
Rev. 0.01, 21 August 2020 Cisco IoT

Cisco Cyber Vision REST API
User Guide

Trademark Acknowledgments
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco
trademarks, go to this URL: www.cisco.com/go/trademarks.
Third party trademarks mentioned are the property of their respective owners.
The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Publication Disclaimer
Cisco Systems, Inc. assumes no responsibility for errors or omissions that may appear in this publication. We reserve the right to change this publication
at any time without notice. This document is not to be construed as conferring by implication, estoppel, or otherwise any license or right under any
copyright or patent, whether or not the use of any information in this document employs an invention claimed in any existing or later issued patent.
A printed copy of this document is considered uncontrolled. Refer to the online version for the latest revision.
Copyright
© 2018 Cisco and/or its affiliates. All rights reserved.
Information in this publication is subject to change without notice. No part of this publication may be reproduced or transmitted in any form, by photocopy,
microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, for any purpose, without the
express permission of Cisco Systems, Inc.

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Total pages: 74

Cisco Cyber Vision REST API User Guide

Rev. 0.01, 21 August 2020

Owner: Cisco IoT

Author: Cisco Cyber Vision

Contents Page 3

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Contents
1 About this documentation ... 5

1.1 Document purpose ... 5
1.2 Warnings and notices ... 5

2 Getting Started .. 6
2.1 Network representation ... 6
2.2 Network data .. 7
2.3 Network evolution .. 8
2.4 Network analyze ... 9

3 Performance note .. 10
4 Responses .. 11
5 Response objects ... 12

5.1 Sensor ... 12
5.2 Component ... 13
5.3 Flow .. 14

5.3.1 FlowStats ... 16
5.3.2 Flow Test Version .. 16

5.4 Group .. 18
5.5 Event ... 21
5.6 Variable ... 22
5.7 Error cases .. 24

6 Methods .. 26
6.1 Authentication .. 26
6.2 Sensors .. 26

6.2.1 Get sensors .. 26
6.3 Components ... 28

6.3.1 Get all components ... 28
6.3.2 Get a component... 29
6.3.3 Set a custom name .. 31
6.3.4 Delete a custom name .. 32
6.3.5 Get a list of allowed icons ... 33
6.3.6 Get icon content .. 34
6.3.7 Set a custom icon .. 35
6.3.8 Delete a custom icon ... 36
6.3.9 Add a component to a group .. 37
6.3.10 Remove a component from a group 37
6.3.11 Get a component flows ... 38
6.3.12 Get a component variables ... 39
6.3.13 Get vendor names ... 40
6.3.14 Remove incorrect information .. 41

6.4 Flows ... 41
6.4.1 Get all flows ... 41
6.4.2 Get a flow .. 43

Contents Page 4

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.4.3 Get a flow content ... 45
6.4.4 Get a flow statistics ... 46

6.5 Groups .. 47
6.5.1 Get all groups .. 47
6.5.2 Get a group .. 48
6.5.3 Create a group ... 50
6.5.4 Edit a group ... 52
6.5.5 Explode a group ... 53

6.6 Events ... 53
6.6.1 Get all events ... 53
6.6.2 Get an event downloadable content 55

6.7 Variables ... 56
6.7.1 Get all variables ... 56

6.8 Operator, Parameters, Conditions & Actions 57
6.8.1 Tags ... 60
6.8.2 Property analyzer rules ... 63
6.8.3 Port analyzer rules... 67

7 Examples ... 71
7.1 Get Component MAC by its ID .. 71
7.2 Print the last active Flow of a Component ... 72

About this documentation Page 5

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

1 About this documentation

1.1 Document purpose
This manual provides you with important information on how to use the Cisco
Cyber Vision REST API.

IMPORTANT

Cisco Cyber Vision EAP is a snapshot of the ongoing development process and is
in the qualifying phase. Testing for this program is under progress and may
contain features that are incomplete or may change before the next full release.

This manual is applicable on system version 3.1.0.

1.2 Warnings and notices
This manual contains notices you have to observe to ensure your personal
safety as well as to prevent damage to property.

The notices referring to your personal safety and to your property damage are
highlighted in the manual by a safety alert symbol described below. These
notices are graded according to the degree of danger.

WARNING

Indicates risks that involve industrial network safety or production failure that
could possibly result in personal injury or severe property damage if proper
precautions are not taken.

IMPORTANT

Indicates risks that could involve property or Cisco equipment damage and
minor personal injury if proper precautions are not taken.

Note

Indicates important information on the product described in the documentation
to which attention should be paid.

Getting Started Page 6

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

2 Getting Started
The main way to visualize and use the data analyzed by the sensors is to use
Cisco Cyber Vision webapp offering a map for visualization, a timeline for
events inspection and a significant number of other features.

The other way, explained in this document, is to use the Cisco Cyber Vision
API. In this document, CCV refers to Cisco Cyber Vision.

The API exposes the same data than the data used by the Cisco Cyber Vision
webapp through an HTTP protocol, a REST API, to allow the creation of third-
party clients, scripts and automation:

2.1 Network representation
Components, flows and tags

In the Cisco Cyber Vision, a Component (1) symbolizes a node of a topological
network: for example, a regular laptop on a network would be a node, such as
a PLC or anything communicating using the ethernet protocol as an L2
protocol.

The communications observed on the network are called Flows (2) and are
represented in the webapp by a colored link between two Components. In the
user interface of Cisco Cyber Vision, the color of the Flow represents its
Network Category, which is automatically set by the Cisco Cyber Vision
analyzers to regroup communications and to not be flooded with information.
When an API method will be used to retrieve the Flow information, a field
called "network_category" will (for example) contain the value "net", which
exposes the exact same information to be used for any purpose you may see
fit.

When Cisco Cyber Vision detects behaviors, protocols, or critical commands,
Tags (3) are assigned to the Components or Flows which are the source of the
detection. These tags quickly improve the classification of the Component and
the Flows. For example: when a PLC is detected and is using the protocol
Siemens S7, Cisco Cyber Vision assigns to the corresponding component the
tag 'S7' and 'PLC'. Tags also help to observe critical commands or actions
happening on the network: a Flow having caused a program download on a
PLC is tagged in red with the "Program Download" tag. In the same fashion,
when tags are changing on a Component or on a Flow, it indicates changes in
the network communications, which is something appearing in the Monitor
mode of Cisco Cyber Vision.

Getting Started Page 7

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

All this information is available through methods provided by the Cisco Cyber
Vision API.

2.2 Network data
Flow content, vulnerabilities, events

Apart from the communications of the network, there is more data available
oriented around the "data" transiting on the network.

First there is the Flow Content: it represents useful data seen when Flows
were active and that the Cisco Cyber Vision decided to store as content
properties. For example, when the Cisco Cyber Vision sees Siemens S7
commands transiting through the network, it decides to store for each
occurrence the name of the command + the time at which it happened. As it is
the content of a Flow, you will first need to get the ID of the Flow for which
you want to retrieve the content.

WARNING

It can represent a big amount of data, ensure to use the limit and offset
parameters carefully.

Vulnerabilities are objects attached to Components that the Cisco Cyber
Vision has detected as flaws for the network. When Cisco Cyber Vision gets
information on the nodes of the network, it tries to analyze as many features
as possible to understand the type, version, hardware, firmware, etc., of each

Getting Started Page 8

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

component and it is able to detect Components for which there is already
known vulnerabilities.

The Cisco Cyber Vision analyzes the different protocols of the traffic transiting
on the network. When something important occurs, it emits Events
containing all the information in order to be able to trace what happened on
the network. In the Cisco Cyber Vision interface, all these events are available
in the timeline and on a specific view of the map. The API exposes a way to
get them with a complete set of filters (by time, by severity, by category, etc.).

A basic schema representing a part of the architecture of the objects and
some of the capabilities of the API (not everything is exposed in this schema,
it is here to help having an idea of the API):

2.3 Network evolution
References and computation of differences

Cisco Cyber Vision has a mode called the "Monitor" mode in which you can
create References of the communications of the network: a reference is a set
of known communications that the user has explicitly included in the
reference. By doing so, you can compare different references to see whether

Getting Started Page 9

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

there are differences showing up. These differences can have a lot of different
meanings but are important.

For example, let's imagine that the user has created a reference called Stable
which contains all the known communications between the Component of the
network. If there are new communications, for example a PLC which starts to
communicate in a new protocol with the SCADA station, on a computation of
the differences between the 'Stable' reference and the 'last 24h' of
communications, the monitor mode will show and highlight this new
communication.

This feature is also available in the API: the creation/edition of references is
available and so is the computation of differences.

2.4 Network analyze
Tags edition, port analyzer and property analyzer

Note

This is an advanced usage of the API.

As mentioned earlier, the Tags assigned to the Components and Flows are
configurable through the API. This means there is a way to list them, add,
modify and remove tags which can be used with Components and Flows.

Analyzers are the part of the Cisco Cyber Vision analyzing the traffic transiting
on the network and deciding which actions must be applied on the Flows,
Components and others. In other words, it is a set of rules tested on each
communication to see whether some actions must be taken.

To extend the capability of classification of the Cisco Cyber Vision, methods of
the API have been exposed to configure some rules on the network port of
the communication and on the properties assigned to the Flows.

For example, when Cisco Cyber Vision detects an S7 communication in a Flow
such as a program download on a PLC, it automatically adds this property to
the matching Flow. This is something currently done internally in the Cisco
Cyber Vision and can't be changed. But the property analyzer allows to
configure a rule triggered by the 'program download' being in a Flow, and this
rule can for example be configured to assign the tag 'S7' to the current Flow.
Among other things, these configurable rules allow to improve with your own
knowledge the classification of the data. All this configuration is available
through the API.

Performance note Page 10

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

3 Performance note
Note that the API manipulates large datasets to provide complete and
intelligible responses: some queries can be slow if not correctly used.

Most methods have a limit and an offset parameter to help preventing
saturation on the system: limit limits the number of returned values and off
set allows to paginate the data:

For example, on a system with a total of 120 components:
 A Get Components call with limit set to 50 and offset set to 0: returns the

components 0 to 50 from the 120 available.
 A Get Components call with limit set to 50 and offset set to 50: returns

the components 50 to 100 from the 120 available.
 A Get Components call with limit set to 50 and offset set to 100: returns

the components 100 to 120 from the 120 available.

Responses Page 11

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

4 Responses
The API is using HTTP for method calls and method responses. It uses the
HTTP return code to identify the execution state of method calls and the HTTP
body to transmit the data resulting of the method calls (see chapter
Responses objects).

Before reading the content (the body) of the HTTP responses, it is necessary
to test the HTTP return code which can have one of these values:

HTTP return code Description

200 Success: the method has been correctly called and it looks like everything has
been successfully executed. The HTTP body can be read to retrieve the
response (if any).

400 Bad request: the method hasn't been correctly called. It means that bad
parameters have been provided to the method call.

401 Token error: the token is either unknown, expired, disabled or invalid.
402 License error: the current license of the Cisco Cyber Vision doesn't allow to use

the API.
404 Not found: the method didn't find the Group, the Component, the Flow, etc.,

queried in the method call.
500 Internal server error: an unexpected error occurred during the execution of the

method call. The Help Center contains documentation to diagnose the error.

Response objects Page 12

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

5 Response objects

5.1 Sensor
A sensor is the device used to collect network activities. It has several
attributes related to the network statistics or the capture mode configured.

A sensor is identified by:
 Its id
 its serial number
 its name
 its IP address
 its capture mode
 its model name (e.g. SENSOR3, SENSOR7)
 its current status (e.g. "Active", "Inactive", "Unknown", etc.)
 its firmware version

Serialized sample:
{

"id": "e352adf5-6125-4194-805c-dc61b7cc7c4b",

"name": "IC3000",

"version": "3.1.0+202005201632",

"model": "IC3000_MANAGED",

"hardware_type": "IC3000",

"status": "Connected",

"processing_status": "Waiting for data",

"filter":{

"capture_mode": "all",

"custom_input": ""

},

"serial_number": "FCH2312Y03P",

"auto_config": false,

"ssh_reachable": true,

"ssh_reachable_last_update": 1594886511000,

"creation_time": "2020-05-13T21:37:20.683319Z",

"last_active_time": "2020-07-16T08:02:04.404732Z",

"uptime": "7m 25s ",

"snort_enabled": false,

"ip": "192.168.69.201",

"recording": false,

"recording_last_start": "2020-07-13T17:38:31.319209Z",

"recording_last_stop": "2020-07-13T17:39:01.508929Z",

"recording_last_size": 0,

"statistics": true,

"has_presets": false

Response objects Page 13

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

5.2 Component

A Component is a node of the network which has communicated. A
Component is created by the Cisco Cyber Vision when the source or the
destination of a Flow doesn't already match an existing component. It has
several attributes such as tags and properties that the Cisco Cyber Vision has
identified during its network analysis, plus user properties and user tags
manually set by a user.

All these fields are normalized fields filled by the CCV and may be missing if no
Flows allows the CCV to fill them:
 id
 ip
 mac
 name
 model_name
 model_ref
 fw_version
 hw_version
 serial_number
 vendor_name
 project_name
 project_version

CreationTime describes the first time that this node has been active on the
network, LastActiveTime exposes the last time this node has been seen active
on the network.

When the Component has been added into a group, the Group field contains
the group label.

The list of Vulnerabilities are the ones impacting this Component. See
Vulnerability object.

Response objects Page 14

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Serialized sample:
{

 "id": "02074cd3-dbe6-52b6-963c-7247ef33a2b1",

 "creation_time": "2015-07-09T14:17:11.370164+02:00",

 "last_active_time": "2015-09-23T14:52:53.249992+02:00",

 "ip": "192.168.105.130",

 "mac": "28:63:36:82:28:96",

 "name": "PLC_3",

 "model_name": "PLC_3",

 "model_ref": "6ES7 212-1BE40-0XB0",

 "fw_version": "V4.0",

 "hw_version": "1",

 "serial_number": "S C-E7SJ1284",

 "vendor_name": "Siemens AG - Industrial Automation - EWA",

 "project_name": "PROJECT",

 "project_version":"1",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-mac": "Siemens 82:28:96",

 "name-s7plus-plc": "PLC_3",

 "name-vendorip": "Siemens 192.168.105.130",

 "s7plus-hardwarerevision": "1",

 "s7plus-moduleref": "6ES7 212-1BE40-0XB0",

 "s7plus-modulever": "V4.0",

 "s7plus-serialnumber": "S C-E7SJ1284",

 "vendor": "Siemens AG - Industrial Automation - EWA"

 },

 "vulnerabilities": [...]

}

5.3 Flow

A Flow is a communication between two Components. It has several
attributes such as tags and properties that the Cisco Cyber Vision has
identified during its network analysis.

A Flow is identified by:

Response objects Page 15

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 its source and destination component
 its MAC address
 its source port
 its content id

A Flow has two endpoints: the source, the component from which the Flow
has been started and the destination (the component the Flow is going to).
These endpoints objects contain:
 a MAC address: the MAC address of the component
 an IP: the IP address of the component if the Flow used IP for the L3.
 a port (if the Flow used IP for the L3).
 the ID of the component.

The NetworkCategory is a general category created by CCV to regroup the
Flows, the possible values are:
 eth: this is an ethernet Flow, mainly L2 information.
 net: this Flow used protocols in the L3 layer which have been considered

as "IT" protocols (snmp, http, pop, ...)
 control: this Flow used a control protocol such as S7, S7plus, etc.
 field: the CCV has seen a field protocol in this Flow (e.g. profinet)

FirstSeen identifies the first time this Flow has been active on the network,
LastSeen describes the last time this flow has been seen on the network.

Serialized sample:

{

"id": "3d0a4dfc-49e9-54e1-ab7e-f73090a7d47d",

"src":{

"mac": "52:54:dd:4c:28:74",

"ip": "169.254.1.2",

"component":{

"id": "7e41e314-c0dc-5153-8ce7-10dc04d48517"

}

},

"dst":{

"mac": "d0:ec:35:59:b4:4b",

"ip": "127.0.0.1",

"component":{

"id": "2a3629ae-c6c1-58cc-abf3-9e81f02ad65b"

}

},

"ethertype": "IPv4",

"protocol": "GRE",

"sensor_id": "a419b4a3-30ce-4b79-8011-d07457084c46",

Response objects Page 16

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

"network_category": "net",

"tags":{

"Tunneling": "2020-07-23 12:30:53.600641+00"

},

"properties":{"erspan3-index": "6", "erspan3-switch-id": "0",

"erspan3-vlan": "507", "gre-tunneling": "ERSPAN-III"…},

"first_seen": "2020-07-23T07:51:05.745183Z",

"last_seen": "2020-07-23T12:20:12.122487Z"

},

5.3.1 FlowStats

A flow stats is an aggregation of information extracted during flow network-
packets dissection such the number of transiting packet and the flow
direction, the length of the layer 2 and 7 (see: OSI model).

Direction–method, describes the method used to identified the client and the
server in the flow direction field; the possible values are:
 detected: the direction has been identified during flow processing
 inferred: the client server is chosen at best with the available information

Serialized sample:
{ {

"flow_id": "ff3e0990-f9f0-5e50-8069-f5f28accac17",

"direction": "Client→Server",

"direction_method": "detected",

"nb_packets": 6,

"l2_bytes": 606,

"l7_bytes": 282

},

 "

}

5.3.2 Flow Test Version

A Flow is a communication between two Components. It has several
attributes such as tags and properties that the Cisco Cyber Vision has
identified during its network analysis.

A Flow is identified by:

Response objects Page 17

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 its source and destination component
 its MAC address
 its source port

A Flow has two endpoints: the source, the component from which the Flow
has been started and the destination (the component the Flow is going to).
These endpoints objects contain:
 a MAC address: the MAC address of the component
 an IP: the IP address of the component if the Flow used IP for the L3.
 a port (if the Flow used IP for the L3).
 the ID of the component.

The NetworkCategory is a general category created by CCV to regroup the
Flows, the possible values are:
 eth: this is an ethernet Flow, mainly L2 information.
 net: this Flow used protocols in the L3 layer which have been considered

as "IT" protocols (snmp, http, pop, ...)
 control: this Flow used a control protocol such as S7, S7plus, etc.
 field: the CCV has seen a field protocol in this Flow (e.g. profinet)

FirstSeen identifies the first time this Flow has been active on the network,
LastSeen describes the last time this flow has been seen on the network.

Serialized sample:
{{

"id": "ff3e0990-f9f0-5e50-8069-f5f28accac17",

"src":{

"mac": "40:ce:24:a8:38:54",

"ip": "10.160.41.1",

"port": 56190,

"component":{"id": "9d32fdae-7dbe-5e05-b5ea-5307358e0108"}

},

"dst":{

"mac": "f4:54:33:a3:88:7a",

"ip": "10.160.11.100",

"port": 44818,

"component":{"id": "e2a699fa-9396-537d-8965-f2524f062843"}

},

"ethertype": "IPv4",

"protocol": "TCP",

"sensor_id": "c9674309-c384-40fa-845a-b92f74cc3e55",

"network_category": "control",

"tags":{

"EthernetIP": "2020-07-16 08:10:35.864944+00",

"Start CPU": "2020-07-16 08:10:35.864944+00"

},

Response objects Page 18

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

"properties":{

"enip-cip-request": "false",

"enip-cpuname": "SecDemo_Cell1PLC",

"enip-devicetype": "ProgrammableLogicController",

"enip-event": "Generic",

"enip-location": "Endpoint",

"enip-name": "1769-L16ER/B LOGIX5316ER",

"enip-productcode": "0x99",

"enip-serial": "60b71080",

"enip-status":

"AtLeastOneIOConnectionInRunMode,MinorRecoverableFault,ReservedBits12-

15:0x3",

"enip-status-ra-major": "REM",

"enip-status-ra-minor": "RUN",

"enip-value": "RA-ProgramName",

"enip-vendor": "Rockwell Automation/Allen-Bradley",

"enip-version": "31.11"

},

"first_seen": "2020-07-16T08:10:06.721229Z",

"last_seen": "2020-07-16T08:10:16.777181Z"

}

5.4 Group

Group is a set of Components that can be created from arbitrary criteria: the
physical rooms in which the PLCs/computers are located, the purpose of the
Components, etc.

Groups have a unique ID and hold some information:
 Name

Response objects Page 19

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 Description
 Comments
 Color: purely visual, it's the color used to represent the Group in the Cisco

Cyber Vision. The different values for colors are:
♦ LIGHTBLUE
♦ BLUE
♦ PINK
♦ RED
♦ ORANGE
♦ YELLOW
♦ GREEN

 Industrial Impact: set by users of the Cisco Cyber Vision; it is meant to
represent the industrial impact of Components inside the group.

 Properties: an array of information set by users of the Cisco Cyber Vision
which are formatted as a key, a value, and a time at which the property
has been set.

When calling methods returning Group, the API also inserts the information of
all Components inside the Group in the response.

Serialized sample of a Group called 'GROUP SIEMENS' containing two
Components:
{

 "id": "25b745dc-1d93-46ec-8bd8-c647a1d6a46e",

 "creation_time": "2016-02-17T11:47:39.198189+01:00",

 "label": "GROUP SIEMENS",

 "description": "",

 "comments": "",

 "color": "GRAY",

 "industrial_impact": "VERY_LOW",

 "properties": [

 {

 "last_update": "2016-02-17T11:59:09.284025+01:00",

 "position": 0,

 "label": "Location",

 "value": "Room 214"

 }

],

 "components": [

 {

 "id": "93b5cfca-77bb-5551-ad5f-e9443279c640",

 "creation_time": "2016-02-12T16:13:47.924038+01:00",

 "last_active_time": "2016-02-12T16:13:47.924038+01:00",

 "ip": "192.168.0.1",

Response objects Page 20

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "mac": "00:0e:8c:84:5b:a6",

 "name": "Siemens 84:5b:a6",

 "fw_version": "6ES7 315-2EH13-0AB0",

 "hw_version": "3",

 "serial_number": "S C-V1R583472007",

 "vendor_name": "Siemens AG A&D ET",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-mac": "Siemens 84:5b:a6",

 "name-s7-plc": "SIMATIC 300(1)",

 "name-vendorip": "Siemens 192.168.0.1",

 "s7-bootloaderref": "Boot Loader",

 "s7-bootloaderver": "A 10.12.9",

 "s7-fwver": "V 2.5.0",

 "s7-hwref": "6ES7 315-2EH13-0AB0",

 "s7-hwver": "3",

 "s7-modulename": "CPU 315-2 PN/DP",

 "s7-moduleref": "6ES7 315-2EH13-0AB0",

 "s7-modulever": "3",

 "s7-plcname": "SIMATIC 300(1)",

 "s7-rack": "0",

 "s7-serialnumber": "S C-V1R583472007",

 "s7-slot": "2",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS",

 "vulnerabilities": [...]

 },

 {

 "id": "f36d4e1d-ef90-56b4-bd01-357bc5f4d299",

 "creation_time": "2016-02-12T16:13:47.909701+01:00",

 "last_active_time": "2016-02-12T16:13:47.970315+01:00",

 "ip": "192.168.0.10",

 "mac": "00:0e:8c:83:8b:ae",

 "name": "Siemens 192.168.0.10",

 "vendor_name": "Siemens AG A&D ET",

 "properties": {

 "name-vendorip": "Siemens 192.168.0.10",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS"

 }

]

}

Response objects Page 21

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

5.5 Event
An Event is created by the Cisco Cyber Vision every time something special
occurs.

The creation_time represents the time at which the event has been triggered.

The severity of the event can have these values:
 Very High
 High
 Medium
 Low

The Type of the Event can have these values:
 Behavioral
 Classification
 Changes
 Software

The possible values for the Family field are:
 Component
 ICS Cybervision
 PLC Control
 Property
 Protocol Events

The Category can have these values:
 Communication
 Configuration
 Data Management
 Decode Failure
 Identification
 Run Orders
 Security
 User Management

An ID of a Flow or a Component can be embedded in the Event if it has been
created by either one of these objects.

Response objects Page 22

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Serialized sample:
{

 "id": "eceea473-6532-47a1-ac13-516828564b45",

 "creation_time": "2015-10-20T12:05:33.740607+02:00",

 "severity": "low",

 "type": "Classification",

 "family": "Property",

 "category": "Identification",

 "short_message": "New properties detected",

 "message": "Found new normalized properties: model-ref=6ES7 212-

1BE40-0XB0, hw-version=1, fw-version=V4.0, serial-number=S C-

E7SJ1284",

 "component": {

 "id": "02074cd3-dbe6-52b6-963c-7247ef33a2b1"

 }

}

5.6 Variable

A variable is a storage location paired with an associated symbolic name (an
identifier) which contains some information (a value). A Variable is related to
a component, a component could access to a variable of another component
(variable access) and the access could be read or write (variable access type).

A variable access is created by the Cisco Cyber Vision when a dissected flow
contains these kinds of information.

Response objects Page 23

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Serialized sample:
{

"9bc31dc8-d1d9-534d-8cbb-3b11fb1e8681":[

{

"id": "0602b0f9-af9d-5965-b6bf-cbe69b6c8c2d",

"name": "7",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.825955Z",…}

]

},

{

"id": "94728788-e7fc-512f-bbe0-ef9d753757af",

"name": "5",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.825961Z",…}

]

},

{

"id": "f123e36f-1e0e-5bdc-82c7-187fb38b51f4",

"name": "4",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.817661Z",…}

]

},

{

"id": "00a1b9e7-37cf-5642-81a9-e2cf32243338",

"name": "2",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.81718Z",…}

]

},

{

"id": "27cb17d5-32b9-57cb-bef6-b731cd277426",

"name": "6",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.825961Z",…}

]

},

{

"id": "84a89176-9fce-5072-8653-d26625caf964",

"name": "9",

"authors":[

Response objects Page 24

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.825936Z",…}

]

},

{

"id": "8be402cb-f50e-54ff-9799-9ea3647168f3",

"name": "1",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.81718Z",…}

]

},

{

"id": "a7ff41fb-e8e4-5d35-bda9-b18e1170a4c0",

"name": "8",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.820274Z",…}

]

},

{

"id": "acd42690-3642-5495-a7ad-16d76e7b6060",

"name": "3",

"authors":[

{"id": "cf4f8e39-f2a0-5a91-b256-53706423c445", "name": "NANOBOX",

"read":{"first": "2020-07-23T08:46:05.820289Z",…}

]

}

],

"b74823cc-ec08-5feb-88d0-03f17cb64fbb":[

{

"id": "48139500-e545-58c4-8383-ebb62b4cb32d",

"name": "MB 1000",

"authors":[

{"id": "9bc31dc8-d1d9-534d-8cbb-3b11fb1e8681", "name": "MICROBOX",

"read":{"first": "2020-07-23T08:46:05.817658Z",…}

]

}

]

}

5.7 Error cases
For each HTTP response with a HTTP return code different than a success
code (code = 200), the API controller return a simple JSON response like the
format below:
{

 "status": <An error type>,

 "message": <An error message>

Response objects Page 25

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

}

For example, with a wrong rule action name during a tag creation:
{

 "status": "error",

 "message": "Invalid syntax for rule.\nWrong action name :

\"TagFlow2\""

}

Methods Page 26

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6 Methods
This chapter details each method provided by the API.

6.1 Authentication
First thing to get started with the API, you must get a valid token from your
Cisco Cyber Vision administrator.

The token must be sent with each call as an URL parameter, example using
curl:
curl --cacert ca.pem

https://192.168.1.128/api/1.0/flow/fea763b5-a292-556e-a986-

af71bffb45eb?token=ics-229972468f69253c08a3ce

256341616f2adce46a-73f8da8d78c0445ebfead6919873d33d134266bb

For a valid HTTP/S handshake with the server, you have to use its own self-
signed CA certificate. This certificate is available at
http://192.168.1.128/ca.pem http://192.168.1.128/ca.pem (PEM format) or
at http://192.168.1.128/ca.crt http://192.168.1.128/ca.pem (DER format).
Adding this certificate to your client application key store will authenticate the
server.

Alternatively use the -k option to disable all certificate verifications of curl.

6.2 Sensors

6.2.1 Get sensors

This method allows to retrieve the whole list of sensors used by Cisco Cyber
Vision.

Route
GET /api/1.0/sensor

Example:

Retrieve the list of active and inactive sensors:
GET /api/1.0/sensor?token=YOUR_TOKEN&status=active&status=inactive

The response will be an array of vendor name like below:
{

 "318198cc-f826-4977-b510-10c2ffe37367": {

 "status": "Active",

 "recording": false,

 "recording_last_size": 0,

http://192.168.1.128/ca.pem
http://192.168.1.128/ca.pem

Methods Page 27

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "name": "My sensor 1",

 "recording_last_stop": null,

 "auto_config": false,

 "flow_rate_day": 0,

 "creation_time": "2017-11-13T17:33:33.609234+01:00",

 "flows_percentage": "",

 "flow_count_day": 0,

 "filter": {

 "custom_input": "",

 "capture_mode": "optimal"

 },

 "version": "2.0.4",

 "recording_last_start": null,

 "ip": "192.168.69.20",

 "serial_number": "SENSOR3-INT16743",

 "last_active_time": "2017-11-13T17:37:38.677881+01:00",

 "id": "318198cc-f826-4977-b510-10c2ffe37367"

 },

 "9b2a4bbd-2dbe-49d0-9555-782ae81a41be": {

 "status": "Inactive",

 "recording": false,

 "recording_last_size": 0,

 "name": "My sensor 2",

 "recording_last_stop": null,

 "auto_config": false,

 "flow_rate_day": 0,

 "creation_time": "2017-11-13T17:33:33.609234+01:00",

 "flows_percentage": "",

 "flow_count_day": 0,

 "filter": {

 "custom_input": "",

 "capture_mode": "all"

 },

 "version": "2.0.4",

 "recording_last_start": null,

 "ip": "192.168.69.23",

 "serial_number": "SENSOR3-INT16742",

 "last_active_time": "2017-11-13T17:37:38.677881+01:00",

 "id": "318198cc-f826-4977-b510-10c2ffe37367"

 }

}

Methods Page 28

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.3 Components

6.3.1 Get all components
A Component is a node of the network having had communications. This
method allows to retrieve the whole list of Components having been created
by the CCV ordered by their last active time.

Route
GET /api/1.0/component

Parameters
 limit (mandatory): integer, max number of components to retrieve. (e.g.

100) (maximal value: 2000)
 order: 'desc' or 'asc', offset to apply in the list of components to retrieve.

(e.g. "desc" will return the most recently active component first, "asc" will
return the oldest component first). Default: asc

 offset: integer, offset used to move into the list of components available
in the CCV. (e.g. 50)

 start: UTC date or datetime, low limit for the interval in which must be
the returned components. (e.g. "2015-15-10" or "2015-15-10 10:20" or
"2015-15-10 10:20:05")

 end: UTC date or datetime, high limit for the interval in which must be the
returned components. (e.g. "2015-15-10" or "2015-15-10 10:20" or
"2015-15-10 10:20:05")

 network: string, filter to component related to subnet address (e.g.
"192.168.1.0/24").

 ip: string (may be pass several times), filter to component related to the
IP address.

 mac: string (may be pass several times), filter to component related to
the MAC address.

 vendor: string (may be pass several times), filter to component related to
the component vendor (e.g. "Dell Inc.").

 tag: string (may be pass several times), filter to component related to the
tag name (e.g. "Windows")

 property: string (may be pass several times), filter to flow related to
component property name and/or flow property value (e.g. "netbios-
srctype" or "netbios-srctype=WorkstationRedirector").

Example:

Methods Page 29

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Retrieve up to 5 live components tagged has PLC with vendor "Siemens AG -
Industrial Automation - EWA" and with has property "s7plus-modulever"
equals to "V4.0" and has property "s7plus-moduleref":
GET /api/1.0/component?token=YOUR_TOKEN&vendor=Siemens+AG+-

+Industrial+Automation+-+EWA&limit=5&generation=0&property=s7plus-

modulever%3DV4.0&property=s7plus-moduleref&tag=PLC

The response will be an array of serialized Component objects. See
"Component" for complete information. In our example:
[

 {

 "id": "02074cd3-dbe6-52b6-963c-7247ef33a2b1",

 "creation_time": "2015-07-09T14:17:11.370164+02:00",

 "last_active_time": "2015-09-23T14:52:53.249992+02:00",

 "ip": "192.168.105.130",

 "mac": "28:63:36:82:28:96",

 "name": "PLC_3",

 "model_name": "PLC_3",

 "model_ref": "6ES7 212-1BE40-0XB0",

 "fw_version": "V4.0",

 "hw_version": "1",

 "serial_number": "S C-E7SJ1284",

 "vendor_name": "Siemens AG - Industrial Automation - EWA",

 "project_name": "PROJECT",

 "project_version":"1",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-mac": "Siemens 82:28:96",

 "name-s7plus-plc": "PLC_3",

 "name-vendorip": "Siemens 192.168.105.130",

 "s7plus-hardwarerevision": "1",

 "s7plus-moduleref": "6ES7 212-1BE40-0XB0",

 "s7plus-modulever": "V4.0",

 "s7plus-serialnumber": "S C-E7SJ1284",

 "vendor": "Siemens AG - Industrial Automation - EWA"

 },

 "vulnerabilities": [...]

 }

]

6.3.2 Get a component

A Component is a node of the network having had communications. Once a
Component has been identified (e.g. its ID has been found in the syslog), this
method allows to retrieve the information about the Component.

Route

Methods Page 30

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

GET /api/1.0/component/{id}

Note

must be replaced by the Component ID to query.

Example:
GET /api/1.0/component/d8cd6083-6c99-5745-9277-

78506b623e4d?token=YOUR_TOKEN

The response will be a serialized Component object. See "Component" for
complete information. In our example:
{

 "id": "d8cd6083-6c99-5745-9277-78506b623e4d",

 "creation_time": "2015-07-09T14:15:35.392279+02:00",

 "last_active_time": "2015-09-23T14:53:11.85282+02:00",

 "ip": "192.168.105.115",

 "mac": "00:1b:1b:b6:f6:99",

 "name": "S7-400 station_1",

 "model_name": "PLC_4",

 "model_ref": "6ES7 412-2EK06-0AB0",

 "fw_version": "V 6.0.3",

 "hw_version": "3",

 "serial_number": "SVPEN250894",

 "vendor_name": "Siemens AG,",

 "project_name": "PROJECT",

 "project_version":"1",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-s7-plc": "S7-400 station_1",

 "name-vendorip": "Siemens 192.168.105.115",

 "s7-bootloaderref": "Boot Loader",

 "s7-bootloaderver": "V 6.0.4",

 "s7-fwver": "V 6.0.3",

 "s7-hwref": "6ES7 412-2EK06-0AB0",

 "s7-hwver": "3",

 "s7-modulename": "PLC_4",

 "s7-moduleref": "6ES7 412-2EK06-0AB0",

 "s7-modulever": "68",

 "s7-plcname": "S7-400 station_1",

 "s7-rack": "0",

 "s7-serialnumber": "SVPEN250894",

 "s7-slot": "2",

 "vendor": "Siemens AG,"

 }

}

Methods Page 31

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.3.3 Set a custom name

A Component is a node of the network having had communications. This
method allows to set/update a custom name.

Route
PUT /api/1.0/component/{id}/custom-name

Parameters
 id: string, the component id to update. (e.g. "13a135ad-c3c6-517b-a4a1-

c627e0de46c7")

Body format
{

 "custom_name" : "YOU_CUSTOM_NAME"

}

Example:

Upset the custom name related to the component 02074cd3-dbe6-52b6-
963c-7247ef33a2b1:
PUT /api/1.0/component/02074cd3-dbe6-52b6-963c-7247ef33a2b1/custom-

name?token=YOUR_TOKEN

{

 "custom_name" : "My PLC"

}

The response will be an array of serialized Component objects. See
"Component" for complete information. In our example:
[

 {

 "id": "02074cd3-dbe6-52b6-963c-7247ef33a2b1",

 "creation_time": "2015-07-09T14:17:11.370164+02:00",

 "custom_name": "My PLC",

 "last_active_time": "2015-09-23T14:52:53.249992+02:00",

 "ip": "192.168.105.130",

 "mac": "28:63:36:82:28:96",

 "name": "PLC_3",

 "model_name": "PLC_3",

 "model_ref": "6ES7 212-1BE40-0XB0",

 "fw_version": "V4.0",

 "hw_version": "1",

 "serial_number": "S C-E7SJ1284",

 "vendor_name": "Siemens AG - Industrial Automation - EWA",

 "project_name": "PROJECT",

 "project_version":"1",

 "tags": {

 "PLC": "info"

 },

Methods Page 32

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "properties": {

 "name-mac": "Siemens 82:28:96",

 "name-s7plus-plc": "PLC_3",

 "name-vendorip": "Siemens 192.168.105.130",

 "s7plus-hardwarerevision": "1",

 "s7plus-moduleref": "6ES7 212-1BE40-0XB0",

 "s7plus-modulever": "V4.0",

 "s7plus-serialnumber": "S C-E7SJ1284",

 "vendor": "Siemens AG - Industrial Automation - EWA"

 },

 "vulnerabilities": [...]

 }

]

6.3.4 Delete a custom name

A Component is a node of the network having had communications. This
method allows to delete the existing custom name.

Route
DELETE /api/1.0/component/{id}/custom-name

Parameters
 id: string, the component id to update. (e.g. "13a135ad-c3c6-517b-a4a1-

c627e0de46c7")

Example:

Delete the custom name related to the component 02074cd3-dbe6-52b6-
963c-7247ef33a2b1:
DELETE /api/1.0/component/02074cd3-dbe6-52b6-963c-7247ef33a2b1/custom-

name?token=YOUR_TOKEN

The response will be an array of serialized Component objects. See
"Component" for complete information. In our example:
[

 {

 "id": "02074cd3-dbe6-52b6-963c-7247ef33a2b1",

 "creation_time": "2015-07-09T14:17:11.370164+02:00",

 "last_active_time": "2015-09-23T14:52:53.249992+02:00",

 "ip": "192.168.105.130",

 "mac": "28:63:36:82:28:96",

 "name": "PLC_3",

 "model_name": "PLC_3",

 "model_ref": "6ES7 212-1BE40-0XB0",

 "fw_version": "V4.0",

 "hw_version": "1",

 "serial_number": "S C-E7SJ1284",

 "vendor_name": "Siemens AG - Industrial Automation - EWA",

Methods Page 33

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "project_name": "PROJECT",

 "project_version":"1",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-mac": "Siemens 82:28:96",

 "name-s7plus-plc": "PLC_3",

 "name-vendorip": "Siemens 192.168.105.130",

 "s7plus-hardwarerevision": "1",

 "s7plus-moduleref": "6ES7 212-1BE40-0XB0",

 "s7plus-modulever": "V4.0",

 "s7plus-serialnumber": "S C-E7SJ1284",

 "vendor": "Siemens AG - Industrial Automation - EWA"

 },

 "vulnerabilities": [...]

 }

]

6.3.5 Get a list of allowed icons

This section allows you to customize an icon in case you consider that the
default one is not adequate.

Note that you cannot upload a new image icon but choose one among the
allowed icons already available in the Knowledge DB.

The following method allows you to get the list of allowed icons.

Route
GET /api/1.0/icon

Body format
[{

"key": "weinteck",

"description": "Weintek Labs. Inc."

},

{

"key": "siemens_G_SY02_XX_00038",

"description": "CPU 416-3 PN/DP"

},

{

"key": "siemens_G_SY02_XX_00041",

"description": "CPU 416F-2"

},

{

"key": "siemens_G_SY02_XX_01104",

"description": "CP 1242-7"

},

{

Methods Page 34

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

"key": "softing",

"description": "Softing"

},

{

"key": "turck",

"description": "TURCK, Inc."

},

{

"key": "siemens_G_SY02_XX_00244",

"description": "CPU 315F-2 DP or PN/DP"

},

{

"key": "dell",

"description": "Dell"

},

]

6.3.6 Get icon content

The following method allows you to get the content of an icon.

Route
GET /api/1.0/icon/{key}

Parameters
 key: string, the key of an icon. (e.g. "netgear")

Body format
{

"key": "weinteck",

"description": "Weintek Labs. Inc.",

"image": "xxxxxx=",

"content-type": "image/png"

}

Example:

Get the content of the custom icon named "netgear":

Request
GET /api/1.0/icon/netgear?token=YOUR_TOKEN

Response
{

 "image": "[...]",

 "content-type": "image/png",

 "description": "netgear",

 "key": "netgear"

}

Methods Page 35

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 Note

 The content type could be "image/png", "image/gif", "image/jpeg" or "text/xml"
for SVG.

6.3.7 Set a custom icon

The following method allows you to set/update a custom icon.

Route
PUT /api/1.0/component/{id}/custom-icon

Parameters
 id: string, the component id to update. (e.g. "13a135ad-c3c6-517b-a4a1-

c627e0de46c7")

Body format
{

 "custom_icon" : "YOU_CUSTOM_ICON"

}

Example:

Upsert the custom icon related to the component 9485b49a-39fc-5834-ba14-
436e9de26c1b:
PUT /api/1.0/component/9485b49a-39fc-5834-ba14-436e9de26c1b/custom-

icon?token=YOUR_TOKEN

{

 "custom_icon" : "cisco"

}

The response will be an array of serialized Component objects. Refer to the
Component (page Error! Bookmark not defined.) section for more
information.

Example:
{

 "vendor_name": "Cisco Systems, Inc",

 "custom_icon": "cisco",

 "name": "192.169.62.254",

 "tags": {

 "Net Management Server": "info"

 },

 "ip": "192.169.62.254",

 "creation_time": "2017-01-18T11:26:28.130892+01:00",

 "properties": {

 "vendor": "Cisco Systems, Inc",

 "name-vendorip": "192.169.62.254"

Methods Page 36

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 },

 "mac": "58:f3:9c:d1:43:60",

 "group": "GRdF Montreal (ADSL)",

 "last_active_time": "2017-01-18T14:30:02.671318+01:00",

 "id": "9485b49a-39fc-5834-ba14-436e9de26c1b"

}

6.3.8 Delete a custom icon

The following method allows you to delete an existing custom icon.

Route
DELETE /api/1.0/component/{id}/custom-icon

Parameters
 id: string, the component id to update. (e.g. "13a135ad-c3c6-517b-a4a1-

c627e0de46c7")

Example:

Delete the custom icon related to the component 9485b49a-39fc-5834-ba14-
436e9de26c1b:
DELETE /api/1.0/component/9485b49a-39fc-5834-ba14-436e9de26c1b/custom-

icon?token=YOUR_TOKEN

The response will be an array of serialized Component objects. Refer to the
Component (page Error! Bookmark not defined.) section for more
information.

Example:
{

 "vendor_name": "Cisco Systems, Inc",

 "name": "192.169.62.254",

 "tags": {

 "Net Management Server": "info"

 },

 "ip": "192.169.62.254",

 "creation_time": "2017-01-18T11:26:28.130892+01:00",

 "properties": {

 "vendor": "Cisco Systems, Inc",

 "name-vendorip": "192.169.62.254"

 },

 "mac": "58:f3:9c:d1:43:60",

 "group": "GRdF Montreal (ADSL)",

 "last_active_time": "2017-01-18T14:30:02.671318+01:00",

 "id": "9485b49a-39fc-5834-ba14-436e9de26c1b"

}

Methods Page 37

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.3.9 Add a component to a group

This method allows to add a Component inside an existing Group.
POST /api/1.0/group/{id}/component/{cid}

 {id} must be replaced by the Group ID in which a Component will be
added.

 {cid} must be replaced by the Component ID to add into the Group.

Example:

Inserting the Component having the ID d3ff2bf4-429a-4ff0-8533-
4aa72f95bb9d inside the Group having the id 25b745dc-1d93-46ec-8bd8-
c647a1d6a46e:
POST /api/1.0/group/25b745dc-1d93-46ec-8bd8-

c647a1d6a46e/component/d3ff2bf4-429a-4ff0-8533-

4aa72f95bb9d?token=YOUR_TOKEN

Responses
HTTP return code Description

200 The method has been successfully executed and the Component has
been added into the group.

309 The given Component is already into a Group and can be added to
another one.

400 The provided IDs are not in the good format.

404 Either the Group of the Component doesn't exist.

6.3.10 Remove a component from a group

This method allows to remove a Component from an existing Group.
DELETE /api/1.0/group/{id}/component/{cid}

 {id} must be replaced by the Group ID in which a Component will be
removed.

 {cid} must be replaced by the Component ID to remove from the Group.

Example:

Removing the Component having the ID d3ff2bf4-429a-4ff0-8533-
4aa72f95bb9d from the Group having the id 25b745dc-1d93-46ec-8bd8-
c647a1d6a46e:

Methods Page 38

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

DELETE /api/1.0/group/25b745dc-1d93-46ec-8bd8-

c647a1d6a46e/component/d3ff2bf4-429a-4ff0-8533-

4aa72f95bb9d?token=YOUR_TOKEN

Responses

HTTP return code Description
200 The method has been successfully executed and the Component has

been removed from the Group.

400 The provided IDs are not in the good format or the given Component
isn't in the given Group.

404 Either the Group of the Component doesn't exist.

6.3.11 Get a component flows

A Component is created when a Flow is seen between two nodes. It is possible
to retrieve the Flow of a given Component and this is the purpose of this
method.

The method can retrieve Flows in a given interval of time (start, end) filtering
on the last activity of the Flow, it is paginated (limit, offset) and it is ordered
(order).

Route
GET /api/1.0/component/{id}/flow

 {id} must be replaced by the Component ID for which you want to
retrieve the Flows.

Parameters
 limit (mandatory): integer, max number of Flows to retrieve. (e.g. 100)

(maximal value: 2000)
 order: 'desc' or 'asc', offset to apply in the list of Flows to retrieve. (e.g.

"desc" will return the most recently active first, "asc" will return the less
recenty active first). Default: asc

 offset: integer, offset used to move into the list of events available in the
CCV. (e.g. 50)

 start: date, low limit for the interval in which the Flow must have been
active to be returned. (e.g. "2015-15-10" or "2015-15-10 10:20")

 end: date, high limit for the interval in which the Flow must have been
active to be returned. (e.g. "2015-15-10" or "2015-15-10 10:20")

Example:

Retrieve the two oldest Flow of a Component:

Methods Page 39

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

GET /api/1.0/component/d8cd6083-6c99-5745-9277-

78506b623e4d/flow?token=YOUR_TOKEN&order=asc&limit=2

6.3.12 Get a component variables

A Component is a node of the network having had communications. This
method allows to retrieve all variables related to a component.

Route
GET /api/1.0/component/{id}/variables

Parameters
 id: string, the component id to update. (e.g. "5ad0ab04-5a74-5f48-8d15-

0d46302f9f7b")
 generation: int, the generation of the component (reference id) to get

component variables for a specific reference. By default, generation equal
the live reference id, it's zero.

Example:

Retrieve all variables related to the component 5ad0ab04-5a74-5f48-8d15-
0d46302f9f7b:
GET /api/1.0/component/5ad0ab04-5a74-5f48-8d15-

0d46302f9f7b/variables?token=YOUR_TOKEN[&generation=REFERENCE_ID]

The response will be an array of serialized Variable objects. See "Variable" for
complete information. In our example:
[

 {

 "id":"343fb02a-335e-5bb9-a730-8458bde3f7be",

 "name":"30721",

 "authors":[

 {

 "id":"7d675486-1b42-5e6a-9e7b-18fe164417b3",

 "name":"EMSPDSALL1",

 "read":{

 "first":"2017-03-17T09:06:38.758864+01:00",

 "last":"2017-03-17T09:06:38.758934+01:00",

 "type":"read"

 }

 }

]

 },

 {

 "id":"5de75197-1e68-5581-9038-e43d697323c4",

 "name":"64512",

 "authors":[

 {

Methods Page 40

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "id":"7d675486-1b42-5e6a-9e7b-18fe164417b3",

 "name":"EMSPDSALL1",

 "read":{

 "first":"2017-03-17T09:06:38.758678+01:00",

 "last":"2017-03-17T09:06:38.758782+01:00",

 "type":"read"

 }

 }

]

 },

 [...]

]

6.3.13 Get vendor names

A vendor is a property retaled to a Component. This method allows to retrieve
the whole list of vendor having been defined to component by Cisco Cyber
Vision.

Route
GET /api/1.0/vendor

Example:
GET /api/1.0/vendor?token=YOUR_TOKEN

The response will be an array of vendor name like below:
[

 "3COM CORPORATION",

 "ABB Oy / Medium Voltage Products",

 "APPLICOM INTERNATIONAL",

 "APRIL",

 "Cisco Systems, Inc",

 "Dell Inc.",

 "DIGITAL ELECTRONICS CORP.",

 "Fisher-Rosemount Systems Inc.",

 "Hewlett Packard",

 "ipcas GmbH",

 "Rockwell Automation",

 "Siemens AG,",

 "Siemens AG - Industrial Automation - EWA",

 "Siemens Electrical Apparatus Ltd., Suzhou Chengdu Branch",

 "SQUARE D COMPANY",

 "Super Micro Computer, Inc.",

 "TELEMECANIQUE ELECTRIQUE"

]

Methods Page 41

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.3.14 Remove incorrect information

These endpoints allow to remove incorrect information (tags, variables or
vulnerabilities) for all or selected components.

Routes

Will remove all tags for component "cad069ab-c5bb-4b11-bbdd-
b844db789d97":
DELETE /api/1.0/component/remove-tags

["cad069ab-c5bb-4b11-bbdd-b844db789d97"]

Will remove all variables for component "cad069ab-c5bb-4b11-bbdd-
b844db789d97":
DELETE /api/1.0/component/remove-variables

["cad069ab-c5bb-4b11-bbdd-b844db789d97"]

Will remove all vulnerabilities for component "cad069ab-c5bb-4b11-bbdd-
b844db789d97":
DELETE /api/1.0/component/remove-vulns

["cad069ab-c5bb-4b11-bbdd-b844db789d97"]

Will remove all tags for all components:
DELETE /api/1.0/component/purge-tags

Will remove all variables for all components:
DELETE /api/1.0/component/purge-variables

Will remove all vulnerabilities for all component:
DELETE /api/1.0/component/purge-vulns

6.4 Flows

6.4.1 Get all flows

Route
GET /api/1.0/flows/?token=YOUR_TOKEN

Parameters:
 limit, offset, generation should be a positive integer and used for

paginate. (maximal value: 2000)
 limit: int, allows to define the number of result per page.
 offset: int, allows to skip that many flows before beginning of the result

to return.

Methods Page 42

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 generation: int, filter to flow related to a reference ID (zero for live
reference).

 last_seen: timestamp, should be a timestamp in ms since epoch and
allows to filter flows last seen after this timestamp.

 order: string, should be "asc" or "desc" and allows to order the result set.
 ip: string (may be pass several times), filter to flow related to

source/destination IP address.
 mac: string (may be pass several times), filter to flow related to

source/destination MAC address.
 port: string (may be pass several times), filter to flow related to

source/destination port.
 tag: string (may be pass several times), filter to flow related to tag name

(i.e. see get tags route to list available keys).
 properties: string (may be pass several times), filter to flow related to

flow property name and/or flow property value (e.g. "netbios-srctype" or
"netbios-srctype=WorkstationRedirector").

 from / to: string, filter to flow related to the source and destination
component id.

 component: string (may be pass several times), filter to flow related to
the source or destination component id.

 start / end: UTC date or datetime, time interval to filter flows from first /
last seen (e.g. "2015-15-10" or "2015-15-10 10:20" or "2015-15-10
10:20:05")

Example:

Retrieve flow between 2016-11-03 and 2017-11-14 12:05 with tag "Stop CPU"
and "Write Var" with industrial as network category and has property "s7plus-
moduleref" and with property "s7plus-modulever" should be equal to "V1.6"
and with property "s7plus-io-ver" should be equal to "V2.0.2":
GET /api/1.0/flows/?token=YOUR_TOKEN&start=2016-11-

03+00%3A00&tag=Stop+CPU&tag=Write+Var&limit=2&offset=0&generation=0&en

d=2017-11-14+12%3A05&property=s7plus-io-ver%3DV2.0.2&property=s7plus-

modulever%3DV1.6&property=s7plus-

moduleref&order=asc&netcat=field&netcat=control

The response will be an array of serialized Flow object. See "Flow" for
complete information. In our example:
[

 {

 "src": {

 "ip": "192.168.105.241",

Methods Page 43

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "mac": "34:17:eb:d1:c9:97",

 "component": {

 "id": "f523ce71-19ea-5a7b-8b1a-0670433c35ab"

 },

 "port": 1613

 },

 "tags": {

 "Start CPU": "important",

 "S7Plus": "info",

 "Stop CPU": "important",

 "Read Var": "info",

 "Program Upload": "important",

 "Write Var": "info"

 },

 "dst": {

 "ip": "192.168.105.112",

 "mac": "28:63:36:85:b3:32",

 "component": {

 "id": "f18c406e-e89d-5ce7-9f49-4d03cbe6786f"

 },

 "port": 102

 },

 "id": "c2e0d272-28bf-55c6-abd6-52d3f3451289",

 "network_category": "control",

 "first_seen": "2017-11-14T11:39:32.920547+01:00",

 "properties": {

 "cotp-dst-tsap": "0",

 "s7plus-io-serialnumber": "S C-ENS824882014",

 "s7plus-io-ref": "6ES7 522-1BL00-0AB0",

 "s7plus-serialnumber": "S C-ENSK66872014",

 "s7plus-modulever": "V1.6",

 "s7plus-moduleref": "6ES7 516-3AN00-0AB0",

 "s7plus-programupload": "explore",

 "s7plus-io-ver": "V2.0.2",

 "s7plus-cpustatechange": "start-cpu",

 "s7plus-plcname": "PLC_1",

 "ipv4-ttl": "30",

 "s7plus-hardwarerevision": "4"

 },

 "last_seen": "2017-11-14T11:39:33.007821+01:00",

 "sensor_id": "08866e88-918f-48fc-a90e-a37cc9ddd318"

 }

]

6.4.2 Get a flow

A Flow is a communication between two Components. It has several
attributes such as tags and properties that the Cisco Cyber Vision has
identified during its network analyze.

Methods Page 44

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Once a Flow has been identified (its ID is known, by either having been read in
a syslog, found in the webapp or read in a "Get Component Flows" query
result), this method allows to retrieve the information about the Flow.

Route
GET /api/1.0/flow/{id}

 {id} must be replaced by the Flow ID to query.

Example:
GET /api/1.0/flow/fea763b5-a292-556e-a986-

af71bffb45eb?token=YOUR_TOKEN

The response will be a serialized Flow object. See "Flow" for complete
information. In our example:
{

 "id": "fea763b5-a292-556e-a986-af71bffb45eb",

 "src": {

 "mac": "34:17:eb:d1:c9:97",

 "ip": "192.168.1.241",

 "port": 1616,

 "component": {

 "id": "f523ce71-19ea-5a7b-8b1a-0670433c35ab"

 }

 },

 "dst": {

 "mac": "00:1b:1b:b6:f6:99",

 "ip": "192.168.1.115",

 "port": 102,

 "component": {

 "id": "d8cd6083-6c99-5745-9277-78506b623e4d"

 }

 },

 "network_category": "control",

 "tags": {

 "S7": "info"

 },

 "properties": {

 "cotp-dst-tsap": "100",

 "s7-bootloaderref": "Boot Loader",

 "s7-bootloaderver": "V 6.0.4",

 "s7-function": "NONE",

 "s7-fwver": "V 6.0.3",

 "s7-hwref": "6ES7 412-2EK06-0AB0",

 "s7-hwver": "3",

 "s7-mode": "userdata",

 "s7-modulename": "PLC_4",

 "s7-moduleref": "6ES7 412-2EK06-0AB0",

 "s7-modulever": "68",

 "s7-plcname": "S7-400 station_1",

Methods Page 45

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "s7-serialnumber": "SVPEN250894"

 },

 "first_seen": "2015-07-09T14:24:49.90637+02:00",

 "last_seen": "2015-09-23T14:24:50.102395+02:00",

 "sensor_id": "08866e88-918f-48fc-a90e-a37cc9ddd318"

}

6.4.3 Get a flow content

It sometimes necessary to not only retrieve the metadata of a Flow, but also
its content transiting on the network, this is the purpose of this method.

The method can retrieve the flow content in a given interval of time (start,
end) filtering when the Flow Content has transited on the network, it is
paginated (limit, offset) and it is ordered (order).

Route
GET /api/1.0/flow/{id}/content

 {id} must be replaced by the Flow ID for which you want to retrieve the
content.

Parameters
 size (mandatory): integer, ???
 start: UTC date or datetime, low limit for the interval in which the Flow

Content must have transited on the network to be present in the result.
(e.g. "2015-15-10" or "2015-15-10 10:20" or "2015-15-10 10:20:05")

 end: UTC date or datetimec, high limit for the interval in which the Flow
Content must have transited on the network to be present in the result.
(e.g. "2015-15-10" or "2015-15-10 10:20" or "2015-15-10 10:20:05")

Example:

Retrieve the more recent Content of a given Flow.
GET /api/1.0/flow/fea763b5-a292-556e-a986-

af71bffb45eb/content?token=YOUR_TOKEN&limit=1&order=desc

The response will be an array of serialized FlowContent object. See "Response
objects > FlowContent" for complete information. In our example:
[

 {

 "id": "0cbd385f-d1fb-4203-b6bc-0635f67e0dec",

 "time": "2015-07-09T14:24:50.087495+02:00",

 "direction": "Server→Client",

 "content": {

 "s7-function": "NONE",

 "s7-mode": "userdata",

 "s7-modulename": "PLC_4",

Methods Page 46

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "s7-plcname": "S7-400 station_1",

 "s7-serialnumber": "SVPEN250894"

 }

 }

]

6.4.4 Get a flow statistics

It is sometimes necessary to not only retrieve the metadata of a Flow, but also
its network stats by flow direction, this is the purpose of this method.

Route
GET /api/1.0/flow/{id}/stats

Parameters
 {id} must be replaced by the Flow ID for which you want to retrieve the

content

Example:

Retrieve stats of a given Flow.
GET /api/1.0/flow/fea763b5-a292-556e-a986-

af71bffb45eb/stats?token=YOUR_TOKEN

The response will be an array of serialized FlowStats object. See "Response
objects > FlowStats" for complete information. In our example:
[{

"flow_id": "ff3e0990-f9f0-5e50-8069-f5f28accac17",

"direction": "Client→Server",

"direction_method": "detected",

"nb_packets": 6,

"l2_bytes": 606,

"l7_bytes": 282

},

{

"flow_id": "ff3e0990-f9f0-5e50-8069-f5f28accac17",

"direction": "Client→Server",

"direction_method": "detected",

"nb_packets": 8,

"l2_bytes": 835,

"l7_bytes": 403

}

]

Methods Page 47

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.5 Groups

6.5.1 Get all groups

A Group is a group of Component. This method allows to retrieve the whole
list of Groups available created in the CCV.
GET /api/1.0/group

Example:

Retrieve all the Groups existing in the CCV:
GET /api/1.0/group?token=YOUR_TOKEN

The response will be an array of serialized Groups objects. See "Group" for
complete information. In our example, a Group labeled "GROUP SIEMENS"
containing two Components:
[

 {

 "id": "25b745dc-1d93-46ec-8bd8-c647a1d6a46e",

 "creation_time": "2016-02-17T11:47:39.198189+01:00",

 "label": "GROUP SIEMENS",

 "description": "",

 "comments": "",

 "color": "GRAY",

 "industrial_impact": "VERY_LOW",

 "properties": [

 {

 "last_update": "2016-02-17T11:59:09.284025+01:00",

 "position": 0,

 "label": "Location",

 "value": "Room 214"

 }

],

 "components": [

 {

 "id": "93b5cfca-77bb-5551-ad5f-e9443279c640",

 "creation_time": "2016-02-12T16:13:47.924038+01:00",

 "last_active_time": "2016-02-

12T16:13:47.924038+01:00",

 "ip": "192.168.0.1",

 "mac": "00:0e:8c:84:5b:a6",

 "name": "Siemens 84:5b:a6",

 "fw_version": "6ES7 315-2EH13-0AB0",

 "hw_version": "3",

 "serial_number": "S C-V1R583472007",

 "vendor_name": "Siemens AG A&D ET",

 "tags": {

 "PLC": "info"

 },

Methods Page 48

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "properties": {

 "name-mac": "Siemens 84:5b:a6",

 "name-s7-plc": "SIMATIC 300(1)",

 "name-vendorip": "Siemens 192.168.0.1",

 "s7-bootloaderref": "Boot Loader",

 "s7-bootloaderver": "A 10.12.9",

 "s7-fwver": "V 2.5.0",

 "s7-hwref": "6ES7 315-2EH13-0AB0",

 "s7-hwver": "3",

 "s7-modulename": "CPU 315-2 PN/DP",

 "s7-moduleref": "6ES7 315-2EH13-0AB0",

 "s7-modulever": "3",

 "s7-plcname": "SIMATIC 300(1)",

 "s7-rack": "0",

 "s7-serialnumber": "S C-V1R583472007",

 "s7-slot": "2",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS",

 "vulnerabilities": [...]

 },

 {

 "id": "f36d4e1d-ef90-56b4-bd01-357bc5f4d299",

 "creation_time": "2016-02-12T16:13:47.909701+01:00",

 "last_active_time": "2016-02-

12T16:13:47.970315+01:00",

 "ip": "192.168.0.10",

 "mac": "00:0e:8c:83:8b:ae",

 "name": "Siemens 192.168.0.10",

 "vendor_name": "Siemens AG A&D ET",

 "properties": {

 "name-vendorip": "Siemens 192.168.0.10",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS"

 }

]

 }

]

6.5.2 Get a group

A Group is a group of Components. This method allows to retrieve a Group by
its ID.
GET /api/1.0/group/{id}

 {id} must be replaced by the Group ID for which you want to retrieve the
information.

Example:

Methods Page 49

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Retrieve the information of the Group having the id 25b745dc-1d93-46ec-
8bd8-c647a1d6a46e:
GET /api/1.0/group/25b745dc-1d93-46ec-8bd8-

c647a1d6a46e?token=YOUR_TOKEN

The response will be a serialized Group object. See "Group" for complete
information. In our example, a Group labeled "GROUP SIEMENS" containing
two Components:
{

 "id": "25b745dc-1d93-46ec-8bd8-c647a1d6a46e",

 "creation_time": "2016-02-17T11:47:39.198189+01:00",

 "label": "GROUP SIEMENS",

 "description": "",

 "comments": "",

 "color": "GRAY",

 "industrial_impact": "VERY_LOW",

 "properties": [

 {

 "last_update": "2016-02-17T11:59:09.284025+01:00",

 "position": 0,

 "label": "Location",

 "value": "Room 214"

 }

],

 "components": [

 {

 "id": "93b5cfca-77bb-5551-ad5f-e9443279c640",

 "creation_time": "2016-02-12T16:13:47.924038+01:00",

 "last_active_time": "2016-02-12T16:13:47.924038+01:00",

 "ip": "192.168.0.1",

 "mac": "00:0e:8c:84:5b:a6",

 "name": "Siemens 84:5b:a6",

 "fw_version": "6ES7 315-2EH13-0AB0",

 "hw_version": "3",

 "serial_number": "S C-V1R583472007",

 "vendor_name": "Siemens AG A&D ET",

 "tags": {

 "PLC": "info"

 },

 "properties": {

 "name-mac": "Siemens 84:5b:a6",

 "name-s7-plc": "SIMATIC 300(1)",

 "name-vendorip": "Siemens 192.168.0.1",

 "s7-bootloaderref": "Boot Loader",

 "s7-bootloaderver": "A 10.12.9",

 "s7-fwver": "V 2.5.0",

 "s7-hwref": "6ES7 315-2EH13-0AB0",

 "s7-hwver": "3",

 "s7-modulename": "CPU 315-2 PN/DP",

Methods Page 50

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "s7-moduleref": "6ES7 315-2EH13-0AB0",

 "s7-modulever": "3",

 "s7-plcname": "SIMATIC 300(1)",

 "s7-rack": "0",

 "s7-serialnumber": "S C-V1R583472007",

 "s7-slot": "2",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS",

 "vulnerabilities": [...]

 },

 {

 "id": "f36d4e1d-ef90-56b4-bd01-357bc5f4d299",

 "creation_time": "2016-02-12T16:13:47.909701+01:00",

 "last_active_time": "2016-02-12T16:13:47.970315+01:00",

 "ip": "192.168.0.10",

 "mac": "00:0e:8c:83:8b:ae",

 "name": "Siemens 192.168.0.10",

 "vendor_name": "Siemens AG A&D ET",

 "properties": {

 "name-vendorip": "Siemens 192.168.0.10",

 "vendor": "Siemens AG A&D ET"

 },

 "group": "GROUP SIEMENS"

 }

]

}

6.5.3 Create a group

This method allows to create a Group (page Error! Bookmark not defined.)
with a set of Component (page Error! Bookmark not defined.) IDs. The
information to create the Group must be given to the call in JSON inside the
HTTP query.

WARNING

It is important to set the HTTP header 'Content-Type' as 'application/json' while
calling this method.

POST /api/1.0/group

JSON Body format

Field Type Optional Description
label string false The label to give to the group.

description string true A short description of the group.

Methods Page 51

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Field Type Optional Description

comments string true Creator comments about the group.

color string true Color to assign to the group in the Cisco Cyber Vision
webapp. Possible values:
LIGHTBLUE

BLUE

PINK

RED

ORANGE

YELLOW

GREEN

components array of ids false Array of IDs of the Component to initially add to the
Group. At least one is mandatory.

Example:
POST /api/1.0/group?token=YOUR_TOKEN

{

 "label": "Room 214"

 "description": "All the PLCs installed in Room 214 of Floor 1",

 "comments": "Sentryo Sensor's in left servers rack",

 "color": "RED",

 "components": [

 "d3ff21bf4-429a-4ff0-8533-4aa72f95bb9d",

 "2162db69e-ae27-4b06-82b8-ca53fcfe3772",

 "26028b202-a87a-4485-9bd2-36c8f617a961",

 ...

]

}

Responses

On successful creation, the created Group in its serialization format (see
Responses objects chapter) is returned with an HTTP 200 return code.

In other case, an empty HTTP response with one of these error codes is
returned:

HTTP return code Description
309 The Group can't be created because a Component in the list of given

Components is already in a Group.

400 The provided JSON can't be properly parsed.

Methods Page 52

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

409 The Group can't be created because a Group with this label already
exists.

6.5.4 Edit a group

This method allows to edit a Group (page Error! Bookmark not defined.)
information. All fields are optional in order to be able to change only one if
necessary.

WARNING

It is important to set the HTTP header 'Content-Type' as 'application/json' while
calling this method.

PUT /api/1.0/group/{id}

JSON Body format

Field Type Optional Description
label string true To set a new name to the group.
description string true To set a new description to the group.

comments string true To change the comments about the group.

color string true To assign a new color to the group in the Cisco Cyber
Vision webapp. Possible values:
LIGHTBLUE

BLUE

PINK

RED

ORANGE

YELLOW

GREEN

Example:

In this example we change the Comments and the Color of the Group with ID
25b745dc-1d93-46ec-8bd8-c647a1d6a46e:
PUT /api/1.0/group/d2abf7a0-e0e4-4a0c-a021-

6c0dc62ea971?token=YOUR_TOKEN

{

 "comments": "Sentryo Sensor's in right servers rack",

 "color": "PINK"

}

Responses

Methods Page 53

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

On successful edition, an empty HTTP 200 response is returned. In other case,
an empty HTTP response with one of these error codes is returned:

HTTP return code Description
309 The Group can' because a Component in the list of given Components is

already in a Group.

400 The provided JSON can't be properly parsed.

404 A Group with the given ID can't be found.

409 The Group can't be renamed because a Group with this label already
exists.

6.5.5 Explode a group

This method allows to explode a Group of the Cisco Cyber Vision by its ID.
Exploding a Group only means that the Components of the Group are no more
grouped, but it doesn't delete anything except the Group itself. The
Components are not deleted or anything.

Be sure of your intention with this method because it's can't be undone.
DELETE /api/1.0/group/{id}

 {id} must be replaced by the Group ID to delete permanently.

Example:

Explode the Group having the id 25b745dc-1d93-46ec-8bd8-c647a1d6a46e:
DELETE /api/1.0/group/25b745dc-1d93-46ec-8bd8-

c647a1d6a46e?token=YOUR_TOKEN

An empty HTTP 200 response will be returned if the group has been
successfully exploded.

6.6 Events

6.6.1 Get all events

An Event is created by the Cisco Cyber Vision every time something special
occurs. This method allows to retrieve the list of all events stored in the CCV.

The method can retrieve the events in a given interval of time (start, end)
filtering on the Event occurring time, it is paginated (limit, offset) and it is
ordered (order).

Route
GET /api/1.0/event

Methods Page 54

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Parameters
 limit (mandatory): integer, max number of events to retrieve. (e.g. 100)

(maximal value: 2000)
 order: 'desc' or 'asc', offset to apply in the list of events to retrieve. (e.g.

"desc" will return the most recent event first, "asc" will return the oldest
event first). Default: asc

 offset: integer, offset used to move into the list of events available in the
CCV. (e.g. 50)

 start: UTC date or datetime, low limit for the interval in which must be
the returned events. (e.g. "2015-15-10" or "2015-15-10 10:20" or "2015-
15-10 10:20:05")

 end: UTC date or datetime, high limit for the interval in which must be the
returned events. (e.g. "2015-15-10" or "2015-15-10 10:20" or "2015-15-
10 10:20:05")

 severity (or severities): string (may be pass several times), filter to event
related to severities (e.g. "veryhigh").

 category: string (may be pass several times), filter to event related to
categories (e.g. "Identification").

 family: string (may be pass several times), filter to event related to
families (e.g. "Component").

 type: string (may be pass several times), filter to event related to types.
 group: string (may be pass several times), filter to event related to the

associated component-group ids.
 text: string, a pattern to match event text content (e.g. "New comp").
 network: string, filter to event related to the associated component

subnet (e.g. "192.168.1").
 ip: string (may be pass several times), filter to event related to

source/destination IP address.
 mac: string (may be pass several times), filter to event related to

source/destination MAC address.
 from / to: string, filter to event related to the source and destination

component id.

Note

 Refer to the Event (page Error! Bookmark not defined.) section to know
allowed category/family/type/severity list.

Example:

Methods Page 55

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Retrieve the 5 events between the 2016-11-03 00:00 and the 2017-11-13
17:23, with "high" or "very-high" as severity and in "Identification" as category
related to a component which have "d4:ae:52:aa:dc:93" as MAC address and
"10.4.0.46" as IP address sorted by most recent first:
GET

/api/1.0/event?token=YOUR_TOKEN&category=Identification&start=2016-11-

03+00%3A00&mac=d4%3Aae%3A52%3Aaa%3Adc%3A93&limit=5&severity=veryhigh&s

everity=high&offset=0&end=2017-11-13+17%3A23&ip=10.4.0.46&order=desc

The response will be an array of serialized Event objects. See "Event" for
complete information. In our example:
[

 {

 "category": "Identification",

 "severity": "High",

 "family": "Component",

 "component": {

 "id": "5a14574b-f191-5e8f-ac1b-2b6a08631c78"

 },

 "creation_time": "2017-11-13T17:35:54.290739+01:00",

 "message": "New component detected on the network: IP

10.4.0.46, MAC d4:ae:52:aa:dc:93, vendor Dell",

 "type": "Classification",

 "id": "a400af14-ff97-47a4-ac33-c33cc50eff99",

 "short_message": "New component detected"

 }

]

6.6.2 Get an event downloadable content

This method returns the downloadable content of a given event (e.g. PCAP
files for decode failures).

URL/Method
GET /api/1.0/event-data/{id}/download

Example:

Request
GET /api/1.0/event-data/{event-id}/download?token=YOUR_TOKEN_HERE

Response
<the file linked to the event (if any)>

Methods Page 56

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.7 Variables

6.7.1 Get all variables

This method allows to retrieve all variables indexed by PLC/component id.

Route
GET /api/1.0/variables

Parameters
 limit (mandatory): integer, max number of events to retrieve. (e.g. 100,

should be less than 2000 as threshold)
 order: 'desc' or 'asc', offset to apply in the list of events to retrieve. (e.g.

"desc" will return the most recent content first, "asc" will return the
oldest content first). Default: asc

 offset: integer, offset used to move into the list of events available in the
CCV. (e.g. 50)

Example:

Retrieve three first variables:
GET /api/1.0/variables/?token=YOUR_TOKEN&limit=3&order=asc&offset=0

The response will be an array of serialized Variable objects indexed by
PLC/component id.

See "Variable" for complete information. In our example :
{

 "14796b0e-d2f4-51f1-a2c1-8e67a5f05bbb": [

 {

 "authors": [

 {

 "read": {

 "type": "read",

 "last": "2017-01-18T12:20:16.331505+01:00",

 "first": "2017-01-18T11:30:16.99657+01:00"

 },

 "id": "1491688a-da68-52ac-b004-aa05b5df19c2",

 "name": "192.168.101.237"

 }

],

 "id": "0001ad0c-73be-53b6-a8a6-6c790adb9162",

 "name": "W414"

 }

],

 "62208e8c-ab62-5b57-aa5f-a9bfe7e4d96a": [

 {

 "authors": [

Methods Page 57

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 {

 "read": {

 "type": "read",

 "last": "2017-01-18T12:20:15.01314+01:00",

 "first": "2017-01-18T11:30:15.863019+01:00"

 },

 "id": "1491688a-da68-52ac-b004-aa05b5df19c2",

 "name": "192.168.101.237"

 },

 {

 "read": {

 "type": "read",

 "last": "2017-01-18T14:30:14.378108+01:00",

 "first": "2017-01-18T12:30:14.377105+01:00"

 },

 "id": "5f74340a-1610-5d0f-b2a8-e507a12094b7",

 "name": "192.168.101.238"

 }

],

 "id": "0000d4d8-9b3c-51e9-80e2-3d88a492a30c",

 "name": " bool 133"

 }

]

}

6.8 Operator, Parameters, Conditions & Actions
OPERATOR_TYPE

OPERATOR_TYPE is the operator used between rule's conditions for validating
the rule's test.

OPERATOR_TYPE has to be one of these values: [or|and].

PARAMETERS_LIST

PARAMETERS_LIST is used to pass parameters to conditions or action (see
CONDITION_TYPE/ACTION_TYPE)

The common JSON format for a set of parameters is:
{

 "parameter_name_1" : " parameter_value_1",

 "parameter_name_2" : " parameter_value_2",

 "parameter_name_3" : " parameter_value_3"

}

Example:
{

 "tag": "S7",

 "type": "info",

Methods Page 58

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "throw_admin_event": true

}

CONDITION_TYPE

CONDITION_TYPE is an ICS internal function which returns a Boolean value.
Theses function will validate, or not, the rule's test. They use a
PARAMETERS_LIST to specify arguments.
 HasProp: will check if component has a property. Available parameter:

property: property name
 PropValue: will check if component has a property and its value. Available

parameters:
property: property name
value: property value

Example:
{

 "name": "HasProp",

 "params": {

 "property": "s7-function"

 }

}

ACTION_TYPE

ACTION_TYPE is an ICS internal function that will be performed if a condition
is validated.
 TagFlow: tag a flow. Available parameters:

♦ tag: tag name. Available values: all available tags from the Tags API
♦ type: tag class. Available values: [info|important]
♦ throw_admin_event: throw an admin event (or not). Available

values: [true|false]
 Netcat: set flow's netcat. Available parameters:

♦ value: netcat value. Available values: [field|control|eth|net]
 TagComponent: tag a component. Available parameters:

♦ tag: tag name. Available values: all available tags from the Tags API
♦ value: tag class. Available values: [info|important]
♦ target: target component, Source or Destination. Available values:

[src|dst]
 SetComponentProperty: set property of a component. Available

parameters:

Methods Page 59

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

♦ target: target component, Source or Destination. Available values:
[src|dst]

♦ property: component property name.
♦ value: property value.

 RemoveComponentProperty: remove property of a component. Available
parameters:
♦ target: target component, Source or Destination. Available values:

[src|dst]
♦ property: component property name.

 CopyProperties: Copy properties from flow to component. Available
parameters:
♦ properties: array of properties.
♦ target: target component, Source or Destination. Available values:

[src|dst]
♦ protocol: protocol related to these properties.

 SendEvent: Send an event. Available parameters:
♦ trigger: Event trigger. Available values:

[PROG_DL_DETECTED|PROG_UL_DETECTED|NEW_COMM_DETECTE
D|EXCEPTION_DETECTED|INIT_DETECTED|START_CPU_DETECTED|S
TOP_CPU_DETECTED]

♦ type: Event type. Available values:
[Behavioral|Classification|Changes|Software]

 severity: Event severity. Available values: [Low|Medium|High|Very High]
♦ category: Event category. Available values: [Decode Failure|User

Management|Data Management|Security|Identification|Run
Orders|Configuration|Communication]

♦ family: Event family. Available values: [Property|PLC
Control|Protocol Events|Component|ICS Cybervision]

 SendEventException: Send an exception event. Available parameters:
♦ trigger: Event trigger. Available values:

[PROG_DL_DETECTED|PROG_UL_DETECTED|NEW_COMM_DETECTE
D|EXCEPTION_DETECTED|INIT_DETECTED|START_CPU_DETECTED|S
TOP_CPU_DETECTED]

♦ type: Event type. Available values:
[Behavioral|Classification|Changes|Software]

♦ severity: Event severity. Available values: [Low|Medium|High|Very
High]

Methods Page 60

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

♦ category: Event category. Available values: [Decode Failure|User
Management|Data Management|Security|Identification|Run
Orders|Configuration|Communication]

♦ family: Event family. Available values: [Property|PLC
Control|Protocol Events|Component|ICS Cybervision]

Example:
{

 "name": "TagFlow",

 "params": {

 "tag": "SSH",

 "type": "important",

 "throw_admin_event": true

 }

}

PORT_ARRAY

PORT_ARRAY is an array of value of port. Each value could be prefixed of
protocol or not.

Example:
 ["TCP/80"]: TCP Flow on port 80
 ["UDP/8080"]: UDP Flow on port 8080
 ["22"]: TCP&UDP flow on port 22
 ["TCP/80", "UDP/8080", "22"]: TCP Flow on port 80 and 22, UDP Flow on

port 8080 and 22

6.8.1 Tags

6.8.1.1 Get all tags

This method returns all the tags available in the Cisco Cyber Vision. It contains
the ones that the Knowledge DB file has imported, but also the ones added by
the API.

URL/Method
GET /api/1.0/tags/

Example:

Request
GET /api/1.0/tags?token=YOUR_TOKEN_HERE

Response
[{

Methods Page 61

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "tag": "WEB",

 "label": "Web",

 "desc": "Web protocols"

},{

 "tag": "WEB_SERVER",

 "label": "Web Server",

 "desc": "Web server computer"

},{

 "tag": "WINDOWS",

 "label": "Windows",

 "desc": "Windows workstation"

}]

6.8.1.2 Get a custom tag

URL/Method
GET /api/1.0/analyzer/tag/{tag}

Example:

Request
GET /api/1.0/analyzer/tag/WEB?token=YOUR_TOKEN_HERE

Response
{

 "tag": "WEB",

 "label": "Web"

}

6.8.1.3 Create a tag

Creates a tag with the given key, label, description, type and domain. Only the
key and label are mandatory.

Tags created via the API are grouped in the "My tag" category.

URL/Method
POST /api/1.0/analyzer/tag?token=YOUR_TOKEN_HERE

Body format
{

 "tag": TAG_KEY,

 "label": TAG_NAME,

 "desc": TAG_DESCRIPTION

 "type": TAG_TYPE

 "IT": TAG_DOMAIN

 "OT": TAG_DOMAIN

}

Methods Page 62

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Note

The key can only contain char between a and z (lower or uppercase) and _.
The type can take two values : "flow" and "component".
For the domain, the field "IT" and "OT" are of type booleans.
By default:
If "type" is not filled, it takes the value "flow".
If "IT" and "OT" tag domain are not filled, they take the value "true".

Example:

Request
POST /api/1.0/analyzer/tag?token=YOUR_TOKEN_HERE

Body
{

 "tag": TAG_KEY,

 "label": TAG_NAME,

 "desc": TAG_DESCRIPTION

 "type": flow

 "IT": true

 "OT": false

}

6.8.1.4 Update a tag

URL/Method
PUT /api/1.0/analyzer/tag/{tag}

{

 "tag": TAG_KEY,

 "label": TAG_NAME

}

Example:

Request
PUT /api/1.0/analyzer/tag/WEB_CUSTOM?token=YOUR_TOKEN_HERE

Body
{

 "tag": "WEB_CUSTOM",

 "label": "Web Custom Updated"

}

6.8.1.5 Delete a tag

This method deletes a tag previously added with the API. Note that it doesn't
delete tags imported by the Knowledge DB file.

Methods Page 63

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

URL/Method
DELETE /api/1.0/analyzer/tag/{tag}

Example:

Request
DELETE /api/1.0/analyzer/tag/WEB_CUSTOM?token=YOUR_TOKEN_HERE

6.8.2 Property analyzer rules

6.8.2.1 Get all property analyzer rules

URL/Method
GET /api/1.0/analyzer/property/rule/

Example:

Request
/api/1.0/analyzer/property/rule/?token=YOUR_TOKEN_HERE

Response
[{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "test": {

 "operator": "or",

 "conditions": [{

 "name": "HasProp",

 "params": {

 "property": "s7-function"

 }

 }]

 },

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "S7",

 "type": "info",

 "throw_admin_event": true

 }

 }]

},{

 "id": "8d95c60b-c1e6-4e04-b3ed-4c8b8d339b0e",

 "test": {

 "operator": "and",

 "conditions": [{

 "name": "PropValue",

 "params": {

 "property": "dst_port",

Methods Page 64

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "value": "22"

 }

 }]

 },

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "SSH",

 "type": "important",

 "throw_admin_event": true

 }

 }]

}]

6.8.2.2 Get a property analyzer rule

URL/Method
GET /api/1.0/analyzer/property/rule/{id}

Example:

Request
/api/1.0/analyzer/property/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

Response
{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "test": {

 "operator": "or",

 "conditions": [{

 "name": "HasProp",

 "params": {

 "property": "s7-function"

 }

 }]

 },

 "actions": [{

 "name": "TagFlow

",

 "params": {

 "tag": "S7",

 "type": "info",

 "throw_admin_event": true

 }

 }]

}

Methods Page 65

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

6.8.2.3 Create a property analyzer rule

URL/Method
POST /api/1.0/analyzer/property/rule/

Body format
{

 "test": {

 "operator": OPERATOR_TYPE,

 "conditions": [{

 "name": CONDITION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

 },

 "actions": [{

 "name": ACTION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

}

 Note

 Refer to the Operator, Parameters, Conditions & Actions (page Error! Bookmark
not defined.) section for more details.

Example:

Request
POST /api/1.0/analyzer/property/rule/?token=YOUR_TOKEN_HERE

Body
{

 "test": {

 "operator": "or",

 "conditions": [{

 "name": "HasProp",

 "params": {

 "property": "s7plus-function"

 }

 }]

 },

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "S7 ",

 "type": "info",

Methods Page 66

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "throw_admin_event": true

 }

 }]

}

6.8.2.4 Update a property analyzer rule

URL/Method
PUT /api/1.0/analyzer/property/rule/{id}

Body format
{

 "id": {id},

 "test": {

 "operator": OPERATOR_TYPE,

 "conditions": [{

 "name": CONDITION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

 },

 "actions": [{

 "name": ACTION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

}

Example:

Request
PUT /api/1.0/analyzer/property/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

Body
{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "test": {

 "operator": "or",

 "conditions": [{

 "name": "HasProp",

 "params": {

 "property": "s7plus-function"

 }

 },{

 "name": "HasProp",

 "params": {

 "property": "s7-function"

Methods Page 67

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 }

 }]

 },

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "S7",

 "type": "info",

 "throw_admin_event": true

 }

 }]

}

6.8.2.5 Delete a property analyzer rule

URL/Method
DELETE /api/1.0/analyzer/property/rule/{id}

Example:

Request
DELETE /api/1.0/analyzer/property/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

6.8.3 Port analyzer rules

6.8.3.1 Get all port analyzer rules

URL/Method
GET /api/1.0/analyzer/port/rule/?token=YOUR_TOKEN_HERE

Response
[{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "ports": [TCP/80, UPD/8080, 9000],

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "WEB",

 "type": "info",

 "throw_admin_event": true

 }

 }]

},{

 "id": "8d95c60b-c1e6-4e04-b3ed-4c8b8d339b0e",

 "ports": [22],

 "actions": [{

 "name": "TagFlow",

Methods Page 68

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "params": {

 "tag": "SSH",

 "type": "important",

 "throw_admin_event": true

 }

 }]

}]

6.8.3.2 Get a port analyzer rule

URL/Method
GET /api/1.0/analyzer/port/rule/{id}

Example:

Request
GET /api/1.0/analyzer/port/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

Response
{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "ports": [TCP/80, UPD/8080, 9000],

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "WEB",

 "type": "info",

 "throw_admin_event": true

 }

 }

}

6.8.3.3 Create a port analyzer rule

URL/Method
POST /api/1.0/analyzer/port/rule/

Body format
{

 "ports": PORT_ARRAY,

 "actions": [{

 "name": ACTION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

}

Methods Page 69

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Note

Refer to the(page Error! Bookmark not defined.) section for more details.

Example:

Request
POST /api/1.0/analyzer/port/rule/?token=YOUR_TOKEN_HERE

Body
{

 "ports": [“22”],

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "SSH",

 "type": "important",

 "throw_admin_event": true

 }

 }]

}

6.8.3.4 Update a port analyzer rule

URL/Method
PUT /api/1.0/analyzer/port/rule/{id}

Body format
{

 "id": {id}

 "ports": PORT_ARRAY,

 "actions": [{

 "name": ACTION_TYPE,

 "params": {

 PARAMETERS_LIST

 }

 }]

}

Note

Refer to the(page Error! Bookmark not defined.) section for more details.

Example:

Request
PUT /api/1.0/analyzer/port/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

Methods Page 70

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

Body
{

 "id": "bd1c1b0b-eb8c-4740-a870-e1fac758ef2b",

 "ports" : [234]

 "actions": [{

 "name": "TagFlow",

 "params": {

 "tag": "S7",

 "type": "info",

 "throw_admin_event": true

 }

 }]

}

6.8.3.5 Delete a port analyzer rule

URL/Method
DELETE /api/1.0/analyzer/port/rule/{id}

Example:

Request
DELETE /api/1.0/analyzer/port/rule/bd1c1b0b-eb8c-4740-a870-

e1fac758ef2b?token=YOUR_TOKEN_HERE

Examples Page 71

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

7 Examples
In this chapter, you can find some basic examples showing the usage of the
API.

Note

These examples need at least Python 3.5.6 to be executed.

7.1 Get Component MAC by its ID
#!/usr/bin/python3

Example using the Get Component method

to retrieve the MAC of a component.

Must be executed with Python >= 3.5.6

import json

import ssl

import sys

import urllib.request, urllib.parse, urllib.error

center_ip = '169.254.0.42:4443'

token = 'ics-8c9535ccce063ee56e6d3fc8d72bbd9a84f02f97-

d307d2cd42a0b77b280dac9f5d0d6bd6d03f4e7c'

def main(argv):

 if len(argv) == 0:

 print('Usage: python get_component_mac.py COMPONENT-ID')

 sys.exit(1)

 # request

 route = 'https://'+center_ip+'/api/1.0/component/{id}'

 url = route.replace('{id}', sys.argv[1])

 ctx = create_ssl_context()

 r = urllib.request.urlopen(url + '?token=' + token, context=ctx)

 # read the response

 data = ''

 for line in r.readlines():

 data += line.decode('UTF-8', 'ignore')

 # parse the JSON

 component = json.loads(data)

 # print the MAC

 print((component['mac']))

def create_ssl_context():

 ctx = ssl.create_default_context(cafile='tmp/ca.pem')

 ctx.check_hostname = False

Examples Page 72

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 return ctx

if __name__ == "__main__":

 main(sys.argv[1:])

Note

ca.pem key file should be added on /tmp directory if not already available

Example of calling the script if the filename is get_component_mac_by_id.py
to get the MAC of the Component having the ID '93b5cfca-77bb-5551-ad5f-
e9443279c640':
Python3 get_component_mac_by_id.py 93b5cfca-77bb-5551-ad5f-

e9443279c640

7.2 Print the last active Flow of a Component

#!/usr/bin/python3

Example using the Get last flow Component method

to retrieve the last flow of a known component ID.

Must be executed with Python >= 3.5.6

import json

import ssl

import sys

import urllib.request, urllib.parse, urllib.error

center_ip = '169.254.0.42:4443'

token = 'ics-8c9535ccce063ee56e6d3fc8d72bbd9a84f02f97-

d307d2cd42a0b77b280dac9f5d0d6bd6d03f4e7c'

def main(argv):

 # request

 route = 'https://'+center_ip+'/api/1.0/component/{id}/flow'

 url = route.replace('{id}', sys.argv[1])

 ctx = create_ssl_context()

 r = urllib.request.urlopen(url + '?limit=1&token=' + token,

context=ctx)

 # read the response

 data = ''

 for line in r.readlines():

 data += line.decode('UTF-8')

 # parse the JSON

 flow = json.loads(data)

 # pretty print of the JSON

Examples Page 73

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 print((json.dumps(flow, sort_keys=True, indent=4)))

Create an SSL context using the Center self-signed CA.

def create_ssl_context():

 ctx = ssl.create_default_context(cafile='tmp/ca.pem')

 ctx.check_hostname = False

 return ctx

if __name__ == "__main__":

 main(sys.argv[1:])

Example of calling the script if the filename is last_active_flow.py to get the
last active Flow of the Component having the ID '93b5cfca-77bb-5551-ad5f-
e9443279c640':
Python3 last_active_flow.py 821744de-07ac-5362-85fd-76a9594c318f

First access timestamp:
[

 {

 "dst": {

 "component": {

 "id": ""

 },

 "ip": "10.232.45.23",

 "mac": "8c:ec:4b:b3:0c:6d",

 "port": 50692

 },

 "ethertype": "IPv4",

 "first_seen": "2020-07-13T14:17:21.130341Z",

 "id": "821744de-07ac-5362-85fd-76a9594c318f",

 "last_seen": "2020-07-13T14:17:21.132848Z",

 "network_category": "net",

 "properties": {

 "gssspnego-mechanism-supported": "GSS-API Kerberos Version

5",

 "gssspnego-mechanism-types": "Negoex,GSS-API Kerberos

Version 5,Kerberos v5,Kerberos v5 user to user,NTLMSSP",

 "gssspnego-nego-result": "accept_completed",

 "smb-command": "smb-command-negotiate",

 "smb-dialect-proposed": "NT LM 0.12,SMB 2.002,SMB 2.???",

 "smb-dialect-selected": "2.*",

 "smb-tree-name": "\\\\VUFLPRNP101.emea.int.grp\\IPC$",

 "smb-version": "1",

 "smb-version1": "yes",

 "smb-version2": "yes"

 },

 "protocol": "TCP",

 "sensor_id": "8f034b99-ae02-4b1b-85ca-0b9f6955ece2",

 "src": {

 "component": {

Examples Page 74

 Rev. 0.01

Cisco Cyber Vision REST API User Guide

 "id": ""

 },

 "ip": "10.232.9.130",

 "mac": "00:a0:12:34:cc:cc",

 "port": 445

 },

 "tags": {

 "Insecure": "important",

 "SMB": "info"

 }

 }

]

	1 About this documentation
	1.1 Document purpose
	1.2 Warnings and notices

	2 Getting Started
	2.1 Network representation
	2.2 Network data
	2.3 Network evolution
	2.4 Network analyze

	3 Performance note
	4 Responses
	5 Response objects
	5.1 Sensor
	5.2 Component
	5.3 Flow
	5.3.1 FlowStats
	5.3.2 Flow Test Version

	5.4 Group
	5.5 Event
	5.6 Variable
	5.7 Error cases

	6 Methods
	6.1 Authentication
	6.2 Sensors
	6.2.1 Get sensors

	6.3 Components
	6.3.1 Get all components
	6.3.2 Get a component
	6.3.3 Set a custom name
	6.3.4 Delete a custom name
	6.3.5 Get a list of allowed icons
	6.3.6 Get icon content
	6.3.7 Set a custom icon
	6.3.8 Delete a custom icon
	6.3.9 Add a component to a group
	6.3.10 Remove a component from a group
	6.3.11 Get a component flows
	6.3.12 Get a component variables
	6.3.13 Get vendor names
	6.3.14 Remove incorrect information

	6.4 Flows
	6.4.1 Get all flows
	6.4.2 Get a flow
	6.4.3 Get a flow content
	6.4.4 Get a flow statistics

	6.5 Groups
	6.5.1 Get all groups
	6.5.2 Get a group
	6.5.3 Create a group
	6.5.4 Edit a group
	6.5.5 Explode a group

	6.6 Events
	6.6.1 Get all events
	6.6.2 Get an event downloadable content

	6.7 Variables
	6.7.1 Get all variables

	6.8 Operator, Parameters, Conditions & Actions
	6.8.1 Tags
	6.8.1.1 Get all tags
	6.8.1.2 Get a custom tag
	6.8.1.3 Create a tag
	6.8.1.4 Update a tag
	6.8.1.5 Delete a tag

	6.8.2 Property analyzer rules
	6.8.2.1 Get all property analyzer rules
	6.8.2.2 Get a property analyzer rule
	6.8.2.3 Create a property analyzer rule
	6.8.2.4 Update a property analyzer rule
	6.8.2.5 Delete a property analyzer rule

	6.8.3 Port analyzer rules
	6.8.3.1 Get all port analyzer rules
	6.8.3.2 Get a port analyzer rule
	6.8.3.3 Create a port analyzer rule
	6.8.3.4 Update a port analyzer rule
	6.8.3.5 Delete a port analyzer rule

	7 Examples
	7.1 Get Component MAC by its ID
	7.2 Print the last active Flow of a Component

