Firepower Data Path Troubleshooting Phase 6: Active Authentication

Contents

Introduction Prerequisites Troubleshooting the Active Authentication Phase Verify the Redirect Method Generate Packet Captures Packet Capture (PCAP) File Analysis Decrypting the Encrypted Stream Viewing the Decrypted PCAP File Mitigation Steps Switch to Passive Authentication Only Data to Provide to TAC Next Steps

Introduction

This article is part of a series of articles which explain how to systematically troubleshoot the data path on Firepower systems to determine whether components of Firepower may be affecting traffic. Please refer to the <u>Overview article</u> for information about the architecture of Firepower platforms and links to the other Data Path Troubleshooting articles.

This article covers the sixth stage of Firepower data path troubleshooting, the Active Authentication feature.

Prerequisites

- This article pertains to all of the currently supported Firepower platforms
- The Firepower device must be running in Routed Mode

Troubleshooting the Active Authentication Phase

When trying to determine if an issue is caused by identity, it is important to understand what traffic this feature can impact. The only features in identity itself that can cause traffic interuptions are the ones related to active authentication. Passive authentication cannot cause traffic to be dropped unexpectedly. It is important to understand that only HTTP(S) traffic is impacted by active authentication. If other traffic is impacted because identity is not working then this is more likely

because the policy uses users/groups to allow/block traffic, so when the identity feature can't identify users, unexpected things can occur, but it depends on the device Access Control policy and Identity Policy. The troubleshooting in this section walks through issues related to active authentication only.

Verify the Redirect Method

The active authentication features involve the Firepower device running an HTTP server. When traffic matches an Identity Policy rule which contains an Active Authentication action, Firepower sends a 307 (temporary redirect) packet into the session, so as to redirect clients to its captive portal server.

There are currently five different types of active authentication. Two redirects to a hostname which consists of the sensor's hostname and the Active Directory primary domain tied to the realm, and three redirects to the IP address of the interface on the Firepower device which is performing the captive portal redirect.

If something goes wrong in the redirect process, the session can break as the site isn't available. This is why it is important to understand how the redirection is operating in the running configuration. The chart below helps to understand this configuration aspect.

To view hostname SHELL > show network		Redirect hostname vs IP				
======================================	System	> Integration [Realms] > Edit Realm				
To change hostname	my-real Enter Description	my-realm Enter Description				
SHELL	Directory	Directory Realm Configuration User Download				
> configure network hostname <new-hostname></new-hostname>	AD Primary	AD Primary Domain • my-ad.domain ex: domain.c				
	Active Authentication Type	Redirection Type				
	HTTP Negotiate	Hostname. <ad domain="" primary=""></ad>				
	Kerberos	Hostname. <ad domain="" primary=""></ad>				
	HTTP Basic	IP Address				
	NTLM	IP Address				
	HTTP Response Page	IP Address				

If active authentication is redirecting to the hostname, it would be redirecting the clients to ciscoasa.my-ad.domain:<port_used_for_captive_portal>

Generate Packet Captures

Collecting packet captures is the most important part of troubleshooting active authentication issues. The packet captures take place on two interfaces:

1. The interface on the Firepower device which the traffic is ingressing when identity/authentication is being performed In the example below, the **inside** interface is used

2. The internal tunnel interface which Firepower uses for redirection to the HTTPS server - tun1 This interface is used to redirect traffic to the captive portalThe IP addresses in the traffic are changed back to the originals upon egress

The two captures are initiated, the interesting traffic is run through the Firepower device, then the captures are stopped.

Notice that the inside interface packet capture file, "ins_ntlm", is copied to the **/mnt/disk0** directory. It can then be copied to the /var/common directory so as to be downloaded off of the device (**/ngfw/var/common** on all FTD platforms):

> expert

copy /mnt/disk0/<pcap_file> /var/common/

The packet capture files can then be copied off of the Firepower device from the > prompt using the directions in this <u>article</u>.

Alternatively, there is n option on the Firepower Management Center (FMC) in Firepower version 6.2.0 and greater. To access this utility on the FMC, navigate to **Devices > Device Management**.

Then, click on the **Internation** icon next to the device in question, followed by **Advanced Troubleshooting > File Download**. You can then enter the name of a file in question and click Download.

Overview Analysis Policies Devices Objects AMP Intelligence	Deploy 08 Sy	stem Help v	admin 🔻				
		Configuration Users	Domains Integrat	tion Updates Licenses	Health + Monitor	Monitoring •	Tools •
Advanced Troubleshooting							
File Download Threat Defense CLI Packet Tracer Capture w/Trace							
	File						
	Download	ack					

Packet Capture (PCAP) File Analysis

PCAP analysis in Wireshark can be performed to help identify the issue within the active authentication operations. Since a non-standard port is used in the captive portal configuration (**885** by default), Wireshark needs to be configured to decode the traffic like SSL.

If wireshark doesn't identify protocol as SSL, decode as...

dest port		Protocol	Lengti	Info			i 1	Protocol	Lengtl	Info
3	885	ТСР	74	47336→885	[SYN]	Seq=1445654081 Win=29200 Len=0 MS		TCP	74	47336-885 [SYN] Seq=1445654081 Win=29200 Len=0 MS
47	336	ТСР	74	885→47336	[SYN,	ACK] Seq=1526709788 Ack=144565408		TCP	74	885-47336 [SYN, ACK] Seq=1526709788 Ack=144565408
	885	тср	66	47336→885	[ACK]	Seq=1445654082 Ack=1526709789 Win		TCP	66	47336→885 [ACK] Seq=1445654082 Ack=1526709789 Win
	885	TCP	583	47336→885	[PSH,	ACK] Seq=1445654082 Ack=152670978		TLSv1	583	Client Hello
47	336	TCP	66	885→47336	[ACK]	Seq=1526709789 Ack=1445654599 Win		TCP	66	885-47336 [ACK] Seq=1526709789 Ack=1445654599 Win
47	336	TCP	227	885→47336	[PSH,	ACK] Seq=1526709789 Ack=144565459		TLSv1	227	Server Hello, Change Cipher Spec, Encrypted Hands
	885	TCP	66	47336→885	[ACK]	Seq=1445654599 Ack=1526709950 Win		TCP	66	47336→885 [ACK] Seq=1445654599 Ack=1526709950 Win
	885	TCP	141	47336→885	[PSH,	ACK] Seq=1445654599 Ack=152670995		TLSv1	141	Change Cipher Spec, Encrypted Handshake Message
	885	TCP	519	47336→885	[PSH,	ACK] Seq=1445654674 Ack=152670995		TLSv1	519	Application Data
47	336	TCP	66	885→47336	[ACK]	Seq=1526709950 Ack=1445655127 Win		TCP	66	885-47336 [ACK] Seq=1526709950 Ack=1445655127 Win
47	336	TCP	828	885→47336	[PSH,	ACK] Seq=1526709950 Ack=144565512		TLSv1	828	Application Data, Application Data
	885	TCP	519	47336→885	[PSH,	ACK] Seq=1445655127 Ack=152671071		TLSv1	519	Application Data
47	336	TCP	828	885→47336	[PSH,	ACK] Seq=1526710712 Ack=144565558		TLSv1	828	Application Data, Application Data
	885	TCP	66	47336→885	[ACK]	Seq=1445655580 Ack=1526711474 Win		TCP	66	47336-885 [ACK] Seq=1445655580 Ack=1526711474 Win
	885	TCP	503	47336→885	[PSH,	ACK] Seq=1445655580 Ack=152671147		TLSv1	503	Application Data
47	336	TCP	828	885→47336	[PSH,	ACK] Seq=1526711474 Ack=144565601		TLSv1	828	Application Data, Application Data
	885	TCP	66	47336→885	[ACK]	Seq=1445656017 Ack=1526712236 Win		TCP	66	47336-885 [ACK] Seq=1445656017 Ack=1526712236 Win

The inside interface capture and the tunnel interface capture should be compared. The best way to identify the session in question in both PCAP files is to locate the unique source port since the IP addresses is different.

In the example above, notice that the server hello packet is missing from the inside interface capture. This means that it never made it back to the client. It is possible that the packet was dropped by snort, or possibly due to a defect or misconfiguration.

Note: Snort inspects its own captive portal traffic so as to prevent any HTTP exploits.

Decrypting the Encrypted Stream

If the problem is not in the SSL stack, it may be beneficial to decrypt the data in the PCAP file so as to see the HTTP stream. There are two methods by which this can be accomplished.

 Set an environment variable in Windows (more secure - recommended) This method involves creating a premaster secret file. This can be done with the following command (run from the windows command terminal): setx SSLKEYIOGFILE

"%HOMEPATH%\Desktop\premaster.txt" A private session can then be opened in Firefox, in which you can browse to the site in question, which uses SSL.The symmetric key is then logged to the file specified in the command from step 1 above.Wireshark can use the file to

decrypt using the symmetric key (see diagram below).

2. Use the RSA private key (less secure, unless using a test certificate and user) The private key to be used is the one used for the captive portal certificateThis doesn't work for non-RSA (like Elliptic Curve) or anything ephemeral (Diffie-Hellman, for example)

Caution: If method 2 is used, do not provide Cisco Technical Assistance Center (TAC) your private key. A temporary test certificate and key can be used, however. A test user should also be used in testing.

SSL Decrypt ? X IP address Port Protocol Key File Password 0.0.0.0 885 ssl Z:/Documents/auth.key	Secure Sockets Layer	Preferences > Protocols > SSL	
< > + - Pa <u>C: Weers kar oeta' KooDe, ming Wireshark ked keys</u> OK Cancel Help	SSL debug file	Browse	
	 Reassemble SSL records spanning multiple Reassemble SSL Application Data spanning 		
	Message Authentication Code (MAC), igno Pre-Shared-Key		
	(Pre)-Master-Secret log filename C:\Users\myuser\Desktop\premaster.txt	Browse	<mark>←1</mark>

Viewing the Decrypted PCAP File

In the example below, a PCAP file has been decrypted. It shows that NTLM is being used as the active authentication method.

After NTLM authorization takes place, the client is redirected back to the original session, so that it can reach its intended destination, which is <u>http://www.cisco.com</u>.

Mitigation Steps

Switch to Passive Authentication Only

When used in an Identity Policy, Active Authentication has the ability to drop allowed (HTTP(s) traffic only), if something goes wrong in the redirect process. A guick mitigation step is to disable any rule within the Identity Policy with the action of Active Authentication.

Also, make sure that any rules with 'Passive Authentication' as action do not have the 'Use active authentication if passive authentication cannot identify user' option checked.

Data to Provide to TAC

Troubleshoot file from the

Troubleshoot file from the

Firepower device inspecting

Full Session Packet Captures

Data

(FMC)

the traffic

Instructions

https://www.cisco.com/c/en/us/support/docs/security/sour Firepower Management Center cefire-defense-center/117663-technote-SourceFire-00.html https://www.cisco.com/c/en/us/support/docs/security/sour cefire-defense-center/117663-technote-SourceFire-00.html See this article for instructions

Next Steps

If it has been determined that the Active Authentication component is not the cause of the issue, the next step would be to troubleshoot the Intrusion Policy feature.

Click here to proceed to the next article.