regenerated when a switch reload or system switchover event occurs.

If your switch already has a custom certificate that is installed, for example, if you are upgrading from a
previous NX-OS version to NX-OS 9.3(1), your existing certificate is retained and used after upgrade.

The following is an example of the [grpc] section in the configuration file:

[grpc]
mtxadapter=/opt/mtx/lib/libmtxadaptergrpc.1.0.1.so
idle_timeout=10

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
321

Model-Driven Programmability
Configuring the gRPC Agent for Cisco NX-OS Release 9.3(2) and Earlier

limit=1
lport=50051
security=TLS
cert=/etc/grpc.pem
key=/etc/grpc.key

For the following, if you have a hard-coded key, you must delete it and install your custom key in a persistent
location.

Note

Delete the Hard-Coded Certificate

If your switch was deployed with a version of NX-OS earlier than 9.3(1), you must delete the hard-coded
certificate.

Change the Certificate Location

The previous default location for the certificate (/etc/mtx.conf file) is no longer persistent.

By default, the /etc/mtx.conf.user file is not present, so you will need to create it and specify the new
location of the key and certificate so that the change is persistent. For example:
[grpc]
cert="new location"
key="new location"

For switches that have dual supervisor modules, you must upload the certificate files and modify the
/etc/mtx.conf.user file on both the Active and Standby supervisors. If you do not do this on both supervisors,
the certificate files are not persistent after a switchover.

Note

Replace an Expired Certificate

If your temporary, one-day certificate is expired, delete it and replace it with a new certificate.

Reload the Configuration File
Use the appropriate option, depending on whether you want to reload the switch:

• If you are restarting the gRPC agent to use the new certificate without reloading the switch:

1. Add the certificate and key to /etc/mtx.conf.

2. For the modified configuration file to take effect, issue no feature grpc to disable the gRPC Agent,
then feature grpc to reenable it.

• If you want to reload the switch, the changes to /etc/mtx.conf.user are sufficient. You do not need to
modify /etc/mtx.conf.

Using the gRPC Agent

General Commands

You can enable or disable the gRPC Agent by issuing the [no] feature grpc command.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
322

Model-Driven Programmability
Using the gRPC Agent

General Commands

The available control commands for the gRPC agent are:

grpcctl { status | start | restart | reload | stop }

Viewing the Agent Status

bash-4.2# grpcctl status
xosdsd is stopped
grpcctl is stopped

Starting the Agent

bash-4.2# grpcctl start
Starting Grpc Agent: [OK]

Example: A Basic Yang Path in JSON Format

client-host % cat payload.json
{
"namespace": "http://cisco.com/ns/yang/cisco-nx-os-device",
"System": {
"bgp-items": {
"inst-items": {
"dom-items": {
"Dom-list": {
"name": "default",
"rtrId": "7.7.7.7",
"holdIntvl": "100"

}
}

}
}

}
}

The JSON structure has been pretty-formatted here for readability.Note

Sending an EditConfig Request to the Server

client-host % ./grpc_client -username=admin -password=cisco -operation=EditConfig
-e_oper=Merge -def_op=Merge -err_op=stop-on-error -infile=payload.json -reqid=1
-source=running -tls=true -serverAdd=192.0.20.123 -lport=50051

##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
323

Model-Driven Programmability
Using the gRPC Agent

Sending EditConfig request to the server
sessionid is
0
reqid:1
{"rpc-reply":{"ok":""}}

Sending a GetConfig Request to the Server

client-host % ./grpc_client -username=admin -password=cisco -operation=GetConfig
-infile=payload.json -reqid=1 -source=running -tls=true -serverAdd=192.0.20.123 -lport=50051

##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured
Sending GetConfig request to the server
in get config
Got the response from the server
###
Yang Json is:
###
{"rpc-reply":{"data":{"System":{"bgp-items":{"inst-items":{"dom-items":{"Dom-list":{"name":"default","rtrId":"7.7.7.7","holdIntvl":"100"}}}}}}}}
###
client-host %

Troubleshooting the gRPC Agent

Troubleshooting Connectivity

• From a client system, verify that the agent is listening on the port. For example:

client-host % nc –z 192.0.20.222 50051
Connection to 192.0.20.222 50051 port [tcp/*] succeeded!
client-host % echo $?
0
client-host %

• In the NX-OS, check the gRPC agent status by issuing show feature | grep grpc.

gRPC Protobuf File
The gRPC Agent exports the supported operations and data structures in the proto definition file at
/opt/mtx/etc/nxos_grpc.proto. The file is included in the gRPC Agent RPM. The following shows the
definitions:

// Copyright 2016, Cisco Systems Inc.
// All rights reserved.

syntax = "proto3";

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
324

Model-Driven Programmability
Troubleshooting the gRPC Agent

package NXOSExtensibleManagabilityService;

// Service provided by Cisco NX-OS gRPC Agent
service gRPCConfigOper {

// Retrieves the specified YANG configuration data subset from the
// source datastore
rpc GetConfig(GetConfigArgs) returns(stream GetConfigReply) {};

// Retrieves the specified YANG operational data from the source datastore
rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

// Retrieves the specified YANG configuration and operational data
// subset from the source datastore
rpc Get(GetArgs) returns(stream GetReply){};

// Writes the specified YANG data subset to the target datastore
rpc EditConfig(EditConfigArgs) returns(EditConfigReply) {};

// Starts a new session between the client and server and acquires a
// unique session ID
rpc StartSession(SessionArgs) returns(SessionReply) {};

// Requests graceful termination of a session
rpc CloseSession(CloseSessionArgs) returns (CloseSessionReply) {};

// Forces the termination of a session
rpc KillSession(KillArgs) returns(KillReply) {};

// Unsupported; reserved for future
rpc DeleteConfig(DeleteConfigArgs) returns(DeleteConfigReply) {};

// Unsupported; reserved for future
rpc CopyConfig(CopyConfigArgs) returns(CopyConfigReply) {};

// Unsupported; reserved for future
rpc Lock(LockArgs) returns(LockReply) {};

// Unsupported; reserved for future
rpc UnLock(UnLockArgs) returns(UnLockReply) {};

// Unsupported; reserved for future
rpc Commit(CommitArgs) returns(CommitReply) {};

// Unsupported; reserved for future
rpc Validate(ValidateArgs) returns(ValidateReply) {};

// Unsupported; reserved for future
rpc Abort(AbortArgs) returns(AbortReply) {};

}

message GetConfigArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
325

Model-Driven Programmability
gRPC Protobuf File

message GetConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message GetOperArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message GetOperReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message GetArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath=1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message GetReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message EditConfigArgs
{

// JSON-encoded YANG data to be edited
string YangPath = 1;

// Specifies the operation to perform on teh configuration datastore with
// the YangPath data. Possible values are:
// create
// merge

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
326

Model-Driven Programmability
gRPC Protobuf File

// replace
// delete
// remove
// If not specified, default value is "merge".
string Operation = 2;

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 3;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 4;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 5;

// Specifies the default operation on the given object while traversing
// the configuration tree.
// The following operations are possible:
// merge: merges the configuration data with the target datastore;
// this is the default.
// replace: replaces the configuration data with the target datastore.
// none: target datastore is unaffected during the traversal until
// the specified object is reached.
string DefOp = 6;

// Specifies the action to be performed in the event of an error during
// configuration. Possible values are:
// stop
// roll-back
// continue
// Default is "roll-back".
string ErrorOp = 7;

}

message EditConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If EditConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message DeleteConfigArgs
{

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;

}

message DeleteConfigReply
{

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
327

Model-Driven Programmability
gRPC Protobuf File

// The request ID specified in the request.
int64 ReqID = 1;

// If DeleteConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message CopyConfigArgs
{

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 4;

}

message CopyConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If CopyConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message LockArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID=2;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;

}

message LockReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Lock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
328

Model-Driven Programmability
gRPC Protobuf File

message UnLockArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;

}

message UnLockReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If UnLock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message SessionArgs
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

}

message SessionReply
{

// The request ID specified in the request.
int64 ReqID = 1;
int64 SessionID = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message CloseSessionArgs
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 2;

}

message CloseSessionReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If CloseSession is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message KillArgs

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
329

Model-Driven Programmability
gRPC Protobuf File

{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

int64 SessionIDToKill = 2;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 3;

}

message KillReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Kill is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message ValidateArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message ValidateReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Validate is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message CommitArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message CommitReply
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// If Commit is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
330

Model-Driven Programmability
gRPC Protobuf File

message AbortArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message AbortReply
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// If Abort is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

Ephemeral Data

About Ephemeral Data in gRPC
Beginning with Cisco NX-OS Release 9.3(3), this feature provides access to ephemeral data. Ephemeral data
is high volume data. DME provides a batching mechanism to retrieve the data so that each batch is of a
manageable size in term of memory usage. The size of the batch is the number of MOs to be retrieved.

The batching mechanism is not exposed via gRPC. Batching is handled internally. You do not use gRPC
batching explicitly. You can use batching while trying to access directly from DME via REST API.

You can find information about which data is ephemeral by the comment "Ephemeral data" in the published
YANG file.

The output from ephemeral data is returned, if and only if, the filter in the request points to:

• A leaf from ephemeral data

• A container or list with ephemeral data children

• An empty container that is used to wrap a list that had direct ephemeral data children

System level GET queries do not return ephemeral data.

gRPC Ephemeral Data Example
This is a gRPC example of retrieving ephemeral data.
ayyim-lnx.cisco.com:200> cat urib.mgmt.json
{"namespace":"http://cisco.com/ns/yang/cisco-nx-os-device",

"System": {
"urib-items":{

"table4-items":{
"Table4-list":{

"vrfName":"management",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
331

Model-Driven Programmability
Ephemeral Data

"route4-items":{
"Route4-list":{
}

}
}

}
}

}
}

ayyim-lnx.cisco.com:395> ./grpc_client -username=admin -password=C\!sco123 -operation=Get
-reqid=1 -serverAdd=172.23.167.216 -lport=50051 -tls=true -infile=payloads/urib.mgmt.json
-cafile=grpc.pem.n9kv-blade2

##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
172.23.167.216:50051
All the client connections are secured
Sending Get request to the server
sending get request
Got the response from the server
###
Yang Json is:
###
{

"rpc-reply" : {
"data" : {

"System" : {
"xmlns" : "http://cisco.com/ns/yang/cisco-nx-os-device",
"urib-items" : {

"table4-items" : {
"Table4-list" : [

{
"vrfName" : "management",
"route4-items" : {

"Route4-list" : [
{

"prefix" : "172.23.167.255/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.255",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "broadcast",
"preference" : "0",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:18:18",
"vrf" : "management"

}
]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
332

Model-Driven Programmability
gRPC Ephemeral Data Example

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},
{

"prefix" : "172.23.167.216/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.216",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "local",
"preference" : "0",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:18:18",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},
{

"prefix" : "172.23.167.20/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.20",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "am",
"preference" : "250",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:03:06",
"vrf" : "management"

}
]

},
"pendingHw" : "false",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
333

Model-Driven Programmability
gRPC Ephemeral Data Example

"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},
{

"prefix" : "172.23.167.8/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.8",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "am",
"preference" : "250",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:02:23",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},
{

"prefix" : "0.0.0.0/0",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.1",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "N/A",
"isBest" : "true",
"metric" : "0",
"owner" : "static",
"preference" : "1",
"routeType" : "",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:18:18",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
334

Model-Driven Programmability
gRPC Ephemeral Data Example

"uBestNextHopCount" : "1"
},
{

"prefix" : "172.23.167.0/24",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.216",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "direct",
"preference" : "0",
"routeType" : "",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:18:18",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},
{

"prefix" : "172.23.167.1/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.1",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "mgmt0",
"isBest" : "true",
"metric" : "0",
"owner" : "am",
"preference" : "250",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:04:07",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

},

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
335

Model-Driven Programmability
gRPC Ephemeral Data Example

{
"prefix" : "172.23.167.0/32",
"flags" : "0",
"mBestNextHopCount" : "0",
"nh4-items" : {

"NextHop4-list" : [
{

"id" : "0",
"address" : "172.23.167.0",
"bindinglabel" : "0",
"encapType" : "none",
"interfaceName" : "Null0",
"isBest" : "true",
"metric" : "0",
"owner" : "broadcast",
"preference" : "0",
"routeType" : "unknown",
"segidType" : "null",
"segmentId" : "0",
"tag" : "0",
"tunnelId" : "0",
"uptime" : "00:18:18",
"vrf" : "management"

}
]

},
"pendingHw" : "false",
"pendingUfdm" : "false",
"sortKey" : "0",
"uBestNextHopCount" : "1"

}
]

}
}

]
}

}
}

}
}

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
336

Model-Driven Programmability
gRPC Ephemeral Data Example

C H A P T E R 30
gNMI - gRPC Network Management Interface

This chapter contains the following topics:

• About gNMI, on page 337
• VRF Contexts for gNMI, on page 338
• gNMI Subscribe RPC, on page 338
• Guidelines and Limitations for gNMI, on page 340
• Configuring gNMI, on page 341
• gNMI - gRPC Network Management Interface, on page 343
• Configuring Server Certificate, on page 343
• Generating Key/Certificate Examples , on page 344
• Generating and Configuring Key/Certificate Examples for Cisco NX-OS Release 9.3(2) and Earlier, on
page 344

• Examples for Generating and Configuring Key/Certificate for Cisco NX-OS Release 9.3(3) and Later,
on page 346

• Verifying gNMI, on page 347
• Clients, on page 353
• Sample DME Subscription - PROTO Encoding, on page 353
• Capabilities, on page 354
• Get, on page 358
• Set, on page 359
• Subscribe, on page 360
• Streaming Syslog, on page 364
• Troubleshooting, on page 370

About gNMI
gNMI uses gRPC (Google Remote Procedure Call) as its transport protocol.

Cisco NX-OS supports gNMI for dial-in subscription to telemetry applications running on the Cisco Nexus
9000 Series switches. Although past release supported telemetry events over gRPC, the switch pushed the
telemetry data to the telemetry receivers. This method was called dial out.

With gNMI, applications can pull information from the switch. They subscribe to specific telemetry services
by learning the supported telemetry capabilities and subscribing to only the telemetry services that it needs.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
337

Table 21: Supported gNMI RPCs

SupportedgNMI RPC

YesCapabilities

YesGet

YesSet

YesSubscribe

VRF Contexts for gNMI
In previous releases, the gRPC server ran in the management VRF only. As a result, the gRPC process could
communicate only in this VRF, forcing the management interface to support all gRPC calls. This configuration
is still supported in release 9.3(1).

Beginning in release 9.3(1), gRPC functionality now includes the default VRF for a total of 2 gRPC servers
on each Cisco Nexus 9000 switch. You can run one gRPC server in each VRF, or run only one gRPC server
in the management VRF. Supporting a gRPC in the default VRF adds flexibility to offload processing gRPC
calls from the management VRF, where significant traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other,
and requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

gNMI Subscribe RPC
The Cisco NX-OS 9.3(1) release and later support the following gNMI Subscription features:

Table 22: Subscribe Options

DescriptionSupported?Sub TypeType

Switch sends current
values only once for all
specified paths

YesOnce

Whenever the switch
receives a Poll message,
the switch sends the
current values for all
specified paths.

YesPoll

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
338

Model-Driven Programmability
VRF Contexts for gNMI

DescriptionSupported?Sub TypeType

Once per stream sample
interval, the switch sends
the current values for all
specified paths. The
supported sample interval
range is from 1 through
604800 seconds.

The default sample
interval is 10 seconds.

YesSampleStream

The switch sends current
values as its initial state,
but then updates the
values only when
changes, such as create,
modify, or delete occur to
any of the specified paths.

YesOn_Change

NoTarget_Defined

Optional SUBSCRIBE Flags

For the SUBSCRIBE option, some optional flags are available that modify the response to the options listed
in the table. In Cisco NX-OS release 9.3(1) and later, the updates_only optional flag is supported, which is
applicable to ON_CHANGE subscriptions. If this flag is set, the switch suppresses the initial snapshot data
(current state) that is normally sent with the first response.

The following flags are not supported:

• aliases

• allow_aggregation

• extensions

• prefix

• qos

The following is the support metrics for the subscribe flags:

Table 23: Support Metrics for SUBSCRIBE flags

suppress_redundantheartbeat_intervalSubscription Type

N/AOrigin: Device YANG,
OpenConfig YANG, DME

On_Change

Origin: Device YANG,
OpenConfig YANG

Origin: Device YANG,
OpenConfig YANG, DME

Sample

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
339

Model-Driven Programmability
gNMI Subscribe RPC

Guidelines and Limitations for gNMI
Following are the guidelines and limitations for gNMI:

• Beginning with Cisco NX-OS Release 9.3(5), Get and Set are supported.

• gNMI queries do not support wildcards in paths.

• gRPC traffic destined for a Nexus device will hit the control-plane policer (CoPP) in the default class.
To limit the possibility of gRPC drops, configure a custom CoPP policy using the gRPC configured port
in the management class.

• When you enable gRPC on both the management VRF and default VRF and later disable on the default
VRF, the gNMI notifications on the management VRF stop working.

As a workaround, disable gRPC completely by entering the no feature grpc command and reprovision
it by entering the feature grpc command and any existing gRPC configuration commands. For example,
grpc certificate or grpc port. Youmust also resubscribe to any existing notifications on themanagement
VRF.

• When you attempt to subscribe an OpenConfig routing policy with a preexisting CLI configuration like
the following, it returns empty values due to the current implementation of the OpenConfig model.
ip prefix-list bgp_v4_drop seq 5 deny 125.2.0.0/16 le 32
ipv6 prefix-list bgp_v6_drop seq 5 deny cafe:125:2::/48 le 128

using the xpath

openconfig-routing-policy:/routing-policy/defined-sets/prefix-sets/prefix-set[name=bgp_v4_drop]/config
openconfig-routing-policy:/routing-policy/defined-sets/prefix-sets/prefix-set[name=bgp_v6_drop]/config

• Only server certificate authentication takes place. The client certificate is not authenticated by the server.

• If the gRPC certificate is explicitly configured, after a reload with the saved startup configuration to a
prior Cisco NX-OS 9.3(x) image, the gRPC feature does not accept connections. To confirm this issue,
enter the show grpc gnmi service statistics command and the status line displays an error like the
following:
Status: Not running - Initializing...Port not available or certificate invalid.

Unconfigure and configure the proper certificate command to restore the service.

• Beginning with Cisco NX-OS Release 9.3(3), if you have configured a custom gRPC certificate, upon
entering the reload ascii command the configuration is lost. It reverts to the default day-1 certificate.
After entering the reload ascii command, the switch reloads. Once the switch is up again, you must
reconfigure the gRPC custom certificate.

This applies when entering the grpc certificate command.Note

• Use of origin, use_models, or both, is optional for gNMI subscriptions.

• gNMI Subscription supports Cisco DME and Device YANG data models. Beginning with Cisco NX-OS
Release 9.3(3), Subscribe supports the OpenConfig model.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
340

Model-Driven Programmability
Guidelines and Limitations for gNMI

• For Cisco NX-OS prior to 9.3(x), information about supported platforms, see Platform Support for
Programmability Features in the guide for that release. Starting with Cisco NX-OS release 9.3(x), for
information about supported platforms, see the Nexus Switch Platform Matrix.

• The gNMI feature supports the Subscribe and Capability gNMI RPCs.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12 MB
maximum, the collected data is dropped. Applies to gNMI ON_CHANGE mode only.

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• Across all subscriptions, there is support of up to 150K aggregate MOs. Subscribing to more MOs can
lead to collection data drops.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The gRPC process that supports gNMI uses the HIGH_PRIO control group, which limits the CPU usage
to 75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The gRPC agent retains gNMI calls for a maximum of one hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based on the internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

gRPC functionality now includes the default VRF for a total of two gRPC servers on each switch. You can
run one gRPC server in each VRF, or run only one gRPC server in the management VRF. Supporting a gRPC
in the default VRF adds flexibility to offload processing gRPC calls from the management VRF, where
significant traffic load is not desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server process requests independent of the other.
Requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

Configuring gNMI
Configure the gNMI feature through the grpc gnmi commands.

To import certificates used by the grpc certificate command onto the switch, see the Installing Identity
Certificates section of the Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 9.3(x).

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
341

Model-Driven Programmability
Configuring gNMI

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

When modifying the installed identity certificates or grpc port and grpc certificate values, the gRPC server
might restart to apply the changes. When the gRPC server restarts, any active subscription is dropped and you
must resubscribe.

Note

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enables the gRPC agent, which supports the
gNMI interface for dial-in.

feature grpc

Example:

Step 2

switch-1# feature grpc
switch-1(config)#

Configure the port number. The range of port-id
is from 1024 to 65535. 50051 is the default.

(Optional) grpc port port-id

Example:

Step 3

This command is available
beginning with Cisco NX-OS
Release 9.3(3).

Noteswitch-1(config)# grpc port 50051

Specify the certificate trustpoint ID. For more
information, see the Installing Identity

grpc certificate certificate-id

Example:

Step 4

Certificates section of the Cisco Nexus 9000
switch-1(config)# grpc certificate cert-1 Series NX-OS Security Configuration Guide,

Release 9.3(x) for importing the certificate to
the switch.

This command is available
beginning with Cisco NX-OS
Release 9.3(3).

Note

Sets the limit of simultaneous dial-in calls to
the gNMI server on the switch. Configure a
limit from 1 through 16. The default limit is 8.

grpc gnmi max-concurrent-call number

Example:
switch-1(config)# grpc gnmi
max-concurrent-call 16
switch-1(config)#

Step 5

The maximum value that you configure is for
each VRF. If you set a limit of 16 and gNMI is
configured for both management and default
VRFs, each VRF supports 16 simultaneous
gNMI calls.

This command does not affect and ongoing or
in-progress gNMI calls. Instead, gRPC enforces
the limit on new calls, so any in-progress calls
are unaffected and allowed to complete.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
342

Model-Driven Programmability
Configuring gNMI

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

PurposeCommand or Action

The configured limit does not
affect the gRPCConfigOper
service.

Note

Enables the gRPC agent to accept incoming
(dial-in) RPC requests from the default VRF.

(Optional) grpc use-vrf default

Example:

Step 6

This step enables the default VRF to process
switch(config)# grpc use-vrf default incoming RPC requests. By default, the

management VRF processes incoming RPC
requests when the gRPC feature is enabled.

Both VRFs process requests
individually, so that requests do
not cross between VRFs.

Note

gNMI - gRPC Network Management Interface
This section defines a gRPC-based protocol for the modification and retrieval of the configuration from a
target device, as well as, the control and generation of telemetry streams from a target device to a data collection
system. The intention is that a single gRPC service definition can cover both configuration and telemetry -
allowing a single implementation on the target, as well as a single NMS element to interact with the device
via telemetry and configuration RPCs.

Configuring Server Certificate
When you configured a TLS certificate and imported successfully onto the switch, the following is an example
of the show grpc gnmi service statistics command output.
#show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Mon Jan 27 15:34:08 PDT 2020
Cert notAfter : Tue Jan 26 15:34:08 PDT 2021

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
343

Model-Driven Programmability
gNMI - gRPC Network Management Interface

gNMI communicates over gRPC and uses TLS to secure the channel between the switch and the client. The
default hard-coded gRPC certificate is no longer shipped with the switch. The default behavior is a self-signed
key and certificate which is generated on the switch as shown below with an expiration date of one day.

When the certificate is expired or failed to install successfully, you will see the 1-D default certificate. The
following is an example of the show grpc gnmi service statistics command output.
#show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Wed Mar 11 19:43:01 PDT 2020
Cert notAfter : Thu Mar 12 19:43:01 PDT 2020

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

With an expiration of one day, you can use this temporary certificate for quick testing. For long term a new
key/certificate must be generated.

After the certificate expires, there are two ways to have the key/certificate to regenerate:

• Reload the switch.

• Manually delete the key/certificate in the /opt/mtx/etc folder and enter the no feature grpc and
feature grpc commands.

Note

Generating Key/Certificate Examples
Follow these examples to generate Key/Certificates:

• Generating and Configuring Key/Certificate Examples for Cisco NX-OS Release 9.3(2) and Earlier, on
page 344

Generating and Configuring Key/Certificate Examples for Cisco
NX-OS Release 9.3(2) and Earlier

The following is an example for generating key/certificate:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
344

Model-Driven Programmability
Generating Key/Certificate Examples

For more information on generating identify certificates, see the Installing Identity Certificates section of the
Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 9.3(x).

Procedure

Step 1 Generate the selfsigned key and pem files.
switch# run bash sudo su
bash-4.3# openssl req -x509 -newkey rsa:2048 -keyout self_sign2048.key -out self_sign2048.pem
-days 365 -nodes

Step 2 After generating the key and pem files, modify the mtx.conf.user files in the Bash shell to have the gRPC
service pick up the certificates.
[grpc]
key = /bootflash/self-sign2048.key
cert = /bootflash/self-sign2048.pem

Step 3 Reload the box to have the gRPC service pick up the certificate.
Step 4 Verify gRPC is now using the certificate.

switch# show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Nov 5 16:48:58 2015 GMT
Cert notAfter : Nov 5 16:48:58 2035 GMT

Max concurrent calls : 16
Listen calls : 1
Active calls : 0

Number of created calls : 953
Number of bad calls : 0

Subscription stream/once/poll : 476/238/238

Max gNMI::Get concurrent : 5
Max grpc message size : 8388608
gNMI Synchronous calls : 10
gNMI Synchronous errors : 0
gNMI Adapter errors : 0
gNMI Dtx errors : 0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
345

Model-Driven Programmability
Generating and Configuring Key/Certificate Examples for Cisco NX-OS Release 9.3(2) and Earlier

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

Examples for Generating and Configuring Key/Certificate for
Cisco NX-OS Release 9.3(3) and Later

The following is an example for generating key/certificate.

This task is an example of how a certificate can be generated on a switch. You can also generate a certificate
in any Linux environment. In a production environment, you should consider using a CA signed certificate.

Note

For more information on generating identity certificates, see the Installing Identity Certificates section of the
Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 9.3(x).

Procedure

Step 1 Generate the selfsigned key and pem files.
switch# run bash sudo su
bash-4.3# openssl req -x509 -newkey rsa:2048 -keyout self_sign2048.key -out self_sign2048.pem
-days 365 -nodes

Step 2 After generating the key and pem files, you must bundle the key and pem files for use in the trustpoint CA
Association.
switch# run bash sudo su
bash-4.3# cd /bootflash/
bash-4.3# openssl pkcs12 -export -out self_sign2048.pfx -inkey self_sign2048.key -in
self_sign2048.pem -certfile self_sign2048.pem -password pass:Ciscolab123!
bash-4.3# exit

Step 3 Verify the setup.
switch(config)# show crypto ca certificates
Trustpoint: mytrustpoint
certificate:
subject= /C=US/O=Cisco Systems, Inc./OU=CSG/L=San Jose/ST=CA/street=3700 Cisco
Way/postalCode=95134/CN=ems.cisco.com/serialNumber=FGE18420K0R
issuer= /C=US/O=Cisco Systems, Inc./OU=CSG/L=San Jose/ST=CA/street=3700 Cisco
Way/postalCode=95134/CN=ems.cisco.com/serialNumber=FGE18420K0R
serial=0413
notBefore=Nov 5 16:48:58 2015 GMT
notAfter=Nov 5 16:48:58 2035 GMT
SHA1 Fingerprint=2E:99:2C:CE:2F:C3:B4:EC:C7:E2:52:3A:19:A2:10:D0:54:CA:79:3E
purposes: sslserver sslclient

CA certificate 0:
subject= /C=US/O=Cisco Systems, Inc./OU=CSG/L=San Jose/ST=CA/street=3700 Cisco
Way/postalCode=95134/CN=ems.cisco.com/serialNumber=FGE18420K0R
issuer= /C=US/O=Cisco Systems, Inc./OU=CSG/L=San Jose/ST=CA/street=3700 Cisco
Way/postalCode=95134/CN=ems.cisco.com/serialNumber=FGE18420K0R
serial=0413
notBefore=Nov 5 16:48:58 2015 GMT
notAfter=Nov 5 16:48:58 2035 GMT
SHA1 Fingerprint=2E:99:2C:CE:2F:C3:B4:EC:C7:E2:52:3A:19:A2:10:D0:54:CA:79:3E

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
346

Model-Driven Programmability
Examples for Generating and Configuring Key/Certificate for Cisco NX-OS Release 9.3(3) and Later

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x_chapter_011010.html#task_2088148

purposes: sslserver sslclient

Step 4 Configure gRPC to use the trustpoint.
switch(config)# grpc certificate mytrustpoint
switch(config)# show run grpc

!Command: show running-config grpc
!Running configuration last done at: Thu Jul 2 12:24:02 2020
!Time: Thu Jul 2 12:24:05 2020

version 9.3(5) Bios:version 05.38
feature grpc

grpc gnmi max-concurrent-calls 16
grpc use-vrf default
grpc certificate mytrustpoint

Step 5 Verify gRPC is now using the certificate.
switch# show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Nov 5 16:48:58 2015 GMT
Cert notAfter : Nov 5 16:48:58 2035 GMT

Max concurrent calls : 16
Listen calls : 1
Active calls : 0

Number of created calls : 953
Number of bad calls : 0

Subscription stream/once/poll : 476/238/238

Max gNMI::Get concurrent : 5
Max grpc message size : 8388608
gNMI Synchronous calls : 10
gNMI Synchronous errors : 0
gNMI Adapter errors : 0
gNMI Dtx errors : 0

Verifying gNMI
To verify the gNMI configuration, enter the following command:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
347

Model-Driven Programmability
Verifying gNMI

DescriptionCommand

Displays a summary of the agent running status,
respectively for the management VRF, or the default
VRF (if configured). It also displays:

• Basic overall counters

• Certificate expiration time

If the certificate is expired, the
agent cannot accept requests.

Note

show grpc gnmi service statistics

Displays the following:

• Number of capability RPCs received.

• Capability RPC errors.

• Number of Get RPCs received.

• Get RPC errors.

• Number of Set RPCs received.

• Set RPC errors.

• More error types and counts.

show grpc gnmi rpc summary

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
348

Model-Driven Programmability
Verifying gNMI

DescriptionCommand

The show grpc gnmi transactions command is the
most dense and contains considerable information. It
is a history buffer of the most recent 50 gNMI
transactions that are received by the switch. As new
RPCs come in, the oldest history entry is removed
from the end. The following explains what is
displayed:

• RPC – This shows the type of RPC that was
received (Get, Set, Capabilities)

• DataType – For a Get only. Has values ALL,
CONFIG, and STATE.

• Session – shows the unique session-id that is
assigned to this transaction. It can be used to
correlate data that is found in other log files.

• Time In -- shows timestamp of when the RPC
was received by the gNMI handler.

• Duration – time delta in ms from receiving the
request to giving response.

• Status – the status code of the operation returned
to the client (0 = Success, !0 ==
error)

This section is data that is kept per path within a single
gNMI transaction. For example, a single Get or Set

• subtype – for a Set RPC, shows the specific
operation that is requested per path (Delete,
Update, Replace). For Get, there is no subtype.

• dtx – shows that this path was processed in DTX
“fast” path or not. A dash ‘-‘ means no, an
asterisk ‘*’ means yes.

• st – Status for this path. The meaning is as
follows:

• OK: path is valid and processed by infra
successfully.

• ERR: path is either invalid or generated
error by infra

• --: path not processed yet, might or might
not be valid and has not been sent to infra
yet.

• path – the path

show grpc gnmi transactions

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
349

Model-Driven Programmability
Verifying gNMI

show grpc gnmi service statistics Example

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Mar 13 19:05:24 2020 GMT
Cert notAfter : Nov 20 19:05:24 2033 GMT

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

Max gNMI::Get concurrent : 5
Max grpc message size : 8388608
gNMI Synchronous calls : 74
gNMI Synchronous errors : 0
gNMI Adapter errors : 0
gNMI Dtx errors : 0

show grpc gnmi rpc summary Example

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Mar 31 20:55:02 2020 GMT
Cert notAfter : Apr 1 20:55:02 2020 GMT

Capability rpcs : 1
Capability errors : 0
Get rpcs : 53
Get errors : 19
Set rpcs : 23
Set errors : 8
Resource Exhausted : 0
Option Unsupported : 6
Invalid Argument : 18
Operation Aborted : 1
Internal Error : 2
Unknown Error : 0

RPC Type State Last Activity Cnt Req Cnt Resp Client
--------------- ---------- -------------- ---------- ---------- -----------------

Subscribe Listen 04/01 07:39:21 0 0

show grpc gnmi transactions Example

=============
gRPC Endpoint

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
350

Model-Driven Programmability
Verifying gNMI

=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Mar 31 20:55:02 2020 GMT
Cert notAfter : Apr 1 20:55:02 2020 GMT

RPC DataType Session Time In Duration(ms) Status
------------ ---------- --------------- -------------------- ------------ ------
Set - 2361443608 04/01 07:43:49 173 0
subtype: dtx: st: path:
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo789]

Set - 2293989720 04/01 07:43:45 183 0
subtype: dtx: st: path:
Replace - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo6]

Set - 2297110560 04/01 07:43:41 184 0
subtype: dtx: st: path:
Update - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo7]

Set - 0 04/01 07:43:39 0 10

Set - 3445444384 04/01 07:43:33 3259 0
subtype: dtx: st: path:
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo789]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo790]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo791]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo792]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo793]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo794]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo795]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo796]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo797]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo798]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo799]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo800]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo801]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo802]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo803]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo804]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo805]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo806]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo807]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo808]

Set - 2297474560 04/01 07:43:26 186 0
subtype: dtx: st: path:
Update - OK /System/ipv4-items/inst-items/dom-items/Dom-list[name=foo]/rt-
items/Route-list[prefix=0.0.0.0/0]/nh-items/Nexthop-list[nhAddr=192.168.1.1/32][n
hVrf=foo][nhIf=unspecified]/tag

Set - 2294408864 04/01 07:43:17 176 13
subtype: dtx: st: path:
Delete - ERR /System/intf-items/lb-items/LbRtdIf-list/descr

Set - 0 04/01 07:43:11 0 3
subtype: dtx: st: path:
Update - -- /System/intf-items/lb-items/LbRtdIf-list[id=lo4]/descr
Update - ERR /system/processes

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
351

Model-Driven Programmability
Verifying gNMI

Set - 2464255200 04/01 07:43:05 708 0
subtype: dtx: st: path:
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo2]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo777]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo778]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo779]
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo780]
Replace - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo3]/descr
Replace - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo4]/descr
Replace - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo5]/descr
Update - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo3]/descr
Update - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo4]/descr
Update - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo5]/descr

Set - 3491213208 04/01 07:42:58 14 0
subtype: dtx: st: path:
Replace - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo3]/descr

Set - 3551604840 04/01 07:42:54 35 0
subtype: dtx: st: path:
Delete - OK /System/intf-items/lb-items/LbRtdIf-list[id=lo1]

Set - 2362201592 04/01 07:42:52 13 13
subtype: dtx: st: path:
Delete - ERR /System/intf-items/lb-items/LbRtdIf-list[id=lo3]/lbrtdif-items
/operSt

Set - 0 04/01 07:42:47 0 3
subtype: dtx: st: path:
Delete - ERR /System/*

Set - 2464158360 04/01 07:42:46 172 3
subtype: dtx: st: path:
Delete - ERR /system/processes/shabang

Set - 2295440864 04/01 07:42:46 139 3
subtype: dtx: st: path:
Delete - ERR /System/invalid/path

Set - 3495739048 04/01 07:42:44 10 0

Get ALL 3444580832 04/01 07:42:40 3 0
subtype: dtx: st: path:
- - OK /System/bgp-items/inst-items/disPolBatch

Get ALL 0 04/01 07:42:36 0 3
subtype: dtx: st: path:
- - -- /system/processes/process[pid=1]

Get ALL 3495870472 04/01 07:42:36 2 0
subtype: dtx: st: path:
- * OK /system/processes/process[pid=1]

Get ALL 2304485008 04/01 07:42:36 33 0
subtype: dtx: st: path:
- * OK /system/processes

Get ALL 2464159088 04/01 07:42:36 251 0
subtype: dtx: st: path:
- - OK /system

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
352

Model-Driven Programmability
Verifying gNMI

Get ALL 2293232352 04/01 07:42:35 258 0
subtype: dtx: st: path:
- - OK /system

Get ALL 0 04/01 07:42:33 0 12
subtype: dtx: st: path:
- - -- /intf-items

Clients
There are available clients for gNMI subscription. One such client is located at https://github.com/influxdata/
telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi.

Sample DME Subscription - PROTO Encoding
gnmi-console --host >iip> --port 50051 -u <user> -p <pass> --tls --
operation=Subscribe --rpc /root/gnmi-console/testing_bl/once/61_subscribe_bgp_dme_gpb.json

[Subscribe]-------------------------------
Reading from file ' /root/gnmi-console/testing_bl/once/61_subscribe_bgp_dme_gpb.json '
Wed Jun 26 11:49:17 2019
Generating request : 1 -----------
Comment : ONCE request
Delay : 2 sec(s) ...
Delay : 2 sec(s) DONE
subscribe {
subscription {
path {
origin: "DME"
elem {
name: "sys"
}
elem {
name: "bgp"
}
}
mode: SAMPLE
}
mode: ONCE
use_models {
name: "DME"
organization: "Cisco Systems, Inc."
version: "1.0.0"
}
encoding: PROTO
}
Wed Jun 26 11:49:19 2019
Received response 1 --------------------------
update {
timestamp: 1561574967761
prefix {
elem {
name: "sys"
}
elem {
name: "bgp"
}
}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
353

Model-Driven Programmability
Clients

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi

update {
path {
elem {
}
elem {
name: "version_str"
}
}
val {
string_val: "1.0.0"
}
}
update {
path {
elem {
}
elem {
name: "node_id_str"
}
}
val {
string_val: "n9k-tm2"
}
}
update {
path {
elem {
}
elem {
name: "encoding_path"
}
}
val {
string_val: "sys/bgp"
}
}
update {
path {
elem {
}
elem {
/Received -------------------------------------
Wed Jun 26 11:49:19 2019
Received response 2 --------------------------
sync_response: true
/Received -------------------------------------
(_gnmi) [root@tm-ucs-1 gnmi-console]#

Capabilities

About Capabilities
The Capabilities RPC returns the list of capabilities of the gNMI service. The response message to the RPC
request includes the gNMI service version, the versioned data models, and data encodings supported by the
server.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
354

Model-Driven Programmability
Capabilities

Guidelines and Limitations for Capabilities
Following are the guidelines and limitations for Capabilities:

• Beginning with Cisco NX-OS Release 9.3(3), Capabilities supports the OpenConfig model.

• For information about supported platforms, see Nexus Switch Platform Matrix.

• The gNMI feature supports Subscribe and Capability as options of the gNMI service.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12-MB
maximum, the collected data is dropped.

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• All paths within the same subscription request must have the same sample interval. If the same path
requires different sample intervals, create multiple subscriptions.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The feature supports Cisco DME and Device YANG data models.

• The gRPC process that supports gNMI uses the HIGH_PRIO cgroup, which limits the CPU usage to
75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The commands are not XMLized in this release.

• The gRPC agent retains gNMI calls for a maximum of 1 hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based an internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

gRPC functionality now includes the default VRF for a total of 2 gRPC servers on each Cisco Nexus 9000
switch. You can run one gRPC server in each VRF, or run only one gRPC server in the management VRF.
Supporting a gRPC in the default VRF adds flexibility to offload processing gRPC calls from the management
VRF, where significant traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other,
and requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
355

Model-Driven Programmability
Guidelines and Limitations for Capabilities

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

Example Client Output for Capabilities
In this example, all the OpenConfig model RPMs have been installed on the switch.

The following is an example of client output for Capabilities.
hostname user$./gnmi_cli -a 172.19.193.166:50051 -ca_crt ./grpc.pem -insecure -capabilities
supported_models: <
name: "Cisco-NX-OS-device"
organization: "Cisco Systems, Inc."
version: "2019-11-13"

>
supported_models: <
name: "openconfig-acl"
organization: "OpenConfig working group"
version: "1.0.0"

>
supported_models: <
name: "openconfig-bgp-policy"
organization: "OpenConfig working group"
version: "4.0.1"

>
supported_models: <
name: "openconfig-interfaces"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-aggregate"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-ethernet"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-ip"
organization: "OpenConfig working group"
version: "2.3.0"

>
supported_models: <
name: "openconfig-if-ip-ext"
organization: "OpenConfig working group"
version: "2.3.0"

>
supported_models: <
name: "openconfig-lacp"
organization: "OpenConfig working group"
version: "1.0.2"

>
supported_models: <
name: "openconfig-lldp"
organization: "OpenConfig working group"
version: "0.2.1"

>
supported_models: <
name: "openconfig-network-instance"
organization: "OpenConfig working group"
version: "0.11.1"

>
supported_models: <
name: "openconfig-network-instance-policy"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
356

Model-Driven Programmability
Example Client Output for Capabilities

organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-ospf-policy"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform"
organization: "OpenConfig working group"
version: "0.12.2"

>
supported_models: <
name: "openconfig-platform-cpu"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform-fan"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform-linecard"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform-port"
organization: "OpenConfig working group"
version: "0.3.2"

>
supported_models: <
name: "openconfig-platform-psu"
organization: "OpenConfig working group"
version: "0.2.1"

>
supported_models: <
name: "openconfig-platform-transceiver"
organization: "OpenConfig working group"
version: "0.7.0"

>
supported_models: <
name: "openconfig-relay-agent"
organization: "OpenConfig working group"
version: "0.1.0"

>
supported_models: <
name: "openconfig-routing-policy"
organization: "OpenConfig working group"
version: "2.0.1"

>
supported_models: <
name: "openconfig-spanning-tree"
organization: "OpenConfig working group"
version: "0.2.0"

>
supported_models: <
name: "openconfig-system"
organization: "OpenConfig working group"
version: "0.3.0"

>
supported_models: <

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
357

Model-Driven Programmability
Example Client Output for Capabilities

name: "openconfig-telemetry"
organization: "OpenConfig working group"
version: "0.5.1"

>
supported_models: <
name: "openconfig-vlan"
organization: "OpenConfig working group"
version: "3.0.2"

>
supported_models: <
name: "DME"
organization: "Cisco Systems, Inc."

>
supported_models: <
name: "Cisco-NX-OS-Syslog-oper"
organization: "Cisco Systems, Inc."
version: "2019-08-15"

>
supported_encodings: JSON
supported_encodings: PROTO
gNMI_version: "0.5.0"

hostname user$

Get

About Get
The purpose of the Get RPC is to allow a client to retrieve a snapshot of the data tree from the device. Multiple
paths may be requested in a single request. A simplified form of XPATH according to the gNMI Path
Conventions, Schema path encoding conventions for gNMI are used for the path.

For detailed information on the Get operation, refer to the Retrieving Snapshots of State Information section
in the gNMI specification: gRPC Network Management Interface (gNMI)

Guidelines and Limitations for Get
The following are guidelines and limitations for Get and Set:

• GetRequest.encoding supports only JSON.

• For GetRequest.type, only DataType CONFIG and STATE have direct correlation and expression in
YANG. OPERATIONAL is not supported.

• A single request cannot have both OpenConfig (OC) YANG and device YANG paths. A request must
have only OC YANG paths or device YANG paths, but not both.

• GetRequest for root path (“/”: everything from all models) is not allowed.

• GetRequest for the top level of the device model (“/System”) is not allowed.

• gNMI Get returns all default values (ref. report-all mode in RFC 6243 [4]).

• Subscribe supports the model Cisco-NX-OS-syslog-oper.

• Get does not support the model Cisco-NX-OS-syslog-oper.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
358

Model-Driven Programmability
Get

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
https://github.com/openconfig/reference/blob/1cf43d2146f9ba70abb7f04f6b0f6eaa504cef05/rpc/gnmi/gnmi-specification.md
http://tools.ietf.org/html/rfc6243

• Query from the path/system does not return data from the path/system/processes. The specific
path /system/processes should be used to query openconfig-procmon data.

• The following optional items are not supported:

• Path prefix

• Path alias

• Wildcards in path

• A single GetRequest can have up to 10 paths.

• If the size of value field to be returned in GetResponse is over 12 MB, the system returns error
statusgrpc::RESOURCE_EXHAUSTED.

• The maximum gRPC receive buffer size is set to 8 MB.

• The number of total concurrent sessions for Get is limited to five.

• Performing a Get operation when a large configuration is applied to the switch might cause the gRPC
process to consume all available memory. If a memory exhaustion condition is hit, the following syslog
is generated:
MTX-API: The memory usage is reaching the max memory resource limit (3072) MB

If this condition is hit several times consecutively, the following syslog is generated:
The process has become unstable and the feature should be restarted.

We recommend that you restart the gRPC feature at this point to continue normal processing of gNMI
transactions.

• The combined number of concurrent sessions for Get and Set is the currently configured max gNMI
concurrent-1. For instance, if gnmi concurrent calls are configured to 16, the maximum number of total
concurrent sessions for Get and Set will be 15.

• Performing a Get operation when a large configuration is applied to the switch might cause the gRPC
process to be unable to be process the request . At that point, the following error is returned:

There is insufficient memory available on the device to process the subscription.

Set

About Set
The Set RPC is used by a client to change the configuration of the device. The operations, which may be
applied to the device data, are (in order) delete, replace, and update. All operations in a single Set request are
treated as a transaction, meaning that all operations are successful or the device is rolled-back to the original
state. The Set operations are applied in the order that is specified in the SetRequest. If a path is mentioned
multiple times, the changes are applied even if they overwrite each other. The final state of the data is achieved
with the final operation in the transaction. It is assumed that all paths specified in the SetRequest::delete,
replace, update fields are CONFIG data paths and writable by the client.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
359

Model-Driven Programmability
Set

For detailed information on the Set operation, refer to the Modifying State section of the gNMI Specification
https://github.com/openconfig/reference/blob/1cf43d2146f9ba70abb7f04f6b0f6eaa504cef05/rpc/gnmi/gnmi-specification.md.

Guidelines and Limitations for Set
The following are guidelines and limitations for Set:

• SetRequest.encoding supports only JSON.

• A single request cannot have both OpenConfig (OC) YANG and device YANG paths. A request must
have only OC YANG paths or device YANG paths, but not both.

• Subscribe supports the model Cisco-NX-OS-syslog-oper.

• Query from the path/system does not return data from the path/system/processes. The specific
path /system/processes should be used to query openconfig-procmon data.

• The following optional items are not supported:

• Path prefix

• Path alias

• Wildcards in path

• A single SetRequest can have up to 20 paths.

• The maximum gRPC receive buffer size is set to 8 MB.

• The combined number of concurrent sessions for Get and Set is the currently configured max gNMI
concurrent-1. For instance, if gNMI concurrent calls are configured to 16, the maximum number of total
concurrent sessions for Get and Set will be 15.

• For the Set::Delete RPC, an MTX log message warns if the configuration being operated on may be too
large:
Configuration size for this namespace exceeds operational limit. Feature may
become unstable and require restart.

Subscribe

Guidelines and Limitations for Subscribe
Following are the guidelines and limitations for Subscribe:

• If you configure a routing-policy prefix-list using the CLI and request gNMI Subscription for the
routing-policy OpenConfig model, it is not supported. For example, when you attempt to subscribe an
OpenConfig routing policy with a preexisting CLI configuration like the following, it returns empty
values due to the current implementation of the OpenConfig model.
ip prefix-list bgp_v4_drop seq 5 deny 125.2.0.0/16 le 32
ipv6 prefix-list bgp_v6_drop seq 5 deny cafe:125:2::/48 le 128
Using the example paths,
openconfig-routing-policy:/routing-policy/defined-sets/prefix-sets/prefix-set[name=bgp_v4_drop]/config
openconfig-routing-policy:/routing-policy/defined-sets/prefix-sets/prefix-set[name=bgp_v6_drop]/config

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
360

Model-Driven Programmability
Guidelines and Limitations for Set

https://github.com/openconfig/reference/blob/1cf43d2146f9ba70abb7f04f6b0f6eaa504cef05/rpc/gnmi/gnmi-specification.md

• Beginning with Cisco NX-OS Release 9.3(3), Subscribe supports the OpenConfig model.

• For information about supported platforms, see the Nexus Switch Platform Matrix.

• The gNMI feature supports Subscribe and Capability RPCs.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12 MB
maximum, the collected data is dropped.

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• All paths within the same subscription request must have the same sample interval. If the same path
requires different sample intervals, create multiple subscriptions.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The feature supports Cisco DME and Device YANG data models.

• The gRPC process that supports gNMI uses the HIGH_PRIO cgroup, which limits the CPU usage to
75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The commands are not XMLized in this release.

• The gRPC agent retains gNMI calls for a maximum of 1 hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based an internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

gRPC functionality now includes the default VRF for a total of 2 gRPC servers on each Cisco Nexus 9000
switch. You can run one gRPC server in each VRF, or run only one gRPC server in the management VRF.
Supporting a gRPC in the default VRF adds flexibility to offload processing gRPC calls from the management
VRF, where significant traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other,
and requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
361

Model-Driven Programmability
Guidelines and Limitations for Subscribe

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

gNMI Payload
gNMI uses a specific payload format to subscribe to:

• DME Streams

• YANG Streams

Subscribe operations are supported with the following modes:

• ONCE: Subscribe and receive data once and close session.

• POLL: Subscribe and keep session open, client sends poll request each time data is needed.

• STREAM: Subscribe and receive data at specific cadence. The payload accepts values in nanoseconds
1 second = 1000000000.

• ON_CHANGE: Subscribe, receive a snapshot, and only receive data when something changes in the
tree.

Setting modes:

• Each mode requires 2 settings, inside sub and outside sub

• ONCE: SAMPLE, ONCE

• POLL: SAMPLE, POLL

• STREAM: SAMPLE, STREAM

• ON_CHANGE: ON_CHANGE, STREAM

Origin

• DME: Subscribing to DME model

• device: Subscribing to YANG model

Name

• DME = subscribing to DME model

• Cisco-NX-OS-device = subscribing to YANG model

Encoding

• JSON = Stream will be send in JSON format.

• PROTO = Stream will be sent in protobuf.any format.

Sample gNMI Payload for DME Stream

Different clients have their own input format.Note

{
"SubscribeRequest":

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
362

Model-Driven Programmability
gNMI Payload

[
{

"_comment" : "ONCE request",
"_delay" : 2,
"subscribe":
{

"subscription":
[

{
"_comment" : "1st subscription path",
"path":
{

"origin": "DME",
"elem":
[

{
"name": "sys"

},
{

"name": "bgp"
}

]
},
"mode": "SAMPLE"

}
],
"mode": "ONCE",
"allow_aggregation" : false,
"use_models":
[

{
"_comment" : "1st module",
"name": "DME",
"organization": "Cisco Systems, Inc.",
"version": "1.0.0"

}
],
"encoding": "JSON"

}
}

]
}

Sample gNMI Payload YANG Stream

{
"SubscribeRequest":
[

{
"_comment" : "ONCE request",
"_delay" : 2,
"subscribe":
{

"subscription":
[

{
"_comment" : "1st subscription path",
"path":
{

"origin": "device",
"elem":
[

{

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
363

Model-Driven Programmability
gNMI Payload

"name": "System"
},
{

"name": "bgp-items"
}

]
},

"mode": "SAMPLE"
}

],
"mode": "ONCE",
"allow_aggregation" : false,
"use_models":
[

{
"_comment" : "1st module",
"name": "Cisco-NX-OS-device",
"organization": "Cisco Systems, Inc.",
"version": "0.0.0"

}
],
"encoding": "JSON"

}
}

]
}

Streaming Syslog

About Streaming Syslog for gNMI
gNMI Subscribe is a new way of monitoring the network as it provides a real-time view of what's going on
in your system by pushing the structured data as per gNMI Subscribe request.

Beginning with the Cisco NX-OS Release 9.3(3), support is added for gNMI Subscribe functionality.

gNMI Subscribe Support Detail

• Syslog-oper model streaming

• stream_on_change

This feature applies to Cisco Nexus 9000 Series switches with 8 GB or more of memory.

Guidelines and Limitations for Streaming Syslog - gNMI
The following are guidelines and limitations for Streaming Syslog:

• An invalid syslog is not supported. For example, a syslog with a filter or query condition

• Only the following paths are supported:

• Cisco-NX-OS-Syslog-oper:syslog

• Cisco-NX-OS-Syslog-oper:syslog/messages

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
364

Model-Driven Programmability
Streaming Syslog

• The following modes are not supported:

• Stream sample

• POLL

• A request must be in the YANG model format.

• You can use the internal application or write your own application.

• The payload comes from the controller and gNMI sends a response.

• Encoding formats are JSON and PROTO.

Syslog Native YANG Model
The YangModels are located here.

The time-zone field is set only when the clock format show-timezone syslog is entered. By default, it's not
set, therefore the time-zone field is empty.

Note

PYANG Tree for Syslog Native Yang Model:
>>> pyang -f tree Cisco-NX-OS-infra-syslog-oper.yang
module: Cisco-NX-OS-syslog-oper
+--ro syslog
+--ro messages
+--ro message* [message-id]
+--ro message-id int32
+--ro node-name? string
+--ro time-stamp? uint64
+--ro time-of-day? string
+--ro time-zone? string
+--ro category? string
+--ro group? string
+--ro message-name? string
+--ro severity? System-message-severity
+--ro text? string

Subscribe Request Example
The following is an example of a Subscribe request:
{

"SubscribeRequest":
[

{
"_comment" : "STREAM request",
"_delay" : 2,
"subscribe":
{

"subscription":
[

{
"_comment" : "1st subscription path",
"path":

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
365

Model-Driven Programmability
Syslog Native YANG Model

https://github.com/YangModels/yang/tree/master/vendor/cisco/nx/9.3-3

{
"origin": "syslog-oper",
"elem":
[
{

"name": "syslog"
},
{

"name":"messages"
}

]
},
"mode": "ON_CHANGE"

}
],
"mode": "ON_CHANGE",

"allow_aggregation" : false,
"use_models":
[

{
"_comment" : "1st module",
"name": "Cisco-NX-OS-Syslog-oper",
"organization": "Cisco Systems, Inc.",
"version": "0.0.0"

}
],
"encoding":"JSON"

}
}

]
}

Sample PROTO Output
This is a sample of PROTO output.
############################

[Subscribe]-------------------------------

Reading from file ' /root/gnmi-console/testing_bl/stream_on_change/OC_SYSLOG.json '

Sat Aug 24 14:38:06 2019

Generating request : 1 -----------

Comment : STREAM request

Delay : 2 sec(s) ...

Delay : 2 sec(s) DONE

subscribe {

subscription {

path {

origin: "syslog-oper"

elem {

name: "syslog"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
366

Model-Driven Programmability
Sample PROTO Output

}

elem {

name: "messages"

}

}

mode: ON_CHANGE

}

use_models {

name: "Cisco-NX-OS-Syslog-oper"

organization: "Cisco Systems, Inc."

version: "0.0.0"

}

encoding: PROTO

}

Thu Nov 21 14:26:41 2019
Received response 3 --------------------------
update {
timestamp: 1574375201665688000
prefix {
origin: "Syslog-oper"
elem {
name: "syslog"
}
elem {
name: "messages"
}
}
update {
path {
elem {
name: "message-id"
}
}
val {
uint_val: 529
}
}
update {
path {
elem {
name: "node-name"
}
}
val {
string_val: "task-n9k-1"
}
}
update {
path {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
367

Model-Driven Programmability
Sample PROTO Output

elem {
name: "message-name"
}
}
val {
string_val: "VSHD_SYSLOG_CONFIG_I"
}
}
update {
path {
elem {
name: "text"
}
}
val {
string_val: "Configured from vty by admin on console0"
}
}
update {
path {
elem {
name: "group"
}
}
val {
string_val: "VSHD"
}
}
update {
path {
elem {
name: "category"
}
}
val {
string_val: "VSHD"
}
}
update {
path {
elem {
name: "time-of-day"
}
}
val {
string_val: "Nov 21 2019 14:26:40"
}
}
update {
path {
elem {
name: "time-zone"
}
}
val {
string_val: ""
}
}
update {
path {
elem {
name: "time-stamp"
}
}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
368

Model-Driven Programmability
Sample PROTO Output

val {
uint_val: 1574375200000
}
}
update {
path {
elem {
name: "severity"
}
}
val {
uint_val: 5
}
}
}

/Received -------------------------------------

•

Sample JSON Output
This is a sample JSON output.
[Subscribe]-------------------------------
Reading from file ' testing_bl/stream_on_change/OC_SYSLOG.json '

Tue Nov 26 11:47:00 2019
Generating request : 1 -----------
Comment : STREAM request
Delay : 2 sec(s) ...
Delay : 2 sec(s) DONE
subscribe {
subscription {
path {
origin: "syslog-oper"
elem {
name: "syslog"
}
elem {
name: "messages"
}
}
mode: ON_CHANGE
}
use_models {
name: "Cisco-NX-OS-Syslog-oper"
organization: "Cisco Systems, Inc."
version: "0.0.0"
}
}

Tue Nov 26 11:47:15 2019
Received response 5 --------------------------
update {
timestamp: 1574797636002053000
prefix {
}
update {
path {
origin: "Syslog-oper"
elem {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
369

Model-Driven Programmability
Sample JSON Output

name: "syslog"
}
}
val {
json_val: "[{ \"messages\" : [[
{\"message-id\":657},{\"node-name\":\"task-n9k-1\",\"time-stamp\":\"1574797635000\",\"time-of-day\":\"Nov
26 2019
11:47:15\",\"severity\":3,\"message-name\":\"HDR_L2LEN_ERR\",\"category\":\"ARP\",\"group\":\"ARP\",\"text\":\"arp
[30318] Received packet with incorrect layer 2 address length (8 bytes), Normal pkt with
S/D MAC: 003a.7d21.d55e ffff.ffff.ffff eff_ifc mgmt0(9), log_ifc mgmt0(9), phy_ifc
mgmt0(9)\",\"time-zone\":\"\"}]] }]"
}
}
}

/Received -------------------------------------

Troubleshooting

Gathering TM-Trace Logs
1. tmtrace.bin -f gnmi-logs gnmi-events gnmi-errors following are available
2. Usage:

bash-4.3# tmtrace.bin -d gnmi-events | tail -30 Gives the last 30
}
}
}
[06/21/19 15:58:38.969 PDT f8f 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id: 0,
sub_id_str: 2329, dc_start_time: 0, length: 124, sync_response:1
[06/21/19 15:58:43.210 PDT f90 3133] [3621780288][tm_ec_yang_data_processor.c:93] TM_EC:
[Y] Data received for 2799743488: 49
{
"cdp-items" : {
"inst-items" : {
"if-items" : {
"If-list" : [
{
"id" : "mgmt0",
"ifstats-items" : {
"v2Sent" : "74",
"validV2Rcvd" : "79"
}
}
]
}
}
}
}
[06/21/19 15:58:43.210 PDT f91 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id: 0,
sub_id_str: 2329, dc_start_time: 0, length: 141, sync_response:1
[06/21/19 15:59:01.341 PDT f92 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/intf-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157935518, length: 3063619, sync_response:0
[06/21/19 15:59:03.933 PDT f93 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157940881, length: 6756, sync_response:0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
370

Model-Driven Programmability
Troubleshooting

[06/21/19 15:59:03.940 PDT f94 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/lldp-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157940912, length: 8466, sync_response:1
bash-4.3#

Gathering MTX-Internal Logs
1. Modify the following file with below /opt/mtx/conf/mtxlogger.cfg

<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="allActive" type="boolean" default="false">true<

/leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$

$COMPONENTID$ $TYPE$: MSG">$DATETIME$ $COMPONENTID$ $TYPE$
$SRCFILE$ @ $SRCLINE$ $FCNINFO$:MSG</leaf>

<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"><

/leaf>
</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>

</container>
<container name="facility">

<leaf name="info" type="boolean" default="true">true</leaf>
<leaf name="warning" type="boolean" default="true">true<

/leaf>
<leaf name="error" type="boolean" default="true">true</leaf>

Note: Beginning with Cisco NX-OS Release 9.3(4), the following default configuration is
changed from

default true to false. To investigate an issue which requires the debug messages,
edit

the following configuration and toggle it to true.

<leaf name="debug" type="boolean" default="false">true<
/leaf>

</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false">true<

/leaf>
</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false">true<

/leaf>
<leaf name="name" type="string" default="mtx-internal.log"><

/leaf>

<leaf name="location" type="string" default="./mtxlogs">
/volatile</leaf>

<leaf name="mbytes-rollover" type="uint32" default="10"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
371

Model-Driven Programmability
Gathering MTX-Internal Logs

>50</leaf>
<leaf name="hours-rollover" type="uint32" default="24"

>24</leaf>
<leaf name="startup-rollover" type="boolean" default="

false">true</leaf>
<leaf name="max-rollover-files" type="uint32" default="10"

>10</leaf>
</container>

</container>
<list name="logitems" key="id">
<listitem>

<leaf name="id" type="string">*</leaf>
<leaf name="active" type="boolean" default="false"

>false</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">MTX-EvtMgr</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">TM-ADPT</leaf>
<leaf name="active" type="boolean" default="true"

>false</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">TM-ADPT-JSON</leaf>
<leaf name="active" type="boolean" default="true"

>false</leaf>
</listitem >
<listitem>

<leaf name="id" type="string">SYSTEM</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">LIBUTILS</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">MTX-API</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">Model-*</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">Model-Cisco-NX-OS-
device</leaf>

<leaf name="active" type="boolean" default="true"
>false</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">Model-openconfig-bgp<
/leaf>

<leaf name="active" type="boolean" default="true"
>false</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">INST-MTX-API</leaf>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
372

Model-Driven Programmability
Gathering MTX-Internal Logs

<leaf name="active" type="boolean" default="true"
>true</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-NC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-RC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-GRPC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>

</list>
</container>

</container>
</config>

2. Run "no feature grpc" / "feature grpc"
3. The /volatile directory houses the mtx-internal.log, the log rolls over time so be sure
to grab what you need before then.

bash-4.3# cd /volatile/
bash-4.3# cd /volatile -al
total 148
drwxrwxrwx 4 root root 340 Jun 21 15:47 .
drwxrwxr-t 64 root network-admin 1600 Jun 21 14:45 ..
-rw-rw-rw- 1 root root 103412 Jun 21 16:14 grpc-internal-log
-rw-r--r-- 1 root root 24 Jun 21 14:44 mtx-internal-19-06-21-14-46-21.log
-rw-r--r-- 1 root root 24 Jun 21 14:46 mtx-internal-19-06-21-14-46-46.log
-rw-r--r-- 1 root root 175 Jun 21 15:11 mtx-internal-19-06-21-15-11-57.log
-rw-r--r-- 1 root root 175 Jun 21 15:12 mtx-internal-19-06-21-15-12-28.log
-rw-r--r-- 1 root root 175 Jun 21 15:13 mtx-internal-19-06-21-15-13-17.log
-rw-r--r-- 1 root root 175 Jun 21 15:13 mtx-internal-19-06-21-15-13-42.log
-rw-r--r-- 1 root root 24 Jun 21 15:13 mtx-internal-19-06-21-15-14-22.log
-rw-r--r-- 1 root root 24 Jun 21 15:14 mtx-internal-19-06-21-15-19-05.log
-rw-r--r-- 1 root root 24 Jun 21 15:19 mtx-internal-19-06-21-15-47-09.log
-rw-r--r-- 1 root root 24 Jun 21 15:47 mtx-internal.log
-rw-rw-rw- 1 root root 355 Jun 21 14:44 netconf-internal-log
-rw-rw-rw- 1 root root 0 Jun 21 14:45 nginx_logflag
drwxrwxrwx 3 root root 60 Jun 21 14:45 uwsgipy
drwxrwxrwx 2 root root 40 Jun 21 14:43 virtual-instance
bash-4.3#.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
373

Model-Driven Programmability
Gathering MTX-Internal Logs

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
374

Model-Driven Programmability
Gathering MTX-Internal Logs

C H A P T E R 31
Dynamic Logger

• Prerequisites, on page 375
• Reference, on page 375

Prerequisites
Before using dynamic logging, confirm that the following are on your switch:

• The libmtxlogmgr*.so library is installed /opt/mtx/lib/. The libmtxlogmgr*.so library
is part of the mtx_infra RPM.

• The mtx.conf file that is located in /etc/ contains:
[mtxlogger]
config=/opt/mtx/conf/mtxlogger.cfg

• The mtxlogger.cfg file is in /opt/mtx/conf/.

Reference
The configuration file has the following structure:
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="allActive" type="boolean" default="false"></leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$:

MSG"></leaf>
<container name="componentID">

<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>

</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
375

</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false"></leaf>

</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs"></leaf>

<leaf name="mbytes-rollover" type="uint32" default="10"></leaf>
<leaf name="hours-rollover" type="uint32" default="24"></leaf>
<leaf name="startup-rollover" type="boolean" default="false"></leaf>

<leaf name="max-rollover-files" type="uint32" default="10"></leaf>
</container>

</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string"></leaf>

<leaf name="active" type="boolean" default="true"></leaf>
</listitem>

</list>
</container>

</container>
</config>

The <list> tag defines the log filters by <componentID>.

The following table describes some of the containers and their leaves.

Table 24: Container and Leaf Descriptions

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

enabled: Boolean that
determines whether
logging is on or off.
Default off.

allActive: Boolean that
activates all defined
logging items for logging.
Default off

format

dest

file

Also
contains list
tag
"logitems"

Note

Contains all logging data
types

logging

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
376

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

content: String listing data
types included in log
messages. Includes:

• $DATETIME$:
Include date or time
in log message

• $COMPONENTID$:
Include component
name in logmessage.

• $TYPE$: Includes
message type ("",
INFO, WARNING,
ERROR)

• $SRCFILE$:
Includes name of
source file.

• $SRCLINE$:
Include line number
of source file

• $FCNINFO$ Include
class::function name
from the source file.

• MSG: Include
actual log message
text.

componentID

dateTime

type

fcn

Contains the log message
format information

format

enabled: Boolean that
determines if the log
message includes the
component ID. Default to
"true." Value of "false"
returns a "" string in log
message.

NAName of logged
component.

componentID

enabled: Boolean whether
to include date or time
information in log
message. Default is
enabled.

format: String of values to
include in log message.
Format of
%y%m%d.%H%M%S.

NADate or time of log
message

dateTime

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
377

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

NAconsole: Destination
console. Only one
allowed.

file: destination file.
Multiple allowed.

Holds destination logger's
configuration settings.

dest

enabled: Boolean that
determines whether the
console is enabled for
logging. Default of
"false."

NADestination consoleconsole

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
378

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

enabled: Boolean that
determines whether the
destination is enabled.
Default is "false."

name: String of the
destination log file.
Default of
"mtx-internal.log"

location: String of
destination file path.
Default at "./mtxlogs."

mbytes-rollover: uint32
that determines the length
of the log file before the
system overwrites the
oldest data. Default is 10
Mbytes.

hours-rollover: uint32 that
determines the length of
the log file in terms of
hours. Default is 24 hours.

startup-rollover: Boolean
that determines if the log
file is rolled over upon
agent start or restart.
Default value of "false."

max-rollover-files: uint32
that determines the
maximum number of
rollover files; deletes the
oldest file when the
max-rollover-files value
exceeded. Default value
of 10.

NADetermines the settings of
the destination file.

file

Example

The following is the configuration file with the default installed configuration.
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="allActive" type="boolean" default="false">false</leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$:

MSG">$DATETIME$ $COMPONENTID$ $TYPE$ $SRCFILE$ @ $SRCLINE$ $FCNINFO$:MSG</leaf>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
379

Model-Driven Programmability
Reference

<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>

</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>

</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false">true</leaf>

</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs">/volatile</leaf>

<leaf name="mbytes-rollover" type="uint32" default="10">50</leaf>
<leaf name="hours-rollover" type="uint32" default="24">24</leaf>
<leaf name="startup-rollover" type="boolean" default="false">true</leaf>

<leaf name="max-rollover-files" type="uint32" default="10">10</leaf>
</container>

</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string">*</leaf>

<leaf name="active" type="boolean" default="false">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">SYSTEM</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">LIBUTILS</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">MTX-API</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-*</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-Cisco-NX-OS-device</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-openconfig-bgp</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-MTX-API</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-NC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
380

Model-Driven Programmability
Reference

<listitem>
<leaf name="id" type="string">INST-ADAPTER-RC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-GRPC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>

</list>
</container>

</container>
</config>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
381

Model-Driven Programmability
Reference

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
382

Model-Driven Programmability
Reference

C H A P T E R 32
Model Driven Telemetry

• About Telemetry, on page 383
• Licensing Requirements for Telemetry, on page 385
• Guidelines and Limitations, on page 385
• Configuring Telemetry Using the CLI, on page 391
• Configuring Telemetry Using the NX-API, on page 414
• Cloud Scale Software Telemetry, on page 428
• Telemetry Path Labels, on page 430
• Native Data Source Paths, on page 444
• Streaming Syslog, on page 456
• Additional References, on page 462

About Telemetry
Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the
health of a network.

Cisco NX-OS provides several mechanisms such as SNMP, CLI, and Syslog to collect data from a network.
These mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull
model, where the initial request for data from network elements originates from the client. The pull model
does not scale when there is more than one network management station (NMS) in the network. With this
model, the server sends data only when clients request it. To initiate such requests, continual manual intervention
is required. This continual manual intervention makes the pull model inefficient.

A push model continuously streams data out of the network and notifies the client. Telemetry enables the
push model, which provides near-real-time access to monitoring data.

Telemetry Components and Process
Telemetry consists of four key elements:

• Data Collection — Telemetry data is collected from the Data Management Engine (DME) database in
branches of the object model specified using distinguished name (DN) paths. The data can be retrieved
periodically (frequency-based) or only when a change occurs in any object on a specified path
(event-based). You can use the NX-API to collect frequency-based data.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
383

• Data Encoding — The telemetry encoder encapsulates the collected data into the desired format for
transporting.

NX-OS encodes telemetry data in the Google Protocol Buffers (GPB) and JSON format.

• Data Transport —NX-OS transports telemetry data using HTTP for JSON encoding and the Google
remote procedure call (gRPC) protocol for GPB encoding. The gRPC receiver supports message sizes
greater than 4 MB. (Telemetry data using HTTPS is also supported if a certificate is configured.)

Starting with Cisco NX-OSRelease 7.0(3)I7(1), UDP and secure UDP (DTLS) are supported as telemetry
transport protocols. You can add destinations that receive UDP. The encoding for UDP and secure UDP
can be GPB or JSON.

Starting with Cisco NX-OS Release 9.2(1), telemetry now supports streaming to IPv6 destinations and
IPv4 destinations.

Use the following command to configure the UDP transport to stream data using a datagram socket either
in JSON or GPB:

destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }

Example for an IPv4 destination:

destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB

Example for an IPv6 destination:

destination-group 100
ipv6 address 10:10::1 port 8000 protocol gRPC encoding GPB

The UDP telemetry is with the following header:

typedef enum tm_encode_ {
TM_ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,
TM_ENCODE_MAX,

} tm_encode_type_t;

typedef struct tm_pak_hdr_ {
uint8_t version; /* 1 */
uint8_t encoding;
uint16_t msg_size;
uint8_t secure;
uint8_t padding;

}__attribute__ ((packed, aligned (1))) tm_pak_hdr_t;

Use the first 6 bytes in the payload to process telemetry data using UDP, using one of the following
methods:

• Read the information in the header to determine which decoder to use to decode the data, JSON or
GPB, if the receiver is meant to receive different types of data from multiple endpoints.

• Remove the header if you are expecting one decoder (JSON or GPB) but not the other.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
384

Model-Driven Programmability
Telemetry Components and Process

Depending on the receiving operation system and the network load, using the
UDP protocol may result in packet drops.

Note

• Telemetry Receiver —A telemetry receiver is a remote management system or application that stores
the telemetry data.

The GPB encoder stores data in a generic key-value format. The encoder requires metadata in the form of a
compiled .proto file to translate the data into GPB format.

In order to receive and decode the data stream correctly, the receiver requires the .proto file that describes
the encoding and the transport services. The encoding decodes the binary stream into a key value string pair.

A telemetry .proto file that describes the GPB encoding and gRPC transport is available on Cisco's GitLab:
https://github.com/CiscoDevNet/nx-telemetry-proto

High Availability of the Telemetry Process
High availability of the telemetry process is supported with the following behaviors:

• System Reload —During a system reload, any telemetry configuration and streaming services are
restored.

• Supervisor Failover—Although telemetry is not on hot standby, telemetry configuration and streaming
services are restored when the new active supervisor is running.

• Process Restart—If the telemetry process freezes or restarts for any reason, configuration and streaming
services are restored when telemetry is restarted.

Licensing Requirements for Telemetry
License RequirementProduct

Telemetry requires no license. Any feature not included in a license package is bundled
with the Cisco NX-OS image and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see theCisco NX-OS Licensing Guide.

Cisco NX-OS

Guidelines and Limitations
Telemetry has the following configuration guidelines and limitations:

• For information about supported platforms, see the Nexus Switch Platform Matrix.

• Cisco NX-OS releases that support the data management engine (DME) NativeModel support Telemetry.

• Support is in place for the following:

• DME data collection

• NX-API data sources

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
385

Model-Driven Programmability
High Availability of the Telemetry Process

https://github.com/CiscoDevNet/nx-telemetry-proto
https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

• Google protocol buffer (GPB) encoding over Google Remote Procedure Call (gRPC) transport

• JSON encoding over HTTP

• The smallest sending interval (cadence) supported is five seconds for a depth of 0. Theminimum cadence
values for depth values greater than 0 depends on the size of the data being streamed out. Configuring
any cadences below the minimum value may result in undesirable system behavior.

• Telemetry supports up to five remote management receivers (destinations). Configuring more than five
remote receivers may result in undesirable system behavior.

• Telemetry can consume up to 20% of the CPU resource.

• To configure SSL certificate-based authentication and the encryption of streamed data, you can provide
a self-signed SSL certificate with certificate SSL cert path hostname "CN" command.

• The following are guidelines for setting the telemetry cadence on YANG paths:

• YANG streaming collection takes one thread. If multiple YANG paths exist in telemetry, each must
run on a different cadence to prevent simultaneous scheduling and any resulting delay.

• Before configuring the telemetry cadence for YANG paths, determine the total streaming time and
configure the cadence to a value greater than the total streaming time. See Configuring Cadence for
YANG Paths, on page 397.

Configuration Commands After Downgrading to an Older Release

After a downgrade to an older release, some configuration commands or command options can fail because
the older release may not support them. When downgrading to an older release, unconfigure and reconfigure
the telemetry feature after the new image comes up. This sequence avoids the failure of unsupported commands
or command options.

The following example shows this procedure:

• Copy the telemetry configuration to a file:

switch# show running-config | section telemetry
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch# show running-config | section telemetry > telemetry_running_config
switch# show file bootflash:telemetry_running_config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
386

Model-Driven Programmability
Guidelines and Limitations

snsr-grp 100 sample-interval 7000
switch#

• Execute the downgrade operation. When the image comes up and the switch is ready, copy the telemetry
configurations back to the switch.

switch# copy telemetry_running_config running-config echo-commands
`switch# config terminal`
`switch(config)# feature telemetry`
`switch(config)# telemetry`
`switch(config-telemetry)# destination-group 100`
`switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB `
`switch(conf-tm-dest)# sensor-group 100`
`switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0`
`switch(conf-tm-sensor)# subscription 600`
`switch(conf-tm-sub)# dst-grp 100`
`switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000`
`switch(conf-tm-sub)# end`
Copy complete, now saving to disk (please wait)...
Copy complete.
switch#

gRPC Error Behavior

The switch client disables the connection to the gRPC receiver if the gRPC receiver sends 20 errors. Unconfigure
then reconfigure the receiver's IP address under the destination group to enable the gRPC receiver. Errors
include:

• The gRPC client sends the wrong certificate for secure connections.

• The gRPC receiver takes too long to handle client messages and incurs a timeout. Avoid timeouts by
processing messages using a separate message processing thread.

Telemetry Compression for gRPC Transport

Telemetry compression support is available for gRPC transport. You can use the use-compression gzip
command to enable compression. (Disable compression with the no use-compression gzip command.)

The following example enables compression:
switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-compression gzip

The following example shows that compression is enabled:
switch(conf-tm-dest)# show telemetry transport 0 stats

Session Id: 0
Connection Stats

Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Compression: gzip
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
387

Model-Driven Programmability
Guidelines and Limitations

Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms

switch2(config-if)# show telemetry transport 0 stats

Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: disabled
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)#

The following is an example of use-compression as a POST payload.

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptCompression": {
"attributes": {
"name": "gzip"

}
}

}
]

}
}

Support for gRPC Chunking

Starting with Release 9.2(1), support for gRPC chunking has been added. For streaming to occur successfully,
you must enable chunking if gRPC has to send an amount of data greater than 12 MB to the receiver.

The gRPC user must do the gRPC chunking. The gRPC client side does the fragmentation, and the gRPC
server side does the reassembly. Telemetry is still bound to memory and data can be dropped if the memory
size is more than the allowed limit of 12 MB for telemetry. In order to support chunking, use the telemetry
.proto file that is available at Cisco's GibLab, which has been updated for gRPC chunking, as described
in Telemetry Components and Process, on page 383.

The chunking size is from 64 through 4096 bytes.

Following shows a configuration example through the NX-API CLI:
feature telemetry
!
telemetry
destination-group 1
ip address 171.68.197.40 port 50051 protocol gRPC encoding GPB

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
388

Model-Driven Programmability
Guidelines and Limitations

use-chunking size 4096
destination-group 2
ip address 10.155.0.15 port 50001 protocol gRPC encoding GPB
use-chunking size 64

sensor-group 1
path sys/intf depth unbounded

sensor-group 2
path sys/intf depth unbounded

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 10000

subscription 2
dst-grp 2
snsr-grp 2 sample-interval 15000

Following shows a configuration example through the NX-API REST:
{

"telemetryDestGrpOptChunking": {
"attributes": {

"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

}
}

}

The following error message appears on systems that do not support gRPC chunking, such as the Cisco MDS
series switches:
MDS-9706-86(conf-tm-dest)# use-chunking size 200
ERROR: Operation failed: [chunking support not available]

NX-API Sensor Path Limitations

NX-API can collect and stream switch information not yet in the DME using show commands. However,
using the NX-API instead of streaming data from the DME has inherent scale limitations as outlined:

• The switch backend dynamically processes NX-API calls such as show commands,

• NX-API spawns several processes that can consume up to a maximum of 20% of the CPU.

• NX-API data translates from the CLI to XML to JSON.

The following is a suggested user flow to help limit excessive NX-API sensor path bandwidth consumption:

1. Check whether the show command has NX-API support. You can confirm whether NX-API supports
the command from the VSH with the pipe option: show <command> | json or show <command> | json

pretty.

Avoid commands that take the switch more than 30 seconds to return JSON output.Note

2. Refine the show command to include any filters or options.

• Avoid enumerating the same command for individual outputs; for example, show vlan id 100 ,
show vlan id 101 , and so on. Instead, use the CLI range options; for example, show vlan id
100-110,204 , whenever possible to improve performance.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
389

Model-Driven Programmability
Guidelines and Limitations

If only the summary or counter is needed, then avoid dumping a whole show command output to
limit the bandwidth and data storage that is required for data collection.

3. Configure telemetry with sensor groups that use NX-API as their data sources. Add the show commands
as sensor paths

4. Configure telemetry with a cadence of five times the processing time of the respective show command
to limit CPI usage.

5. Receive and process the streamed NX-API output as part of the existing DME collection.

Telemetry VRF Support

Telemetry VRF support allows you to specify a transport VRF, which means that the telemetry data stream
can egress through front-panel ports and avoid possible competition between SSH or NGINX control sessions.

You can use the use-vrf vrf-name command to specify the transport VRF.

The following example specifies the transport VRF:

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-vrf test_vrf

The following is an example of use-vrf as a POST payload:

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptVrf": {
"attributes": {
"name": "default"

}
}

}
]

}
}

Support for Node ID

Beginning in NX-OS release 9.3.1, you can configure a customNode ID string for a telemetry receiver through
the use-nodeid command. By default, the host name is used, but support for a node ID enables you to set or
change the identifier for the node_id_str of the telemetry receiver data.

You can assign the node ID through the telemetry destination profile, by using the usenode-id command.
This command is optional.

The following example shows configuring the node ID.
switch-1(config)# telemetry
switch-1(config-telemetry)# destination-profile
switch-1(conf-tm-dest-profile)# use-nodeid test-srvr-10
switch-1(conf-tm-dest-profile)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
390

Model-Driven Programmability
Guidelines and Limitations

The following example shows a telemetry notification on the receiver after the node ID is configured.
Telemetry receiver:
==================================
node_id_str: "test-srvr-10"
subscription_id_str: "1"
encoding_path: "sys/ch/psuslot-1/psu"
collection_id: 3896
msg_timestamp: 1559669946501

Support for Streaming of YANG Models

Starting with Release 9.2(1), telemetry supports the YANG ("Yet Another Next Generation") data modeling
language. Telemetry supports data streaming for both device YANG and OpenConfig YANG.

For more information on the YANG data modeling language, see Infrastructure Overview, on page 257 and
RESTConf Agent, on page 309.

Configuring Telemetry Using the CLI

Configuring Telemetry Using the NX-OS CLI
The following steps enable streaming telemetry and configuring the source and destination of the data stream.
These steps also include optional steps to enable and configure SSL/TLS certificates and GPB encoding.

Before you begin

Your switch must be running Cisco NX-OS Release 7.3(0)I5(1) or a later release.

Procedure

PurposeCommand or Action

Create an SSL or TLS certificate on the server
that receives the data, where the

(Optional) openssl argument

Example:

Step 1

private.key file is the private key and the
public.crt is the public key.Generate an SSL/TLS certificate using a

specific argument, such as the following:

• To generate a private RSA key: openssl
genrsa -cipher -out filename.key
cipher-bit-length

For example:
switch# openssl genrsa -des3 -out
server.key 2048

• To write the RSA key: openssl rsa -in
filename.key -out filename.key

For example:
switch# openssl rsa -in server.key
-out server.key

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
391

Model-Driven Programmability
Configuring Telemetry Using the CLI

PurposeCommand or Action

• To create a certificate that contains the
public or private key: openssl req

-encoding-standard -new -new
filename.key -out filename.csr -subj
'/CN=localhost'

For example:
switch# openssl req -sha256 -new
-key server.key -out server.csr
-subj '/CN=localhost'

• To create a public key: openssl x509 -req
-encoding-standard -days timeframe
-in filename.csr -signkey filename.key
-out filename.csr

For example:
switch# openssl x509 -req -sha256
-days 365 -in server.csr -signkey
server.key
-out server.crt

Enter the global configuration mode.configure terminal

Example:

Step 2

switch# configure terminal
switch(config)#

Enable the streaming telemetry feature.feature telemetryStep 3

Enable NX-API.feature nxapiStep 4

Enable the VRF management to be used for
NX-API communication.

nxapi use-vrf management

Example:

Step 5

The following warnings are seen
previous to 10.2(3)F release as
ACLs are able to filter only
netstack packets:

"Warning: Management ACLs
configured will not be effective
for HTTP services. Please use
iptables to restrict access."

Noteswitch(config)#
switch(config)# nxapi use-vrf management
switch(config)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
392

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

Beginning with 10.2(3)F, ACLs
are able to filter both netstack
and kstack packets which are
coming to the management vrf.
The following warnings are
displayed:

"Warning: ACLs configured on
non-management VRF will not
be effective for HTTP services
on that VRF."

Note

Enter configuration mode for streaming
telemetry.

telemetry

Example:

Step 6

switch(config)# telemetry
switch(config-telemetry)#

Use an existing SSL/TLS certificate.(Optional) certificate certificate_path
host_URL

Step 7

For EOR devices, the certificate also has to be
copied to the standby SUP.Example:

switch(config-telemetry)# certificate
/bootflash/server.key localhost

(Optional) Specify a transport VRF or enable
telemetry compression for gRPC transport.

Step 8 • Enter the destination-profile command
to specify the default destination profile.

Example: • Enter any of the following commands:

switch(config-telemetry)# • use-vrf vrf to specify the
destination VRF.destination-profile

switch(conf-tm-dest-profile)# use-vrf
• use-compression gzip to specify
the destination compressionmethod.

default
switch(conf-tm-dest-profile)#
use-compression gzip

• use-retry size size to specify the
send retry details, with a retry buffer
size between 10 - 1500 megabytes.

switch(conf-tm-dest-profile)# use-retry
size 10
switch(conf-tm-dest-profile)#
source-interface loopback1

• source-interface interface-name to
stream data from the configured
interface to a destination with the
source IP address.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
393

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

After configuring the use-vrf
command, you must configure a
new destination IP address within
the newVRF. However, youmay
re-use the same destination IP
address by unconfiguring and
reconfiguring the destination.
This action ensures that the
telemetry data streams to the
same destination IP address in
the new VRF.

Note

Create a sensor group with ID srgp_id and
enter sensor group configuration mode.

sensor-group sgrp_id

Example:

Step 9

Currently only numeric ID values are
supported. The sensor group defines nodes that
will be monitored for telemetry reporting.

switch(config-telemetry)# sensor-group
100
switch(conf-tm-sensor)#

Select a data source. Select from either YANG,
DME or NX-API as the data source.

(Optional) data-source data-source-type

Example:

Step 10

DME is the default data source.Noteswitch(config-telemetry)# data-source
NX-API

Here unboundedmeans include childManaged
Objects (MO) in the output. So, for POLL

path sensor_path depth unbounded
[filter-condition filter] [alias path_alias]

Step 11

telemetry streams, all child MO for that path
Example: and EVENT retrieves the changes made in

child MO.• The following command is applicable for
DME, not for NX-API or YANG:
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0

This is applicable for data source
DME paths only.

Note

filter-condition eq(l2BD.operSt,
"down") Add a sensor path to the sensor group.

• Beginning with the Cisco NX-OS 9.3(5)
release, the alias keyword is introduced.

Use the following syntax for state-based
filtering to trigger only when operSt
changes from up to down, with no
notifications of when the MO changes.

• The depth setting specifies the retrieval
level for the sensor path. Depth settings
of 0 - 32, unbounded are supported.switch(conf-tm-sensor)# path

sys/bd/bd-[vlan-100] depth 0
depth 0 is the default depth.

NX-API-based sensor paths
can only use depth 0.

If a path is subscribed for
the event collection, the
depth only supports 0 and
unbounded. Other values
would be treated as 0.

Notefilter-condition
and(updated(l2BD.operSt),eq(l2BD.operSt,"down"))

Use the following syntax to distinguish
the path on the UTR side.
switch(conf-tm-sensor)# path
sys/ch/ftslot-1/ft alias ft_1

• The following command is applicable for
NX-API, not for DME or YANG:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
394

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action
switch(conf-tm-sensor)# path "show
interface" depth 0

• The optional filter-condition parameter
can be specified to create a specific filter
for event-based subscriptions.• The following command is applicable for

device YANG:
switch(conf-tm-sensor)# path
Cisco-NX-OS-device:System/bgp-items/inst-items

For state-based filtering, the filter returns
both when a state has changed and when
an event has occurred during the specified
state. That is, a filter condition for the DN

• The following commands are applicable
for OpenConfig YANG:
switch(conf-tm-sensor)# path
openconfig-bgp:bgp

sys/bd/bd-[vlan] of eq(l2Bd.operSt,
"down") triggers when the operSt
changes, and when the DN's property
changes while the operSt remains down,
such as a no shutdown command isswitch(conf-tm-sensor)# path

Cisco-NX-OS-device:System/bgp-items/inst-items
alias bgp_alias

issued while the VLAN is operationally
down.

• The following command is applicable for
NX-API:

query-condition parameter — For
DME, based on the DN, the
query-condition parameter can be
specified to fetch MOTL and
ephemeral data with the following
syntax: query-condition
"rsp-foreign-subtree=applied-config";
query-condition
"rsp-foreign-subtree=ephemeral".

Note

switch(conf-tm-sensor)# path "show
interface" depth 0 alias
sh_int_alias

• The following command is applicable for
OpenConfig:
switch(conf-tm-sensor)# path
openconfig-bgp:bgp alias
oc_bgp_alias

• For the YANG model, the sensor path
format is as follows: module_name:
YANG_path, where module_name is the
name of the YANG model file. For
example:

• For device YANG:

Cisco-NX-OS-device:System/bgp-items/inst-items

• For OpenConfig YANG:

openconfig-bgp:bgp

The depth,
filter-condition, and
query-condition
parameters are not
supported for YANG
currently.

Note

For the openconfig YANG models, go to
https://github.com/YangModels/yang/
tree/master/vendor/cisco/nx and navigate
to the appropriate folder for the latest
release.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
395

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

https://github.com/YangModels/yang/tree/master/vendor/cisco/nx
https://github.com/YangModels/yang/tree/master/vendor/cisco/nx

PurposeCommand or Action

Instead of installing a specific model, you
can install the openconfig-all RPMwhich
has all the OpenConfig models. See
#unique_84 for more information on
installing patch RPMs.

For example:

install add
mtx-openconfig-bgp-1.0.0.0.0-7.0.3.IHD8.1.lib32_n9000.rpm
activate

Create a destination group and enter
destination group configuration mode.

destination-group dgrp_id

Example:

Step 12

Currently dgrp_id only supports numeric ID
values.

switch(conf-tm-sensor)#
destination-group 100
switch(conf-tm-dest)#

Specify an IPv4 IP address and port to receive
encoded telemetry data.

(Optional) ip address ip_address port
port protocol procedural-protocol
encoding encoding-protocol

Step 13

gRPC is the default transport
protocol.

GPB is the default encoding.

Note
Example:
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50001 protocol gRPC
encoding GPB
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50007 protocol HTTP
encoding JSON

switch(conf-tm-sensor)# ip address
171.70.55.69 port 50009 protocol UDP
encoding JSON

Specify an IPv6 IP address and port to receive
encoded telemetry data.

(Optional) ipv6 address ipv6_address port
port protocol procedural-protocol
encoding encoding-protocol

Step 14

gRPC is the default transport
protocol.

GPB is the default encoding.

Note
Example:
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8000 protocol gRPC
encoding GPB
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8001 protocol HTTP
encoding JSON
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8002 protocol UDP encoding
JSON

Create a destination profile for the outgoing
data, where ip_version is either ip (for IPv4)
or ipv6 (for IPv6).

ip_version address ip_address port
portnum

Example:

Step 15

When the destination group is linked to a
subscription, telemetry data is sent to the IP

• For IPv4:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
396

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action
switch(conf-tm-dest)# ip address
1.2.3.4 port 50003

address and port that is specified by this
profile.

• For IPv6:
switch(conf-tm-dest)# ipv6 address
10:10::1 port 8000

Enable gRPC chunking and set the chunking
size, between 64-4096 bytes. See the section

(Optional) use-chunking size chunking_size

Example:

Step 16

"Support for gRPC Chunking" for more
information.switch(conf-tm-dest)# use-chunking size

64

Create a subscription node with ID and enter
the subscription configuration mode.

subscription sub_id

Example:

Step 17

Currently sub_id only supports numeric ID
values.

switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)#

When subscribing to aDN, check
whether the DN is supported by
DME using REST to ensure that
events will stream.

Note

Link the sensor group with ID sgrp_id to this
subscription and set the data sampling interval
in milliseconds.

snsr-grp sgrp_id sample-interval interval

Example:
switch(conf-tm-sub)# snsr-grp 100
sample-interval 15000

Step 18

An interval value of 0 creates an event-based
subscription, in which telemetry data is sent
only upon changes under the specified MO.
An interval value greater than 0 creates a
frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an interval
value of 15000 results in the sending of
telemetry data every 15 seconds.

Link the destination group with ID dgrp_id to
this subscription.

dst-grp dgrp_id

Example:

Step 19

switch(conf-tm-sub)# dst-grp 100

Configuring Cadence for YANG Paths
The cadence for YANG paths must be greater than the total streaming time. If the total streaming time and
cadence are incorrectly configured, gathering telemetry data can take longer than the streaming interval. In
this situation, you can see:

• Queues that incrementally fill because telemetry data is accumulating faster than it is streaming to the
receiver.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
397

Model-Driven Programmability
Configuring Cadence for YANG Paths

• Stale telemetry data which is not from the current interval.

Configure the cadence to a value greater than the total streaming time.

Procedure

PurposeCommand or Action

Calculate the total streaming time.show telemetry control database
sensor-groups

Step 1

The total streaming time is the sum of the
individual current streaming times of eachExample:
sensor group. Individual streaming times areswitch# show telemetry control database

sensor-groups displayed in Streaming time in ms (Cur). In this
Sensor Group Database size = 2 example, total streaming time is 2.664 seconds

(2515 milliseconds plus 149 milliseconds).--
Row ID Sensor Group ID Sensor Group
type Sampling interval(ms) Linked Compare the configured cadence to the total

streaming time for the sensor group.subscriptions SubID
--
1 2 Timer /YANG The cadence is displayed in sample-interval. In

this example, the cadence is correctly
5000 /Running 1

1
configured because the total streaming timeCollection Time in ms (Cur/Min/Max):

2444/2294/2460 (2.664 seconds) is less than the cadence (5.000
seconds, which is the default).Encoding Time in ms (Cur/Min/Max):

56/55/57
Transport Time in ms (Cur/Min/Max): 0/0/1
Streaming Time in ms (Cur/Min/Max):
2515/2356/28403

Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0

2 1 Timer /YANG
5000 /Running 1

1
Collection Time in ms (Cur/Min/Max):
144/142/1471
Encoding Time in ms (Cur/Min/Max): 0/0/1
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max):
149/147/23548

Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0

switch#
telemetry
destination-group 1
ip address 192.0.2.1 port 9000

protocol HTTP encoding JSON
sensor-group 1
data-source YANG
path

/Cisco-NX-OS-device:System/procsys-items
depth unbounded
sensor-group 2

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
398

Model-Driven Programmability
Configuring Cadence for YANG Paths

PurposeCommand or Action
data-source YANG
path

/Cisco-NX-OS-device:System/intf-items/phys-items
depth unbounded
subscription 1
dst-grp 1
snsr-grp 1 sample-interval 5000
snsr-grp 2 sample-interval 5000

If the total streaming time is not less than the
cadence, enter the sensor group for which you
want to set the interval.

sensor group number

Example:
switch(config-telemetry)# sensor group1

Step 2

Edit the subscription for the sensor group.subscription number

Example:

Step 3

switch(conf-tm-sensor)# subscription 100

For the appropriate sensor group, set the sample
interval to a value greater than the total
streaming time.

snsr-grp number sample-interval milliseconds

Example:
switch(conf-tm-sub)# snsr-grp number
sample-interval 5000

Step 4

In this example, the sample interval is set to
5.000 seconds, which is valid because it is larger
than the total streaming time of 2.664 seconds.

Check the CPU usage.show system resourcesStep 5

Example: If the CPU user state shows high usage, as
shown in this example, your cadence andswitch# show system resources

Load average: 1 minute: 0.38 5 streaming value are not configured correctly.
minutes: 0.43 15 minutes: 0.43 Repeat this procedure to properly configure the

cadence.Processes: 555 total, 3 running
CPU states : 24.17% user, 4.32%
kernel, 71.50% idle

CPU0 states: 0.00% user, 2.12%
kernel, 97.87% idle

CPU1 states: 86.00% user,
11.00% kernel, 3.00% idle

CPU2 states: 8.08% user, 3.03%
kernel, 88.88% idle

CPU3 states: 0.00% user, 1.02%
kernel, 98.97% idle
Memory usage: 16400084K total,
5861652K used, 10538432K free
Current memory status: OK

Configuration Examples for Telemetry Using the CLI
The following steps describe how to configure a single telemetry DME streamwith a ten second cadence with
GPB encoding.

switch# configure terminal
switch(config)# feature telemetry

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
399

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(config-tm-dest)# ip address 171.70.59.62 port 50051 protocol gRPC encoding GPB
switch(config-tm-dest)# exit
switch(config-telemetry)# sensor group sg1
switch(config-tm-sensor)# data-source DME
switch(config-tm-dest)# path interface depth unbounded query-condition keep-data-type
switch(config-tm-dest)# subscription 1
switch(config-tm-dest)# dst-grp 1
switch(config-tm-dest)# snsr grp 1 sample interval 10000

This example creates a subscription that streams data for the sys/bgp root MO every 5 seconds to the
destination IP 1.2.3.4 port 50003.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/intf every 5 seconds to destination IP 1.2.3.4
port 50003, and encrypts the stream using GPB encoding verified using the test.pem.

switch(config)# telemetry
switch(config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch(conf-tm-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
switch(config-dest)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/cdp every 15 seconds to destination IP 1.2.3.4
port 50004.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch(conf-tm-sub)# dst-grp 100

This example creates a cadence-based collection of show command data every 750 seconds.

switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch(conf-tm-dest)# sensor-group 1
switch(conf-tm-sensor# data-source NX-API
switch(conf-tm-sensor)# path "show system resources" depth 0
switch(conf-tm-sensor)# path "show version" depth 0
switch(conf-tm-sensor)# path "show environment power" depth 0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
400

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(conf-tm-sensor)# path "show environment fan" depth 0
switch(conf-tm-sensor)# path "show environment temperature" depth 0
switch(conf-tm-sensor)# path "show process cpu" depth 0
switch(conf-tm-sensor)# path "show nve peers" depth 0
switch(conf-tm-sensor)# path "show nve vni" depth 0
switch(conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch(conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch(conf-tm-sensor)# path "show policy-map vlan" depth 0
switch(conf-tm-sensor)# path "show ip access-list test" depth 0
switch(conf-tm-sensor)# path "show system internal access-list resource utilization" depth
0
switch(conf-tm-sensor)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-dest)# snsr-grp 1 sample-interval 750000

This example creates an event-based subscription for sys/fm. Data is streamed to the destination only if
there is a change under the sys/fm MO.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 0
switch(conf-tm-sub)# dst-grp 100

During operation, you can change a sensor group from frequency-based to event-based, and change event-based
to frequency-based by changing the sample-interval. This example changes the sensor-group from the previous
example to frequency-based. After the following commands, the telemetry application will begin streaming
the sys/fm data to the destination every 7 seconds.

switch(config)# telemetry
switch(config-telemetry)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000

Multiple sensor groups and destinations can be linked to a single subscription. The subscription in this example
streams the data for Ethernet port 1/1 to four different destinations every 10 seconds.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-sensor)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch(conf-tm-dest)# ip address 1.4.8.2 port 60003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 10000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

A sensor group can contain multiple paths, a destination group can contain multiple destination profiles, and
a subscription can be linked to multiple sensor groups and destination groups, as shown in this example.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
401

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# path sys/epId-1 depth 0
switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0

switch(config-telemetry)# sensor-group 200
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# path sys/ipv4 depth 0

switch(config-telemetry)# sensor-group 300
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# path sys/bgp depth 0

switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 4.3.2.5 port 50005

switch(conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001

switch(conf-tm-dest)# destination-group 300
switch(conf-tm-dest)# ip address 1.2.3.4 port 60003

switch(conf-tm-dest)# subscription 600
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

switch(conf-tm-dest)# subscription 900
switch(conf-tm-sub)# snsr-grp 200 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 300 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 300

You can verify the telemetry configuration using the show running-config telemetry command, as shown
in this example.

switch(config)# telemetry
switch(config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# end
switch# show run telemetry

!Command: show running-config telemetry
!Time: Thu Oct 13 21:10:12 2016

version 7.0(3)I5(1)
feature telemetry

telemetry
destination-group 100
ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB

You can specify transport VRF and telemetry data compression for gRPC using the use-vrf and
use-compression gzip commands, as shown in this example.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
402

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(conf-tm-dest-profile)# use-vrf default
switch(conf-tm-dest-profile)# use-compression gzip
switch(conf-tm-dest-profile)# sensor-group 1
switch(conf-tm-sensor)# path sys/bgp depth unbounded
switch(conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-sub)# snsr-grp 1 sample-interval 10000

Displaying Telemetry Configuration and Statistics
Use the following NX-OS CLI show commands to display telemetry configuration, statistics, errors, and
session information.

show telemetry yang direct-path cisco-nxos-device

This command displays YANG paths that are directly encoded to perform better than other paths.
switch# show telemetry yang direct-path cisco-nxos-device
) Cisco-NX-OS-device:System/lldp-items
2) Cisco-NX-OS-device:System/acl-items
3) Cisco-NX-OS-device:System/mac-items
4) Cisco-NX-OS-device:System/intf-items
5) Cisco-NX-OS-device:System/procsys-items/sysload-items
6) Cisco-NX-OS-device:System/ospf-items
7) Cisco-NX-OS-device:System/procsys-items
8) Cisco-NX-OS-device:System/ipqos-items/queuing-items/policy-items/out-items
9) Cisco-NX-OS-device:System/mac-items/static-items
10) Cisco-NX-OS-device:System/ch-items
11) Cisco-NX-OS-device:System/cdp-items
12) Cisco-NX-OS-device:System/bd-items
13) Cisco-NX-OS-device:System/eps-items
14) Cisco-NX-OS-device:System/ipv6-items

show telemetry control database

This command displays the internal databases that reflect the configuration of telemetry.

switch# show telemetry control database ?
<CR>
> Redirect it to a file
>> Redirect it to a file in append mode
destination-groups Show destination-groups
destinations Show destinations
sensor-groups Show sensor-groups
sensor-paths Show sensor-paths
subscriptions Show subscriptions
| Pipe command output to filter

switch# show telemetry control database

Subscription Database size = 1

--
Subscription ID Data Collector Type
--
100 DME NX-API

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
403

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Sensor Group Database size = 1

--
Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
--
100 Timer 10000(Running) 1

Sensor Path Database size = 1

--
Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path
--
No 1 0 Full sys/fm

Destination group Database size = 2

--
Destination Group ID Refcount
--
100 1

Destination Database size = 2

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.111 12345 JSON HTTP 1
192.168.20.123 50001 GPB gRPC 1

show telemetry control database sensor-paths

This command displays sensor path details for telemetry configuration, including counters for encoding,
collection, transport, and streaming.
switch(conf-tm-sub)# show telemetry control database sensor-paths
Sensor Path Database size = 4
--
Row ID Subscribed Linked Groups Sec Groups Retrieve level Path(GroupId) : Query :
Filter
--
1 No 1 0 Full sys/cdp(1) : NA : NA

GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 65785/65785/65785
Collection Time in ms (Cur/Min/Max): 10/10/55
Encoding Time in ms (Cur/Min/Max): 8/8/9
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 18/18/65

2 No 1 0 Self show module(2) : NA : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 1107/1106/1107
Collection Time in ms (Cur/Min/Max): 603/603/802
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 0/0/1
Streaming Time in ms (Cur/Min/Max): 605/605/803

3 No 1 0 Full sys/bgp(1) : NA : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 0/0/44
Encoding Time in ms (Cur/Min/Max): 0/0/0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
404

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 1/1/44

4 No 1 0 Self show version(2) : NA : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 2442/2441/2442
Collection Time in ms (Cur/Min/Max): 1703/1703/1903
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 1703/1703/1904

switch(conf-tm-sub)#

show telemetry control stats

This command displays the statistics about the internal databases about configuration of telemetry.

switch# show telemetry control stats
show telemetry control stats entered

--
Error Description Error Count
--
Chunk allocation failures 0
Sensor path Database chunk creation failures 0
Sensor Group Database chunk creation failures 0
Destination Database chunk creation failures 0
Destination Group Database chunk creation failures 0
Subscription Database chunk creation failures 0
Sensor path Database creation failures 0
Sensor Group Database creation failures 0
Destination Database creation failures 0
Destination Group Database creation failures 0
Subscription Database creation failures 0
Sensor path Database insert failures 0
Sensor Group Database insert failures 0
Destination Database insert failures 0
Destination Group Database insert failures 0
Subscription insert to Subscription Database failures 0
Sensor path Database delete failures 0
Sensor Group Database delete failures 0
Destination Database delete failures 0
Destination Group Database delete failures 0
Delete Subscription from Subscription Database failures 0
Sensor path delete in use 0
Sensor Group delete in use 0
Destination delete in use 0
Destination Group delete in use 0
Delete destination(in use) failure count 0
Failed to get encode callback 0
Sensor path Sensor Group list creation failures 0
Sensor path prop list creation failures 0
Sensor path sec Sensor path list creation failures 0
Sensor path sec Sensor Group list creation failures 0
Sensor Group Sensor path list creation failures 0
Sensor Group Sensor subs list creation failures 0
Destination Group subs list creation failures 0
Destination Group Destinations list creation failures 0
Destination Destination Groups list creation failures 0
Subscription Sensor Group list creation failures 0
Subscription Destination Groups list creation failures 0
Sensor Group Sensor path list delete failures 0
Sensor Group Subscriptions list delete failures 0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
405

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Destination Group Subscriptions list delete failures 0
Destination Group Destinations list delete failures 0
Subscription Sensor Groups list delete failures 0
Subscription Destination Groups list delete failures 0
Destination Destination Groups list delete failures 0
Failed to delete Destination from Destination Group 0
Failed to delete Destination Group from Subscription 0
Failed to delete Sensor Group from Subscription 0
Failed to delete Sensor path from Sensor Group 0
Failed to get encode callback 0
Failed to get transport callback 0
switch# Destination Database size = 1

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.123 50001 GPB gRPC 1

show telemetry data collector brief

This command displays the brief statistics about the data collection.

switch# show telemetry data collector brief

--
Collector Type Successful Collections Failed Collections
--
DME 143 0

show telemetry data collector details

This command displays detailed statistics about the data collection which includes breakdown of all sensor
paths.

switch# show telemetry data collector details

--
Succ Collections Failed Collections Sensor Path
--
150 0 sys/fm

show telemetry event collector errors

This command displays the errors statistic about the event collection.

switch# show telemetry event collector errors

--
Error Description Error Count
--
APIC-Cookie Generation Failures - 0
Authentication Failures - 0
Authentication Refresh Failures - 0
Authentication Refresh Timer Start Failures - 0
Connection Timer Start Failures - 0
Connection Attempts - 3
Dme Event Subscription Init Failures - 0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
406

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Event Subscription Refresh Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
Subscription Refresh Timer Start Failures - 0
Websocket Connect Failures - 0

show telemetry event collector stats

This command displays the statistics about the event collection which includes breakdown of all sensor paths.

switch# show telemetry event collector stats

--
Collection Count Latest Collection Time Sensor Path
--

show telemetry control pipeline stats

This command displays the statistics for the telemetry pipeline.

switch# show telemetry pipeline stats
Main Statistics:

Timers:
Errors:

Start Fail = 0

Data Collector:
Errors:

Node Create Fail = 0

Event Collector:
Errors:

Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0

Memory:
Allowed Memory Limit = 1181116006 bytes
Occupied Memory = 93265920 bytes

Queue Statistics:
Request Queue:

High Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
407

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Enqueue Error = 0 Dequeue Error = 0

Data Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

show telemetry transport

This command displays all configured transport sessions.

switch# show telemetry transport

Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected

Table 25: Syntax Description for show telemetry transport

DescriptionSyntax

Shows running system informationshow

Shows telemetry informationtelemetry

Shows telemetry transport informationtransport

(Optional) Session idsession_id

(Optional) Shows all telemetry statistics informationstats

(Optional) Show all telemetry error informationerrors

(Optional)readonly

(Optional) Transport informationTABLE_transport_info

(Optional) Session Idsession_idx

(Optional) Transport IP addressip_address

(Optional) Transport portport

(Optional) Destination informationdest_info

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
408

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

DescriptionSyntax

(Optional) Encoding typeencoding_type

(Optional) Transport typetransport_type

(Optional) Transport statustransport_status

(Optional) Transport security file nametransport_security_cert_fname

(Optional) Transport last connectedtransport_last_connected

(Optional) Last time this destination configuration
was removed

transport_last_disconnected

(Optional) Transport errors counttransport_errors_count

(Optional) Transport last tx errortransport_last_tx_error

(Optional) Transport statisticstransport_statistics

(Optional) Transport Session idt_session_id

(Optional) Connection statisticsconnect_statistics

(Optional) Connection countconnect_count

(Optional) Last connected timestamplast_connected

(Optional) Disconnect countdisconnect_count

(Optional) Last time this destination configuration
was removed

last_disconnected

(Optional) Transport statisticstrans_statistics

(Optional) Compression statuscompression

(Optional) Source interface namesource_interface_name

(Optional) Source interface IPsource_interface_ip

(Optional) Transmission counttransmit_count

(Optional) Last Transmission timelast_tx_time

(Optional) Minimum transmission timemin_tx_time

(Optional) Maximum transmission timemax_tx_time

(Optional) Average transmission timeavg_tx_time

(Optional) Current transmission timecur_tx_time

(Optional) Transport errorstransport_errors

(Optional) Connection errorsconnect_errors

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
409

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

DescriptionSyntax

(Optional) Connection error countconnect_errors_count

(Optional) Transport errorstrans_errors

(Optional) Transport error counttrans_errors_count

(Optional) Last transport errorlast_tx_error

(Optional) Last transport return codelast_tx_return_code

(Optional) Retry Statisticstransport_retry_stats

(Optional) Event Retry buffer sizets_event_retry_bytes

(Optional) Timer Retry buffer sizets_timer_retry_bytes

(Optional) Event Retry number of messagests_event_retry_size

(Optional) Timer Retry number of messagests_timer_retry_size

(Optional) Number of retries sentts_retries_sent

(Optional) Number of retries droppedts_retries_dropped

(Optional) Event Retry buffer sizeevent_retry_bytes

(Optional) Timer Retry buffer sizetimer_retry_bytes

(Optional) Number of retries sentretries_sent

(Optional) Number of retries droppedretries_dropped

(Optional) Retry buffer sizeretry_buffer_size

show telemetry transport <session-id>

This command displays detailed session information for a specific transport session.

switch# show telemetry transport 0

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: gRPC
Status: Disconnected
Last Connected: Fri Sep 02 11:45:57.505 UTC
Last Disconnected: Never
Tx Error Count: 224
Last Tx Error: Fri Sep 02 12:23:49.555 UTC

switch# show telemetry transport 1

Session Id: 1
IP Address:Port 10.30.218.56:51235
Transport: HTTP

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
410

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Status: Disconnected
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 3
Last Tx Error: Wed Apr 19 15:56:51.617 PDT

The following example shows output from an IPv6 entry.
switch# show telemetry transport 0
Session Id: 0
IP Address:Port [10:10::1]:8000
Transport: GRPC
Status: Idle
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None
Event Retry Queue Bytes: 0
Event Retry Queue Size: 0
Timer Retry Queue Bytes: 0
Timer Retry Queue Size: 0
Sent Retry Messages: 0
Dropped Retry Messages: 0

show telemetry transport <session-id> stats

This command displays details of a specific transport session.

switch# show telemetry transport 0 stats

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: GRPC
Status: Connected
Last Connected: Mon May 01 11:29:46.912 PST
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None

show telemetry transport <session-id> stats

This command displays details of a specific transport session.
Session Id: 0
Transmission Stats

Compression: disabled
Source Interface: not set()
Transmit Count: 319297
Last TX time: Fri Aug 02 03:51:15.287 UTC
Min Tx Time: 1 ms
Max Tx Time: 3117 ms
Avg Tx Time: 3 ms
Cur Tx Time: 1 ms

show telemetry transport <session-id> errors

This command displays detailed error statistics for a specific transport session.
switch# show telemetry transport 0 errors
Session Id: 0

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
411

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Connection Errors
Connection Error Count: 0
Transmission Errors
Tx Error Count: 30
Last Tx Error: Thu Aug 01 04:39:47.083 UTC
Last Tx Return Code: No error

show telemetry control databases sensor-paths

These following configuration steps result in the show telemetry control databases sensor-paths command
output below.
feature telemetry

telemetry
destination-group 1
ip address 172.25.238.13 port 50600 protocol gRPC encoding GPB

sensor-group 1
path sys/cdp depth unbounded
path sys/intf depth unbounded
path sys/mac depth 0

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 1000

Command output.
switch# show telemetry control databases sensor-paths

Sensor Path Database size = 3
--

Row ID Subscribed Linked Groups Sec Groups Retrieve level Path(GroupId) :
Query : Filter
--

1 No 1 0 Full sys/cdp(1) : NA
: NA
GPB Encoded Data size in bytes (Cur/Min/Max): 30489/30489/30489
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 6/5/54
Encoding Time in ms (Cur/Min/Max): 5/5/6
Transport Time in ms (Cur/Min/Max): 1027/55/1045
Streaming Time in ms (Cur/Min/Max): 48402/5/48402

2 No 1 0 Full sys/intf(1) : N
A : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 539466/539466/539466
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 66/64/114
Encoding Time in ms (Cur/Min/Max): 91/90/92
Transport Time in ms (Cur/Min/Max): 4065/4014/5334
Streaming Time in ms (Cur/Min/Max): 48365/64/48365

3 No 1 0 Self sys/mac(1) : NA
: NA
GPB Encoded Data size in bytes (Cur/Min/Max): 247/247/247
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 1/1/47
Encoding Time in ms (Cur/Min/Max): 1/1/1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
412

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Transport Time in ms (Cur/Min/Max): 4/1/6
Streaming Time in ms (Cur/Min/Max): 47369/1/47369

Displaying Telemetry Log and Trace Information
Use the following NX-OS CLI commands to display the log and trace information.

show tech-support telemetry

This NX-OS CLI command collects the telemetry log contents from the tech-support log. In this example,
the command output is redirected into a file in bootflash.

switch# show tech-support telemetry > bootflash:tmst.log

tmtrace.bin

This BASH shell command collects telemetry traces and prints them out.

switch# configure terminal
switch(config)# feature bash
switch(config)# run bash
bash-4.2$ tmtrace.bin -d tm-errors
bash-4.2$ tmtrace.bin -d tm-logs
bash-4.2$ tmtrace.bin -d tm-events

For example:
bash-4.2$ tmtrace.bin -d tm-logs
[01/25/17 22:52:24.563 UTC 1 29130] [3944724224][tm_ec_dme_auth.c:59] TM_EC: Authentication
refresh url http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.565 UTC 2 29130] [3944724224][tm_ec_dme_rest_util.c:382] TM_EC: Performed
POST request on http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.566 UTC 3 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER: Starting
leaf timer for leaf:0x11e17ea4 time_in_ms:540000
[01/25/17 22:52:45.317 UTC 4 29130] [3944724224][tm_ec_dme_event_subsc.c:790] TM_EC: Event
subscription database size 0
[01/25/17 22:52:45.317 UTC 5 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER: Starting
leaf timer for leaf:0x11e17e3c time_in_ms:50000
bash-4.2#

The tm-logs option is not enabled by default because it is verbose.

Enable tm-logs with the tmtrace.bin -L D tm-logs command.

Disable tm-logs with the tmtrace.bin -L W tm-logs command.

Note

show system internal telemetry trace

The show system internal telemetry trace [tm-events | tm-errors |tm-logs | all] command displays system
internal telemetry trace information.

switch# show system internal telemetry trace all
Telemetry All Traces:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
413

Model-Driven Programmability
Displaying Telemetry Log and Trace Information

Telemetry Error Traces:
[07/26/17 15:22:29.156 UTC 1 28577] [3960399872][tm_cfg_api.c:367] Not able to destroy dest
profile list for config node rc:-1610612714 reason:Invalid argument
[07/26/17 15:22:44.972 UTC 2 28577] [3960399872][tm_stream.c:248] No subscriptions for
destination group 1
[07/26/17 15:22:49.463 UTC 3 28577] [3960399872][tm_stream.c:576] TM_STREAM: Subscriptoin
1 does not have any sensor groups

3 entries printed
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
switch#

switch# show system internal telemetry trace tm-logs
Telemetry Log Traces:
0 entries printed
switch#
switch# show system internal telemetry trace tm-events
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
[07/26/17 15:19:40.610 UTC 4 28577] [3960399872][tm_init_n9k.c:207] Adding telemetry to
cgroup
[07/26/17 15:19:40.670 UTC 5 28577] [3960399872][tm_init_n9k.c:215] Added telemetry to
cgroup successfully!

switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:
0 entries printed
switch#

Configuring Telemetry Using the NX-API

Configuring Telemetry Using the NX-API
In the object model of the switch DME, the configuration of the telemetry feature is defined in a hierarchical
structure of objects as shown in the section "Telemetry Model in the DME." Following are the main objects
to be configured:

• fmEntity —Contains the NX-API and Telemetry feature states.

• fmNxapi —Contains the NX-API state.

• fmTelemetry —Contains the Telemetry feature state.

• telemetryEntity —Contains the telemetry feature configuration.

• telemetrySensorGroup —Contains the definitions of one or more sensor paths or nodes to be
monitored for telemetry. The telemetry entity can contain one or more sensor groups.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
414

Model-Driven Programmability
Configuring Telemetry Using the NX-API

• telemetryRtSensorGroupRel —Associates the sensor group with a telemetry subscription.

• telemetrySensorPath—Apath to bemonitored. The sensor group can containmultiple objects
of this type.

• telemetryDestGroup —Contains the definitions of one or more destinations to receive telemetry
data. The telemetry entity can contain one or more destination groups.

• telemetryRtDestGroupRel—Associates the destination group with a telemetry subscription.

• telemetryDest —A destination address. The destination group can contain multiple objects
of this type.

• telemetrySubscription — Specifies how and when the telemetry data from one or more sensor
groups is sent to one or more destination groups.

• telemetryRsDestGroupRel—Associates the telemetry subscription with a destination group.

• telemetryRsSensorGroupRel —Associates the telemetry subscription with a sensor group.

• telemetryCertificate —Associates the telemetry subscription with a certificate and hostname.

To configure the telemetry feature using the NX-API, you must construct a JSON representation of the
telemetry object structure and push it to the DME with an HTTP or HTTPS POST operation.

For detailed instructions on using the NX-API, see the Cisco Nexus 3000 and 9000 Series NX-API REST SDK
User Guide and API Reference.

Note

Before you begin

Your switch must be running Cisco NX-OS Release 7.3(0)I5(1) or a later release.

Your switch must be configured to run the NX-API from the CLI:
switch(config)# feature nxapi

NX-API sends telemetry data over management VRF:
switch(config)# nxapi use-vrf management

nxapi use-vrf vrf_name
nxapi http port port_number

Procedure

PurposeCommand or Action

The root element is fmTelemetry and the base
path for this element is sys/fm. Configure the
adminSt attribute as enabled.

Enable the telemetry feature.

Example:

{

Step 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
415

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"fmEntity" : {
"children" : [{
"fmTelemetry" : {
"attributes" : {
"adminSt" : "enabled"

}
}

}
]

}
}

The root element is telemetryEntity and the
base path for this element is sys/tm. Configure
the dn attribute as sys/tm.

Create the root level of the JSON payload to
describe the telemetry configuration.

Example:

Step 2

{
"telemetryEntity": {

"attributes": {
"dn": "sys/tm"

},
}

}

A telemetry sensor group is defined in an
object of class telemetrySensorGroup.

Create a sensor group to contain the defined
sensor paths.

Example:

Step 3

Configure the following attributes of the
object:

"telemetrySensorGroup": { • id —An identifier for the sensor group.
Currently only numeric ID values are
supported.

"attributes": {
"id": "10",
"rn": "sensor-10"
"dataSrc": "NX-API" • rn — The relative name of the sensor

group object in the format: sensor-id.
}, "children": [{
}]

}
• dataSrc — Selects the data source from

DEFAULT, DME, YANG, or NX-API.

Children of the sensor group object include
sensor paths and one or more relation objects
(telemetryRtSensorGroupRel) to associate
the sensor group with a telemetry subscription.

The telemetryCertificate defines the location
of the SSL/TLS certificate with the telemetry
subscription/destination.

(Optional) Add an SSL/TLS certificate and a
host.

Example:

Step 4

{
"telemetryCertificate": {

"attributes": {
"filename": "root.pem"
"hostname": "c.com"

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
416

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
}

}

A telemetry destination group is defined in
telemetryEntity. Configure the id attribute.

Define a telemetry destination group.

Example:

Step 5

{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
}

}

A telemetry destination profile is defined in
telemetryDestProfile.

Define a telemetry destination profile.

Example:

Step 6

• Configure the adminSt attribute as
enabled.{

"telemetryDestProfile": {
• Under

telemetryDestOptSourceInterface,
"attributes": {

"adminSt": "enabled"
}, configure the name attribute with an"children": [

interface name to stream data from the{
configured interface to a destination with
the source IP address."telemetryDestOptSourceInterface": {

"attributes": {
"name": "lo0"

}
}

}
]

}
}

A telemetry destination is defined in an object
of class telemetryDest. Configure the
following attributes of the object:

Define one or more telemetry destinations,
consisting of an IP address and port number
to which telemetry data will be sent.

Example:

Step 7

• addr—The IP address of the destination.

{ • port — The port number of the
destination."telemetryDest": {

"attributes": {
• rn—The relative name of the destination
object in the format: path-[path].

"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",

• enc—The encoding type of the telemetry
data to be sent. NX-OS supports:

"proto": "gRPC",
"rn":

"addr-[1.2.3.4]-port-50001"
} • Google protocol buffers (GPB) for

gRPC.}
}

• JSON for C.

• GPB or JSON for UDP and secure
UDP (DTLS).

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
417

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

• proto — The transport protocol type of
the telemetry data to be sent. NX-OS
supports:

• gRPC

• HTTP

• VUDP and secure UDP (DTLS)

• Supported encoded types are:

• HTTP/JSON YES

• HTTP/Form-data YES Only
supported for Bin Logging.

• GRPC/GPB-Compact YES Native
Data Source Only.

• GRPC/GPB YES

• UDP/GPB YES

• UDP/JSON YES

See Guidelines and Limitations for more
information.

Enable gRPC chunking and set the chunking
size, between 64 and 4096 bytes.

Example:

Step 8

{
"telemetryDestGrpOptChunking": {

"attributes": {
"chunkSize": "2048",
"dn":

"sys/tm/dest-1/chunking"
}

}
}

A telemetry subscription is defined in an object
of class telemetrySubscription. Configure
the following attributes of the object:

Create a telemetry subscription to configure
the telemetry behavior.

Example:

Step 9

• id —An identifier for the subscription.
Currently only numeric ID values are
supported.

"telemetrySubscription": {
"attributes": {

"id": "30",
"rn": "subs-30" • rn — The relative name of the

subscription object in the format: subs-id.}, "children": [{
}]

}
Children of the subscription object include
relation objects for sensor groups
(telemetryRsSensorGroupRel) and

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
418

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

destination groups
(telemetryRsDestGroupRel).

Add the sensor group object as a child object
to the telemetrySubscription element under
the root element (telemetryEntity).

Step 10

Example:
{

"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel":

{
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

}
]

}
}

The relation object is of class
telemetryRsSensorGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry sensor group and to specify the
data sampling behavior.

Step 11

object of telemetrySubscription. Configure
the following attributes of the relation object:

Example: • rn — The relative name of the relation
object in the format:
rssensorGroupRel-[sys/tm/sensor-group-id]."telemetryRsSensorGroupRel": {

"attributes": {
• sampleIntvl—The data sampling period
in milliseconds. An interval value of 0

"rType": "mo",
"rn":

"rssensorGroupRel-[sys/tm/sensor-10]", creates an event-based subscription, in"sampleIntvl": "5000",
which telemetry data is sent only upon"tCl": "telemetrySensorGroup",
changes under the specified MO. An"tDn": "sys/tm/sensor-10",

"tType": "mo" interval value greater than 0 creates a
}

} frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an
interval value of 15000 results in the
sending of telemetry data every 15
seconds.

• tCl — The class of the target (sensor
group) object, which is
telemetrySensorGroup.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
419

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

• tDn — The distinguished name of the
target (sensor group) object, which is
sys/tm/sensor-group-id.

• rType —The relation type, which is mo
for managed object.

• tType — The target type, which is mo
for managed object.

A sensor path is defined in an object of class
telemetrySensorPath. Configure the
following attributes of the object:

Define one or more sensor paths or nodes to
be monitored for telemetry.

Example:

Step 12

• path — The path to be monitored.Single sensor path

{
• rn—The relative name of the path object
in the format: path-[path]

"telemetrySensorPath": {
"attributes": { • depth—The retrieval level for the sensor

path. A depth setting of 0 retrieves only
the root MO properties.

"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",

• filterCondition — (Optional) Creates a
specific filter for event-based

"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "", subscriptions. The DME provides the
"depth": "0", filter expressions. For more information"alias": "cdp_alias",

about filtering, see the Cisco APIC REST}
API Usage Guidelines on composing}

} queries: https://www.cisco.com/c/en/us/
td/docs/switches/datacenter/aci/apic/sw/
2-x/rest_cfg/2_1_x/b_Cisco_APIC_Example:
REST_API_Configuration_Guide/b_Single sensor path for NX-API

{

Cisco_APIC_REST_API_Configuration_
Guide_chapter_01.html#d25e1534a1635

"telemetrySensorPath": { • alias - Specify an alias for this path.
"attributes": {

"path": "show interface",
"path": "show bgp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Example:

Multiple sensor paths

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
420

Model-Driven Programmability
Configuring Telemetry Using the NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635

PurposeCommand or Action

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

},
{

"telemetrySensorPath": {
"attributes": {

"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/dhcp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Example:

Single sensor path filtering for BGP disable
events:

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition":

"eq(fmBgp.operSt.\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Add sensor paths as child objects to the sensor
group object (telemetrySensorGroup).

Step 13

Add destinations as child objects to the
destination group object
(telemetryDestGroup).

Step 14

Add the destination group object as a child
object to the root element (telemetryEntity).

Step 15

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
421

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

The relation object is of class
telemetryRtSensorGroupRel and is a child

Create a relation object as a child object of the
telemetry sensor group to associate the sensor
group to the subscription.

Step 16

object of telemetrySensorGroup. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rtsensorGroupRel-[sys/tm/subscription-id].

"telemetryRtSensorGroupRel": {
"attributes": {

"rn":
"rtsensorGroupRel-[sys/tm/subs-30]", • tCl—The target class of the subscription

object, which is telemetrySubscription."tCl": "telemetrySubscription",

"tDn": "sys/tm/subs-30" • tDn —The target distinguished name of
the subscription object, which is
sys/tm/subscription-id.

}
}

The relation object is of class
telemetryRtDestGroupRel and is a child

Create a relation object as a child object of the
telemetry destination group to associate the
destination group to the subscription.

Step 17

object of telemetryDestGroup. Configure the
following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rtdestGroupRel-[sys/tm/subscription-id].

"telemetryRtDestGroupRel": {
"attributes": {

"rn":
"rtdestGroupRel-[sys/tm/subs-30]", • tCl—The target class of the subscription

object, which is telemetrySubscription."tCl": "telemetrySubscription",

"tDn": "sys/tm/subs-30" • tDn —The target distinguished name of
the subscription object, which is
sys/tm/subscription-id.

}
}

The relation object is of class
telemetryRsDestGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry destination group.

Step 18

object of telemetrySubscription. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rsdestGroupRel-[sys/tm/destination-group-id].

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": • tCl—The class of the target (destination

group) object, which is
telemetryDestGroup.

"rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

• tDn — The distinguished name of the
target (destination group) object, which
is sys/tm/destination-group-id.

}
}

• rType —The relation type, which is mo
for managed object.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
422

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

• tType — The target type, which is mo
for managed object.

The base path for the telemetry entity is sys/tm
and the NX-API endpoint is:

Send the resulting JSON structure as an
HTTP/HTTPS POST payload to the NX-API
endpoint for telemetry configuration.

Step 19

{{URL}}/api/node/mo/sys/tm.json

Example

The following is an example of all the previous steps that are collected into one POST payload (note
that some attributes may not match):
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50051",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
423

Model-Driven Programmability
Configuring Telemetry Using the NX-API

"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Configuration Example for Telemetry Using the NX-API

Streaming Paths to a Destination

This example creates a subscription that streams paths sys/cdp and sys/ipv4 to a destination 1.2.3.4 port

50001 every five seconds.

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{

"telemetryEntity": {
"attributes": {

"dn": "sys/tm"
},
"children": [{

"telemetrySensorGroup": {
"attributes": {

"id": "10",
"rn": "sensor-10"

}, "children": [{
"telemetryRtSensorGroupRel": {

"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
424

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

}
}, {

"telemetrySensorPath": {
"attributes": {

"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}]
}

}, {
"telemetryDestGroup": {

"attributes": {
"id": "20",
"rn": "dest-20"

},
"children": [{

"telemetryRtDestGroupRel": {
"attributes": {

"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetryDest": {

"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

}
}

}]
}

}, {
"telemetrySubscription": {

"attributes": {
"id": "30",
"rn": "subs-30"

},
"children": [{

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

}
}

}, {
"telemetryRsSensorGroupRel": {

"attributes": {
"rType": "mo",
"rn": "rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
425

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

"tDn": "sys/tm/sensor-10",
"tType": "mo"

}
}

}]
}

}]
}

}

Filter Conditions on BGP Notifications

The following example payload enables notifications that trigger when the BFP feature is disabled as per the
filterCondition attribute in the telemetrySensorPathMO. The data is streamed to10.30.217.80 port

50055.
POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "eq(fmBgp.operSt,\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{
"telemetrySubscription": {
"attributes": {

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
426

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

"id": "30"
}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Using Postman Collection for Telemetry Configuration

An example Postman collection is an easy way to start configuring the telemetry feature, and can run all
telemetry CLI equivalents in a single payload. Modify the file in the preceding link using your preferred text
editor to update the payload to your needs, then open the collection in Postman and run the collection.

Telemetry Model in the DME
The telemetry application is modeled in the DME with the following structure:

model
|----package [name:telemetry]

| @name:telemetry
|----objects

|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
|--property
| @name:adminSt
| @type:AdminState
|
|----mo [name:SensorGroup]
| | @name:SensorGroup
| | @label:Sensor Group
| |--property
| | @name:id [key]
| | @type:string:Basic
| | @name:dataSrc
| | @type:DataSource
| |
| |----mo [name:SensorPath]
| | @name:SensorPath
| | @label:Sensor Path
| |--property
| | @name:path [key]
| | @type:string:Basic
| | @name:filterCondition

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
427

Model-Driven Programmability
Telemetry Model in the DME

https://github.com/CiscoDevNet/nx-telemetry-proto/tree/master/postman_collections

| | @type:string:Basic
| | @name:excludeFilter
| | @type:string:Basic
| | @name:depth
| | @type:RetrieveDepth
|
|----mo [name:DestGroup]
| | @name:DestGroup
| | @label:Destination Group
| |--property
| | @name:id
| | @type:string:Basic
| |
| |----mo [name:Dest]
| | @name:Dest
| | @label:Destination
| |--property
| | @name:addr [key]
| | @type:address:Ip
| | @name:port [key]
| | @type:scalar:Uint16
| | @name:proto
| | @type:Protocol
| | @name:enc
| | @type:Encoding
|
|----mo [name:Subscription]

| @name:Subscription
| @label:Subscription
|--property
| @name:id
| @type:scalar:Uint64
|----reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| |--property
| @name:sampleIntvl
| @type:scalar:Uint64
|
|----reldef

| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry

For a list of DNs available to the telemetry feature, see Streaming Telemetry Sources.

Cloud Scale Software Telemetry

About Cloud Scale Software Telemetry
Beginning with NX-OS release 9.3(1), software telemetry is supported on Cisco Nexus Cloud Scale switches
that use the Tahoe ASIC. In this release, supported Cloud Scale switches host a TCP/IP server that is tightly
intergrated with the ASICs, which expedites reporting telemetry data from the switch. The server runs on
TCP port 7891, and telemetry clients can connect to the server on this port to retrieve hardware-counter data
in a maximum of 10 milliseconds.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
428

Model-Driven Programmability
Cloud Scale Software Telemetry

Cloud Scale software telemetry offers you the flexibility of creating your own client programs or using the
default client program that is bundled into NX-OS release 9.3.1 and later. You can write client programs in
any programming language that supports TCP/IP, such as Python 2.7 or higher, C, or PHP. Client programs
must be constructed with the correct message formatting.

Beginning with NX-OS release 9.3(1), the Cloud Scale software telemetry feature is available in NX-OS. The
feature is enabled by default, so supported switches running NX-OS 9.3(1) or later can use this feature.

Cloud Scale Software Telemetry Message Formats
Cloud Scale telemetry begins with a handshake between the client and TCP/IP server on the switch, during
which the client initiates the connection over the TCP socket. The client message is a 32-bit integer set to
zero. The switch responds with a message that contains the counter data in a specific format.

In NX-OS release 9.3(1), the following message format is supported. If you create your own client programs,
make sure that the messages that your clients initiate conform to this format.

SpecifiesLength

The number of ports, N4 bytes

The data for each port, for a total of 56 * N bytes.

Each 56-byte chunk of data consists of the following:

• 24 bytes of interface name

• 8 bytes of the transmitted (TX) packets

• 8 bytes of transmitted (TX) bytes

• 8 bytes of received (RX) packets

• 8 bytes of received (RX) bytes

56 bytes

Guidelines and Limitations for Cloud Scale Software Telemetry
The following are the guidelines and limitations for the Cloud Scale software telemetry feature:

• For information about supported platforms for Cisco NX-OS prior to release 9.3(x), see the section for
Platform Support for Programmability Features in that guide. Starting with Cisco NX-OS release 9.3(x)
for information about supported platforms, see the Nexus Switch Platform Matrix.

• For custom client telemetry programs, one message format is supported. Your client programs must
comply with this format.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
429

Model-Driven Programmability
Cloud Scale Software Telemetry Message Formats

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html

Telemetry Path Labels

About Telemetry Path Labels
Beginning with NX-OS release 9.3(1), model-driven telemetry supports path labels. Path labels provide an
easy way to gather telemetry data from multiple sources at once. With this feature, you specify the type of
telemetry data you want collected, and the telemetry feature gathers that data frommultiple paths. The feature
then returns the information to one consolidated place, the path label. This feature simplifies using telemetry
because you no longer must:

• Have a deep and comprehensive knowledge of the Cisco DME model.

• Create multiple queries and addmultiple paths to the subscription, while balancing the number of collected
events and the cadence.

• Collect multiple chunks of telemetry information from the switch, which simplifies serviceability.

Path labels span across multiple instances of the same object type in the model, then gather and return counters
or events. Path labels support the following telemetry groups:

• Environment, whichmonitors chassis information, including fan, temperature, power, storage, supervisors,
and line cards.

• Interface, which monitors all the interface counters and status changes.

This label supports predefined keyword filters that can refine the returned data by using the
query-condition command.

• Resources, which monitors system resources such as CPU utilization and memory utilization.

• VXLAN, whichmonitors VXLANEVPNs including VXLAN peers, VXLAN counters, VLAN counters,
and BGP Peer data.

Polling for Data or Receiving Events
The sample interval for a sensor group determines how and when telemetry data is transmitted to a path label.
The sample interval can be configured either to periodically poll for telemetry data or gather telemetry data
when events occur.

• When the sample interval for telemetry is configured as a non-zero value, telemetry periodically sends
the data for the environment, interfaces, resources, and vxlan labels during each sample interval.

• When the sample interval is set to zero, telemetry sends event notifications when the environment,
interfaces, resources, and vxlan labels experience operational state updates, as well as creation and
deletion of MOs.

Polling for data or receiving events are mutually exclusive. You can configure polling or event-driven telemetry
for each path label.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
430

Model-Driven Programmability
Telemetry Path Labels

Guidelines and Limitations for Path Labels
The telemetry path labels feature has the following guidelines and limitations:

• The feature supports only Cisco DME data source only.

• You cannot mix andmatch usability paths with regular DME paths in the same sensor group. For example,
you cannot configure sys/intf and interface in the same sensor group. Also, you cannot configure
the same sensor group with sys/intf and interface. If this situation occurs, NX-OS rejects the
configuration.

• User filter keywords, such as oper-speed and counters=[detailed], are supported only for the interface
path.

• The feature does not support other sensor path options, such as depth or filter-condition.

• The telemetry path labels has the following restrictions in using path labels:

• Must start with prefix show in lowercase, as it is case sensitive.

For example: show version is allowed. However, SHOW version or version is not allowed.

• Cannot include following characters:

• ;

• |

• " " or ' '

• Cannot include following words:

• telemetry

• conf t

• configure

Configuring the Interface Path to Poll for Data or Events
The interface path label monitors all the interface counters and status changes. It supports the following
interface types:

• Physical

• Subinterface

• Management

• Loopback

• VLAN

• Port Channel

You can configure the interface path label to either periodically poll for data or receive events. See Polling
for Data or Receiving Events, on page 430.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
431

Model-Driven Programmability
Guidelines and Limitations for Path Labels

The model does not support counters for subinterface, loopback, or VLAN, so they are not streamed out.Note

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Configure the interface path label, which
enables sending one telemetry data query for

path interface

Example:

Step 4

multiple individual interfaces. The label
switch(conf-tm-sensor)# path interface
switch(conf-tm-sensor)#

consolidates the queries for multiple interfaces
into one. Telemetry then telemetry gathers the
data and returns it to the label.

Depending on how the polling interval is
configured, interface data is sent based on a
periodic basis or whenever the interface state
changes.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
432

Model-Driven Programmability
Configuring the Interface Path to Poll for Data or Events

PurposeCommand or Action
switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path for Non-Zero Counters
You can configure the interface path label with a pre-defined keyword filter that returns only counters that
have non-zero values. The filter is counters=[detailed].

By using this filter, the interface path gathers all the available interface counters, filters the collected data,
then forwards the results to the receiver. The filter is optional, and if you do not use it, all counters, including
zero-value counters, are displayed for the interface path.

Using the filter is conceptually similar to issuing show interface mgmt0 counters detailedNote

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
433

Model-Driven Programmability
Configuring the Interface Path for Non-Zero Counters

PurposeCommand or Action

Configure the interface path label and query for
only the non-zero counters from all interfaces.

path interface query-condition
counters=[detailed]

Example:

Step 4

switch(conf-tm-sensor)# path interface
query-condition counters=[detailed]
switch(conf-tm-sensor)#

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path for Operational Speeds
You can configure the interface path label with a pre-defined keyword filter that returns counters for interfaces
of specified operational speeds. The filter is oper-speed=[]. The following operational speeds are supported:
auto, 10M, 100M, 1G, 10G, 40G, 200G, and 400G.

By using this filter, the interface path gathers the telemetry data for interfaces of the specified speed, then
forwards the results to the receiver. The filter is optional. If you do not use it, counters for all interfaces are
displayed, regardless of their operational speed.

The filter can accept multiple speeds as a comma-separated list, for example oper-speed=[1G,10G] to retrieve
counters for interfaces that operate at 1 and 10 Gbps. Do not use a blank space as a delimiter.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
434

Model-Driven Programmability
Configuring the Interface Path for Operational Speeds

Interface types subinterface, loopback, and VLAN do not have operational speed properties, so the filter does
not support these interface types.

Note

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 3

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Configure the interface path label and query for
counters from interfaces running the specified

path interface query-condition
oper-speed=[speed]

Step 4

speed, which in this example, is 1 and 40 Gbps
only.Example:

switch(conf-tm-sensor)# path interface
query-condition oper-speed=[1G,40G]
switch(conf-tm-sensor)#

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
435

Model-Driven Programmability
Configuring the Interface Path for Operational Speeds

PurposeCommand or Action

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path with Multiple Queries
You can configure multiple filters for the same query condition in the interface path label. When you do so,
the individual filters you use are ANDed.

Separate each filter in the query condition by using a comma. You can specify any number of filters for the
query-condition, but be aware that the more filters you add, the more focused the results become.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Configures multiple conditions in the same
query. In this example, the query does both of
the following:

path interface query-condition
counters=[detailed],oper-speed=[1G,40G]

Example:

Step 4

• Gathers and returns non-zero counters on
interfaces running at 1 Gbps.

switch(conf-tm-sensor)# path interface
query-condition
counters=[detailed],oper-speed=[1G,40G]
switch(conf-tm-sensor)# • Gathers and returns non-zero counters on

interfaces running at 40 Gbps.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
436

Model-Driven Programmability
Configuring the Interface Path with Multiple Queries

PurposeCommand or Action

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Environment Path to Poll for Data or Events
The environment path label monitors chassis information, including fan, temperature, power, storage,
supervisors, and line cards. You can configure the environment path to either periodically poll for telemetry
data or get the data when events occur. For information, see Polling for Data or Receiving Events, on page
430.

You can set the resources path to return system resource information through either periodic polling or based
on events. This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
437

Model-Driven Programmability
Configuring the Environment Path to Poll for Data or Events

PurposeCommand or Action

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Configures the environment path label, which
enables telemetry data for multiple individual

path environment

Example:

Step 4

environment objects to be sent to the label. The
switch(conf-tm-sensor)# path environment
switch(conf-tm-sensor)#

label consolidates the multiple data inputs into
one output.

Depending on the sample interval, the
environment data is either streaming based on
the polling interval, or sent when events occur.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when environment events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
438

Model-Driven Programmability
Configuring the Environment Path to Poll for Data or Events

Configuring the Resources Path to Poll for Events or Data
The resources path monitors system resources such as CPU utilization and memory utilization. You can
configure this path to either periodically gather telemetry data, or when events occur. See Polling for Data or
Receiving Events, on page 430.

This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Configure the resources path label, which
enables telemetry data for multiple individual

path resources

Example:

Step 4

system resources to be sent to the label. The
switch(conf-tm-sensor)# path resources
switch(conf-tm-sensor)#

label consolidates the multiple data inputs into
one output.

Depending on the sample interval, the resource
data is either streaming based on the polling
interval, or sent when system memory changes
to Not OK.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
439

Model-Driven Programmability
Configuring the Resources Path to Poll for Events or Data

PurposeCommand or Action

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when resource events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the VXLAN Path to Poll for Events or Data
The vxlan path label provides information about the switch's Virtual Extensible LAN EVPNs, including
VXLAN peers, VXLAN counters, VLAN counters, and BGP Peer data. You can configure this path label to
gather telemetry information either periodically, or when events occur. See Polling for Data or Receiving
Events, on page 430.

This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6
switch(conf-tm-sensor)#

Configure the vxlan path label, which enables
telemetry data for multiple individual VXLAN

vxlan environment

Example:

Step 4

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
440

Model-Driven Programmability
Configuring the VXLAN Path to Poll for Events or Data

PurposeCommand or Action

objects to be sent to the label. The label
consolidates the multiple data inputs into one

switch(conf-tm-sensor)# vxlan environment
switch(conf-tm-sensor)#

output. Depending on the sample interval, the
VXLAN data is either streaming based on the
polling interval, or sent when events occur.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch(conf-tm-sensor)# destination-group
33
switch(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch(conf-tm-dest)# ip address 1.2.3.4
port 50004
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when VXLAN events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Verifying the Path Label Configuration
At any time, you can verify that path labels are configured, and check their values by displaying the running
telemetry configuration.

Procedure

PurposeCommand or Action

Displays the current running config for
telemetry,

show running-config-telemetry

Example:

Step 1

In this example, sensor group 4 is configured
to gather non-zero counters from interfaces

switch(conf-tm-sensor)# show
running-config telemetry

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
441

Model-Driven Programmability
Verifying the Path Label Configuration

PurposeCommand or Action

!Command: show running-config telemetry
running at 1 and 10 Gbps. Sensor group 6 is
configured to gather all counters from interfaces
running at 1 and 40 Gbps.

!Running configuration last done at: Mon
Jun 10 08:10:17 2019
!Time: Mon Jun 10 08:10:17 2019

version 9.3(1) Bios:version
feature telemetry

telemetry
destination-profile
use-nodeid tester
sensor-group 4
path interface query-condition

and(counters=[detailed],oper-speed=[1G,10G])

sensor-group 6
path interface query-condition

oper-speed=[1G,40G]
subscription 6
snsr-grp 6 sample-interval 6000

nxosv2(conf-tm-sensor)#

Displaying Path Label Information

Path Label Show Commands

Through the show telemetry usability commands, you can display the individual paths that the path label
walks when you issue a query.

ShowsCommand

Either all telemetry paths for all path labels, or all
telemetry paths for a specified path label. Also, the
output shows whether each path reports telemetry data
based on periodic polling or events.

For the interfaces path label, also any keyword filters
or query conditions you configured.

show telemetry usability {all | environment |
interface | resources | vxlan}

The running configuration for telemetry and selected
path information.

show running-config telemetry

Command Examples

The show telemetry usability all command is a concatenation of all the individual commands that are shown
in this section.

Note

The following shows an example of the show telemetry usability environment command.
switch# show telemetry usability environment
1) label_name : environment

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
442

Model-Driven Programmability
Displaying Path Label Information

path_name : sys/ch
query_type : poll
query_condition :

rsp-subtree=full&query-target=subtree&target-subtree-class=eqptPsuSlot,eqptFtSlot,eqptSupCSlot,eqptPsu,eqptFt,eqptSensor,eqptLCSlot

2) label_name : environment

path_name : sys/ch
query_type : event
query_condition :

rsp-subtree=full&query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(eqptFan.operSt),ne(eqptFan.operSt,"ok")),and(updated(eqptDimm.operSt),ne(eqptDimm.operSt,"ok")),and(updated(eqptFlash.operSt),ne(eqptFlash.operSt,"ok")),and(updated(eqptSpromSup.operSt),ne(eqptSpromSup.operSt,"ok")),and(updated(eqptSpromLc.operSt),ne(eqptSpromLc.operSt,"ok"))))
switch#

The following shows the output of the show telemetry usability interface command.
switch# show telemetry usability interface
1) label_name : interface

path_name : sys/intf
query_type : poll
query_condition :

query-target=children&query-target-filter=eq(l1PhysIf.adminSt,"up")&rsp-subtree=children&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

2) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : poll
query_condition :

query-target=subtree&query-target-filter=eq(mgmtMgmtIf.adminSt,"up")&rsp-subtree=full&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

3) label_name : interface

path_name : sys/intf
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"down")),and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"up")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"down")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"up")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"down")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"up")),and(updated(ethpmEncRtdIf.operSt),eq(
ethpmEncRtdIf.operSt,"down")),and(updated(ethpmEncRtdIf.operSt),eq(ethpmEncRtdIf.operSt,"up"))))

4) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"down")),and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"up"))))
switch#

The following shows an example of the show telemetry usability resources command.
switch# show telemetry usability resources
1) label_name : resources

path_name : sys/proc
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

2) label_name : resources

path_name : sys/procsys
query_type : poll
query_condition :

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
443

Model-Driven Programmability
Displaying Path Label Information

query-target=subtree&target-subtree-class=procSystem,procSysCore,procSysCpuSummary,procSysCpu,procIdle,procIrq,procKernel,procNice,procSoftirq,procTotal,procUser,procWait,procSysCpuHistory,procSysLoad,procSysMem,procSysMemFree,procSysMemUsage,procSysMemUsed

3) label_name : resources

path_name : sys/procsys/sysmem
query_type : event
query_condition :

query-target-filter=and(updated(procSysMem.memstatus),ne(procSysMem.memstatus,"OK"))

switch#

The following shows an example of the show telemetry usability vxlan command.
switch# show telemetry usability vxlan
1) label_name : vxlan

path_name : sys/bd
query_type : poll
query_condition : query-target=subtree&target-subtree-class=l2VlanStats

2) label_name : vxlan

path_name : sys/eps
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

3) label_name : vxlan

path_name : sys/eps
query_type : event
query_condition : query-target=subtree&target-subtree-class=nvoDyPeer

4) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition : query-target=subtree&query-target-filter=or(deleted(),created())

5) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition :

query-target=subtree&target-subtree-class=bgpDom,bgpPeer,bgpPeerAf,bgpDomAf,bgpPeerAfEntry,bgpOperRtctrlL3,bgpOperRttP,bgpOperRttEntry,bgpOperAfCtrl

switch#

Native Data Source Paths

About Native Data Source Paths
NX-OS Telemetry supports the native data source, which is a neutral data source that is not restricted to a
specific infrastructure or database. Instead, the native data source enables components or applications to hook
into and inject relevant information into the outgoing telemetry stream. This feature provides flexibility because
the path for the native data source does not belong to any infrastructure, so any native applications can interact
with NX-OS Telemetry.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
444

Model-Driven Programmability
Native Data Source Paths

The native data source path enables you to subscribe to specific sensor paths to receive selected telemetry
data. The feature works with the NX-SDK to support streaming telemetry data from the following paths:

• RIB path, which sends telemetry data for the IP routes.

• MAC path, which sends telemetry data for static and dynamic MAC entries.

• Adjacency path, which sends telemetry data for IPv4 and IPv6 adjacencies.

When you create a subscription, all telemetry data for the selected path streams to the receiver as a baseline.
After the baseline, only event notifications stream to the receiver.

Streaming of native data source paths supports the following encoding types:

• Google Protobuf (GPB)

• JavaScript Object Notation (JSON)

• Compact Google Protobuf (compact GPB)

Telemetry Data Streamed for Native Data Source Paths
For each source path, the following table shows the information that is streamed when the subscription is first
created (the baseline) and when event notifications occur.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
445

Model-Driven Programmability
Telemetry Data Streamed for Native Data Source Paths

Event NotificationsSubscription BaselinePath Type

Sends event notifications for create,
update, and delete events. The
following values are exported
through telemetry for the RIB path:

• Next-hop routing information:

• Address of the next hop

• Outgoing interface for
the next hop

• VRF name for the next
hop

• Owner of the next hop

• Preference for the next
hop

• Metric for the next hop

• Tag for the next hop

• Segment ID for the next
hop

• Tunnel ID for the next
hop

• Encapsulation type for
the next hop

• Bitwise OR of flags for
the Next Hop Type

• For Layer-3 routing
information:

• VRF name of the route

• Route prefix address

• Mask length for the route

• Number of next hops for
the route

• Event type

• Next hops

Sends all routesRIB

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
446

Model-Driven Programmability
Telemetry Data Streamed for Native Data Source Paths

Event NotificationsSubscription BaselinePath Type

Sends event notifications for add,
update, and delete events. The
following values are exported
through telemetry for the MAC
path:

• MAC address

• MAC address type

• VLAN number

• Interface name

• Event types

Both static and dynamic entries are
supported in event notifications.

Executes a GETALL from DME for
static and dynamic MAC entries

MAC

Sends event notifications for add,
update, and delete events. The
following values are exported
through telemetry for the
Adjacency path:

• IP address

• MAC address

• Interface name

• Physical interface name

• VRF name

• Preference

• Source for the adjacency

• Address family for the
adjacency

• Adjacency event type

Sends the IPv4 and IPv6
adjacencies

Adjacency

For additional information, refer to Github https://github.com/CiscoDevNet/nx-telemetry-proto.

Guidelines and Limitations
The native data source path feature has the following guidelines and limitations:

• For streaming from the RIB,MAC, and Adjacency native data source paths, sensor-path property updates
do not support custom criteria like depth, query-condition, or filter-condition.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
447

Model-Driven Programmability
Guidelines and Limitations

https://github.com/CiscoDevNet/nx-telemetry-proto

Configuring the Native Data Source Path for Routing Information
You can configure the native data source path for routing information, which sends information about all
routes that are contained in the URIB. When you subscribe, the baseline sends all the route information. After
the baseline, notifications are sent for route update and delete operations for the routing protocols that the
switch supports. For the data sent in the RIB notifications, see Telemetry Data Streamed for Native Data
Source Paths, on page 445.

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch(conf-tm-sub)# sensor-grp 6
switch(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data without
requiring a specific model or database.

data-source native

Example:
switch(conf-tm-sensor)# data-source
native
switch(conf-tm-sensor)#

Step 4

Configure the RIB path which streams routes
and route update information.

path rib

Example:

Step 5

nxosv2(conf-tm-sensor)# path rib
nxosv2(conf-tm-sensor)#

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch(conf-tm-sensor)#
destination-group 33
switch(conf-tm-dest)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
448

Model-Driven Programmability
Configuring the Native Data Source Path for Routing Information

PurposeCommand or Action

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Native Data Source Path for MAC Information
You can configure the native data source path forMAC information, which sends information about all entries
in the MAC table. When you subscribe, the baseline sends all the MAC information. After the baseline,
notifications are sent for add, update, and delete MAC address operations. For the data sent in the MAC
notifications, see Telemetry Data Streamed for Native Data Source Paths, on page 445.

For update or delete events, MAC notifications are sent only for the MAC addresses that have IP adjacencies.Note

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
449

Model-Driven Programmability
Configuring the Native Data Source Path for MAC Information

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch(conf-tm-sub)# sensor-grp 6
switch(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data without
requiring a specific model or database.

data-source native

Example:
switch(conf-tm-sensor)# data-source
native
switch(conf-tm-sensor)#

Step 4

Configure the MAC path which streams
information about MAC entries and MAC
notifications.

path mac

Example:

nxosv2(conf-tm-sensor)# path mac
nxosv2(conf-tm-sensor)#

Step 5

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch(conf-tm-sensor)#
destination-group 33
switch(conf-tm-dest)#

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch(conf-tm-dest)#

Example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
450

Model-Driven Programmability
Configuring the Native Data Source Path for MAC Information

PurposeCommand or Action
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Native Data Source Path for All MAC Information
You can configure the native data source path forMAC information, which sends information about all entries
in theMAC table from Layer 3 and Layer 2.When you subscribe, the baseline sends all theMAC information.
After the baseline, notifications are sent for add, update, and delete MAC address operations. For the data
sent in the MAC notifications, see Telemetry Data Streamed for Native Data Source Paths, on page 445.

For update or delete events, MAC notifications are sent only for the MAC addresses that have IP adjacencies.Note

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
451

Model-Driven Programmability
Configuring the Native Data Source Path for All MAC Information

PurposeCommand or Action
switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch(conf-tm-sub)# sensor-grp 6
switch(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data without
requiring a specific model or database.

data-source native

Example:
switch(conf-tm-sensor)# data-source
native
switch(conf-tm-sensor)#

Step 4

Configure the MAC path which streams
information about all MAC entries and MAC
notifications.

path mac-all

Example:

nxosv2(conf-tm-sensor)# path mac-all
nxosv2(conf-tm-sensor)#

Step 5

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch(conf-tm-sensor)#
destination-group 33
switch(conf-tm-dest)#

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch(conf-tm-dest)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
452

Model-Driven Programmability
Configuring the Native Data Source Path for All MAC Information

PurposeCommand or Action

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Native Data Path for IP Adjacencies
You can configure the native data source path for IP adjacency information, which sends information about
all IPv4 and IPv6 adjacencies for the switch.When you subscribe, the baseline sends all the adjacencies. After
the baseline, notifications are sent for add, update, and delete adjacency operations. For the data sent in the
adjacency notifications, see Telemetry Data Streamed for Native Data Source Paths, on page 445.

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch# configure terminal
switch(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch(config)# telemetry
switch(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch(conf-tm-sub)# sensor-grp 6
switch(conf-tm-sub)#

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
453

Model-Driven Programmability
Configuring the Native Data Path for IP Adjacencies

PurposeCommand or Action

Set the data source to native so that any native
application can use the streamed data.

data-source native

Example:

Step 4

switch(conf-tm-sensor)# data-source
native
switch(conf-tm-sensor)#

Configure the Adjacency path which streams
information about the IPv4 and IPv6
adjacencies.

path adjacency

Example:

nxosv2(conf-tm-sensor)# path
adjacency
nxosv2(conf-tm-sensor)#

Step 5

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch(conf-tm-sensor)#
destination-group 33
switch(conf-tm-dest)#

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch(conf-tm-dest)#

Example:
switch(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch(conf-tm-dest)# subscription 33
switch(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
454

Model-Driven Programmability
Configuring the Native Data Path for IP Adjacencies

PurposeCommand or Action

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch(conf-tm-sub)# dst-grp 33
switch(conf-tm-sub)#

you configured in the destination-group
command.

Displaying Native Data Source Path Information
Use the NX-OS show telemetry event collector commands to display statistics and counters, or errors for
the native data source path.

Displaying Statistics

You can issue show telemetry event collector stats command to display the statistics and counters for each
native data source path.

An example of statistics for the RIB path:
switch# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 4 Mon Jul 01 13:53:42.384 PST rib(1)
switch#

An example of the statistics for the MAC path:
switch# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 3 Mon Jul 01 14:01:32.161 PST mac(1)
switch#

An example of the statistics for the Adjacency path:
switch# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 7 Mon Jul 01 14:47:32.260 PST adjacency(1)
switch#

Displaying Error Counters

You can use the show telemetry event collector stats command to display the error totals for all the native
data source paths.
switch# show telemetry event collector errors

-
Error Description Error Count

-

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
455

Model-Driven Programmability
Displaying Native Data Source Path Information

Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
switch#

Streaming Syslog

About Streaming Syslog for Telemetry
Beginning with Cisco NX-OS release 9.3(3), model-driven telemetry supports streaming of syslogs using
YANG as a data source. When you create a subscription, all the syslogs are streamed to the receiver as a
baseline. This feature works with the NX-SDK to support streaming syslog data from the following syslog
paths:

• Cisco-NX-OS-Syslog-oper:syslog

• Cisco-NX-OS-Syslog-oper:syslog/messages

After the baseline, only syslog event notifications stream to the receiver. Streaming of syslog paths supports
the following encoding types:

• Google Protobuf (GPB)

• JavaScript Object Notation (JSON)

Configuring the YANG Data Source Path for Syslog Information
You can configure the syslog path for syslogs, which sends information about all syslogs that are generated
on the switch. When you subscribe, the baseline sends all the existing syslog information. After the baseline,
notifications are sent for only for new syslogs that are generated on the switch.

Before you begin

If you have not enabled the telemetry feature, enable it now with the feature telemetry command.

Procedure

PurposeCommand or Action

Enter global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Enter configuration mode for telemetry.telemetry

Example:

Step 2

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
456

Model-Driven Programmability
Streaming Syslog

PurposeCommand or Action

switch(config)# telemetry

Creates a sensor group.sensor-group sgrp_id

Example:

Step 3

switch(config-telemetry)# sensor-group
6

Set the data source to YANG, so that it uses
the native YANG streaming model to stream
syslogs

data source data-source-type

Example:
switch(config-tm-sensor)# data source
YANG

Step 4

Configure the syslog path which streams
syslog generated on the switch.

path
Cisco-NX-OS-Syslog-oper:syslog/messages

Example:

Step 5

switch(config-tm-sensor)# path
Cisco-NX-OS-Syslog-oper:syslog/messages

Enter telemetry destination group sub-mode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch(config-tm-sensor)#
destination-group 33

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {HTTP
| gRPC } encoding { JSON | GPB |
GPB-compact }

Step 7

address and port, and set the protocol and
encoding for the data stream.

Example:
switch(config-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json

Example:
switch(config-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb

Enter telemetry subscription submode and
configure the telemetry subscription.

subscription sub-id

Example:

Step 8

switch(config-tm-dest)# subscription 33

Link the sensor group to the current
subscription and set the data sampling to 0 so

snsr-group sgrp_id sample-interval interval

Example:

Step 9

that the switch sends telemetry data when
switch(config-tm-sub)# snsr-group 6
sample-interval 0

syslog events occur. For interval, 0 is the only
acceptable value.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group thtat
switch(config-tm-sub)# dst-grp 33

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
457

Model-Driven Programmability
Configuring the YANG Data Source Path for Syslog Information

PurposeCommand or Action

you configured in the destination-group
command.

Telemetry Data Streamed for Syslog Path
For each source path, the following table shows the information that is streamed when the subscription is first
created "the baseline" and when event notifications occur.

Event NotificationSubscription BaselinePath

Sends event notification for syslog
occurred on the switch:

• message-id

• node-name

• time-stamp

• time-of-day

• time-zone

• category

• message-name

• severity

• text

Stream all the existing syslogs from
the switch.

Cisco-NX-OS-Syslog-oper:syslog/messages

Displaying Syslog Path Information

Use the Cisco NX-OS show telemetry event collector commands to display statistics and counters, or errors
for the syslog path.

Displaying Statistics

You can enter the show telemetry event collector stats command to display the statistics and counters for
each syslog path.

The following is an example of statistics for the syslog path:
switch# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 138 Tue Dec 03 11:20:08.200 PST Cisco-NX-OS-Syslog-oper:syslog(1)

2 138 Tue Dec 03 11:20:08.200 PST
Cisco-NX-OS-Syslog-oper:syslog/messages(1)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
458

Model-Driven Programmability
Telemetry Data Streamed for Syslog Path

Displaying Error Counters

You can use the show telemetry event collector errors command to display the error totals for all the syslog
paths.
switch(config-if)# show telemetry event collector errors

--
Error Description Error Count
--
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0

Sample JSON Output
The following is a sample of JSON output:

172.19.216.13 - - [03/Dec/2019 19:38:50] "POST
/network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages HTTP/1.0" 200 -
172.19.216.13 - - [03/Dec/2019 19:38:50] "POST
/network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages HTTP/1.0" 200 -
>>> URL : /network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages
>>> TM-HTTP-VER : 1.0.0
>>> TM-HTTP-CNT : 1
>>> Content-Type : application/json
>>> Content-Length : 578

Path => Cisco-NX-OS-Syslog-oper:syslog/messages
node_id_str : task-n9k-1
collection_id : 40
data_source : YANG
data :

[
[
{
"message-id": 420

},
{
"category": "ETHPORT",
"group": "ETHPORT",
"message-name": "IF_UP",
"node-name": "task-n9k-1",
"severity": 5,
"text": "Interface loopback10 is up ",
"time-of-day": "Dec 3 2019 11:38:51",
"time-stamp": "1575401931000",
"time-zone": ""

}
]

]

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
459

Model-Driven Programmability
Sample JSON Output

•

Sample KVGPB Output
The following is a sample KVGPB output.
KVGPB Output:
---Telemetry msg received @ 18:22:04 UTC

Read frag:1 size:339 continue to block on read..

All the fragments:1 read successfully total size read:339

node_id_str: "task-n9k-1"

subscription_id_str: "1"

collection_id: 374

data_gpbkv {

fields {

name: "keys"

fields {

name: "message-id"

uint32_value: 374

}

}

fields {

name: "content"

fields {

fields {

name: "node-name"

string_value: "task-n9k-1"

}

fields {

name: "time-of-day"

string_value: "Jun 26 2019 18:20:21"

}

fields {

name: "time-stamp"

uint64_value: 1574293838000

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
460

Model-Driven Programmability
Sample KVGPB Output

}

fields {

name: "time-zone"

string_value: "UTC"

}

fields {

name: "process-name"

string_value: ""

}

fields {

name: "category"

string_value: "VSHD"

}

fields {

name: "group"

string_value: "VSHD"

}

fields {

name: "message-name"

string_value: "VSHD_SYSLOG_CONFIG_I"

}

fields {

name: "severity"

uint32_value: 5

}

fields {

name: "text"

string_value: "Configured from vty by admin on console0"

}

}

}

}

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
461

Model-Driven Programmability
Sample KVGPB Output

•

Additional References

Related Documents
Document TitleRelated Topic

Telemetry Deployment for VXLAN EVPN SolutionExample configurations of telemetry deployment for
VXLAN EVPN.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
462

Model-Driven Programmability
Additional References

https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf

P A R T V
XML Management Interface

• XML Management Interface, on page 465

C H A P T E R 33
XML Management Interface

This section contains the following topics:

• About the XML Management Interface, on page 465
• Licensing Requirements for the XML Management Interface, on page 466
• Prerequisites to Using the XML Management Interface, on page 467
• Using the XML Management Interface, on page 467
• Information About Example XML Instances, on page 480
• Additional References, on page 487

About the XML Management Interface

Information About the XML Management Interface
You can use the XMLmanagement interface to configure a device. The interface uses the XML-based Network
Configuration Protocol (NETCONF), which allows you to manage devices and communicate over the interface
with an XML management tool or program. The Cisco NX-OS implementation of NETCONF requires you
to use a Secure Shell (SSH) session for communication with a device.

NETCONF is implemented with an XML Schema (XSD) that allows you to enclose device configuration
elements within a remote procedure call (RPC) message. From within an RPC message, select one of the
NETCONF operations that matches the type of command that you want the device to execute. You can
configure the entire set of CLI commands on the device with NETCONF. For information about using
NETCONF, see the Creating NETCONF XML Instances, on page 470 and RFC 4741.

For more information about using NETCONF over SSH, see RFC 4742.

This section includes the following topics:

NETCONF Layers
The following table lists the NETCONF layers:

Table 26: NETCONF Layers

ExampleLayer

SSHv2Transport protocol

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
465

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

ExampleLayer

RPC, RPC-replyRPC

get-config, edit-configOperations

show or configuration commandContent

The following is a description of the four NETCONF layers:

• SSH transport protocol—Provides an encrypted connection between a client and the server.

• RPC tag—Introduces a configuration command from the requestor and the corresponding reply from the
XML server.

• NETCONF operation tag—Indicates the type of configuration command.

• Content—Indicates the XML representation of the feature that you want to configure.

SSH xmlagent
The device software provides an SSH service that is called xmlagent that supports NETCONF over SSH
Version 2.

The xmlagent service is referred to as the XML server in Cisco NX-OS software.Note

NETCONF over SSH starts with the exchange of a Hello message between the client and the XML server.
After the initial exchange, the client sends XML requests, which the server responds to with XML responses.
The client and server terminate requests and responses with the character sequence >. Because this character
sequence is not valid in XML, the client and the server can interpret when messages end, which keeps
communication in sync.

The XML schemas that define the XML configuration instances that you can use are described in Creating
NETCONF XML Instances, on page 470.

Licensing Requirements for the XML Management Interface
License RequirementProduct

The XML management interface requires no license.
Any feature that is not included in a license package
is bundled with the Cisco NX-OS image and is
provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme,
see the Cisco NX-OS Licensing Guide.

Cisco NX-OS

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
466

XML Management Interface
SSH xmlagent

Prerequisites to Using the XML Management Interface
Using the XML management interface has the following prerequisites:

• You must install SSHv2 on the client PC.

• You must install an XML management tool that supports NETCONF over SSH on the client PC.

• You must set the appropriate options for the XML server on the device.

Using the XML Management Interface
This section describes how to manually configure and use the XML management interface.

Use the XML management interface with the default settings on the device.Note

Configuring the SSH and the XML Server Options Through the CLI
By default, the SSH server is enabled on your device. If you disable SSH, you must enable it before you start
an SSH session on the client PC.

You can configure the XML server options to control the number of concurrent sessions and the timeout for
active sessions. You can also enable XML document validation and terminate XML sessions.

The XML server timeout applies only to active sessions.Note

For more information about configuring SSH, see the Cisco NX-OS security configuration guide for your
platform.

For more information about the XML commands, see the Cisco NX-OS system management configuration
guide for your platform.

Procedure

Step 1 Enter global configuration mode.

configure terminal

Step 2 (Optional) Display information about XML server settings and active XML server sessions. You can find
session numbers in the command output.

show xml server status

Step 3 Validate XML documents for the specified server session.

xml server validate all

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
467

XML Management Interface
Prerequisites to Using the XML Management Interface

Step 4 Terminate the specified XML server session.

xml server terminate session

Step 5 (Optional) Disable the SSH server so that you can generate keys.

no feature ssh

Step 6 Enable the SSH server. (The default is enabled.)

feature ssh

Step 7 (Optional) Display the status of the SSH server.

show ssh server

Step 8 Set the number of XML server sessions allowed.

xml server max-session sessions

The range is from 1 to 8. The default is 8.

Step 9 Set the number of seconds after which an XML server session is terminated.

xml server timeout seconds

The range is from 1 to 1200. The default is 1200 seconds.

Step 10 (Optional) Display information about the XML server settings and active XML server sessions.

show xml server status

Step 11 (Optional) Saves the running configuration to the startup configuration.

copy running-config startup-config

Example

The following example shows how to configure SSH and XML server options through the CLI:
switch# configure terminal
switch(config)# xml server validate all
switch(config)# xml server terminate 8665
switch(config)# no feature ssh
switch(config)# feature ssh server
switch(config)# xml server max-session 6
switch(config)# xml server timeout 1200
switch(config)# copy running-config startup-config

Starting an SSHv2 Session
You can start an SSHv2 session on a client PC with the ssh2 command that is similar to the following:
ssh2 username@ip-address -s xmlagent

Enter the login username, the IP address of the device, and the service to connect to. The xmlagent service is
referred to as the XML server in the device software.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
468

XML Management Interface
Starting an SSHv2 Session

The SSH command syntax can differ based on the SSH software on the client PC.Note

If you do not receive a Hello message from the XML server, verify the following conditions:

• The SSH server is enabled on the device.

• The max-sessions option of the XML server is adequate to support the number of SSH connections to
the device.

• The active XML server sessions on the device are not all in use.

Sending a Hello Message
You must advertise your capabilities to the server with a Hello message before the server processes any other
requests. When you start an SSH session to the XML server, the server responds immediately with a Hello
message. This message informs the client of the capabilities of the server. The XML server supports only
base capabilities and, in turn, expects that the client supports only these base capabilities.

The following are sample Hello messages from the server and the client:

You must end all XML documents with]]>]]> to support synchronization in NETCONF over SSH.Note

Hello Message from a Server

<?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
</capabilities>
<session-id>25241</session-id>

</hello>]]>]]>

Hello Message from a Client

<?xml version="1.0"?>
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capabilities>
<nc:capability>urn:ietf:params:xml:ns:netconf:base:1.0</nc:capability>
</nc:capabilities>

</nc:hello>]]>]]>

Obtaining XML Schema Definition (XSD) Files

Procedure

Step 1 switch# feature bash shell

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
469

XML Management Interface
Sending a Hello Message

Step 2 switch# run bash
Step 3 bash-3.2$ cd /isan/etc/schema
Step 4 Obtain the necessary schema.

Sending an XML Document to the XML Server
To send an XML document to the XML server through an SSH session that you opened in a command shell,
copy the XML text from an editor and paste it into the SSH session. Although typically you use an automated
method to send XML documents to the XML server, you can verify the SSH connection to the XML server
through this copy-paste method.

The following are the guidelines to follow when sending an XML document to the XML server:

• Verify that the XML server has sent the Hello message immediately after you started the SSH session,
by looking for the Hello message text in the command shell output.

• Send the client Hello message before you send XML requests. Note that the XML server sends the Hello
response immediately, and no additional response is sent after you send the client Hello message.

• Always terminate the XML document with the character sequence]]>]]>.

Creating NETCONF XML Instances
You can create NETCONF XML instances by enclosing the XML device elements within an RPC tag and
NETCONF operation tags. The XML device elements are defined in feature-based XML schema definition
(XSD) files, which enclose available CLI commands in an XML format.

The following are the tags that are used in the NETCONF XML request in a framework context. Tag lines
are marked with the following letter codes:

• X —XML declaration

• R—RPC request tag

• N—NETCONF operation tags

• D—Device tags

NETCONF XML Framework Context

X <?xml version="1.0"?>
R <nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
R xmlns="http://www.cisco.com/nxos:1.0:nfcli”>
N <nc:get>
N <nc:filter type="subtree">
D <show>
D <xml>
D <server>
D <status/>
D </server>
D </xml>
D </show>
N </nc:filter>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
470

XML Management Interface
Sending an XML Document to the XML Server

N </nc:get>
R </nc:rpc>]]>]]>

You must use your own XML editor or XML management interface tool to create XML instances.Note

RPC Request Tag
All NETCONFXML instances must begin with the RPC request tag <rpc>. The <rpc> element has a message
ID (message-id) attribute. This message-id attribute is replicated in the <rpc-reply> and can be used to correlate
requests and replies. The <rpc> node also contains the following XML namespace declarations:

• NETCONF namespace declaration—The <rpc> and NETCONF tags that are defined in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace, are present in the netconf.xsd
schema file.

• Device namespace declaration—Device tags encapsulated by the <rpc> and NETCONF tags are defined
in other namespaces. Device namespaces are feature-oriented. Cisco NX-OS feature tags are defined in
different namespaces. RPC Request Tag <rpc> is an example that uses the NFCLI feature. It declares
that the device namespace isxmlns=http://www.cisco.com/nxos:1.0:nfcli. nfcli.xsd
contains this namespace definition. For more information, see Obtaining XML Schema Definition (XSD)
Files, on page 469.

Examples

RPC Request Tag <rpc>

<nc:rpc message-id="315" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
...
</nc:rpc>]]>]]>

Configuration Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>

</description>
</__XML__MODE_if-eth-base>

</__XML__MODE_if-ethernet>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
471

XML Management Interface
RPC Request Tag

</ethernet>
</interface>

</__XML__MODE__exec_configure>
</configure>

</nc:config>
</nc:edit-config>

</nc:rpc>]]>]]>

__XML__MODE tags are used internally by the NETCONF agent. Some tags are present only as
children of a certain __XML__MODE. By examining the schema file, you can find the correct mode
tag that leads to the tags representing the CLI command in XML.

Note

NETCONF Operations Tags
NETCONF provides the following configuration operations:

Table 27: NETCONF Operations in Cisco NX-OS

ExampleDescriptionNETCONF Operation

NETCONFClose Session Instance,
on page 481

Closes the current XML server
session.

close-session

NETCONF Commit Instance:
Candidate Configuration
Capability, on page 486

Sets the running configuration to
the current contents of candidate
configuration.

commit

NETCONF Confirmed Commit
Instance, on page 486

Provides the parameters to commit
the configuration for a specified
time. If a commit operation does
not follow this operation within the
confirm-timeout period, the
configuration is reverted to the state
before the confirmed-commit
operation.

confirmed-commit

NETCONF Copy Config Instance,
on page 482

Copies the contents of the source
configuration datastore to the target
datastore.

copy-config

—Operation not supported.delete-config

NETCONF Edit Config Instance,
on page 482

NETCONF Rollback-On-Error
Instance, on page 486

Configures the features in the
running configuration of the device.
You use this operation for
configuration commands.

edit-config

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
472

XML Management Interface
NETCONF Operations Tags

ExampleDescriptionNETCONF Operation

Creating NETCONF XML
Instances, on page 470

Receives configuration information
from a device. You use this
operation for show commands. The
source of the data is the running
configuration.

get

Creating NETCONF XML
Instances, on page 470

Retrieves all or part of a
configuration.

get-config

NETCONF Kill Session Instance,
on page 481

Closes the specified XML server
session. You cannot close your own
session.

kill-session

NETCONFLock Instance, on page
484

Allows a client to lock the
configuration system of a device.

lock

NETCONF Unlock Instance, on
page 485

Releases the configuration lock that
the session issued.

unlock

NETCONF Validate Capability
Instance, on page 487

Checks the configuration of a
candidate for syntactical and
semantic errors before applying the
configuration to a device.

validate

Device Tags
The XML device elements represent the available CLI commands in XML format. The feature-specific schema
files contain the XML tags for CLI commands of that particular feature. See Obtaining XMLSchemaDefinition
(XSD) Files, on page 469.

Using this schema, it is possible to build an XML instance. The relevant portions of the nfcli.xsd schema file
that was used to build the NETCONF instances. See (Creating NETCONF XML Instances, on page 470).

show xml Device Tags

<xs:element name="show" type="show_type_Cmd_show_xml"/>
<xs:complexType name="show_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>to display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="xml" minOccurs="1" type="xml_type_Cmd_show_xml"/>
<xs:element name="debug" minOccurs="1" type="debug_type_Cmd_show_debug"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="xpath-filter" type="xs:string"/>
<xs:attribute name="uses-namespace" type="nxos:bool_true"/>
</xs:complexType>

Server Status Device Tags

<xs:complexType name="xml_type_Cmd_show_xml">
<xs:annotation>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
473

XML Management Interface
Device Tags

<xs:documentation>xml agent</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="server" minOccurs="1" type="server_type_Cmd_show_xml"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="server_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent server</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="status" minOccurs="1" type="status_type_Cmd_show_xml"/>
<xs:element name="logging" minOccurs="1" type="logging_type_Cmd_show_logging_facility"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

Device Tag Response

<xs:complexType name="status_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="__XML__OPT_Cmd_show_xml___readonly__" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:group ref="og_Cmd_show_xml___readonly__" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="og_Cmd_show_xml___readonly__">
<xs:sequence>
<xs:element name="__readonly__" minOccurs="1" type="__readonly___type_Cmd_show_xml"/>
</xs:sequence>
</xs:group>
<xs:complexType name="__readonly___type_Cmd_show_xml">
<xs:sequence>
<xs:group ref="bg_Cmd_show_xml_operational_status" maxOccurs="1"/>
<xs:group ref="bg_Cmd_show_xml_maximum_sessions_configured" maxOccurs="1"/>
<xs:group ref="og_Cmd_show_xml_TABLE_sessions" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

The __XML__OPT_Cmd_show_xml___readonly__ tag is optional. This tag represents the response. For
more information on responses, see RPC Response Tag, on page 479.

Note

You can use the | XML option to find the tags that you can use to execute a <get> operation. The following
is an example of the | XML option. This example shows you that the namespace-defining tag to execute
operations on this device is http://www.cisco.com/nxos:1.0:nfcli, and that the nfcli.xsd file
can be used to build requests.

You can enclose the NETCONF operation tags and the device tags within the RPC tag. The </rpc> end tag
is followed by the XML termination character sequence.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
474

XML Management Interface
Device Tags

XML Example

Switch#> show xml server status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:nfcli">
<nf:data>
<show>
<xml>
<server>
<status>
<__XML__OPT_Cmd_show_xml___readonly__>
<__readonly__>
<operational_status>
<o_status>enabled</o_status>
</operational_status>
<maximum_sessions_configured>
<max_session>8</max_session>
</maximum_sessions_configured>
</__readonly__>
</__XML__OPT_Cmd_show_xml___readonly__>
</status>
</server>
</xml>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

Extended NETCONF Operations
Cisco NX-OS supports an <rpc> operation named <exec-command>. The operation allows client applications
to send CLI configuration and show commands and to receive responses to those commands as XML tags.

The following is an example of the tags that are used to configure an interface. Tag lines are marked with the
following letter codes:

• X —XML declaration

• R—RPC request tag

• EO—Extended operation

The following table provides a detailed explanation of the operation tags:

Table 28: Operation Tags

DescriptionTag

Executes a CLI command.<exec-command>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
475

XML Management Interface
Extended NETCONF Operations

DescriptionTag

Contains the CLI command. A command can be a
show command or configuration command. Separate
multiple configuration commands by using a
semicolon (;). Although multiple show commands
are not supported, you can sendmultiple configuration
commands in different <cmd> tags as part of the same
request. For more information, see the Example on
Configuration CLI Commands Sent Through
<exec-command>.

<cmd>

Replies to configuration commands that are sent through the <cmd> tag are as follows:

• <nf:ok>̶̶—̶All configuration commands are executed successfully.

• <nf:rpc-error>—Some commands have failed. The operation stops at the first error, and the <nf:rpc-error>
subtree provides more information about which configuration has failed. Configurations that are executed
before the failed command would have been applied to the running configuration.

Configuration CLI Commands Sent Through the <exec-command>

The show command must be sent in its own <exec-command> instance as shown in the following
example:

X <?xml version="1.0"?>
R <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
EO <nxos:exec-command>
EO <nxos:cmd>conf t ; interface ethernet 2/1 </nxos:cmd>
EO <nxos:cmd>channel-group 2000 ; no shut; </nxos:cmd>
EO </nxos:exec-command>
R </nf:rpc>]]>]]>

Response to CLI Commands Sent Through the <exec-command>

The following is the response to a send operation:

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:ok/>
</nf:rpc-reply>
]]>]]>

Show CLI Commands Sent Through the <exec-command>

The following example shows how the show CLI commands that are sent through the
<exec-command> can be used to retrieve data:

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
476

XML Management Interface
Extended NETCONF Operations

xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show interface brief</nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>

Response to the show CLI Commands Sent Through the <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0"
xmlns:mod="http://www.cisco.com/nxos:1.0:if_manager" message-id="110">
<nf:data>
<mod:show>
<mod:interface>
<mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
<mod:__readonly__>
<mod:TABLE_interface>
<mod:ROW_interface>
<mod:interface>mgmt0</mod:interface>
<mod:state>up</mod:state>
<mod:ip_addr>192.0.2.20</mod:ip_addr>
<mod:speed>1000</mod:speed>
<mod:mtu>1500</mod:mtu>
</mod:ROW_interface>
<mod:ROW_interface>
<mod:interface>Ethernet2/1</mod:interface>
<mod:vlan>--</mod:vlan>
<mod:type>eth</mod:type>
<mod:portmode>routed</mod:portmode>
<mod:state>down</mod:state>
<mod:state_rsn_desc>Administratively down</mod:state_rsn_desc>
<mod:speed>auto</mod:speed>
<mod:ratemode>D</mod:ratemode>
</mod:ROW_interface>
</mod:TABLE_interface>
</mod:__readonly__>
</mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
</mod:interface>
</mod:show>
</nf:data>
</nf:rpc-reply>
]]>]]>

Failed Configuration

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nxos:exec-command>
<nxos:cmd>configure terminal ; interface ethernet2/1 </nxos:cmd>
<nxos:cmd>ip address 192.0.2.2/24 </nxos:cmd>
<nxos:cmd>no channel-group 2000 ; no shut; </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:rpc-error>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
477

XML Management Interface
Extended NETCONF Operations

<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Ethernet2/1: not part of port-channel 2000
</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

After a command is executed, the interface IP address is set, but the administrative state is not
modified (the no shut command is not executed. The administrative state is not modified because
the no port-channel 2000 command results in an error.

The <rpc-reply> is due to a show command that is sent through the <cmd> tag that contains the
XML output of the show command.

You cannot combine configuration and show commands on the same <exec-command> instance.
The following example shows config and show commands that are combined in the same instance.

Combination of configure and show Commands

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>conf t ; interface ethernet 2/1 ; ip address 1.1.1.4/24 ; show xml
server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: cannot mix config and show in exec-command. Config cmds
before the show were executed.
Cmd:show xml server status</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

show CLI Commands Sent Through the <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show xml server status ; show xml server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
478

XML Management Interface
Extended NETCONF Operations

xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: show cmds in exec-command shouldn't be followed by anything
</nf:error-message>
<nf:error-info>
<nf:bad-element><cmd></nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

NETCONF Replies
For every XML request sent by a client, the XML server sends an XML response that is enclosed in the RPC
response tag <rpc-reply>.

RPC Response Tag
The following example shows the RPC response tag <rpc-reply>:

RPC Response Tag <rpc-reply>

<nc:rpc-reply message-id=”315” xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
<ok/>
</nc:rpc-reply>]]>]]>

RPC Response Elements

The elements <ok>, <data>, and <rpc-error> can appear in the RPC response. The following table describes
the RPC response elements that can appear in the <rpc-reply> tag:

Table 29: RPC Response Elements

DescriptionElement

The RPC request completed successfully. This
element is used when no data is returned in the
response.

<ok>

The RPC request completed successfully. The data
that are associated with the RPC request is enclosed
in the <data> element.

<data>

The RPC request failed. Error information is enclosed
in the <rpc-error> element.

<rpc-error>

Interpreting the Tags Encapsulated in the data Tag
The device tags encapsulated in the <data> tag contain the request, followed by the response. A client
application can safely ignore all the tags before the <readonly> tag, as show in the following example:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
479

XML Management Interface
NETCONF Replies

RPC Reply Data

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nf:data>
<show>
<interface>
<__XML__OPT_Cmd_show_interface_brief___readonly__>
<__readonly__>
<TABLE_interface>
<ROW_interface>
<interface>mgmt0</interface>
<state>up</state>
<ip_addr>xx.xx.xx.xx</ip_addr>
<speed>1000</speed>
<mtu>1500</mtu>
</ROW_interface>
<ROW_interface>
<interface>Ethernet2/1</interface>
<vlan>--</vlan>
<type>eth</type>
<portmode>routed</portmode>
<state>down</state>
<state_rsn_desc>Administratively down</state_rsn_desc>
<speed>auto</speed>
<ratemode>D</ratemode>
</ROW_interface>
</TABLE_interface>
</__readonly__>
</__XML__OPT_Cmd_show_interface_brief___readonly__>
</interface>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

<__XML__OPT.*> and <__XML__BLK.*> appear in responses and are sometimes used in requests.
These tags are used by the NETCONF agent and are present in responses after the <__readonly__>
tag. They are necessary in requests, and should be added according to the schema file to reach the
XML tag that represents the CLI command.

Note

Information About Example XML Instances

Example XML Instances
This section provides examples of the following XML instances:

• NETCONF Close Session Instance, on page 481

• NETCONF Kill Session Instance, on page 481

• NETCONF Copy Config Instance, on page 482

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
480

XML Management Interface
Information About Example XML Instances

• NETCONF Edit Config Instance, on page 482

• NETCONF Get Config Instance, on page 484

• NETCONF Lock Instance, on page 484

• NETCONF Unlock Instance, on page 485

• NETCONF Commit Instance: Candidate Configuration Capability, on page 486

• NETCONF Confirmed Commit Instance, on page 486

• NETCONF Rollback-On-Error Instance, on page 486

• NETCONF Validate Capability Instance, on page 487

NETCONF Close Session Instance
The following examples show the close-session request, followed by the close-session response:

Close Session Request

<?xml version="1.0"?>
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:close-session/>
</nc:rpc>]]>]]>

Close Session Response

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

NETCONF Kill Session Instance
The following examples show the kill session request, followed by the kill session response:

Kill Session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

Kill Session Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
481

XML Management Interface
NETCONF Close Session Instance

NETCONF Copy Config Instance

<startup/> is not supported as a source or target datastore. To perform any copy operation on startup-config
like entering the copy running-config startup-config command, you need to fallback to the <exec-command>
method.

Note

The following examples show the copy config request, followed by the copy config response:

Copy Config Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://user@example.com:passphrase/cfg/new.txt</url>
</source>
</copy-config>
</rpc>

Copy Config Response

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Edit Config Instance

XML edit-config with candidate datastore is not supported with 1.0 version XML request. It is supported only
with the newer version which can be generated using xml in tool.

Note

The following examples show the use of NETCONF edit config:

Edit Config Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
482

XML Management Interface
NETCONF Copy Config Instance

<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>

Edit Config Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager" message-id="16">
<nc:ok/>
</nc:rpc-reply>]]>]]>

The operation attribute in edit config identifies the point in configuration where the specified operation
is performed. If the operation attribute is not specified, the configuration is merged into the existing
configuration data store. The operation attribute can have the following values:

• create

• merge

• delete

Edit Config: Delete Operation Request

The following example shows how to delete the configuration of interface Ethernet 0/0 from the
running configuration:

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
483

XML Management Interface
NETCONF Edit Config Instance

Response to Edit Config: Delete Operation

The following example shows how to edit the configuration of interface Ethernet 0/0 from the running
configuration:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Get Config Instance
The following examples show the use of NETCONF get config:

Get Config Request to Retrieve the Entire Subtree

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config">
<users/>
</top>
</filter>
</get-config>
</rpc>]]>]]>

Get Config Response with Results of a Query

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
<company-info>
<dept>1</dept>
<id>1</id>
</company-info>
</user>
<!-- additional <user> elements appear here... -->
</users>
</top>
</data>
</rpc-reply>]]>]]>

NETCONF Lock Instance
The following examples show a lock request, a success response, and a response to an unsuccessful attempt:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
484

XML Management Interface
NETCONF Get Config Instance

Lock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>]]>]]>

Response to a Successful Acquisition of Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/> <!-- lock succeeded -->
</rpc-reply>]]>]]>

Response to an Unsuccessful Attempt to Acquire Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error> <!-- lock failed -->
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message>
Lock failed, lock is already held
</error-message>
<error-info>
<session-id>454</session-id>
<!-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>]]>]]>

NETCONF Unlock Instance
The following examples show the use of NETCONF unlock:

Unlock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
485

XML Management Interface
NETCONF Unlock Instance

Response to an Unlock Request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Commit Instance: Candidate Configuration Capability
The following examples show a commit operation and a commit reply:

Commit Operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Commit Reply

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Confirmed Commit Instance
The following examples show a confirmed commit operation and a confirmed commit reply:

Confirmed Commit Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>
</commit>
</rpc>]]>]]>

Confirmed Commit Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Rollback-On-Error Instance
The following examples show how to configure rollback on error and the response to this request:

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
486

XML Management Interface
NETCONF Commit Instance: Candidate Configuration Capability

Rollback-On-Error Capability

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<error-option>rollback-on-error</error-option>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>100000</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Rollback-On-Error Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Validate Capability Instance
The following examples show the use of NETCONF validate capability. The string
urn:ietf:params:netconf:capability:validate:1.0 identifies the NETCONF validate capability.

Validate Request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>]]>]]>

Response to Validate Request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

Additional References
This section provides additional information that is related to implementing the XML management interface.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
487

XML Management Interface
NETCONF Validate Capability Instance

RFCs

TitleRFCs

NETCONF Configuration ProtocolRFC 4741

Using the NETCONF Configuration Protocol over
Secure Shell (SSH)

RFC 4742

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
488

XML Management Interface
Additional References

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

A P P E N D I X A
Streaming Telemetry Sources

This chapter contains the following topics:

• About Streaming Telemetry, on page 489
• Guidelines and Limitations, on page 489
• Data Available for Telemetry, on page 489

About Streaming Telemetry
The streaming telemetry feature of Cisco Nexus switches continuously streams data out of the network and
notifies the client, providing near-real-time access to monitoring data.

Guidelines and Limitations
Following are the guideline and limitations for the streaming telemetry:

• For information about supported platforms, see the Nexus Switch Platform Matrix.

• Cisco Nexus switches with less than 8 GB of memory do not support telemetry.

Data Available for Telemetry
For each component group, the distinguished names (DNs) in the appendix of the NX-API DME Model
Reference can provide the listed properties as data for telemetry.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
489

https://www.cisco.com/c/dam/en/us/td/docs/Website/datacenter/platform/platform.html
https://developer.cisco.com/site/nxapi-dme-model-reference-api/
https://developer.cisco.com/site/nxapi-dme-model-reference-api/

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
490

Streaming Telemetry Sources
Data Available for Telemetry

A P P E N D I X B
WebSocket Subscription

This appendix contains the following topic:

• WebSocket Subscription, on page 491

WebSocket Subscription
CiscoNX-OS provides an interface capability to enable the switch to push notifications to interested subscribers.
Through the NX-API WebSocket interface, programs and end-users can receive notifications about various
state changes on the switch, eliminating the need for periodic polling.

When you perform an API query using the Cisco NX-API REST interface, you have the option to create a
subscription to any future changes in the results of a given query. When any management object (MO) is
created, changed, or deleted, because of a user-initiated or system-initiated action, an event is generated. If
the received event changes the results of a subscribed query, the switch generates a push notification to the
API client that created the subscription.

•

Opening a WebSocket

The API subscription feature uses the WebSocket protocol (RFC 6455) to implement a two-way connection
with the API client. This way, the API can send unsolicited notification messages to the client itself. To
establish the notification channel, you must first open a WebSocket connection with the respective API. Only
a single WebSocket connection is needed to support multiple query subscriptions within each switch. The
WebSocket connection is dependent on your API session connection (via token validation), and closes when
your API session ends.

There are many ways to open a WebSocket connection. You can write python client as following:
from websocket import create_connection

connection_string = "ws:// 10.1.2.3/socket{0}".format(token)

ws = create_connection(connection_string, sslopt={"check_hostname": False})

In the URI, the token is the current API session token (cookie). This example shows the URI with a token:
ws://10.1.2.3/socketGkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6X
l83lyoR4bLBzqbSSU1R2NIgUotCGWjZt5JX6CJF0=

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
491

Creating a Subscription

To create a subscription to a query, perform the query with the option “?subscription=yes”. This example
creates a subscription to a query of the sys/intf/phys-[eth1/1] in the JSON format:
GET http://10.1.1.1/api/mo/sys/intf/phys-[eth1/1].json?subscription=yes

The query response contains a subscription identifier, subscriptionId, that you can use to refresh the subscription
and identify future notifications from the given subscription.
{"totalCount":"0","subscriptionId":"18374686685813276673","imdata":[]}

Receiving Notifications

An event notification from the subscription delivers a data structure that contains the subscription ID and the
MO description. In this JSON example, sys/intf/phys-[eth1/1] description is changed to “test”.

{"subscriptionId":["18374686685813276673"],"imdata":[{"l1PhysIf": {"attributes": {"childAction": "","descr":
"test","dn": "sys/intf/phys-[eth1/1]","modTs": "2019-10-18T19:42:29.446+00:00","rn": "","status":
"modified"}}}]}

As multiple active subscriptions can exist for a given query, a notification can contain multiple subscription
IDs; similar as shown in the example above. Notifications are supported in either JSON or XML format.

Refreshing the Subscription

In order to continue receiving event notifications, you must periodically refresh each subscription during your
API session. To refresh a subscription, send an HTTPGETmessage to the APImethod subscriptionRefresh
with the parameter id equal to the subscriptionId shown in the example:
GET http://10.1.1.1/api/subscriptonRefresh.json?id=18374686685813276673

The API returns an empty response to the refresh message unless the subscription has expired.

The timeout period for a WebSocket subscription is 90 seconds by default. To prevent loss of notifications,
you must send a subscription refresh message at least once every 90 seconds.

Note

In summary, WebSocket provides a powerful tool for allowing publisher-subscriber communication for event
subscription within the NX-OS REST API.

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
492

WebSocket Subscription
WebSocket Subscription

A P P E N D I X C
Programmability RFCs

This appendix lists the supported RFCs for programmability.

• Programmability RFCs, on page 493

Programmability RFCs
This table lists the RFC compliance standards. For information on each RFC, see www.ietf.org.

Table 30: RFC Compliance Standards

TitleRFCs

NETCONF Event NotificationsRFC 5277

Network Configuration Protocol (NETCONF)RFC 6241

With-defaults Capability for NETCONF (Supported for report-all
only)

RFC 6243

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
493

http://www.ietf.org/

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
494

Programmability RFCs
Programmability RFCs

	Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 9.3(x)
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation for Cisco Nexus 9000 Series Switches
	Documentation Feedback
	Communications, Services, and Additional Information

	New and Changed Information
	New and Changed Information

	Platform Support for Programmability Features
	Platform Support for Programmability Features

	Overview
	Programmability Overview
	Supported Platforms
	Standard Network Manageability Features
	Advanced Automation Features
	Power On Auto Provisioning Support
	XMPP Support
	Chef and Puppet Integration
	OpenDayLight Integration and OpenFlow Support

	Programmability Support
	NX-API Support
	Python Scripting
	Tcl Scripting
	Broadcom Shell
	Bash
	Bash Shell Access and Linux Container Support
	Guest Shell
	Container Tracker Support
	Perl Modules

	Shells and Scripting
	Bash
	About Bash
	Guidelines and Limitations
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI

	Managing Feature RPMs
	RPM Installation Prerequisites
	Installing Feature RPMs from Bash
	Upgrading Feature RPMs
	Downgrading a Feature RPM
	Erasing a Feature RPM

	Support for DME Modularity
	Installing the DME RPMs
	Verifying the Installed RPM
	Querying for the RPM in the Local Repo
	Downgrading Between Versions of DME RPM
	Downgrading to the Base RPM

	Managing Patch RPMs
	RPM Installation Prerequisites
	Adding Patch RPMs from Bash
	Activating a Patch RPM
	Committing a Patch RPM
	Deactivating a Patch RPM
	Removing a Patch RPM

	Persistently Daemonizing an SDK- or ISO-built Third Party Process
	Persistently Starting Your Application from the Native Bash Shell
	Synchronize Files from Active Bootflash to Standby Bootflash
	Copy Through Kstack
	An Example Application in the Native Bash Shell

	Guest Shell
	About the Guest Shell
	Guidelines and Limitations for Guestshell
	Accessing the Guest Shell
	Resources Used for the Guest Shell
	Capabilities in the Guestshell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
	Installing RPMs in the Guest Shell

	Security Posture for Virtual ServicesGuest Shell
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Namespace Isolation
	Root-User Restrictions
	Resource Management

	Guest File System Access Restrictions
	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell
	Replicating the Guest Shell
	Exporting Guest Shell rootfs
	Importing Guest Shell rootfs
	Importing YAML File
	show guestshell Command

	Verifying Virtual Service and Guest Shell Information
	Persistently Starting Your Application From the Guest Shell
	Procedure for Persistently Starting Your Application from the Guest Shell
	An Example Application in the Guest Shell
	Troubleshooting Guest Shell Issues

	Broadcom Shell
	About the Broadcom Shell
	Guidelines and Limitations
	Accessing the Broadcom Shell (bcm-shell)
	Accessing bcm-shell with the CLI API
	Accessing the Native bcm-shell on the Fabric Module
	Accessing the bcm-shell on the Line Card

	Python API
	About the Python API
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-Interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Scheduler

	Scripting with Tcl
	About Tcl
	Guidelines and Limitations
	Tclsh Command Help
	Tclsh Command History
	Tclsh Tab Completion
	Tclsh CLI Command
	Tclsh Command Separation
	Tcl Variables
	Tclquit
	Tclsh Security

	Running the Tclsh Command
	Navigating Cisco NX-OS Modes from the Tclsh Command
	Tcl References

	iPXE
	About iPXE
	Netboot Requirements
	Guidelines and Limitations for iPXE
	Boot Mode Configuration
	Verifying the Boot Order Configuration

	Kernel Stack
	About Kernel Stack
	Guidelines and Limitations
	Changing the Port Range
	About VXLAN with kstack
	Setting Up VXLAN for kstack
	Troubleshooting VXLAN with kstack

	Netdevice Property Changes

	Applications
	Third-Party Applications
	About Third-Party Applications
	Guidelines and Limitations
	Installing Third-Party Native RPMs/Packages
	Installing Signed RPM
	Checking a Signed RPM
	Installing Signed RPMs by Manually Importing Key
	Installing Signed Third-Party RPMs by Importing Keys Automatically
	Adding Signed RPM into Repo

	Persistent Third-Party RPMs
	Installing RPM from VSH
	Package Addition
	Package Activation
	Deactivating Packages
	Removing Packages
	Displaying Installed Packages
	Displaying Detail Logs
	Upgrading a Package
	Downgrading a Package

	Third-Party Applications
	NX-OS
	DevOps Configuration Management Tools
	V9K
	Automation Tool Educational Content
	collectd
	Ganglia
	Iperf
	LLDP
	Nagios
	OpenSSH
	Quagga
	Splunk
	tcollector
	tcpdump
	TShark

	Ansible
	Prerequisites
	About Ansible
	Cisco Ansible Module

	Puppet Agent
	About Puppet
	Prerequisites
	Puppet Agent NX-OS Environment
	ciscopuppet Module

	SaltStack
	About SaltStack
	About NX-OS and SaltStack

	Guidelines and Limitations
	Cisco NX-OS Environment for SaltStack
	Enabling NX-API for SaltStack
	Installing SaltStack for NX-OS

	Using Chef Client with Cisco NX-OS
	About Chef
	Prerequisites
	Chef Client NX-OS Environment
	cisco-cookbook

	Nexus Application Development - Yocto
	About Yocto
	Installing Yocto

	Nexus Application Development - SDK
	About the Cisco SDK
	Installing the SDK
	Procedure for Installation and Environment Initialization
	Using the SDK to Build Applications
	Using RPM to Package an Application
	Creating an RPM Build Environment
	Using General RPM Build Procedure
	Example to Build RPM for collectd with No Optional Plug-Ins
	Example to Build RPM for collectd with Optional Curl Plug-In

	NX-SDK
	About the NX-SDK
	Considerations for Go Bindings

	About On-Box (Local) Applications
	Default Docker Images
	Guidelines and Limitations for NX-SDK
	About NX-SDK 2.0
	About NX-SDK 2.5
	About Remote Applications
	NX-SDK Security
	Security Profiles for NX SDK 2.0

	Using Docker with Cisco NX-OS
	About Docker with Cisco NX-OS
	Guidelines and Limitations for Docker
	Prerequisites for Setting Up Docker Containers Within Cisco NX-OS
	Starting the Docker Daemon
	Configure Docker to Start Automatically
	Starting Docker Containers: Host Networking Model
	Starting Docker Containers: Bridged Networking Model
	Mounting the bootflash and volatile Partitions in the Docker Container
	Enabling Docker Daemon Persistence on Enhanced ISSU Switchover
	Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover
	Resizing the Docker Storage Backend
	Stopping the Docker Daemon
	Docker Container Security
	Securing Docker Containers With User namespace Isolation
	Moving the cgroup Partition

	Adding Nodes to a Kubernetes Cluster
	Docker Troubleshooting
	Docker Fails to Start
	Docker Fails to Start Due to Insufficient Storage
	Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message)
	Failure to Pull Images from Docker Hub (Client Timeout Error Message)
	Docker Daemon or Containers Not Running On Switch Reload or Switchover
	Resizing of Docker Storage Backend Fails
	Docker Container Doesn't Receive Incoming Traffic On a Port
	Unable to See Data Port And/Or Management Interfaces in Docker Container
	General Troubleshooting Tips

	NX-API
	NX-API CLI
	About NX-API CLI
	Guidelines and Limitations
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Client Authentication
	NX-API Client Basic Authentication
	NX-API Client Certificate Authentication
	Guidelines and Limitations
	NX-API Client Certificate Authentication Prerequisites
	Configuring NX-API Client Certificate Authentication
	Example Python Scripts for Certificate Authentication
	Example cURL Certificate Request
	Validating Certificate Authentication

	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Table of NX-API Response Codes
	JSON and XML Structured Output
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

	Sample NX-API Scripts

	NX-API REST
	About NX-API REST
	DME Config Replace Through REST
	About DME Full Config Replace Through REST Put
	Guidelines and Limitations
	Replacing the System-Level Configuration Through REST PUT
	Replacing Feature-Level Config Through REST PUT
	Replacing Property-Level Config Through REST POST
	Troubleshooting Config Replace for REST PUT

	NX-API Developer Sandbox
	NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)
	About the NX-API Developer Sandbox
	Guidelines and Restrictions for the Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Command Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

	NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Input Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
	Using the Developer Sandbox to Convert from RESTCONF to json or XML

	Model-Driven Programmability
	Infrastructure Overview
	About Model-Driven Programmability
	About the Programmable Interface Infrastructure

	Managing Components
	About the Component RPM Packages
	Preparing For Installation
	Downloading Components from the Cisco Artifactory
	Installing RPM Packages
	Installing the Programmable Interface Base And Common Model Component RPM Packages

	OpenConfig YANG
	About OpenConfig YANG
	Guidelines and Limitations for OpenConfig YANG
	Understanding Deletion of BGP Routing Instance
	Verifying YANG

	NETCONF Agent
	About the NETCONF Agent
	Guidelines and Limitations for NETCONF
	Configuring the NETCONF Agent
	Configuring the NETCONF Agent Over SSH for Cisco NX-OS 9.3(5) and Later
	Configuring the NETCONF Agent for Cisco NX-OS 9.3(4) and Earlier

	Establishing a NETCONF Session
	NETCONF Read and Write Configuration
	NETCONF Notifications
	About NETCONF Notifications
	Capabilities Exchange
	Event Stream Discovery
	Creating Subscriptions
	Receiving Notifications
	Terminating Subscriptions

	NETCONF Examples
	Troubleshooting the NETCONF Agent

	Converting CLI Commands to Network Configuration Format
	Information About XMLIN
	Licensing Requirements for XMLIN
	Installing and Using the XMLIN Tool
	Converting Show Command Output to XML
	Configuration Examples for XMLIN

	RESTConf Agent
	About the RESTCONF Agent
	Guidelines and Limitations
	Using the RESTCONF Agent
	Troubleshooting the RESTCONF Agent
	Ephemeral Data
	About Ephemeral Data in RESTCONF
	RESTCONF Ephemeral Data Example

	gRPC Agent
	gRPC Agent
	About the gRPC Agent
	Guidelines and Limitations for gRPC
	Configuring the gRPC Agent for Cisco NX-OS Release 9.3(3) and Later
	Configuring gRPC
	Configuring the gRPC Agent for Cisco NX-OS Release 9.3(2) and Earlier
	Using the gRPC Agent
	Troubleshooting the gRPC Agent
	gRPC Protobuf File

	Ephemeral Data
	About Ephemeral Data in gRPC
	gRPC Ephemeral Data Example

	gNMI - gRPC Network Management Interface
	About gNMI
	VRF Contexts for gNMI
	gNMI Subscribe RPC
	Guidelines and Limitations for gNMI
	Configuring gNMI
	gNMI - gRPC Network Management Interface
	Configuring Server Certificate
	Generating Key/Certificate Examples
	Generating and Configuring Key/Certificate Examples for Cisco NX-OS Release 9.3(2) and Earlier
	Examples for Generating and Configuring Key/Certificate for Cisco NX-OS Release 9.3(3) and Later
	Verifying gNMI
	Clients
	Sample DME Subscription - PROTO Encoding
	Capabilities
	About Capabilities
	Guidelines and Limitations for Capabilities
	Example Client Output for Capabilities

	Get
	About Get
	Guidelines and Limitations for Get

	Set
	About Set
	Guidelines and Limitations for Set

	Subscribe
	Guidelines and Limitations for Subscribe
	gNMI Payload

	Streaming Syslog
	About Streaming Syslog for gNMI
	Guidelines and Limitations for Streaming Syslog - gNMI
	Syslog Native YANG Model
	Subscribe Request Example
	Sample PROTO Output
	Sample JSON Output

	Troubleshooting
	Gathering TM-Trace Logs
	Gathering MTX-Internal Logs

	Dynamic Logger
	Prerequisites
	Reference

	Model Driven Telemetry
	About Telemetry
	Telemetry Components and Process
	High Availability of the Telemetry Process

	Licensing Requirements for Telemetry
	Guidelines and Limitations
	Configuring Telemetry Using the CLI
	Configuring Telemetry Using the NX-OS CLI
	Configuring Cadence for YANG Paths
	Configuration Examples for Telemetry Using the CLI
	Displaying Telemetry Configuration and Statistics
	Displaying Telemetry Log and Trace Information

	Configuring Telemetry Using the NX-API
	Configuring Telemetry Using the NX-API
	Configuration Example for Telemetry Using the NX-API
	Telemetry Model in the DME

	Cloud Scale Software Telemetry
	About Cloud Scale Software Telemetry
	Cloud Scale Software Telemetry Message Formats
	Guidelines and Limitations for Cloud Scale Software Telemetry

	Telemetry Path Labels
	About Telemetry Path Labels
	Polling for Data or Receiving Events
	Guidelines and Limitations for Path Labels
	Configuring the Interface Path to Poll for Data or Events
	Configuring the Interface Path for Non-Zero Counters
	Configuring the Interface Path for Operational Speeds
	Configuring the Interface Path with Multiple Queries
	Configuring the Environment Path to Poll for Data or Events
	Configuring the Resources Path to Poll for Events or Data
	Configuring the VXLAN Path to Poll for Events or Data
	Verifying the Path Label Configuration
	Displaying Path Label Information

	Native Data Source Paths
	About Native Data Source Paths
	Telemetry Data Streamed for Native Data Source Paths
	Guidelines and Limitations
	Configuring the Native Data Source Path for Routing Information
	Configuring the Native Data Source Path for MAC Information
	Configuring the Native Data Source Path for All MAC Information
	Configuring the Native Data Path for IP Adjacencies
	Displaying Native Data Source Path Information

	Streaming Syslog
	About Streaming Syslog for Telemetry
	Configuring the YANG Data Source Path for Syslog Information
	Telemetry Data Streamed for Syslog Path
	Sample JSON Output
	Sample KVGPB Output

	Additional References
	Related Documents

	XML Management Interface
	XML Management Interface
	About the XML Management Interface
	Information About the XML Management Interface
	NETCONF Layers
	SSH xmlagent

	Licensing Requirements for the XML Management Interface
	Prerequisites to Using the XML Management Interface
	Using the XML Management Interface
	Configuring the SSH and the XML Server Options Through the CLI
	Starting an SSHv2 Session
	Sending a Hello Message
	Obtaining XML Schema Definition (XSD) Files
	Sending an XML Document to the XML Server
	Creating NETCONF XML Instances
	RPC Request Tag
	NETCONF Operations Tags
	Device Tags

	Extended NETCONF Operations
	NETCONF Replies
	RPC Response Tag
	Interpreting the Tags Encapsulated in the data Tag

	Information About Example XML Instances
	Example XML Instances
	NETCONF Close Session Instance
	NETCONF Kill Session Instance
	NETCONF Copy Config Instance
	NETCONF Edit Config Instance
	NETCONF Get Config Instance
	NETCONF Lock Instance
	NETCONF Unlock Instance
	NETCONF Commit Instance: Candidate Configuration Capability
	NETCONF Confirmed Commit Instance
	NETCONF Rollback-On-Error Instance
	NETCONF Validate Capability Instance

	Additional References

	Streaming Telemetry Sources
	About Streaming Telemetry
	Guidelines and Limitations
	Data Available for Telemetry

	WebSocket Subscription
	WebSocket Subscription

	Programmability RFCs
	Programmability RFCs

